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Introduction: While micromobility vehicles offer new transport opportunities and may decrease fuel
emissions, the extent to which these benefits outweigh the safety costs is still uncertain. For instance,
e-scooterists have been reported to experience a tenfold crash risk compared to ordinary cyclists.
Today, we still do not know whether the real safety problem is the vehicle, the human, or the infrastruc-
ture. In other words, the new vehicles may not necessarily be unsafe; the behavior of their riders, in com-
bination with an infrastructure that was not designed to accommodate micromobility, may be the real
issue. Method: In this paper, we compared e-scooters and Segways with bicycles in field trials to deter-
mine whether these new vehicles create different constraints for longitudinal control (e.g., in braking
avoidance maneuvers). Results: The results show that acceleration and deceleration performance changes
across vehicles; specifically, e-scooters and Segways that we tested cannot brake as efficiently as bicycles.
Further, bicycles are experienced as more stable, maneuverable, and safe than Segways and e-scooters.
We also derived kinematic models for acceleration and braking that can be used to predict rider trajec-
tories in active safety systems. Practical Applications: The results from this study suggest that, while new
micromobility solutions may not be intrinsically unsafe, they may require some behavior and/or infras-
tructure adaptations to improve their safety. We also discuss how policy making, safety system design,
and traffic education may use our results to support the safe integration of micromobility into the trans-
port system.
� 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

New micromobility vehicles (SAE Committee, 2018), compact
and electrically powered, are on the rise worldwide (6t-bureau
de recherche, 2019; Chang et al., 2019; Fitt & Curl, 2020; O’Hern
& Estgfaeller, 2020; Portland Bureau of Transportation, 2018). A
few years ago, e-bicycles (i.e., assisted cycles, pedelecs [SAE
Committee, 2018]) were a new transport phenomenon that created
some concerns in the safety research community (Huertas-Leyva
et al., 2018; MacArthur et al., 2014; Schleinitz et al., 2017; Twisk
et al., 2021). Today, e-bicycles are conventional, while new micro-
mobility (e-)vehicles with different geometries, number of wheels,
and number of tracks present new challenges for the transport sys-
tem (Abduljabbar et al., 2021; O’Hern & Estgfaeller, 2020). While
monowheels, e-skates, and Segways are not very popular yet
and, maybe, they will never be, e-scooters are; they outnumber
e-bicycles in many urban centers. It is hard not to see a trend
toward electrical vehicles, and it is not a given that e-scooters
are the peak of this transformation. In any case, micromobility is
here to stay (Gössling, 2020), and it may indeed solve some con-
gestion and pollution issues (6t-bureau de recherche, 2019;
Abduljabbar et al., 2021; Portland Bureau of Transportation,
2018; Sharkey et al., 2020). Unfortunately, the safety toll that
new micromobility vehicles—and e-scooters specifically—take
may be hard to mitigate (Santacreu et al., 2020).

Several studies have shown that riding e-scooters is unsafe: the
crash risk is 10 times higher than riding a bicycle (Fearnley et al.,
2020). E-scooters also cause major injuries (Badeau et al., 2019;
Bekhit et al., 2020; Ishmael et al., 2020; Namiri et al., 2020) that
are different from the ones experienced by (e-)cyclists (Beck
et al., 2020; Cicchino et al., 2021; B. Trivedi et al., 2019; T. K.
Trivedi et al., 2019; Wüster et al., 2020). Several factors may con-
tribute to explain these injury variations, including the different
demographics and attitudes in wearing helmets between the
cyclist and e-scooterist population. However, some differences
(e.g., the higher prevalence of lower extremity injuries for e-
scooterists compared to cyclists; Cicchino et al., 2021) suggest that
the vehicle geometry and control also play a role.
exper-
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Today, we know very little about the causes of e-scooter
crashes. The vehicles often take the blame, although road-user
behavior and infrastructure may play more important roles in
crash causation. Most of the research on e-scooter safety makes
use of data collected after the crash has happened, either by the
police, hospitals, or insurance companies (Stigson et al., 2020).
While these data describe the consequence of a crash, they do
not show what happened just before the crash; in other words,
they may not show what caused the crash. Data collected in the
field, on the other hand, either naturalistically (Dozza &
Werneke, 2014) or in controlled experiments (Kovácsová et al.,
2016), may complement the crash data collected a posteriori and
help us understand why micromobility crashes occur—and how
to avoid them (Dozza et al., 2022).

The same data may help educate micromobility riders; after all,
33 % of the injuries happen during the very first trip of novice rid-
ers (Austin Public Health, 2019), suggesting that the crash was
caused by the riders’ inexperience. In addition, field data may con-
tribute to the development of active safety systems, such as emer-
gency braking, which need to predict the rider behavior in order to
provide timely and acceptable interventions (Boda et al., 2018).
Finally, today’s policy making, in the form of bans or geo-fencing,
responds to general and static requirements, rather than dynami-
cally changing in time and space according to the actual crash risk
at a given moment. However, geo-fencing may have this ability if a
sufficiently large amount of field data are available.

In this paper, we follow the procedure proposed by Dozza et al.
(2022) for field data collection and analysis, and compare longitu-
dinal control (i.e., acceleration and braking) among e-scooters, Seg-
ways, and bicycles (with and without assisted pedaling). Our main
hypotheses were that: (1) as urgency increases, riders may be able
to achieve larger acceleration and decelerations with all vehicles;
(2) not all vehicles may exhibit the same acceleration and braking
performance; and (3) braking and acceleration trajectories may be
accurately predicted with simple linear models for all micromobil-
ity vehicles. By modeling micromobility kinematics, we can
improve the threat assessment of active safety systems and pro-
mote a better understanding of how new micromobility vehicles
differ from bicycles from a safety point of view.
2. Methods

The data collection and analyses in this study adapted the pro-
cedure from Dozza et al. (2022) by comparing acceleration (in
addition to braking) and including a Segway (in addition to bicy-
cles and e-scooters).
1 https://www.youtube.com/watch?v=FWWfsQrtDQY.
2.1. Participants

Nine female and 25 male subjects participated to this experi-
ment by maneuvering an e-scooter, a Segway, and a bicycle in field
trials. The participants’ mean age (±standard deviation) was 23.5
y ± 4.2, mean height (±standard deviation) 1.75 m ± 0.08, and mean
weight (±standard deviation) 71.5 kg ± 9.5. Participants shorter
than 160 cm or heavier than 85 kg were excluded from the study
to comply with the suggested heights and weights from the vehicle
manufacturers. The inclusion criteria made sure that participants
could ride a bicycle, were between 18 and 50 years old, had no dis-
abilities, and had never been in a severe road crash. These criteria
were set to control for possible biases in the results as indicated in
(Dozza et al., 2022). Participants who had any symptoms of COVID-
19 in the two weeks prior to the experiment were not allowed to
take part. The maneuvers required the participant to longitudinally
control (e.g., accelerate and brake) the vehicles in different condi-
tions. Each subject signed a consent form before the experiment.
2

The study was approved by the Swedish Ethical Review Authority
(Etikprövningsmyndigheten; Ref. 2019–04547). An ad-hoc health
insurance covered the participants during the experiment.

2.2. Equipment

The e-scooter (Ninebot ES2), Segway (Ninebot S), and bicycle
(Monark Karin 3-VXL) were equipped with a logger and sensors
for the collection of vehicle kinematics (Fig. 1). Specifically, the log-
ger was based on a Raspberry Pi 3 model B, and kinematics were
collected with an inertial measurement unit (IMU: PhidgetSpatial
3/3/3 1044_B). In addition, a light detection and ranging sensor
(LiDAR: HOKUYO UXM 30LAH EWA), installed on the proving
ground, was used to track the vehicles during the experiment.
The data from the IMU and the LiDAR were combined to achieve
a more accurate estimation of the vehicle kinematics than either
sensor alone could provide. In particular, the longitudinal acceler-
ation from the IMU and the trace of the centroid of the vehicles
from the LiDAR were combined to estimate the position and speed
of the rider during each maneuver. A Rauch-Tung-Striebel
smoother made this combination possible (Rauch et al., 1965).
More details about the processing are presented in the work by
Billstein and Svernlöv (2021).

2.3. Protocol

After a period of training so the participants could get
acquainted with the vehicles’ operation, all participants were
asked to accelerate and brake the three vehicles in five different
tasks.1 Two acceleration tasks required the participants to bring
the vehicle to a constant speed of 17–20 km/h from a standstill
either comfortably (comfort task) or harshly (harsh task). There were
three braking tasks that all required braking from a constant 17–
20 km/h speed. In the comfort braking task, they were asked to brake
comfortably. In the harsh planned task, the participant was supposed
to brake as late and hard as possible, stopping just before a line on
the ground. In the unexpected task, the experimenter gave a com-
mand to stop at a random time and the participant was asked to
respond by braking as hard as possible. These different braking con-
ditions were chosen to simulate planned and unplanned braking
maneuvers (Huertas-Leyva et al., 2018, 2019); the difference
between them would help identify the role of expectation on
response time (Dozza et al., 2022). The order of the vehicles and
tasks was randomized for each subject, but all trials were completed
for each of the vehicles before a new vehicle was ridden. The exper-
imental conditions are shown on Fig. 2. The bicycle was used both as
an e-bicycle and a conventional bicycle; in other words, each partic-
ipant performed the experiment on the bicycle twice, with and with-
out electrical assistance. Therefore, although only three vehicles
were tested in this study, we present results for four different riding
conditions: the e-scooter, the Segway, and the two bicycle configura-
tions (assisted and unassisted).

2.4. Subjective data

After completing the tasks, the participants were asked to fill in
a questionnaire that assessed: (1) how much previous experience
they had with the different vehicles in the experiment and (2) their
opinions of the performance of the vehicles during the experiment.
For this second part, taken from works by (Dozza et al., 2022;
Rasch et al., 2016), the participants ranked the four vehicles on a
7-level Likert scale (from 1 = Very poor, to 7 = Exceptional). The fol-
lowing riding six categories were ranked: mounting and dismount-

https://www.youtube.com/watch?v=FWWfsQrtDQY


Fig. 1. Instrumented vehicles with data loggers and inertial measurement units
(IMUs).

Fig. 2. Experimental protocol. Panel A: accelerating and braking comfortably. Panel B: accelerating and braking harshly. Panel C: braking harshly in response to a command
from the experimenter; in this condition the ridden distance was larger than in the other conditions (100 m vs 50 m) to increase the variability of the braking command time.
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ing, maintaining balance at low speed, maintaining balance at high
speed, braking at low speed, braking at high speed, and accelerat-
3

ing from a standstill. The following four categories were ranked:
stability, maneuverability, comfort, and safety.
2.5. Analyses

The accelerations and decelerations in the five tasks were mod-
eled with linear regressions similar to those in previous studies
(Kovácsová et al., 2016; Lee et al., 2020). We also computed the
coefficient R2 to verify the goodness of fit of the linear models.
For the braking maneuvers, the distance covered to achieve a full
stop was also computed. In addition, we compared the difference
between the marked line and the actual position where the partic-
ipants stopped, to determine how accurately they could estimate
their braking distance. Finally, we computed the response time
(i.e., the time passed between when the experimenter issued the
stop command and when the vehicle started decelerating) for the
unexpected braking task, to establish whether the vehicle type
affected braking response time (Huertas-Leyva et al., 2018, 2019).
The braking maneuver was defined as beginning when the vehicle
speed dropped below 16 km/h (12 km/h for the Segway) and end-
ing when it dropped below 2.5 km/h. The acceleration maneuver
was defined to begin when the vehicle speed exceeded 2.5 km/h
and end when it exceeded 16 km/h (12 km/h for the Segway).
The reaction time in the unexpected-braking maneuver was
defined to begin when the experimenter gave the stop command
and end when the speed had dropped by 1 km/h.

Several generalized linear mixed-effect models (including the
participant ID as a random effect and gender, vehicle, and maneu-
ver type as fixed factors) were created to verify the significance of
the results. Post-hoc tests were run on the results of the model
whenever a factor with more than two categories was significant.
The threshold for statistical significance was set to a = 0.05 and
adjusted with the Bonferroni correction to control for multiple
tests across different analyses with uncorrelated measures. (All
statistical analyses used the Statistics and Machine Learning Tool-
box in Matlab and specifically the functions fitglme and coefTest.).
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3. Results

3.1. Dataset

Although we recruited 34 participants, only 25 of them felt
comfortable riding the Segway and only 14 out of these 25 pro-
vided reliable sensor data for modeling acceleration and braking.
Therefore, while the comparisons across the bicycle, e-bicycle,
and e-scooter use the same population, the data for the Segway
only include a subset of the population (significantly smaller for
the kinematics analysis and slightly smaller for the questionnaire
analysis). We also experienced other minor data losses. For
instance, one of the participants crashed during the experiment;
it was then stopped and none of the data were used for the analy-
sis. Data were also excluded from the analysis when the participant
did not reach the desired speed before starting braking. It is worth
noting that we experienced a significant data loss for technical
issues only on the Segway. This was mainly the consequence of a
malfunctioning USB drive in the Segway installation.

All participants were very used to riding a conventional bicycle
and much less experienced riding with the other vehicles (Table 1).
An issue with the Segway was winning the fear of falling when
stepping on the vehicle, which is necessary to start riding. In fact,
to ride the Segway, the participants had to step with both feet on
the vehicle within a short time and balance longitudinally. This
action may be uncomfortable (even for experienced riders)
because it creates some forward and backward sway that may feel
like losing equilibrium. Nine participants did not win, or did not
want to try to win, this fear of falling and just refused to ride the
Segway; however, most of the data loss was the consequence of
technical issues. In the training phase, participants could practice
with any vehicle as long as they wanted and, on average, this train-
ing phase took 15 min per participant.
3.2. Acceleration maneuvers

Fig. 3 shows the average acceleration across all subjects for
comfort and harsh acceleration maneuvers. It can be observed that
the assisted bicycle enabled greater accelerations (up to 20 km/h)
than the other vehicles; further, the Segway stopped accelerating
as it approached 15 km/h, possibly because its design felt unstable
at higher speed, so people backed off. Table 1 reports the angular
coefficients from the regression models, representing the average
acceleration during the trials. Harsh maneuvers resulted in statis-
tically significantly larger accelerations than comfort maneuvers
(t = 7.5; p�0.01; Appendix Table A), suggesting that the partici-
pants understood the instructions and could control the vehicles
accordingly. While accelerations were not statistically significantly
different across gender or age, they were different across vehicles
(F = 16.4; p � 0.001; Appendix Table A). Specifically, the assisted
bicycle accelerated significantly faster than the e-scooter or the
conventional bicycle. The acceleration of the Segway was also very
high in the beginning of the maneuver. (Table 2 shows the average
acceleration of the Segway until it reached 12 km/h, which may
not be directly comparable with that of the other vehicles, which
were able to reach 17–20 km/h as instructed.).
3.3. Braking maneuvers

The average speeds over time for each of the three braking
maneuvers are presented in Fig. 4. Table 3 complements Fig. 4 by
presenting the linear coefficients from the regression models for
all vehicles and braking maneuvers. In all maneuvers, the Segway
achieved a lower deceleration compared to the other vehicles
and the deceleration started at a lower speed. It is very important
4

to keep these differences in mind, especially when comparing the
Segway’s braking distances with those of the other vehicles.

When riding the bicycle (in both assisted and unassisted
modes), the participants were able to brake with larger decelera-
tions than when riding the other vehicles, and this result was sta-
tistically significant (F = 39; p � 0.001; Appendix Table B1). The
participants’ braking performance when riding the Segway was
poorer (i.e., deceleration was lower) than for the other vehicles.
As expected, the two harsh braking maneuvers resulted in statisti-
cally significantly larger braking decelerations for all vehicles
(F = 8.87; p � 0.001). What was somewhat surprising is that the
unexpected harsh braking task resulted in slightly greater deceler-
ations than the planned harsh braking. No statistically significant
difference in braking deceleration was found across ages or gen-
ders (Appendix Table B1).

While the braking distances were similar for the assisted and
unassisted bicycle modes, the braking distance was statistically
significantly longer for the e-scooter than for the bicycle in the
harsh braking conditions (Fig. 5; Appendix Table B2-B4). The brak-
ing distance was also shorter for Segways than for e-scooters.
However, this is not a valid comparison, as participants on the Seg-
way were only able to reach 15 km/h (despite the Segway design
allowing for higher speeds), and therefore the shorter distance is
likely a consequence of the lower speed (Fig. 5). No statistically sig-
nificant effect of gender or age was found on the braking distance
(Appendix Table B2-B4). The response times were not only similar
across gender and age, but also across all vehicles—with the excep-
tion of the e-scooter, which induced statistically significantly lar-
ger response times (Fig. 6; F = 6.7; p � 0.01; Appendix Table B5).
Further, during the harsh (planned) braking task, participants rid-
ing the e-scooter crossed the stop line marked on the ground
61% of the time, while this line was exceeded only 18% and 14%
of the time for the assisted and unassisted bicycle, respectively.
Finally, while they were riding the Segway, they crossed the line
in 71% of the trials.

3.4. Subjective data

Table 4 shows some of the results from the questionnaire prob-
ing the participants’ opinions of the vehicles’ performance in dif-
ferent situations. The electrified vehicles, possibly because they
required less physical effort, were perceived as more comfortable
than the unassisted bicycle when accelerating from a standstill
(this result was statistically significant; Appendix Table S1-S6).
The assisted and unassisted bicycle tasks were scored similarly in
all other situations. The Segway scored statistically significantly
lower than the other vehicles for mounting and dismounting,
maintaining balance at high speed, and braking at high speed
(Appendix Table S1-S6). While all vehicles were similarly rated
by the participants at low speed, the e-scooter and the Segway
were perceived as less stable as speed increased (both for simply
balancing and for braking). Gender did not statistically signifi-
cantly influence any of the categories in Table 4 (Appendix
Table S1-S6). However, age did: the older the subject, the lower
the ratings (Appendix Table S1-S6). Nevertheless, the effect of
age was small compared to the effect of vehicle type (Appendix
Table S1-S6).

The Segway also scored lower than the other vehicles for overall
stability, maneuverability, comfort, and safety (Table 4); these dif-
ferences, too, were statistically significant (Appendix Table S7-
S10). The e-scooter was also perceived as less stable and safe than
the assisted and unassisted bicycle; however, this result was on the
border for statistical significance. The effect of gender was not sta-
tistically significant for comfort, stability, maneuverability, or
safety, but the effect of age was (Appendix Table S7-S10). Specifi-
cally, the older the subject, the less comfortable, stable, maneuver-



Table 1
Experience of the participants with riding vehicles. (For the Segway, we reported the
data only from the 25 subjects that contributed to the questionnaire analysis.).

Bike e-bike e-scooter Segway

Never 2 27 12 24
Few days per year 7 4 7 0
Few days per month 8 2 8 1
Few days per week 9 1 4 0
Everyday 8 0 3 0
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able, and safe the vehicle ranking. (Notably, these effects were
most pronounced for the safety category and for the Segway.)
Table 5 reports the correlation matrix for the four categories pre-
sented at the bottom of Table 4; it may be observed that the corre-
lation was high among all categories, particularly between safety
and stability.
4. Discussion

In this study, we applied the procedure for data collection and
analysis from Dozza et al.’s (2022) field study to the comparison
of the longitudinal control of a bicycle (with and without assisted
pedaling), an e-scooter, and a Segway. Our results show that,
indeed, the same participant may demonstrate different accelera-
tion and braking performance depending on the vehicle. Neverthe-
less, we also verified that, independently of the vehicle and of the
emergency of the maneuver, riders braked with a constant deceler-
ation (this is evident from the very large R2 coefficients in all mod-
els; see Tables 2 and 3). This finding, in line with previous work on
bicycle dynamics (Lee et al., 2020), is important for the application
of our models to active safety: the linear coefficients from our
regression analysis can accurately predict micro-mobility
kinematics—specifically, stopping distance. In other words, an (au-
tomated) vehicle using our models may estimate whether a rider
Fig. 3. Average speed for comfort and harsh

Table 2
Average accelerations (M) with standard deviations (SD) expressed in m/s2. N indicates th
report the average R2 coefficients to show the goodness of fitness of the linear models.

maneuver bicycle (M ± SD) e-bicycle (M ± SD

Comfort 0.45 ± 0.11
(N = 22; R2 = 0.96)

0.70 ± 0.12
(N = 26; R2 = 0.98

Harsh 0.76 ± 0.28
(N = 25; R2 = 0.96)

0.95 ± 0.14
(N = 26; R2 = 0.95

5

approaching an intersection is still able to brake and stop in time
to avoid a collision and, once the rider starts braking, what the tra-
jectory is going to be (Boda et al., 2020). The data collected from
the comfort maneuvers in our experiment may provide a lower
bound for these predictions for the threat assessment of an active
safety system, and the harsh maneuvers may estimate a higher
bound. Further, this paper shows that vehicle classification is
essential for an accurate prediction, because the braking and accel-
eration performances vary largely across the micromobility vehi-
cles tested.

Riders could accelerate almost twice as fast and brake twice as
hard when they compromised comfort for urgency (i.e., comfort vs
harsh conditions). While this is the first study, to our knowledge,
presenting acceleration data frommicromobility vehicles, previous
studies assessed braking performance. In particular, Dozza et al.
(2022) presented results from six cyclists/e-scooterists braking in
the same conditions as in this study (i.e., comfort, harsh, and unex-
pected), and the results are very similar, although the (unassisted)
bicycle’s harsh braking in their study resulted in a somewhat
higher deceleration rate than was found in this study. Because this
study had a larger number of subjects, the average value given here
is likely to be more accurate than the one presented there. In any
case, their results are still well within one standard deviation of
this study’s, and even this small difference may be explained by
the small data sample. Interestingly, both studies found that, in
unexpected braking, riders achieve slightly larger deceleration
than in planned braking. It is, however, unknown whether the lar-
ger deceleration is caused by suggestion (from the expectation of
the experimenter’s command) or by some other mechanism. The
results for bicycle expected braking in this study were similar to
those already reported by Lee et al. (2020) from 16 riders, while
the results for e-scooter braking were in line with those reported
from eight riders by Garman et al. (2020).

Braking performance, in terms of decelerations and braking dis-
tances, was similar for the assisted and unassisted bicycle tasks
accelerating maneuvers for all vehicles.

e number of trials available for computing averages and standard deviations. We also

) e-scooter (M ± SD) Segway (M ± SD)

)
0.56 ± 0.19
(N = 25; R2 = 0.94)

0.67 ± 0.36
(N = 13; R2 = 0.93)

)
0.70 ± 0.25
(N = 28; R2 = 0.93)

1.01 ± 0.34
(N = 13; R2 = 0.95)



Fig. 4. Average speed for comfort, harsh, and unexpected braking maneuvers for all
vehicles.
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and poorer for the e-scooter and Segway. Both objective and sub-
jective data suggest that the Segway is less stable and harder to
6

maneuver than the other vehicles. Further, e-scooters seem to be
harder to control than bicycles, both because 61% of riders were
not able to halt before the stop line and because response times
for braking were longer for e-scooters than for all other vehicles.
Although steering performance (which is not addressed in this
paper) may redeem e-scooters’ maneuverability, when it comes
to longitudinal control (i.e., crash avoidance by braking), e-
scooters and Segways perform much more poorly than bicycles,
which raises some concerns about their safety. Riders seem to be
aware of these limitations, because the questionnaire data clearly
indicate that riders perceive e-scooters and Segways as less stable
and safe than bicycles. This result is positive, because riders may be
able to use their awareness to compensate for the inferior braking
performance by braking in anticipation (earlier), for instance, or
using other crash-avoidance strategies.

This study verified that accelerative and braking maneuvers on
micromobility vehicles are highly predictable because riders tend
to control the vehicles by maintaining constant accelerations.
Although the accelerations may change depending on the vehicle
and the urgency of the maneuvers, the constancy may make it pos-
sible for active safety systems (and automated vehicles) to predict
cyclist trajectories. This may be particularly critical at an intersec-
tion: a vehicle may estimate the probability that a crossing cyclist
will stop at the intersection in time and use this information to
warn the driver or apply automated interventions, such as emer-
gency steering and braking (Thalya et al., 2020). Further, by includ-
ing our models in the threat assessment for warning and
intervention systems (SAE J3063), current systems intended to
avoid crashes with motorized vehicles (e.g., frontal collision warn-
ing, automated emergency braking) may be adapted to also avoid
crashes with micromobility vehicles (Boda et al., 2018). As con-
sumer rating programs such as Euro NCAP include new test scenar-
ios with new vulnerable-road-users (Van Ratingen et al., 2016), the
results in this paper may be used to derive test scenarios that spec-
ify the safety-relevant differences between micromobility solu-
tions. Finally, dynamic geofencing (i.e., algorithms that can
remotely control micromobility, for example, by limiting speed)
may make use of the data from this study to determine which
speeds are safe for different vehicles, depending on the time of
day and the location of the rider.

Experience is fundamental for safe riding, especially for new
micromobility vehicles (Austin Public Health, 2019). Similarities
across vehicles may help a rider to master a new vehicle in a short
time. For instance, our participants were much more experienced
with traditional bicycles than with electrical bicycles; neverthe-
less, they perceived the two vehicles similarly and mastered the
bicycle equally well with and without assistance. Previous experi-
ence from riding a bicycle may not have ported equally well to e-
scooters, because the controls and the geometry are very different.
Indeed, riding a bicycle is an overlearned skill that required a rel-
atively long time to develop, and we do not know whether riding
an e-scooter for the first time would be equally challenging for a
rider who does not know how to ride a bicycle. Future studies
should investigate the extent to which experience from riding a
bicycle may transfer to e-scooter riding and whether, in critical sit-
uations, such previous experience may lead to suboptimal avoid-
ance maneuvers (Adams, 1987).

If cycling skills transferred to e-scooter riding, they certainly did
not help much with riding a Segway. Only 25 participants com-
pleted the experiment with the Segway, and none of them reached
the 17–20 km/h speed set by the experimental protocol (although
it should have been possible for the Segway to reach this range,
according to the specifications from the manufacturer). All partic-
ipants rated this vehicle lower than all the others for comfort, sta-
bility, maneuverability, and safety. Although our correlation
analysis shows that these categories are not orthogonal at all, this



Table 3
Average acceleration (M) with standard deviations (SD) expressed in m/s2. N indicates the number of trials available for computing averages and standard deviations. We also
report the average R2 coefficients to show the goodness of fitness of the linear models.

maneuver bicycle (M ± SD) e-bicycle (M ± SD) e-scooter (M ± SD) Segway (M ± SD)

Comfort �1.50 ± 0.51
(N = 18; R2 = 0.97)

�1.65 ± 0.66
(N = 26; R2 = 0.98)

�1.28 ± 0.42
(N = 20; R2 = 0.98)

�0.93 ± 0.40
(N = 11; R2 = 0.96)

Harsh planned �3.00 ± 1.29
(N = 25; R2 = 0.98)

�3.10 ± 1.25
(N = 26; R2 = 0.97)

�2.21 ± 0.59
(N = 28; R2 = 0.98)

�1.65 ± 0.59
(N = 14; R2 = 0.93)

Unexpected �3.60 ± 1.28
(N = 24; R2 = 0.97)

�3.66 ± 1.07
(N = 24; R2 = 0.99)

�2.23 ± 0.71
(N = 28; R2 = 0.99)

�1.60 ± 0.49
(N = 11; R2 = 0.94)

Fig. 5. Boxplots of braking distances for all vehicle types. Circles indicate outliers,
whiskers are set by the non-outlier minima and maxima of the distribution, and the
center line represents the median, while the horizontal edges of the box are the
25th and 75th percentiles. The notches, highlighted with shading, indicate the
confidence intervals. (These boxplots were generated with the boxchart command
in Matlab; please refer to its documentation for more detailed information.) The
data from the Segway are surrounded by a box to remind the reader that a direct
comparison with the other vehicles may be misleading in this specific analysis
because the Segway started braking at a lower speed compared to the other
vehicles and only few subjects were included in the analysis.

Fig. 6. Response time in unexpected braking across vehicles. Circles indicate
outliers, whiskers are set by the non-outlier minima and maxima of the distribu-
tion, and the center line represents the median, while the horizontal edges of the
box are the 25th and 75th percentiles. The notches, highlighted with shading,
indicate the confidence intervals. (These boxplots were generated with the boxchart
command in Matlab; please refer to its documentation for more detailed informa-
tion.) The data from the Segway are surrounded by a box to remind the reader that a
direct comparison with the other vehicles may be misleading in this specific
analysis because the Segway started braking at a lower speed compared to the other
vehicles and only few subjects were included in the analysis.
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result is reasonable because the Segway has a different geometry
compared to the other vehicles, and its pitch fluctuations may take
a while to get used to. None of the participants were acquainted
with this vehicle before the experiment, and we do not know
whether their inexperience may have affected our results. Never-
theless, this example shows the importance of training on new
micromobility vehicles that may look intuitive to ride but are still
dangerous, especially on the very first rides, as the report from
Austin Public Health (2019) showed for e-scooters. The results pre-
sented in this paper suggest that practicing braking to a line
marked on the ground and using the possible overshoot distance
as feedback may be an easy and useful training for novice Segway
users (and possibly for any kind of micromobility vehicle).

E-scooters are mainly ridden by young males (6t-bureau de
recherche, 2019; Bjerkan et al., 2020); however, the number of
female riders is not negligible. Our study failed to show any statis-
tically significant difference in how female and male riders longitu-
dinally controlled the bicycle, e-bicycle, e-scooter, or Segway.
Further, braking distances and response times were similar across
gender, and the percentage of females that completed the experi-
ment with the Segway was similar to that of the other vehicles.
All in all, we could not verify the common hypothesis that males
ride more aggressively or take higher risks than female riders.
We did, however, find some effect of age on the subjective data;
specifically, the older the subjects were, the lower their ratings
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were for the e-scooter and the Segway. Although the age span in
this study was not large and the effect of age was minor when
compared to the effect of vehicle type, our results suggest that
younger people are more positive about new micromobility vehi-
cles than older people. This result appears to be in line with previ-
ous studies that showed that elderly people are particularly averse
to e-scooters (Portland Bureau of Transportation, 2018).

In this study, we lost about 50% of the data from the Segway, in
part because the participants were not able to master it; we also
lost up to 20% of the data from the other vehicles, mainly because
participants had difficulty controlling the speed as they were
instructed to. Although this amount of data loss is common in field
trials, it may have biased the dataset toward a particularly athletic
or daring sub-population of participants, especially for the Segway.
It is also worth noting that the experiment was challenging; the
one participant who crashed reported a minor injury. While we
still believe that the value of this experiment justifies the crash risk
that we asked the participants to take, we recommend that the
research community not underestimate the risks in these experi-
ments and make sure that the participants are insured.

Although we are not aware of any other study with a larger
number of subjects for e-scooter field trials, our sample of 34 par-
ticipants may not be representative of all ages and geographical
locations. In addition, because we collected data in a controlled



Table 4
Average values and ranges of the subjective data for all vehicles (from 1 = Very poor to 7 = Exceptional).

Bike E-Bike E-Scooter Segway

Accelerating from standing still 4.36 (1–7) 5.64 (2–7) 5.46 (2–7) 5.16 (3–7)
Braking at low speed 5.64 (2–7) 5.70 (2–7) 5.12 (2–7) 4.92 (2–7)
Braking at high speed 5.21 (2–7) 5.33 (2–7) 4.03 (1–7) 3.48 (1–6)
Mounting and dismounting 4.91 (2–7) 5.03 (2–7) 5.67 (2–7) 3.60 (1–7)
Keeping balance at high speed 6.15 (4–7) 6.27 (4–7) 5.70 (3–7) 4.88 (1–7)
Keeping balance at low speed 5.18 (2–7) 5.24 (2–7) 5.30 (2–7) 5.12 (2–7)
Overall comfort 5.33 (2–7) 5.85 (3–7) 5.36 (3–7) 4.60 (2–7)
Overall stability 5.88 (3–7) 5.82 (3–7) 5.33 (3–7) 4.28 (1–7)
Overall maneuverability 5.27 (3–7) 5.46 (3–7) 5.33 (3–7) 4.64 (2–7)
Overall safety 5.85 (3–7) 5.64 (3–7) 4.82 (2–7) 3.80 (1–6)

Table 5
Correlation matrix among the subjective ratings for comfort, stability, maneuverabil-
ity, and safety. (All coefficients are statistically significant.).

Measure 1 2 3

1.Comfort —
2.Stability 0.70 —
3.Maneuverability 0.66 0.72 —
4.Safety 0.68 0.75 0.61
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environment and in repetitive tasks, our results may be biased by
the lack of other road users in the surroundings, as well as by the
expectancy and habituation that the participants may have devel-
oped during the experiment. We presented results for e-bicycles
and bicycles; however, we tested the same bicycle with and with-
out electrical assistance. While this choice preserved the vehicle
geometry across trials, the e-bicycle was heavier than a conven-
tional bicycle (because of the battery and the motor) and therefore
may have been less maneuverable. The e-scooter in this study is
representative of the e-scooters that individuals purchase for per-
sonal use in Sweden; however, it differs from most of the e-
scooters available in sharing systems. Such differences include:
suspensions, wheel size, and brakes. Future studies should com-
pare different e-scooter models to determine whether the differ-
ence in components affects safety. For instance, the longer
response time for e-scooters compared to the other vehicles in this
study may be a consequence of the electric braking system of the
particular type of e-scooter used.
5. Conclusions and Practical Applications

This study provides further evidence that field data can support
the safe integration of micromobility in the transport system. Field
data show that different micromobility solutions affect rider
behavior in multiple ways and create different constraints for vehi-
cle control. Because e-scooters may brake more poorly than bicy-
cles, steering maneuvers may be a better crash-avoidance
strategy for e-scooterists than braking even in situations when a
cyclist would be safer braking. Consequently, infrastructure that is
forgiving of vehicles that run off the road may increase e-
scooterists’ safety.

The Segway vehicle employed in this study performed poorly in
the field trials, and the participants ranked this vehicle as the least
comfortable, stable, maneuverable, and safe. Nevertheless, Seg-
ways and other two-track vehicles with two wheels are popular,
possibly because some of the issues with their safety and stability
may disappear with enough training. Therefore, it may be impor-
tant to educate novice users of micromobility vehicles and make
sure they ride in real traffic only after a sufficient period of train-
ing. The design of the required training to facilitate learning and
controlling the new micromobility solutions may be supported
by field data such as were presented in this paper.
8

Because crash avoidance is the best way to avoid injuries when
cars share the infrastructure with vulnerable road users, active
safety systems, and automated emergency braking specifically,
should make use of the models from this paper in their threat
assessment. This study proved that riders keep accelerations (and
decelerations) constant in comfortable and harsh maneuvers;
therefore, their trajectories can be reliably predicted by (auto-
mated) vehicles. The models presented in this paper provide an
indication of the longitudinal control performances (and their vari-
ability) that vehicles may expect from micromobility users.

Consumer rating programs, such as the one run by Euro NCAP,
may use the models from this study to design the experimental
protocols to test crash avoidance systems, such as emergency brak-
ing and steering. Further, as tests move toward simulations, the
models from this paper may inform the behavior of the virtual
micromobility users that Euro NCAP may introduce in future test
simulations.

As novel micromobility vehicles hit the market and join a trans-
port system where vehicles are increasingly automated and con-
nected, it becomes increasingly important to model human
behavior so that vehicles may understand and predict it, improving
safety for all road users.
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