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Single-shot self-supervised object detection
in microscopy

Benjamin Midtvedt1, Jesús Pineda 1, Fredrik Skärberg1, Erik Olsén 2,
Harshith Bachimanchi 1, Emelie Wesén3, Elin K. Esbjörner 3, Erik Selander 4,
Fredrik Höök 2, Daniel Midtvedt1 & Giovanni Volpe 1

Object detection is a fundamental task in digital microscopy, where machine
learning has made great strides in overcoming the limitations of classical
approaches. The training of state-of-the-art machine-learningmethods almost
universally relies on vast amounts of labeled experimental data or the ability to
numerically simulate realistic datasets. However, experimental data are often
challenging to label and cannot be easily reproduced numerically. Here, we
propose a deep-learning method, named LodeSTAR (Localization and detec-
tion from Symmetries, Translations And Rotations), that learns to detect
microscopic objects with sub-pixel accuracy from a single unlabeled experi-
mental image by exploiting the inherent roto-translational symmetries of this
task. We demonstrate that LodeSTAR outperforms traditional methods in
terms of accuracy, also when analyzing challenging experimental data con-
taining densely packed cells or noisy backgrounds. Furthermore, by exploiting
additional symmetries we show that LodeSTAR can measure other properties,
e.g., vertical position and polarizability in holographic microscopy.

The study of biological systems often requires detecting individual
objects, from microorganisms to biomolecules1,2. For example, indivi-
dual object tracking enables the studyof the life cycle andproliferation
of single microorganisms3 as well as the mobility of inter- and intra-
cellular particles4,5. On the molecular level, high-contrast imaging of
biological processes with unprecedented spatio-temporal resolution
has been made possible by single-molecule fluorescence and super-
resolution microscopy6. However, like many tasks in computer vision,
object detection is surprisingly difficult and it is now often the limiting
factor in the analysis of microscopic images.

Recently, deep learning has been successfully employed to
improve object detection in microscopy, outperforming more stan-
dard methods, e.g., to track particles in noisy images7,8, to push the
limits of super-resolution fluorescence9, and to quantitatively char-
acterize sub-wavelength particles10. The most widely used deep-
learning methods use supervised learning, where a neural network is
trained to solve a particular problem using large amounts of high-

quality training data consisting of input data and corresponding
expected results (ground truth). Obtaining these datasets represents
the effective bottleneck in the application of deep learning to micro-
scopic object detection2. While public datasets are available, they are
often inadequate to represent the idiosyncrasies of any specific
experimental sample and setup. Thus, acquiring the needed experi-
mental datasets in house is often the only viable option, but it comes
with its own burdens in terms of time and effort. As a consequence,
most deep-learning methods for object detection rely on synthetic
data7–11. However, accurate synthetic replication of experimental data
is very challenging, even for relatively simple transmission
microscopes2.

Even if a sufficiently large dataset can be collected, determining
the corresponding ground truth with sufficient accuracy can be even
more challenging. Human-derived annotation of experimental data is
highly labor-intensive and prone to inconsistencies12, especially when
dealing with high-noise data or when sub-pixel precision is required.
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Automatically-generated annotations can be employed by mimicking
an existing method, but this relies on a prior ability to algorithmically
analyze the data—and the resuting deep-learningmethod is unlikely to
outperform the original method. Finally, numerically-generated data
naturally comewith the exact ground truth used to generate them, but
their applicability is limited to experimental setups that can be recre-
ated numerically, which is only possible in some cases.

Here, we tackle these issues by developing a novel deep-learning
approach, named LodeSTAR (Localization and detection from Sym-
metries, Translations, And Rotations), that exploits the inherent sym-
metries of object detection to enable training on extremely small
datasets (down to a single image of the object) without ground truth.
We demonstrate that a single training image is sufficient to train
LodeSTAR to outperform standard methods in terms of accuracy,
while simultaneously providing robust detection in complex experi-
mental conditions such as densely-packed or noisy images. Further-
more, beyond in-plane object detection, we demonstrate that it is
possible to exploit additional symmetries to measure other object
properties for which no widespread standard methods are available,
e.g., the vertical position in interference holography exploiting the
propagation symmetry of the image in Fourier space and the object
polarizability by exploiting the scaling symmetry of the signal strength
of the image.

Results
LodeSTAR overview
LodeSTAR builds on geometric deep learning13 and the recent surge of
self-supervised object tracking methods14–21 to create a self-supervised
(or more precisely, self-distillative) object-detection neural network
optimized for microscopy data. Specifically, we exploit the fact that a
neural network that is equivariant to rotations and translations (i.e., a
neural network for which a roto-translational transformation of the
input image produces an equivalent roto-translation of the prediction)
operates as an object detector (see Methods, “Theory of geometric
self-distillation”). A limitation for general objects is that the exact part
of the object that is detected cannot be controlled; however, if the
object has a well-defined center (by having at least two axes of sym-
metry), such a neural network will find the exact center of the object.
Building on this insight, we design a novel neural-network architecture
that uses global weighted pooling to become inherently translation
equivariant (see Methods, “Neural network architecture”). We also
design a novel unsupervised training procedure that trains the neural
network to become fully roto-translation equivariant. This procedure
feeds theneuralnetworkswith transformedviewsof the same imageof
a single object, and trains it to predict positions that are equivariant
with the transformations (see Methods, “Neural network training”).

Geometric self-distillation
LodeSTAR is designed to exploit the symmetries inherent in the
detection ofmicroscopic objects. For example, even if wedo not know
the absolute position of an object, we can say for sure that, if we
translate the object image by a certain amount, its position gets also
translated by the same amount—and similarly for rotations and
reflections. This is knownas an equivariance. In fact, for a objectwhose
image has a well-defined center of symmetry, such as that shown in
Fig. 1a, a prediction of the position of the object that is equivariant to
the Euclidean group (translations, rotations, and reflections) can be
shown to necessarily locate the center of the object (see Methods,
“Theory of Geometric Self-Distillation”).

LodeSTAR trains a neural network to achieve equivariance, i.e., an
exact correspondence between the transformation applied to its input
image (e.g., a translationby a certain amount) and the effect this has on
the output prediction (e.g., a translation of the predicted object
position by the same amount).We startwith an imageof a single object
(Fig. 1a). By applying a transformation from the Euclidean group to this

image, we create several transformed images (e.g., the two images in
Fig. 1b). A neural network (Fig. 1c) predicts the position of the object
within each image (Fig. 1d, which will bemore thoroughly explained in
the next paragraph), yielding two predictions of the x and y coordi-
nates of the object, one for each transformation (Fig. 1e). To compare
these predictions, we back-transform the predicted coordinates to
determine their corresponding positions in the original image (Fig. 1f).
Then, if the neural network is equivariant to the applied transforma-
tions, the twopredictions shouldperfectly overlap,while anydeviation
between these two prediction can be used to train the neural network
(i.e., to adjust the neural network by updating its internal weights to
minimize the distance between the two predictions).

We now turn our attention to the details of the neural network
employed by LodeSTAR.Whilemost architectures are compatiblewith
LodeSTAR, it is convenient to use a completely translation-equivariant
neural network (e.g., a fully convolutional neural network). This pre-
sents a two-fold advantage. First, having inherent translation-equivar-
iance, the neural network does not need to learn the equivariance
during training, which significantly reduces the required complexity of
the model (while rotation-equivariance and reflection-equivariance
still need to be learned). Second, as will become clear in the following
sections, this will permit us to use the network to detect multiple
objects while still training on a single image of the object.

As schematically shown in Fig. 1c (details are described in the
Methods, “Neural network architecture”), we use a fully convolutional
neural network, with two convolutional layers, one max-pooling layer,
and seven additional convolutional layers, the last of which outputs
three channels, Δx, Δy, and ρ. The outputs of this neural network are
further analyzed, as shown Fig. 1d (this analysis also needs to be
translation-equivariant). The vectors (Δx,Δy) estimate the direction
and distance from each pixel to the object (blue arrows in upper left
panel of Fig. 1d; far away from the object, the lengths of these vectors
go to zero because LodeSTAR only attempts to predict the position
where the weight map ρ is non-zero.). By adding to each of these
vectors the respective pixel position, we retrieve a map of predictions
of the object position relative to the center of the image. During eva-
luation thenetwork transforms the predictions to be relative to the top
left corner for convenience (blue markers in the upper right panel of
Fig. 1d). The ρ channel provides a weight map (normalized to sum to
one) corresponding to the probability of finding the center of the
object near each pixel (bottom panel in Fig. 1d). The final prediction of
the object position is obtained by an average of the estimated object
positions weighted by the weight map.

LodeSTAR manages to train this network using a single image of
the object. Moreover, thanks to the small size of the neural network, it
can be trained fully from scratch in an order of 104mini-batches, which
takes a few minutes, even without a graphics processing unit. Finally,
LodeSTAR can be trainedwith small batch-sizes, and as suchneeds less
than a gigabyte of runtime memory (see details in the Methods,
“Neural network training”).

Detecting a single object
We start by considering the performance of LodeSTAR on the simplest
case: a point object (e.g., the image of a singlemolecule obtained from
a fluorescence microscope). We simulate 104 images of point objects
with signal-to-noise ratio (SNR) between 2 and 20 using the Python
library DeepTrack 2.12. We use a single one of these images (inset in
Fig. 1g, SNR = 10) to train LodeSTAR, using 5000 mini-batches of
8 samples. LodeSTAR achieves a sub-pixel root mean square error
(RMSE) for all SNRs and a RMSE <0.1 px for SNR > 5 (blue circles in
Fig. 1g). Strikingly, LodeSTAR performs well also far from the SNR at
which it is trained.

In fact, we find that LodeSTAR achieves a near optimal perfor-
mance. We evaluate the optimal performance by calculating the
Cramer-Rao (CR) lower boundon the localization error22 (seeMethods,
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“Evaluating the Cramer-Rao lower bound” for more details). The CR
lower bound defines the optimal performance any estimator can
achieve based on the information content in the image. LodeSTAR
manages to approach the CR lower bound for most SNRs, only falling
short for very low SNRs (Fig. 1g).

In contrast, two of the most standard object localization meth-
ods, i.e., the centroid method23 (gray triangles in Fig. 1g) and the

radial-center method24 (gray diamonds in Fig. 1g) are unable to reach
the CR lower bound in any experiment. While the radial-center
method achieves sub-pixel accuracy over the whole range of SNRs, it
is consistently outperformed by LodeSTAR. The radial-center
method approaches LodeSTAR’s performance for high SNRs, but is
not competitive at lower SNRs. Overall, these results are consistent
with the literature, where deep-learning-based methods have been

Fig. 1 | LodeSTAR single-shot training and performance. a Example image of a
single particle used to train the neural network (N ×M pixels, C color channels).
bTwo copies of the original image transformedby translations and rotations. cThe
transformed images are fed to a convolutional neural network. d The neural net-
work outputs two tensors (featuremaps), each with N/2 ×M/2 pixels: One (top) is a
vector field where each pixel represents the direction and distance from the pixel
itself to the object (top left, blue arrows), which is then transformed so that each
pixel represents the direction and distance of the object from the center of the
image (top right, blue markers). The other tensor (bottom) is a weight map (nor-
malized to sum to one) corresponding to the contribution of each element in the
top featuremap to the final prediction. e These two tensors aremultiplied together
and summed to obtain a single prediction of the position of the object for each

transformed image. f The predicted positions are then converted back to the ori-
ginal image by applying the inverse translations and rotations. The neural network
is trained to minimize the distance between these predictions. g–k LodeSTAR
performanceon64 px× 64 px images containingdifferent simulatedobject shapes:
g point particle, (h) sphere, (i) annulus, (j) ellipse, and (k) crescent. Even though
LodeSTAR is trained on a single image for each case (found in the corresponding
inset), its root mean square error (RMSE, blue circles) approaches the Cramer-Rao
(CR) lower bound (dotted gray line), and significantly outperforms traditional
methods based on the centroid23 (gray triangles) or radial symmetry24 (gray dia-
monds), especially at low signal-to-noise ratios (SNRs). Interestingly, even in the
crescent case (k), where there is no well-defined object center, LodeSTAR is able
locate it to within a tenth of pixel.

Fig. 2 | Evaluation positioning accuracy of object detection methods. The root
mean squared error of the position accuracy for six methods, a CNN with a dense
top 42, YOLOv425, SoCo18, a segmentation CNN7, LodeSTAR* (which is the archi-
tecture of LodeSTAR trained in a supervised manner), and LodeSTAR. Each model
was trained according to the recommendations of the corresponding paper. The
performance of the model was evaluated on a separate validation set of 1000

images during training, to ensure that the model did not under- or overtrain. We
evaluate these over a range of sizes of training sets, from 1 datapoint to 1000
datapoints, on five shapes: a a point particle, (b) a spherical particle, (c) an annulus,
(d) an ellipse, and (e) a crescent moon shape. LodeSTAR outperforms all other
methods at all sizes of training sets. In fact, LodeSTAR reaches optimal perfor-
mance using just one datapoint for training.
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shown to outperform traditional methods especially at mid-to-low
SNRs2,7,8.

In contrast to traditional methods that are optimized for certain
sets of object shapes, LodeSTAR candetect objects of arbitrary shapes.
We show some examples in Fig. 1h–k, where we present the results for
a sphere (Fig. 1h), an annulus (Fig. 1i), an ellipse (Fig. 1j), and a crescent
(Fig. 1k). Overall, LodeSTAR achieves a sub 0.1 px error for themajority
of the SNR range in all cases. LodeSTAR also nearly reaches theCRLB in
all cases.Whilewe can expect LodeSTAR to performwell on symmetric
objects, such as the sphere (Fig. 1h) and the annulus (Fig. 1i), it is an
important confirmation of the generality of LodeSTAR that it also
works for non-symmetric objects, such as the ellipse (Fig. 1j), whichhas
only two axes of symmetry instead of full radial symmetry, and the
crescent (Fig. 1k),whichhasonlyone axis of symmetry. Supplementary
Movie 1 demonstrates LodeSTAR locating the objects at various
orientations and noise levels.

We also compare LodeSTAR to alternative deep-learningmethods
for object detection and localization, as a function of the number of
training images. Namely, YOLOv425, SoCo18, DeepTrack 18, a segmen-
tation CNN7, and the LodeSTAR architecture trained supervised. We
find that LodeSTAR, trained on just one image, outperforms all other
methods regardless of the size of the training set. The details are
shown in Fig. 2.

We turn now our attention to the discriminative power of Lode-
STAR, i.e., its ability to learn about the specific shape used in its
training. Such discriminative power is important for heterogeneous
samples or just to minimize false positives. In order to do this, we
consider the distribution of predicted positions of the object in view
preceding the global pooling operation, i.e., the feature map (Fig. 1d).
Specifically, we measure the self-consistency of the model by calcu-
lating the weighted variance of the feature map. We expect that the
neural network is highly self-consistent when evaluated on images
similar to the training data, while less so when evaluated on something
distinctly different. As can be seen in Table 1, the variance is several
orders of magnitude lower when the model analyzes an image drawn
from the distribution on which it has been trained. This demonstrates
that LodeSTAR acts differently when presented data similar to the
training distribution compared to data from another distribution,
whichclearly shows that LodeSTARhas acquireddiscriminative power.

Detecting multiple objects
Thanks to the translation-equivariant design of the neural network,
LodeSTAR trained on a single object image as described in the pre-
vious section can immediately be used to detect multiple objects
without any additional training. In fact, since the receptive field of the
convolutional network is limited, additional objects in view (such as in
Fig. 3a) are analyzed largely independently by the neural network.

Table 1 | LodeSTAR has discriminative power

Model
particle

Point Sphere Annulus Ellipse Crescent moon

Point 0.02 31.44 70.47 12.82 1590.37

Sphere 857.96 0.05 58.66 1.13 1025.23

Annulus 58.60 26.94 0.07 27.45 750.94

Ellipse 758.71 0.85 75.16 0.12 21.77

Crescent 13.97 11.47 18.32 10.10 0.18

Each model trained by LodeSTAR is significantly more self-consistent (lower average weighted
variance) when presented data from its training distribution (bold font), compared to when it is
evaluated on different data. This demonstrates that LodeSTAR has acquired
discriminative power.

Fig. 3 | LodeSTARanalysisof imageswithmultiple objects. a Example imagewith
multiple objects to be detected by LodeSTAR (LodeSTAR is still trained on a single
object image, as described in Fig. 1). b LodeSTAR returns clustered predictions of
object positions and (c) aweightmap representing the likelihoodoffinding aobject
near each pixel. d An estimation of the local density of object detections is multi-
plied by the weight map to obtain a detection map, whose local maxima are con-
sidered object detections (orange markers in e). f–i Examples of applications of
LodeSTAR to experimental data that present different challenges. In all cases,
LodeSTAR is trained on the single crop shown in the respective inset and then
applied to the whole time-series. See also the corresponding Supplementary
Movies 2–6. f LodeSTARfinds the positions ofmousehematopoietic stemcells (red

markers), achieving an F1 score of 0.98 rate despite the dense sample (data from12).
g LodeSTAR identifies human hepatocarcinoma-derived cells (red circles), achiev-
ing an F1 score of 0.97, despite the high variability between cells (data from12).
h LodeSTAR detects pancreatic stem cells (red markers), an F1 score of 0.95,
despite the densely packed sample and the high variability between cells (data
from12). i LodeSTAR detects the plankton Noctiluca scintillans. In this case, Lode-
STARdetects the optically dense areaof the tentacle attachment point (red circles).
j Interestingly, if the data isdownsampledby a factorof 3 (so that the training image
is 50px× 50px instead of 150px × 150px) before training and evaluation, the
model finds the cell as a whole.
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Taking advantage of these observations, we can bestow LodeSTAR
with the capability to detect multiple objects, simply by removing the
weighted global pooling layer (i.e., the final multiplication in Fig. 1e)
and operating directly on the feature-maps themselves, i.e., on the
predicted object position map (Fig. 3b) and on the weight map
(Fig. 3c). By multiplying a measure of the local density of object posi-
tions by the weight map (Fig. 3d), we obtain a detection map whose
local maxima represent the positions of the detected objects. After
detection, the exact location of the object is determined by a weighted
average of the local region around the detection, analogous to the
single-object case, finally yielding the position of each object (Fig. 3e).
See also details in Methods, “Particle detection criteria”.

Validation with experimental data
Wenowapply LodeSTAR to various experimental imageswithmultiple
objects, which present different challenges (Fig. 3f–j). We highlight
that in all cases we train LodeSTAR on a single image (shown in the
insets in the lower left corners in Fig. 3f–j) and then apply it to the
whole image. In all cases, the objects are dividing over time, resulting
in a large range of densities andmorphologies that LodeSTARneeds to
handle. Videos visualizing the analyzed sequences can be found for
each case in the supplementarymaterial (Supplementarymovies 2–6).

First, we consider a dense sample (Fig. 3f) of mouse stem-cells,
demontrating LodeSTAR’s ability to identify the positions of very
densely packed cells. Second, we consider a sample of human
hepatocarcinoma-derived cells, where the cells vary highly both in
morphology and in intensity (Fig. 3g). Finally, we consider a doubly
challenging sample of pancreatic stem cells (Fig. 3h), where the cells
are both densely packed and highly variable in morphology.

To compare the performance of LodeSTAR with other self-
supervisedmethods, we construct an evaluationmethod. Thismethod
first compares predicted positions with publicly available annotations
for the first three datasets12. It marks cells as found if a predicted
position overlaps with the segmentation of the cell. Using thismethod,
we evaluate the F1-score of LodeSTAR, as well as those of four other
self-supervised object detection methods: SoCo18, FSDet21,
InstanceLoc20, and DETReg19. See Methods, “Object detection com-
parison”, for more details.

Table 2 summarizes the results of the comparison. We find that
LodeSTAR achieves results far superior to the alternativemethods.We
canalsopinpoint the reasons for failureof the alternativemethods. For
the dataset in Fig. 3f, we find that they all perform well when the
number of cells is low, but fail when the number of cells increase above
some critical threshold. For the dataset in Fig. 3g, we find that they
struggle at finding both the small and the large cells simultaneously
given the small training sets. For the dataset in Fig. 3h,wefind that they
struggle to generalize at all beyond the training set, most likely
because of the variability of the cells’ morphology.

We also compare LodeSTAR to published results in the cell-
tracking challenge12.Wemeasure theDET* metric, where the * indicates

that it is a version of the DET score26 that supports object detection
methods that do not segment the objects (see Methods, “Object
detection comparison”). We find DET*-scores of 0.989, 0.952 and
0.936 respectively; all of which are comparable to the top scores on
the official benchmark27.

LodeSTAR achieves these results despite being trained on more
than 1000 times less data than the published methods. Although the
comparison to the published methods cannot be made exactly since
the official test set is not published (and the possibility of dis-
crepancies between DET and DET*), these results demonstrate that
LodeSTAR is at least comparable to state-of-the-art supervised object
detection methods.

Finally, we consider some more complex objects with significant
internal structure (Fig. 3i, j, see also Methods, “Plankton preparation
and imaging”), namely some Noctiluca scintillans, large
(400–1500μm) single-celled dinoflagellate plankton. Since these
planktons have a complex internal structure, LodeSTAR does not
necessarily find their geometrical center, but it nonetheless con-
sistently identifies some specific feature of their internal structure.
Furthermore,we canexpect this feature todependon thedetails of the
neural network and its training. In fact, when LodeSTAR is trained on
the inset of Fig. 3i (150px × 150px), it learns to consistently identify the
region where the tentacle attach and organelle aggregate. In contrast,
when we downsample the images by a factor of 3 so that the training is
made on the 50px × 50 px figure shown in the inset of Fig. 3j, Lode-
STAR consistently finds the plankton as a whole. In this way, it is
possible to tune the scale of the detection performed by LodeSTAR.

Exploiting additional symmetries
LodeSTAR can exploit additional symmetries to extend the range of
object properties that it can measure. Holography is a prime example
of an imaging modality ripe with additional symmetries28. Unlike
ordinary brightfield microscopy where only the intensity of the
incoming wave is imaged, holography provides access to the entire
complex electromagnetic field. Consequently, it is possible to infer
quantitative information about the imaged objects by measuring and
manipulating the Fourier representation of the image. As wewill see in
the following sections, when analyzing holographic microscopy ima-
ges, we can exploit the Fourier propagation symmetry to detect the
axial position and the signal strength scaling symmetry to determine
the polarizability of imaged particles. Implementation-wise, additional
symmetries are encoded as additional channels of the intermediate
feature-map, and are trainedusing their own set of equivariances in the
same manner as for the in-plane position we have discussed in detail
until now.

3D detection exploiting Fourier propagation symmetry
A natural extension of two-dimensional detection is to incorporate the
third axial dimension, normal to the imaging plane. This can give
crucial insight into the full volume dispersion of objects, as well as
provide more data to calculate statistical measures about the objects’
motility, such as their diffusion. An example of (the imaginary part) of
an holographic image of a particle (a 228 nm-radius polystyrene
sphere) is shown by the top slice (z =0μm) in Fig. 4a. The holographic
image can be propagated to different planes (i.e., different axial
positions from the focal plane) by employing Fourier transforms, as
shown by the other slices in Fig. 4a. This provides an equivariance that
LodeSTAR can learn, similar to the equivariances in the plane. By
training on the image in the top slice of Fig. 4a, LodeSTAR learns to
locate the polystyrene spheres in 3D space, as shown in Fig. 4b, where
the measured vertical position is visualized as the distance above the
image.Note that the refractive indices of themedium (nmedium) and the
immersion oil (noil) change the apparent axial position of the particle29.
We correct this by multiplying the measured axial position by a factor
noil/nmedium = 1.12829. The particles were both detected and located in

Table 2 | LodeSTAR outperforms other selft-supervised and
low-shot methods

Dataset 1 Dataset 2 Dataset 3

SoCo 0.85 0.84 0.48

FSDet 0.73 0.75 0.59

InstanceLoc 0.82 0.67 0.43

DETReg 0.71 0.61 0.44

LodeSTAR 0.98 0.97 0.95

F1-score of self-supervised and low-shot object detectionmethods evaluated on the datasets in
the cell-tracking challenge BF-C2DL-HSC (dataset 1, Fig. Fig. 3f), Fluo-C2DL-Huh7 (dataset 2, Fig.
3g), and PhC-C2DL-PSC (dataset 3, Fig. 3h)12. The best scores are highlight in bold. LodeSTAR
significantly outperforms the other methods in each experiment.
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3D space using LodeSTAR. Using a synthetic dataset replicating the
experimental conditions, we find that LodeSTAR achieves an F1-score
of 0.99 (see Fig. 5a for details).

We compare the vertical position predicted by LodeSTAR with
that predicted by a traditional focusing approach where the vertical
position is found by iteratively refocusing a region near a detection
until a focusing criterion ismet10. As shown in Fig. 4c, the twomethods
are in very good agreement. Moreover, we calculate the standard
deviation of the error of the two methods based on the covariance
estimate proposed in Ref. 30: LodeSTAR outperforms the classical
approach significantly, reaching σz = 105 nm compared to σz = 231 nm.

As a second verification, we go beyond the single image locali-
zation and compare the predicted diffusion constants of each particle
trace (acquired from the detections using a simple linear sum assign-
ment approach), calculated either from its in-plane or axialmovement.
Since the diffusion constant is a statistical measure of the thermal
motion of the particle, the diffusion of individual particles in different
directionsmaynot agree, while the ensemble of all particles should. As
such, we compare the distribution of measured diffusion constants in
Fig. 4d for in-plane movement and axial motion. We find that both in-
plane diffusion and axial diffusion are distributed similarly, and that
both show a peak at the expected diffusion of DSE = 0.97 μm2s−1.
Moreover, we find that the distributions closely agree with the
expected distribution of diffusion constants obtained by simulating
104 traces.

Particle polarizability exploiting signal strength symmetry
The holographic image of a particle carries information not only about
the particle position, but also about its morphology and composition.
For example, the real part of the polarizability of an object (which
henceforth will be referred to as just the polarizability for con-
venience) is proportional to the integrated phase acquired by the light
passing through the particle, which is particularly relevant for biolo-
gical objects, where refractive index and density are strongly corre-
lated. In other words, for biological materials, it is possible to directly
translate the polarizability of a particle to its drymass31. The integrated
phase, in turn, increases roughly proportional to the amplitude of the
scattered light for small non-absorbing particles. Thus, there is an
equivariance between the polarizability and the scale of the signal,
which LodeSTAR can learn.

Figure 6a shows the real and imaginary parts of a simulated
holographic image of a particle with radius 228 nm and refractive
index 1.5. Bymultiplying these images by a factor (Fig. 6b), we can alter
the signal scale and, therefore, the polarizability of the imagedparticle.
LodeSTAR is trained to estimate the logarithmic difference between
the scale factors, in addition to the particle position. We remark that
this equivariance does not constrain the absolute scale of the polar-
izability, which thus needs to be calibrated against some observation
of known polarizability.

In Fig. 6c, we evaluate the trained LodeSTAR on simulated parti-
cles, varying their radius and their refractive index. Themean absolute
percentage error remains below 10% for themajority of the considered
range, only increasing for very low signal observations where noise
would corruptmost of the signal. This is comparable to the findings of
other methods, and yields accurate determinations by averaging over
several observations of the same particle10,32.

Next, we validate LodeSTAR’s ability to measure the polarizability
of particles in experimental data of 228 nm and 150nm polystyrene
beads. First, we measure LodeSTAR’s ability to detect particles using a
synthetic replica of the optical setup. We find that LodeSTAR achieves
an expected F1-score of over 0.95 (see Fig. 5). To capture the population
distribution of polarizability, we additionally need to link detections of
the same particle over time. In this way, each particle is weighed equally
in the distribution. We link particles by minimizing a linear sum
assignment problem, which was found to be sufficient for this data.

In Fig. 6d, we consider a bi-dispersed sample of 150nm radius and
228 nm radius polystyrene particles imaged through a holographic
microscope. LodeSTAR is trained on one observation from the 228nm
population and is subsequently used to predict the polarizability of all
particles in the sample. By calibrating against the 228 nm population,
LodeSTAR successfully identifies the 150 nm population with high
accuracy.

Having verified that LodeSTAR can reliably determine the polar-
izability of particles, we consider a biological sample with 225 nm-
radius green-fluorescent polystyrene beads that were incubated with
human neuroblastoma cell from the SH-SY5Y cells-line (Fig. 6e, see
Methods, “Human neuroblastoma cell sample preparation”). The par-
ticles are simultaneously imaged with sample-position-modulated
holography and fluorescence (see Methods, “Holographic imaging”).
This allows us to classify detections as polystyrene particles (orange
markers, which are fluorescent) or biological aggregates (blue mar-
kers, which are not fluorescent). As can be seen in the zoomed-in
region in Fig. 6e, the signal is extremely low compared to the back-
ground. As such, one can expect spurious detections. We filter these
out byonly consideringobservations that could be linkedover time for
at least 40 frames, disregarding observations that arose from random
noise. We find that the majority of detections are co-located with the
cells. Further, studying the time-series (Supplementary Movie 8) the
particles move in unison with the cells, supporting the premise that
someof the particles have been takenupby the cells. See alsodetails in
Methods, “Measuring particle polarizability”.

Finally, we study the distribution of polarizability for the particles
and the biological matter in Fig. 6e. We find a much broader dis-
tribution for the polystyrene particles than the bi-dispersed case,
which is expected if some of the particles are measured inside of the
cells, since the intracellular medium has a higher refractive index than
the surrounding medium (1.38 compared to 1.3333) and consequently
yields slightly lower polarizability of the particle. Moreover, particles
inside the cells are likely to be coated with biological material, further
broadening the distribution. The peak of the distribution aligns well
with the expected polarizability of polystyrene inside the cell, given a
cytoplasmic refractive index of 1.3833. However, a secondpeaknear the
polarizability ofpolystyrene inwater suggests that a significant portion
of the particles have not entered the cells, which agrees with other
cell–particle uptake experiments34.

The distribution of polarizability of biological particles is sig-
nificantly narrower and peaks at just under 0.01 μm3. It should be
noted that the detection of objects with polarizability lower than
0.006 μm3 is not reliable due to the low signal, which means that the
lower end of the distribution should be analyzed with some caution.
Regardless, the two distributions are clearly distinct, indicating that
they represent two separate physical properties of the sample.

Discussion
We have developed a method, named LodeSTAR, that exploits the
inherent symmetries of a problem to enable label-free training of
neural networks using tiny datasets. We have demonstrated this cap-
ability by training neural networks to detect objects in a broad range of
simulated and experimental scenarios. Moreover, we have shown that,
in holography, LodeSTAR can quantitatively measure the objects in
terms of their axial position and their polarizability. The software
together with the source code and all the examples in this work are
made publicly available through the DeepTrack 2.1 GitHub
repository35.

Compared to traditional approaches, we are able to achieve a
better detection performance in terms of sub-pixel accuracy, while
generalizing to more arbitrary morphologies. Moreover, unlike
established methods for object detection using deep learning, which
commonly require thousands of annotated images for training2,
LodeSTAR successfully detects the objects in difficult experimental
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data using just a single datapoint for training.On topof this, LodeSTAR
canbe trained on anordinary computerwith no hardware acceleration
(e.g., graphics processing units) within a few minutes.

As a novel approach to an established problem, we see several
future lines of inquiry. Foremost, we expect the existence of many
additional symmetries not considered in this work, particularly sym-
metries in the experimental design (such as the symmetries that
allowed us the measure the axial position and polarizability of nano-
particles). We also expect that incorporating techniques from other
areas of deep learning to be fruitful; for example, using active learning
to optimize performance from low amounts of human supervision.
Regarding the development of the technique itself, we consider the
development of techniques to further improve the specificity of the

model, such as leveraging negative labels to indicate what not to
detect. Finally, LodeSTAR may be used for segmentation, similarly to
the results of the DINO (self-distillation with no labels) algorithm36,
leveraging the fact that only regions within the object are informative
to its position.

The comparably low barrier of entry permits rapid creation of a
custom detection method, requiring little-to-no expertize from the
user. In addition, by side-stepping the need for synthetic data, Lode-
STAR opens up the possibility to train high-quality models to analyze
data that is difficult to reproduce synthetically, without relying on
fallible human annotation.

Methods
Theory of geometric self-distillation
This section shows theoretically that LodeSTAR locates objects cor-
rectly. First, we consider the case of an arbitrary, constant object with
no noise. Then, we show the special case of a symmetrical object.
Finally, we consider an imperfect estimator. We will describe the the-
ory to find the position of the object, but the same arguments easily
extend to other properties for which a symmetry is available (e.g.,
mass, size, orientation).

Let X be the set of possible images of an object, Y be the set of
possible positions of the object in the image, f be the ground-truth
function that returns the object position and h be a neural network,
both mapping X→ Y, and G be the Euclidean group consisting of
translations, rotations and reflections, acting on both X and Y.

Given a single image x0∈ X, we can define the subset Xx0 , which
are all the elements of X reachable by acting on x0 with G. f is, by
definition, equivariant to G on the subset Xx0 .

Now, additionally assume that (Assumption 1), h is trained to be
equivariant to G on the subset Xx0 , i.e., h(gx) = gh(x)∀ g∈G and
8x 2 Xx0 . Next, we defined the error c as the error f(x0) − h(x0) for the
input image x0. Now, for any other x0 2 Xx0 , we know that x0 = g 0x0 for
some g 0 2 G. Let us factor g 0 into g 0

rg
0
t , where g

0
t is the translational part

Fig. 4 | LodeSTAR measurement of 3D positions exploiting Fourier propaga-
tion symmetry. a Imaginary part of the hologram of a 228nm radius polystyrene
particle numerically Fourier-propagated to different axial distances from the focal
plane. b LodeSTAR exploits this Fourier propagation symmetry to learn how to
locate particles in three dimensions (orange positions). c The vertical position
estimated by LodeSTAR agrees well with the expected position acquired using a

traditional approach described in ref. 10. See also Supplementary Movie 7. d The
distributions of the in-plane xy-diffusion (blue histogram) and the axial z-diffusion
(orange histogram) of the particles show a strong peak at at the expected diffusion
(dashed black line), and agree well with the expected theoretical distribution
obtained by calculating the diffusion constant of 104 synthetic traces (solid
black line).

Fig. 5 | Detection accuracy of LodeSTAR on holographic data. The detection
F1 score as a function of the signal-to-noise ratio (calculated asmaxð∣I∣Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
Re + σ

2
Im

q
,

where I is the field, and σRe, σIm are the standard deviations of the real and imaginary
parts of the field), on synthetic data. a F1 score (shaded region is the 0.95-th
quantile) of LodeSTARon the standardholographic setup. For the twoparticle sizes
used, the F1 score is around 0.98. b F1 score (shaded region is the 0.95-th quantile)
of LodeSTARon the sample-position-modulatedholographic setup. For theparticle
size used, the F1 score is around 0.96.
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of the transformation, and g 0
r is the non-translational remainder.

Finally, wedefine h as “consistent” if f ðx0Þ � hðx0Þ= g 0
rc (i.e., the offset is

independent of the translation and transforms correctly with g 0
r). We

can easily show this to hold by substitution:

f ðx0Þ � hðx0Þ= f ðg 0x0Þ � hðg 0x0Þ ð1Þ

= g 0
rg

0
t f ðx0Þ � g 0

rg
0
thðx0Þ ð2Þ

= g 0
r f ðx0Þ � g 0

rhðx0Þ ð3Þ

= g 0
r f ðx0Þ � hðx0Þ
� � ð4Þ

= g 0
r f ðx0Þ � f ðx0Þ+ c
� � ð5Þ

= g 0
rc ð6Þ

Note that g 0
t disappears in Eq. (3) since it equals to adding and sub-

tracting a constant vector. In Eq. (4), we use the fact that g 0
r is linear.

This is sufficient to show that LodeSTAR, trained to be perfectly
roto-translationally equivariant to some input image x0, learns to
detect identical objects consistently. However, for two different sub-
sets Xx0 and Xx1 , c may have different values. Consquently, internal
consistency is not guaranteed between these two sets. If an action g*

can be defined that can transform some element of either set to the
other, then for the combined set G∪ g*, Xx0 � Xx1 by definition.
LodeSTAR is then guaranteed to be internally consistent for both
subsets.

Now we demonstrate what happens if the images have some
symmetry with respect to the group G. To do this, we assume that
(Assumption 2) there exists a transformation g∈G that is not a trivial
transformation, such that gx = x for some x 2 Xx0 . This is known as a
symmetry.

We know that f ðx0Þ � hðx0Þ= g 0
rc. Now, due to Assumption 2, we

know that there exists some non-trivial g* such that g*x = x. Conse-
quently,

g 0
rc= f ðx0Þ � hðx0Þ ð7Þ

= f ðg*x0Þ � hðg*x0Þ ð8Þ

Fig. 6 | LodeSTAR measurement of particle polarizability exploiting signal
strength symmetry. aReal and imaginary part of a simulated holographic imageof
a sphere (radius 228 nm, refractive index 1.58), (b) their versions with numerically
rescaled signal strengths. c Despite being trained on a single particle (radius
228 nm, refractive index 1.58), the mean absolute percentage error (MAPE) of the
predicted polarizability remains below 10% for a wide range of particle sizes and
refractive indices. d In an experimental bi-dispersed sample, LodeSTAR accurately
estimates the polarizability of the 150nm population of polystyrene particles (pink
histogram), even though it is trained on an image from the 228nm population
(orange histogram). e The imaginary part of a position-modulated holography
image of fluorescent polystyrene particles (radius 225 nm) suspended inside and

around SH-SY5Y human neuroblastoma cells imaged through an off-axis holo-
graphy microscope. LodeSTAR, trained on a single image (bottom left), learns to
detect and measure the fluorescent particles (orange markers) as well as the non-
fluorescent intracellular particles (blue markers). See also Supplementary Movie 8.
f The distributions of themeasured polarizability of the particles and the biological
particles are drawn from two distinct distributions, indicating that we successfully
separate the added polystyrene particles from the biological particles. The peak of
the distribution matches the expected polarizability of polystyrene inside of cells
(dashed line), a less prominent peak near the expected polarizability of polystyrene
outside of cells (dotted line).
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= g*f ðx0Þ � g*hðx0Þ ð9Þ

= g*
rg

*
t f ðx0Þ � g*

rg
*
thðx0Þ ð10Þ

= g*
r f ðx0Þ � g*

rhðx0Þ ð11Þ

= g*
r f ðx0Þ � hðx0ÞÞ� � ð12Þ

= g*
rg

0
rc ð13Þ

In otherwords,we have constrained c such that g 0
rc= g

*
rg

0
rc holds.How

this constraint manifests depends on the transformation g*
r . If g

*
r is

equivalent to a reflection along some line, then g 0
rcmust be parallel to

that line. This is equivalent to saying that the offset between f and h in
the direction normal to a reflection symmetry must be 0. If g*

r is some
rotation about a point, then cmust be zero, since y = grotationy can only
hold if grotation is a trivial rotational transformation (i.e., rotating an
integer multiple of 2π), or if y =0.

We find that any rotational symmetry necessarily means that f = h
on Xx0 . In fact, we have done so without defining f more exactly than
being equivariant to G. Further, we can show that f and h necessarily
find the center of rotational symmetry. Consider an x that is symmetric
to a purely rotational transformation, grotationx = x. Then h(x) =
h(grotationx) = grotationh(x). This can only be true if h(x) is the center of
rotation, for the same reason that c had to be 0.

In reality, Assumption 1 will never hold exactly. LodeSTARwill not
be perfectly equivariant to the Euclideangroup. As such, it is important
to verify that a small deviation from equivariance results in a small
error in predicted position. We assume that h(gx) = gh(x) + ex,g for
some small ex,g. We recalculate Eqs. (1)–(6) with this new assumption.

f ðx0Þ � hðx0Þ= f ðg 0x0Þ � hðg 0x0Þ ð14Þ

= g 0
rg

0
t f ðx0Þ � g 0

rg
0
thðx0Þ � ϵx0 ,g 0 ð15Þ

= g 0
r f ðx0Þ � g 0

rhðx0Þ � ex0 ,g 0 ð16Þ

= g 0
r f ðx0Þ � hðx0Þ
� �� ex0 ,g 0 ð17Þ

= g 0
r f ðx0Þ � f ðx0Þ+ c
� �� ex0 ,g 0 ð18Þ

= g 0
rc� ex0 ,g 0 ð19Þ

Then, substituting this into Eqs. (7)–(13), we find that

g 0
rc= f ðx0Þ � hðx0Þ+ ex0 ,g 0 ð20Þ

= f ðg*x0Þ � hðg*x0Þ+ ex0 ,g 0 ð21Þ

= g*f ðx0Þ � g*hðx0Þ+ ex0 ,g 0 ð22Þ

= g*
rg

*
t f ðx0Þ � g*

rg
*
thðx0Þ+ ex0 ,g 0 ð23Þ

= g*
r f ðx0Þ � g*

rhðx0Þ+ ex0 ,g 0 ð24Þ

= g*
r f ðx0Þ � hðx0Þ� �

+ ex0 ,g 0 ð25Þ

= g*
r f ðx0Þ � hðx0Þ+ ex0 ,g 0 � ex0 ,g 0

h i
+ ex0 ,g 0 ð26Þ

= g*
rg

0
rc+ ex0 ,g 0 � g*

rex0 ,g 0 ð27Þ

Note that in Eq. (22),we canomit the ex0 ,g* since x = g*x, so ex0 ,g* must be
0. We see that g 0

rc� g*
rg

0
rc= ex0 ,g 0 � g*

rex0 ,g 0 . Remembering that g*
r acts

on R2 like a matrix, we see that ðI� g*
rÞg 0

rc= ðI� g*
rÞex0 ,g 0 . If ðI� g*

rÞ is
invertible (as is the case for rotations), we find that g 0

rc= ex0 ,g 0 . In other
words, the difference between f and h is equal to the error associated
with imperfect equivariance. If this error is small, then g 0

rc is also small.
If ðI� g*

r Þ is not invertible (as is the case for reflections), we need
to consider its eigenvalues. In particular (for convenience), its left
eigenvalues. For any left eigenvector vλ with a eigenvalue λ, we find
that

ðI� g*
rÞg 0

rc= ðI� g*
r Þex0 ,g 0 ð28Þ

vTλ ðI� g*
rÞg 0

rc=v
T
λ ðI� g*

r Þex0 ,g 0 ð29Þ

λvT
λ g

0
rc= λv

T
λ ex0 ,g 0 ð30Þ

If λ =0, this reduces to 0 =0, which does not restrict g 0
rc. If λ ≠0,

thenwe see that the projection of conto vλ is equal to the projection of
ex0 ,g 0 onto vλ. The error in this direction must then be small if ex0 ,g 0

is small.
Finally, it should be noted that to generalize this argument to

other properties one needs to be careful of trivial solutions. For
example, in the absence of a translation-like transformation, there will
often be a trivial solution at h ≡0. Symmetries toG can only exist if the
center of symmetry is at origin, whereby h ≡0 is a correct, yet woefully
uninformative solution. As a rule of thumb, a group consisting of one
translation-like transformation is sufficient for LodeSTAR to be
internally consistent, while a group that additionally has some linear
transformation (with a corresponding symmetry) is sufficient to
ensure that there is only one optimal solution.

Neural network architecture
The neural network consists of three 3 × 3 × 32 convolutional layers
with ReLU activation, followed by a 2 × 2 max-pooling layer, followed
byeight 3 × 3 × 32 convolutional layerswithReLUactivation, andfinally
by a single 1 × 1 × 3 convolutional layer with no activation. The archi-
tecture is designed as a balance between retaining spatial information
necessary for high-precision localization (by limiting the number of
pooling layers), and acquiring a big enough receptive field to most
purposes. Splitting the output channels into two-dimensional tensors
Δx, Δy and ρ respectively, LodeSTAR first calculates

xi,j =Δxi,j + ik � N
2
, ð31Þ

yi,j =Δyi,j + jk �M
2
, ð32Þ

where N is the size of the output tensor along the first dimension, M is
the size of the output along the second dimension, and k is a scale factor
relating the size of the input to that of the output (k=2 for the proposed
architecture). Any additional channels (such as for 3D-positioning or
polarizability estimation) are used without any modification.
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The weigth map ρ is normalized to w so that

wi,j =Sðρi,jÞ, ð33Þ

where S( ⋅ ) is the sigmoid function. Here, it is used to constrain indi-
vidual elements between 0 and 1, which makes choosing a detection
threshold for multi-object detection easier. Thus, the tensors x, y, and
w are the final outputs of the neural network.

Ignoring edge effects (which is reasonable if w is mostly 0 with a
few non-zero regions), we find that the weighted averages,

�x =

PN,M
i,j = 1 xi,jwi,jPN,M
i,j = 1 wi,j

, ð34Þ

�y=

PN,M
i,j = 1 yi,jwi,jPN,M
i,j = 1 wi,j

, ð35Þ

are translation equivariant.

Neural network training
LodeSTAR is trained using images of individual objects in isolation. For
eachmini-batch, one such image is chosen and randomly transformed
using a transformation function τθk ð�Þ, where θk are randomly sampled
parameters for each sample in the mini-batch. For object detection, τϕ
is a roto-translational transformation. Several transformed views of the
original image (8 for all experiments in this paper) are combined into a
single mini-batch.

Let χk and ρk be the predicted feature channels and the weight
channel for the k-th sample in themini-batch. Note that χk includes the
calculation of x and y as described in the previous section. Here, ρk is
normalized as:

wk,i,j =
ϵ+D0:01½Sðρk,i,jÞ�

MNϵ+
PN,M

n,m= 1 D0:01½Sðρk,n,mÞ�
, ð36Þ

where ϵ is some small value 10�6
� �

, D0.01[ ⋅ ] is a dropout with a
dropout-rate of 1 %, and k, i, j are the batch and spatial indices. The
dropout helps avoiding the solutions where a single element is large
and the rest are small, increasing the robustness of the network. The ϵ
effectively assigns a minimum weight to each output pixel. Since the
network strives tominimize theweight of non-informative regions, it is
incentivized by the ϵ to maximize the term

PN,M
n,m= 1 D0:01½Sðρk,n,mÞ�,

which is maximized by predicting large values at informative regions.
As such, ϵ forces the network to utilize the full span of the sigmoid
function.

Then, we compute the weighted average of each channel c,

�χck =

PN,M
i,j = 1 χ

c
k,i,jwi,jPN,M

i,j = 1 wi,j

, ð37Þ

which are subsequently transformed as

�χ 0ck = τ�1
θk
ð�χckÞ: ð38Þ

We employ two loss functions during training. The first is a loss
between the inversely transformed averaged predictions and their
batch-wise mean, calculated as

Lc
a =

XK
k = 1

∣�χ 0ck �
PK

i �χ 0ci
K

∣, ð39Þ

where k and i are batch indices, and K is the number of samples in a
mini-batch.

The second is an internal consistency loss, which is calculated as

Lc
b =

XK ,N,M
k,i,j = 1

∣χck,i,j � �χk ∣wk,i,j, ð40Þ

This second auxiliary loss ensures that the prediction is internally
consistent, and is what causes the clustering of the prediction. Note
that if themodel predicts ρ = 1 for one position and 0 everywhere else,
this metric would be 0. As such, it encourages a tight spatial weight
distribution, which is useful for separating closely packed objects.
However, the dropout in the weight during training ensures that it
does not collapse to a single pixel, which would remove eny clustering
of the output. Without this loss, LodeSTAR would occasionally ignore
the feature maps, and instead tune the weights such that only the
average is correct.

In all cases, LodeSTAR was trained using the Adam optimizer37,
with a learning rate of 0.001. Unless otherwise stated, the model was
trained using 5000mini-batches of 8 samples. The exception is for the
3D detection described in Fig. 4, where the model is trained on 15,000
mini-batches.

Evaluating the Cramer-Rao lower bound
For a pure Poisson process, the Fisher informationmatrix is calculated
as

IðθÞ=
XK
k = 1

∂νθ,k
∂θ

� �T ∂νθ,k
∂θ

� �
1

νθ,k

" #
, ð41Þ

where k enumerates K pixels in the image, θ is the parameter vector,
and νθ,k is the expected number of photons for a given pixel and
detector22. Since the images are all synthetic, νθ,k is known exactly.

We considered the x and y position of the object, as well as the
orientation α as the parameters. To calculate the partial derivatives, we
simulated νθ,k at 10 times higher resolution than the test images and
further interpolated the spacing between the pixels. Finally, the
bounds on the variance of an estimator are calculated as the diagonal

elements of the inverted information matrix, i.e., ½δ2
x , δ

2
y ,δ

2
α �= I�1ðθÞ.

The bound on the root mean squared error is finally calculated

as
ffiffiffiffiffiffiffiffiffiffiffi
δ2
x + δ

2
y

2

q
.

Particle detection criteria
Particles are detected by finding localmaxima in a scoremap using the
function h_maxima of the Python module skimage. The score map is
based on two separate metrics. The first is the weight map w. The
second is a clustering metric calculated as

b�1
ij =

XC
c = 1

Xj + 1
j0 = j�1

Xi+ 1
i0 = i�1

χci0 j0
2

92

0
@

1
A�

Xj + 1
j0 = j�1

Xi+ 1
i0 = i�1

χci0 j0

9

0
@

1
A

2
2
64

3
75, ð42Þ

where χc are the feature maps produced by the network, and C are
the number of feature channels. This can be likened to convolving
the feature map with a variance kernel. The two metrics are com-
bined geometrically as wαbβ, where α and β can be tuned to optimize
performance. In the cases presented in this paper, we consistently
use β = 1 − α. For the cases in the chapter “Validation with experi-
mental data”, we use, in order, α = 0.2, α = 1, α = 1, α = 1. A high α is
used for the last few examples since the cells are not very similar,
which typically leads to poorer clustering performance. As seen in
Table 1, the neural network’s ability to cluster its predictions is highly
dependent on the similarity between the evaluation data and the
training data. As such, it can be expected to be a poorer detection
metric if objects vary highly in shape. For the remaining cases, we use
α = 0.1. Local maxima in this product are taken as observation if they
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are larger than some threshold, which in turn is chosen as a quantile
of all scores. The quantile can be chosen a priori based on the density
of the experimental data, but it can commonly be taken as the 99th
percentile.

Object detection comparison
Each evaluated dataset consists of two sequences of images. One
sequence was reserved for training and the other for testing. The
testing sequence was chosen as the one with the most cells. The
alternative methods (SoCo18, FSDet21, InstanceLoc20, and DETReg19)
were initialized from weights pretrained on the CoCo dataset38 or the
ImageNet39 dataset, as provided by their respective author. From the
training dataset. LodeSTAR was trained on one crop of one cell, while
the alternativemethods were fine-tuned on one full image per dataset,
each of which contained two cells. LodeSTAR was trained for 30
epochs with a batch size of 8, while the alternative methods were
trained for 5000 epochs with the batch size recommended by the
author. To avoid overfitting, the alternative models were evaluated on
the test set every 10 epochs, and the final weights were chosen at the
optimal end-point.

To evaluate the models, we define a method to match predicted
cell positions with the ground truth annotations consisting of seg-
mentation markers. If a single position prediction overlap with the
segmentation of a cell, that prediction is considered a true positive. If
multiple predictions overlap, each additional prediction is considered
a false positive. Eachprediction not overlappingwith a segmentation is
considered a false positive, and each segmentation with no corre-
sponding prediction counts as a false negative. For methods that
return a bounding box, the center of the box was taken as the pre-
dicted position.

Finally, we evaluate both the F1-score and theDET*. The F1-score is
defined as 2TP

2TP+FP+ FN, where TP is the number of true positives, FP is the
number of false positives, and FN is the number of false negatives. We
count the number of true positives, false positives, and false negatives
using the method described above. The base DET metric is defined as
1� minðD,D0Þ

D0
where D is the Acyclic Oriented Graph Matching measure

for detection26. This measure determines that a ground truth marker
was found if a predicted marker covers more than half the ground
truthmarker. For theDET*metric,we replaced thismatching condition
with the matching method used to calculate the F1 score, as
described above.

Plankton preparation and imaging
Noctiluca scintillans (SWE2020) was isolated from the Swedish west
coast in November 2020. The culture was maintained in 16 °C, 26 psu,
and 12:12 h light:dark cycles. The cultureflaskswere shadedbya screen
to limit growth of the food organisms, Dunaliella tertiolecta. Noctiluca
cultures were fed ad libitum. The planktons are imaged with an inline
holographic microscope, illuminated with a LED source (Thorlabs
M625L3) of center wavelength 632 nm (details in40). The images are
recorded with a CMOS sensor (Thorlabs DCC1645C) placed at a dis-
tance of ≈ 1.5mm from the sample well, at 10 frames per second and
with an exposure time of 8ms.

Human neuroblastoma cell sample preparation
SH-SY5Y cells were grown in cell culturemedia (CCM) containing a 1:1
mixture of minimal essential medium (MEM) and nutrient mixture
F-12 Ham supplemented with 10% heat-inactivated fetal bovine
serum, 1%MEM nonessential amino acids, and 2mM l-glutamine. The
cells were detached (trypsin-EDTA 0.25%, 5min) and passaged twice
a week. The cells were tested and verified mycoplasma-free. Cells
were plated 1 day prior to experiments in glass-bottomed culture
dishes (MatTek; 25000 cells/14mm glass region) for microscopy.
Cells were washed 1× with serum-free CCM before exposure to
225 nm green-fluorescent polystyrene particles diluted in serum-

containing CCM with the addition of 1% Penicillin-Streptomycin.
After a 4 h incubation at 37 °C 5% CO2, the cells were washed twice
for 2min with serum-free CCM, followed by addition of serum-
containing CCM supplemented with 1% Penicillin-Streptomycin and
30mM HEPES to buffer the medium. The cells were imaged at 37 °C
using a OKOlab stage top incubator.

Holographic imaging
The used monodisperse particles are and 0.15 μm (modal radius)
polystyrene (Invitrogen) and 0.23μm (modal radius, NIST-certified
standard deviation ± 6.8 nm) polystyrene (Polysciences) (sizes ver-
ified using nanoparticle tracking analysis performed by NanoSight).
Samples were imaged under flow in straight hydrophilized channels
with a height of 20μm and a width of 800 μm in chips made from
Topas (COC, ChipShop). The images were captured using a off-axis
holographic microscope10, using a 633 nm HeNe laser (Thorlabs) and
a Olympus 40 × 1.3 NA oil objective. The interference pattern was
collected using a CCD camera (AlliedVision, ProSilica GX1920), at a
frame-rate of 30 frames per second, and an exposure time of
2 ns–4ms.

For the intracellular data, a 40×, 0.95 NA Objective (Nikon, CFI
PlanApokromat) objectivewas used instead. Theparticles consisted of
225 nm-radius green-fluorescent polystyrene spheres (PS-FluoGreen,
microparticles Gmbh). The particles were diluted 5000 times in cell
media from the stock solution concentration of 2.5 wt% to a con-
centration of 5.25 μgml−1. Further, to improve the data aquisition
quality, the stage was oscillated at 1.1 μm roughly every 4 s and offset
pairs of frameswere subtracted fromeachother tomitigate noise from
reflections (sample-position-modulated holography). The sample was
imaged at 3 frames per second.

The fluorescence arm was illuminated using a 465 nm LED exci-
tation (CoolLED), and imaged using a ORCA-Flash 4.0 V2.0 CMOS
camera (Hamamatsu). We filtered the signal using a 491 nm dichro-
matic mirror (Chroma Technology Corporation), and separated the
fluorescence channel from the holography channel using a long-pass
dichroic mirror (605 nm), as well as a 525 ± 39 nm bandpass emission
filter from Thorlabs.

Measuring particle polarizability
Particles were detected in each frame using a neural network trained
by LodeSTAR using a single observation. The observations were sub-
sequently traced over time by linear sum assignment, with a distance
threshold of 1μm. The polarizability was averaged overmeasurements
from each detection in a trace. The LodeSTAR-measured polarizability

was calibrated against a known population as α = 3V
n2
p�n2

m

n2
p + 2n

2
m
, where α is

the polarizability, V is the volume of the particle, np is the refractive
index of the particle and nm is the refractive index of the medium41.
Further, for the intracellular data, each detection was compared to a
fluorescence channel. If the detection was within 400nm of a fluor-
escence detection, it was considered a polystyrene particle. If >95% of
detections in a trace were linked to a fluorescence detection, the trace
was considered a trace of a polystyrene particle. If <5% of detections in
a trace were linked to a fluorescence detection, the trace was con-
sidered a trace of an intracellular particle.

Data availability
All in-house data is available for download through the respective
example at the DeepTrack-2.1 GitHub repository35. The remaining data
can be accessed from the Cell Tracking Challenge website12.

Code availability
All source code and examples are made publicly available at the
DeepTrack-2.1 GitHub repository35. The version used in this study is
archived in Zenodo with DOI 10.5281/zenodo.7175126.
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