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The impact of heterogeneous forest canopies and complex terrain on the horizontal distortion of the inflow
is studied. Large-Eddy Simulation (LES) of the neutral Atmospheric Boundary Layer (ABL) flow is performed
for a wind farm in Sweden for three cases associated with three different wind directions at the range of the
static yaw misalignment (~ +6°) where the yaw control system is not activated. The ground topography and
forest properties for the numerical modeling are extracted from the Airborne Laser Scanning (ALS) 3D data.
The wind turbines within the wind farm are introduced using the actuator disk model. To focus on the airflow
deflection only by the complex terrain and vegetation, the study is limited to upstream wind turbines without
any wake interaction. The predicted mean wind speed and turbulence intensity for the upstream wind turbines
are compared against the nacelle-mounted anemometers taken from the wind farm’s turbine SCADA data. To
quantify the additional load and moments induced at the rotor blades by the horizontal misalignment of the
incoming flow, aero-structural simulation of the upstream wind turbines in the wind farm for all three cases
is performed. The results show that the horizontal distortion of the inflow over the rotor swept area is usually
kept below the range of static yaw misalignment (~ 6°) for the majority of the upstream wind turbines for all
three cases. However, the impact of a large vertical shear exponent leading to misinterpretation of the results
must be taken into consideration. Furthermore, the load imbalance of the rotor due to the vertical wind shear
has the least direct contribution to the yaw moment. However, for a mean vertical shear exponent larger
than a = 0.25, contrary to expectation, a positive mean yaw moment under the positive-yawed inflow may be
observed.

1. Introduction (ABL) and are subjected to atmospheric turbulence [2,3]. Therefore,

the prediction of the flow field is extremely important to ensure proper

The technological development of wind farms requires in-depth
knowledge of different areas of expertise. Challenges arise when pre-
dictions and calculations are not further developed as fast as wind
power technology [1]. Sweden have access to excellent wind resources
(usually expressed by annual mean wind speed at specific height) for
wind power developments. Generally, more wind resources are found
at coastal and mountains which means that they are suitable locations
for wind power. However, Swedish environmental variables such as
complex terrain, forest canopies and cold climates increase the wind
speed variability (normally defined by turbulence intensity and wind
shear exponent) which in turn increases the uncertainty of wind power
production and the turbine component cost breakdown. Moreover,
wind turbines always operate within the Atmospheric Boundary Layer

choice of turbine and operation, to reduce maintenance costs and to
increase turbine’s life.

The Atmospheric Boundary Layer (ABL) flow consists of various
spatial scales ranging from millimeters to several hundred meters
determining the flow pattern over the entire wind farm. In ABL flow
modeling, in addition to meteorological phenomena like Coriolis force,
buoyancy forces and heat transport, the impact of ground topography
is taken into account as surface roughness, dominating the near-surface
wind flow. The ground topography is mainly characterized by the
complex terrain [4] and the vegetation [5]. The motion of large-scale
turbulent structures [6] is affected by the complex terrain whereas
the motion of small-scale turbulent structures is governed by the
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vegetation. Therefore, the airflow in a wind farm strongly depends
on local topography and surface roughness [7]. The local topogra-
phy and surface roughness increase the uncertainty of on-site wind
resource assessment by changing the airflow in and around wind farms.
Additionally, the flow features significantly affect the aero-structural
loading of rotor blades and annual power production for a wind farm
located in a complex terrain.

Creating a full map of the wind field over the entire wind farm using
the on-site measurement [8] cannot be affordable because of the great
inhomogeneity of the flow features in a complex terrain. Apart from
the time-consuming and expensive process of collecting measured data
by means of on-site meteorological masts, the topographic complexity
increases the uncertainty of local field measurement for a detailed
description of a wind resource [9,10]. Therefore, performing numerical
models [11,12] to predict the flow field for wind farms located in hilly
regions is upheld.

The early ABL modeling over complex terrain (mainly 2D/3D low
hill) was performed using analytical theory [13-15] as a reliable ap-
proach in the region without separation. Advances in computational
resources (computer hardware) and development of numerical algo-
rithms for non-linear equations enabled to simulate ABL using Compu-
tational Fluid Dynamics (CFD). Nowadays, CFD has become a common
numerical simulation tool to predict the atmospheric boundary layer
turbulence structure ranging from mesoscale [16] to microscale mod-
eling. Although advanced CFD methods may provide a more realistic
wind farm flow prediction, it requires large computational resources.
Moreover, the predicted wind farm flow by CFD is highly affected by
the computational grid resolution, the specified boundary conditions,
the heterogeneous surface roughness and the choice of turbulence
models.

Two common CFD methodologies to simulate the ABL flow are the
Reynolds-Averaged Navier-Stokes (RANS) and Large-Eddy Simulation
(LES). The RANS models only predict the mean flow where Reynolds
stresses are entirely modeled using different turbulence closures with
reasonable computational costs. On the other hand, LES is able to
predict unsteady flow features and chaotic motion of turbulent struc-
tures at very high-Reynolds number flows where the large-scale flow
structures are dominant. Unlike RANS, in LES the large flow structures
are resolved whereas the small flow structures are modeled using a
subgrid model [17]. Therefore, it can provide more accurate flow
field than RANS. However, LES is a computationally expensive model,
especially for simulations of flows with very high-Reynolds number
wall turbulence such as ABL flow [18].

The CFD simulation of the ABL modeling over complex terrains
were initially performed for either the flat terrain or isolated 2D/3D
hills [19-23] and has been continuously developed until now [24-27].
A review of wind flow over hills, escarpments and valleys using RANS
has been summarized by Bitsuamlak [28]. In 2000s, several studies
have been carried out to simulate airflow over complex terrains [29-
31] using RANS turbulence models [32-39].

In complex terrain, the highly variable ground elevations increase
the complexity of the airflow. Furthermore, the wake interactions
between the turbines and the local ground topography make the flow
complexity greater so that the attached boundary layer flow assump-
tion is no longer valid. The separated flow and re-circulation regions
increase the unsteadiness of the airflow and the RANS-based turbulence
models are no longer capable of predicting the flow accurately. Hence,
the LES based turbulence model may be considered as a promising
approach to simulate the ABL flow over complex terrains.

Successful applications of LES in ABL flow have been reported
for simulating the flow over flat terrain [40-50]. Breton et al. [51]
reviewed the current state-of-the-art Large-Eddy Simulation (LES) ap-
proach for wind farm aerodynamics under various atmospheric and
terrain conditions. Various studies have been performed to validate LES
turbulence model against the field measurement over the Askervein
hill [52-55] and Bolund hill [56-62]. In addition to the Askervein
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and Bolund as isolated hills, there are few studies on ABL flow over
naturally complex terrain [63-72].

Like terrain complexity, the vegetation as a part of ground topogra-
phy also has a significant impact on ABL flow. Apart from the practical
risks associated with wind turbines in forest regions [73], a higher
turbulence level and wind shear due to the forest canopies have been
reported in various numerical and experimental studies [36,67,74-78].

In the past twenty years, successful numerical modelings of flow
over and inside horizontally homogeneous forest canopies using LES
have been performed [49,67-69,71,79-84]. Horizontally homogeneous
forest canopies are presented by either Leaf Area Density (LAD) or Plant
Area Density (PAD) varying in the vertical direction and considered as
drag in the ABL flow.

Contrary to the horizontally homogeneous forest, in heterogeneous
forest, LAD/PAD profile varies in both horizontal and vertical direc-
tions. Boudreault [85] and Arnqvist [86] presented numerical algo-
rithms to extract the detailed distribution of PAD/PAI profiles for
heterogeneous forest canopies from airborne laser (lidar) scan data
for large areas with higher accuracy than the previous methods [87].
Inclusion of forest heterogeneity in numerical flow modeling has a
significant impact on the variability of wind field [85,88,89] and it is
more pronounced for wind farms located in a complex terrain. Apart
from the recent studies [39,72,89], to the best of authors’ knowledge,
there are few studies comparing the flow field characteristics extracted
from LES using heterogeneous forest assumption to operational or met
mast data at several locations.

As mentioned previously, the airflow within a wind farm is distorted
by the surface roughness heterogeneity including complex topography
and ground’s heterogeneous vegetation. As a consequence, the flow
structure over the swept rotor may rapidly change in both horizontal
and vertical directions. The horizontal misalignment of an incoming
flow with respect to the rotor axis, the so-called yawed flow, induce
additional load and moments at the rotor blades [90]. Moreover, it
decreases the power production by a factor of cos?(y) where y is the yaw
error in degrees [91]. Therefore, a proper prediction of yaw loads and
moments is crucial for the design of yaw control system and free-yaw
motions, respectively [92]. In the review article by Yang et al. [93], var-
ious destructive impacts of yaw misalignment error on aero-structural
dynamics of the wind turbine such as imbalanced load and moments
distributions has also been discussed. It has been reported [93] that for
wind speeds below 20 m/s, the statistical static yaw error (i.e., non-zero
mean error of yaw misalignment) was about 5 degrees for a 3.6 MW
wind turbine. In other words, in the static yaw misalignment (contrary
to the dynamic yaw misalignment when the yaw motors are activated
to adjust the nacelle direction back to a zero degree yaw error) the yaw
control system is not activated to align the rotor with the incoming
wind by moving the nacelle in order to make the zero-degree yaw
error. Hence, wind turbines are always operating under the undesirable
yaw misalignment condition where they encounter additional load and
moments acting on the wind turbines’ structures.

To study the impact of heterogeneous forest canopies and complex
terrain on the horizontal distortion of the inflow and in the range
of static yaw misalignment (~6°), the numerical simulations of the
neutral ABL flow for three different mean wind directions are per-
formed. The neutral ABL flow assumption helps to study the turbulence
generation mechanism only by means of local topography and surface
roughness [48] where the impact of the buoyancy forces are neglected.

For this purpose, a high-fidelity CFD method — the so-called Large-
Eddy Simulation (LES) - is employed to model the airflow inside
and over complex terrains and around each wind turbine in a mid-
western Swedish wind farm. To focus on the airflow deflection by
the ground topography (complex terrain and vegetation), the wake
interaction between adjacent turbines inside the wind farm must be
avoided. Therefore, the study is limited to upstream wind turbines
without wake interaction. To gain a better insight into the effect of the
ground topography, the structural dynamics response of the upstream
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wind turbines in the wind farm for three different mean wind directions
is also investigated. A commercial software (STAR-CCM+) is used to
predict the atmospheric turbulence and wind profile over the wind
farm. The predicted mean wind speed and turbulence intensity for the
upstream wind turbines are compared against the SCADA (Supervisory
Control And Data Acquisition) data of the wind farm. To study and
compare the impact of three different mean wind directions on the
dynamic response of the wind turbines installed in the wind farm,
the computed flow field by STAR-CCM+ is supplied to the aeroelastic
wind turbine simulator FAST [94]. FAST is an open-source CAE tool
for predicting the power production and simulating the structural
and system response of wind turbines developed by NREL (National
Renewable Energy Laboratory) in US.

2. Complex topography

The Robergsfjallet wind farm, located at Robergskullen in
southern part of Vansbro municipality in Sweden (60°16'49.8"”N,
14°12'59.6"E), is used as the case study where it is partly covered by
heterogeneous forest with some clearings (see Fig. 1). The farm, built in
2007, has the highest point at 543 m above sea level (a.s.l). Moreover,
the difference between the highest and lowest points of the wind farm
is 8y, ~ 284 m (see Fig. 2). It consists of eight Vestas V90 horizontal
axis wind turbines (referred to as WT1-WT8) with a hub height of 90
m and a rotor diameter of 90 m, each with a capacity of 2 MW.

The complex topography of Robergsfjéllet wind farm was extracted
from Airborne Laser Scanning (ALS) 3D-data delivered on May 2017 by
Swedish University of Agricultural Sciences, SLU (www.slu.se). The ALS
data contains a point cloud with a density of 0.5-1 points per square
meter for the terrain and 1-2 points per square meter for the vegetation
(forest). A commercial software called Global Mapper [95] was used to
derive the complex terrain coordinates with the specified horizontal
resolution of 7 x 7 m2. The coordinates were imported into STAR-
CCM+ in the STL format to generate the computational grid for the
numerical simulations. The forest properties, Plant Area Density (PAD)
and trees height, have been extracted from the ALS data [86,96] with
the certain resolution of 20 x 20 m?> and 2 m in the horizontal and
vertical directions, respectively.

The terrain elevation with respect to sea level and forest properties
in a local domain of 14 x 16 km? surrounding the wind farm can be
seen in Fig. 2. The location of eight wind turbines of the wind farm and
the location of the met mast are indicated as the red and black dots,
respectively.

2.1. Measurement data

The wind speed and direction at Robergsfjéllet site have been
determined by the on-site meteorology mast data located at the clearing
region of the North of the wind farm, close to the wind turbine 1.
The met mast has been equipped with two heated cup and vane wind
measurement stations designed for arctic conditions (Vaisala Wind Set
WA25) at 40 and 60 m above ground. The measurement data include a
full year mean and standard deviation of the wind speed and direction
measured in 2006 (before the wind farm operation) with the frequency
of an hour. These data are used to identify the dominant wind direction
for the numerical simulation and to set-up the proper inlet boundary
condition.

Fig. 3 displays the wind rose of the mean wind speed collected in
2006 at the met mast location (60 m above ground). The measurement
data reveals that at 60 m above the ground the dominant wind direction
is about 216 degrees with respect to the North. In the previous study
done for the Robergsfjéllet site [72], the choice of neutral atmospheric
boundary layer flow assumption was justified by comparison between
the full-day mean wind speed measurement at the met mast point (60
m above ground) with those measured only in the day-time and night-
time. In addition, the computed turbulence intensity from the measured
data is associated with the class C of the international standard IEC
61400-1.
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3. Simulation set-up

The numerical simulations are carried out over the complex terrains
covered by the heterogeneous forest for three different wind directions.
For each wind direction, a high-fidelity CFD approach, Large-Eddy
Simulation (LES) is employed over a rectangular computational domain
to predict the neutral atmospheric turbulence and time-varying wind
profile for a period of 60 min with output sampling of 10 Hz.

The computational domain has dimensions 9Hx6HxH where H is
set equal to 1.0 km i.e., approximately three and a half times larger
than the difference between the highest and lowest points of the wind
farm (5yg 300 m) in the vertical direction (y). In other words,
LES simulations are performed over a rectangular box of size L = 9.0
km x W = 6.0 km in horizontal plane with the variable wall-distance
with an average height of 1.0 km where the maximum and minimum
distance from the ground level are approximately 1600 m and 900 m,
respectively.

The computational grids for all three cases (associated with three
wind directions) have the same set-up. For all cases the size of the
computational domain and simulation run-time are limited based on
the available computational resources. Fig. 4 shows the layouts of
the computational grids and the location of the wind turbines inside
the farm. The computational domain enclosed by the black solid line
has been chosen to be aligned with the dominant wind direction, 216
degrees w.r.t. to the North, at the site and it is called the reference case.
The other two computational domains, enclosed by the white and red
solid lines, are aligned with the wind directions 210 and 222 degrees,
respectively. These two directions have been chosen to match within
the static yaw misalignment limit [93] i.e., ~ +6° with respect to the
reference case direction.

The rotated domains (with respect to the three wind directions)
provide the perpendicular inflow at inlet boundary condition meaning
that the length and width of all three domains are associated with
the local streamwise (x) and spanwise (z) directions, respectively. In
addition, the wind farm is placed in the middle of each computational
domain letting the turbulent structures to be fully developed within
the distance between the inlet boundary and the wind farm. For each
simulation case, all sides of the computational domain are parallel to
each other; and they are flat except the floor which is made up of the
topography of the area extracted from the ALS data. The computational
grid size is constant in the horizontal directions with Ax = Az = 17 m
where x and z denote the local streamwise and spanwise directions,
respectively. The horizontally and vertically varying heterogeneous
PAD profiles over the wind farm (with a maximum trees height of 40
m) is used to take the impact of vegetation on the airflow into account.

In STAR-CCM+, the LES solver can only treat the ground as the
smooth wall. Moreover, the first cell height is considered equal to 2
m to avoid increasing the number of grid cells and to maintain enough
resolution near the wall for the ABL flow simulation. Thirteen grid cells
are used to discretize the highest canopy height in the vertical direction
while thirty vertically stretched grid cells are used to refine the wall
region until 210 m. Above the height of 210 m, a constant grid spacing
of Ay = 17 m is used. Because of the complex topography over the entire
domain, the number of grid cells in the vertical direction vary between
78 and 91.

As previously stated in Section 2, the wind farm consists of eight
Vestas V90 horizontal axis wind turbines with a hub height of 90 m
and a rotor diameter of 90 m, each with a capacity of 2 MW. Despite
the development of a generic 2 MW wind turbine model for a Vestas
V90 machine in the previous study by the author et al. [72] and due to
lack of official information about the power, thrust and rotational speed
curves for the Vestas V90-2 MW machine, the NREL 5-MW reference
wind turbine [97] will be used in this study, instead. The hub height
(Vpup), the rotor diameter (D) and the hub diameter of the 5-MW
reference wind turbine are equal to 90 m, 126 m and 3 m, respectively.

~
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Fig. 1. The Robergsfjéllet wind farm, located at Robergskullen in southern part of Vansbro municipality, Sweden. The numbers denote the wind turbines’ number.
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Fig. 2. (a) Topographic map of the Robergsfjéllet region (red dots indicate the location of eight wind turbines of the wind farm), (b) Trees height of the Robergsfjéllet region.
(The red dots and the black dot display the location of eight wind turbines and the met mast, respectively.).
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Fig. 3. Wind rose of the mean wind speed measurement in 2006 at 60 m above the
ground for Robergsfjdllet site.

Some physical and operational properties of the 5-MW reference wind
turbine can be found in Appendix A.

All wind turbines are numerically modeled using the actuator disk
approach within the wind farm. This can be done using the virtual disk
model in the STAR-CCM+ solver. In this approach, instead of resolving
the geometry of the rotor blades, the aerodynamic forces acting on
the rotor blades are distributed over a cylindrical disk with a finite
thickness to model the effects of a wind turbine on the surrounding
flow field on the basis of the ideal horizontal axis wind turbine (1D
momentum method) with wake rotation. For more details, see Sec-
tion 3.2. In the STAR-CCM+, the physical properties of each actuator
disk are defined using the disk thickness, inner and outer radii. For the
NREL 5-MW reference wind turbine, the disk thickness, the inner radius
and the outer radius are set to be 5.1 m (covering three computational
cells in the streamwise direction considering the wake refinement of
10% with respect to the base cell size, i.e., 17 m), 3.0 m, 63.0 m,
respectively. Moreover, to translate the power and the thrust coefficient
into the axial and tangential forces using the 1D momentum method
with wake rotation, an inflow velocity plane is required. The inflow
velocity plane is located upstream of the virtual disk and is aligned with
the unit normal vector of the virtual disk. In a transient simulation, the
air velocity components are spatially averaged over the entire inflow
velocity plane and they are projected at the rotor plane to obtain the
averaged velocity vector at each time step. The averaged velocity vector
is then used as the input variable to extract the power, thrust coefficient
and rotational speed from the performance table of the turbine as
presented in Table B.1. The extracted power and thrust coefficient
are then used to compute the tangential and axial forces, respectively
which are accordingly introduced as the body forces to the momentum
equations i.e., Navier-Stokes equations. To prescribe the undisturbed
inflow velocity vector projected at the actuator disk, the offset and
radius of the inflow velocity plane (located at upstream the rotor disk)
are taken as 1.0D and 1.10D, respectively.

A three-step grid mesh refinement using varying resolution and
length (in the streamwise direction) rectangular boxes is employed for
each wind turbine in the wind farm. The width (in the spanwise direc-
tion) and the height (in the wall-normal direction) of each refinement
box are the same and they are equal to 170 m (=1.35D) and 215 m,
respectively. The three-step grid mesh refinement has the resolution of
10%, 25% and 50%, respectively with respect to the grid cell base size
(i.e., Ax = Az = 17 m). In addition, the length of boxes based on the
rotor diameter (D = 126 m) are equal to 0.3D, 5D and 10D, respectively.
A schematic of the refinement scheme for the reference case (216°)
can be seen in Fig. 5. Adding eight actuator disks including the grid
mesh refinement (around the rotor and the wake regions) increases
the number of grid meshes making a total number of approximately
31 million grid cells for the entire of each computational domain.

Renewable Energy 202 (2023) 537-553

Table 1

Mean Plant Area Index (PAI) for three different directions.
Item Dir. 210° Dir. 216° Dir. 222°
PAI [-] 0.86 0.95 0.87

3.1. Local topography and forest properties

Fig. 6 displays the local elevation (a.s.l), trees height and Plant
Area Index (PAI) within the computational domain for the reference
case (Dir. 216°). As stated in Section 2, the forest properties were
extracted from ALS data delivered on May 2017. To avoid including
too many figures, only the reference case properties is presented in
Fig. 6. A probability distribution of trees height and Plant Area Index
(PAI) within the computational domain for all three cases are presented
in Fig. 7 where they look like almost identical. The average of the
trees height are in the range of 10-20 m and the maximum of trees
height is restricted to 40 m. However, there are many scattered clearing
zones in the local region violating the homogeneity assumption for the
Robergsfjillet region. In addition, the wind farm has not been covered
by a dense forest [80] because the mean value of the PAI distribution
is about one which is below the averaged PAI values for the coniferous
and deciduous forests in global temperate ecosystems [98]. The mean
PAI for all three cases is presented by Table 1. As seen, the mean PAI
for the reference case (Dir. 216°) is about 10% denser than the other
two cases. However, all three cases are considered as sparse forests. The
average PAD profile can be also computed from the vertical distribution
of PAD over the entire computational domain as presented in Fig. 8.
The reference case (Dir. 216°) PAD profile is rather similar to the local
profile. Moreover, all profiles except for the first two meters near the
ground are not much different from each other.

3.2. Governing equations

Turbulent flow structures in Large-Eddy Simulation (LES) approach
are usually divided into large, resolvable scales and small, subgrid
scales (SGS) where the small scales are modeled. The distinction be-
tween large and SGS scales is done implicitly by the grid, referred
to the grid filtering. The incompressible, grid-filtered, Navier-Stokes
equations are expressed as

a5,
$=0 (1a)
i
ap;  0(0;0)) 10p . 9 [ 95
—t 4 =Pty % (v )+F,,+F, 1b
ot 0x; pox;  Ox; Vaxj Ty S (1b)

where 7;, p, p and v denote the velocity component in the x;-direction
(x; = {x,, z}), the air density, the pressure and the kinematic viscosity,
respectively and the overbar implies grid-filtered quantities. Inclu-
sion of forest canopies and wind turbine in Eq. (1b) is done through
the source terms F,; and F,; added to the momentum equations. In
Eq. (1b), the Smagorinsky subgrid model is used to model the small
scales given by

1 _

7 = gfkk‘sij = VS (2a)
0171- al—’j
5= — 4 — 2b
Sij ox;  0x; (2b)
_ _ 172

Vegs = (A (25,5,;)"/ (20)
A= f,min {xd, C;4} 2d)
fo=1—exp(-y*/A) (2e)
A = (AxAyAz)'/? (20)

where 6;;, Vg, 515 fu» K, d, A and y* denote Kronecker delta, turbulent
viscosity, strain rate tensor, van Driest damping function, von Karman

constant, wall distance and filter-width computed by the local grid size,
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Fig. 4. Layout of the three computational domains aligned with the specified wind directions, i.e., 210° (white box), 216° (black box) and 222° (red box) (a) Topographic elevation
(above sea level) at the Robergsfjillet wind farm, (b) Canopies height covered the Robergsfjéllet wind farm. (The red dots and the black dot indicate the location of eight wind
turbines and the met mast, respectively in the wind farm.) The dimension of the colorbar is meter.
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Fig. 5. (a) Schematic of the wake refinement showing the three refinement steps. (b) The grid mesh at the ground surface generated by the STAR-CCM+ solver.

respectively. C; and A are the constant model coefficients assumed
to be 0.10 and 25.0, respectively. For the spatial and temporal dis-
cretization of the governing equations, a second-order bounded-central
differencing scheme and a second-order time integration scheme are
used, respectively.

For the forest canopies, the source term in Eq. (1b) is given by

Fy; 3)

—Cpa;|0|o;

where Cp, 0.15 denotes the forest drag coefficient [99], a ; is the
vertical Plant Area Density (PAD) of the forest and |3| is the velocity
magnitude.
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The wind turbines are modeled as the actuator disk within the wind
farm. This can be done using the virtual disk model in the STAR-
CCM+ solver. In this approach, instead of resolving the geometry of
the rotor blades, the aerodynamic forces acting on the rotor blades are
introduced as the volumetric body forces through the source term F,;
in Eq. (1b). The aerodynamic forces are distributed over a cylindrical
disk volume (virtual disk of a finite thickness) to model the effects of
a wind turbine on the surrounding flow field. The source term F,; in
Eq. (1b) takes both axial and the tangential forces into account which
are computed on the basis of the ideal horizontal axis wind turbine
(1D momentum method) with wake rotation. In addition, combination
of the ideal horizontal axis wind turbine with wake rotation gives the
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induced velocities across the rotor plane including both the axial (a)
and the tangential (a’) components [100]. In the STAR-CCM-+, the axial
and tangential forces for each grid cell whose cell center lies within the
actuator disk are computed as

rl.zV,-
angemial,i = MW (43)
i=1"i "1
V.
Faxial,i =T ,,,-l v (4b)
i

where M, r;, V,, ni, T denote the torque, radius, grid cell volume,
number of grid cells within the actuator disk and thrust, respectively.
The computed axial and tangential forces make the source term vector
F,; in Eq. (1b). In Eq. (4b), the torque (M) and thrust (T') are calculated
using the rotor power (P), rotational speed (£2) and thrust coefficient
(C,) table at various inflow velocities for a given wind turbine (see

Table B.1) where M = P/Q.
3.3. Boundary conditions

A precursor simulation is performed over a flat rectangular domain
(without any wind turbine model) with periodic boundary conditions
in the streamwise and spanwise directions to supply the inlet boundary
condition profiles for the simulations of the three cases. The top of
the computational domain is considered as the symmetry boundary
condition. Moreover, it is assumed that the ground is covered by homo-
geneous forest. The properties of the homogeneous forest is take from
the averaged vertical PAD profile computed from the heterogeneous
forest distribution at direction 216° (red solid line in (Fig. 8) as the
reference case. Moreover, the precursor simulation is set-up so that it
yields the calculated mean wind speed and the turbulence intensity at
the met mast point (located at 60 m above the ground, in the vicinity
of wind turbine 1 (WT1) with 5.2 km distance from the inlet boundary
condition and in the mid-span of the computational domain) similar
to the on-site measurement data (in the absence of wind turbine)
i.e., 10 m/s and 0.15, respectively for the reference case.

For a fair comparison, an identical boundary conditions are spec-
ified for all three cases. The computational domain consists of four
different types of boundary conditions:

» Wall: No-slip wall boundary condition is set for the ground. The
ground surface is assumed to be a smooth wall. No wall-function
correction, which is usually imposed by specifying the momen-
tum flux from standard similarity theory [80] based on rough-
ness length, is used. The horizontally and vertically varying PAD
profiles with a horizontal resolution of 20 m x 20 m is speci-
fied at each grid point of the computational domain using the
nearest-neighbor interpolation scheme.
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+ Inlet: The inlet boundary condition is specified as Velocity In-
let. The inlet boundary condition consists of the sheared mean
velocity profile taken from the precursor simulation which is
superimposed to turbulent fluctuations required in LES approach.
The inlet turbulent fluctuations are generated in STAR-CCM+
using Synthetic Eddy Method (SEM) [101]. The derived Reynolds
stresses from the precursor simulation are specified as input
into the SEM to provide the required correlation function by
SEM. Since the flow is incompressible, the SEM scales the inflow
fluctuations to maintain constant mass flow rate across the do-
main. Fig. 9 demonstrates the prescribed inlet boundary condition
profiles for all three simulation cases.

Outlet: The Pressure Outlet boundary condition with zero gauge
pressure is chosen at the outlet boundary condition.

Top and Sides: Symmetry boundary condition is specified for
the top and the sides boundaries. An artificial flow accelera-
tion [102] may lead by the symmetry boundary condition at the
top boundary because of the short distance between the highest
point of the complex terrain and the top boundary. Hence, to
reduce the impact of the accelerated flow on the wind farm flow,
the minimum height of the domain has been set 900 m which
is equal to three times the difference between the highest and
lowest points of the wind farm. Moreover, because of the imposed
symmetry boundary conditions, the Coriolis force is not taken into
account.

A constant time step of ¢ 0.1 s is used in the simulation to
ensure that the Courant number is below one over the entire domain.
However, for a few highly skewed grid meshes (due to the ground
complex topography), there are instances that the Courant number
becomes greater than one. The simulation is performed for 120 min.
But, the atmospheric turbulence and time-varying wind profile for the
last 61 min of the simulation (representing of six 10-minute sampling
data) over the rotor swept area of all eight turbines are then extracted
and exported to a aero-structural solver the so-called FAST for the
aerodynamic and aeroelastic analyses.

As mentioned in Section 1, the focus of this study is on the impact
of the complex topography and heterogeneous forest at three different
mean wind directions limited to the static yaw misalignment range of
+6°. Therefore, the results are only presented for WT5, WT7 and WT8
located upstream the other turbines excluding the wake interference. In
addition, because of using NREL 5-MW turbine model in the simulations
(instead of the existing Vestas 2-MW machine in the wind farm), for
validation against SCADA data, WT5, WT7 and WT8 are again the most
appropriate candidates.

3.4. Aeroelastic simulation of wind turbine using FAST

The aerodynamic and aeroelastic simulation of the wind turbines in
the wind farm is done using FAST (Fatigue, Aerodynamics, Structures,
and Turbulence) code [94]. It is an open-source code developed by
the NREL widely used within the wind energy community computing
structure loads and energy production of a wind turbine. In FAST, the
aerodynamic loads are computed based on the Blade Element Momen-
tum (BEM) method while it employs a combined modal and multibody
dynamics formulation for the dynamic response of the structure.

The aero-elastic simulation of the upstream wind turbines (WTS5,
WT7 and WT8) exposed to the unsteady inflow, provides more de-
tailed information about the impact of complex topography and surface
roughness heterogeneity on the air at slightly varying mean wind
direction e.g., +6°. As mentioned in Section 3.3, the aerodynamic and
aeroelastic simulations are carried out for 61 min where to avoid the
start-up effect, the first 60 s is neglected from all time series. Among
various aero-structural time series from FAST, five variables are chosen
representing the cumulative effect of the unsteady inflow on vari-
ous wind turbine components. These variables are electrical generator
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power (GenPwr), blade 1 flapwise moment (caused by flapwise forces)
at the blade root (RootMyb1), tower-top pitching moment (YawBrMyp),
low-speed shaft bending moment (LSSGagMys) and tower base pitching
moment (caused by fore-aft forces). In FAST global coordinate system, x
and z coordinates point out downwind and vertically upward (opposite
to gravity), respectively. Hence, the pitching moment is acting on the
pitch axis, i.e., y axis.

4. Results
4.1. Validation against SCADA

The LES predicted wind fields are compared to wind speed as
recorded by nacelle anemometer and collected through the wind tur-
bine’s SCADA system on WT5, WT7 and WT8. For the site under
consideration, 1 Hz SCADA data is available (with some losses) from
20th June 2017 to 3rd February 2019. The LES simulations are carried
out under the assumption of neutral atmospheric condition with the
heterogeneous PAD distribution measured in September when trees
had leaves. As previously mentioned, the focus of this study is on
the flow characteristics around WT5, WT7 and WT8 as the upstream
turbines without wake-interaction. Hence, the SCADA data between
11:00-17:00 h from May 1st to October 1st (118 days) in 2018 (the
year without missing measurement data) are extracted. In addition, the
SCADA data are filtered for the mean wind speed equal to 9.72 m/s
i.e., the average of minimum and maximum mean wind speed predicted
by the simulations for the three cases. The tolerance for binning the
mean wind speed and mean wind direction (for each case) by the
measurement are assumed to be +1 and +3, respectively. For the three
cases, the upstream turbines (WT5, WT7 and WT8) are not disturbed by
the wake of other turbines. However, the measured data by the nacelle
anemometer (located downstream of the rotor) are likely disturbed by
the rotating blades resulting in a reduction in the mean wind speed and
an increase in the turbulence intensity to a slight extent.

Figs. 10 and 11 show the histogram of probability frequency of the
mean wind speed (s) and turbulence intensity (Ti) measured by the
nacelle anemometer at three cases for WT5, WT7 and WT8. The turbu-
lence intensity of the measurement data is calculated as the standard
deviation of wind speed for the given hub height divided by the mean
wind speed (at hub height). For the LES simulation, the turbulence
intensity is defined as Ti = (& )0‘5 /(5,) at the hub height (for a period

of 90 min) where (1’/12)0'5 and (7,) denote the time-averaged grid-
filtered streamwise wind velocity and the streamwise Reynolds stress
obtained. Since the nacelle anemometer is located at the downwind of
the rotor, the measured wind velocity includes additional disturbances
due to the rotating blades. Therefore, it can be expected that the pre-
dicted turbulence intensity by simulations would be less than the ones
obtained from the nacelle anemometer. As seen, SCADA data reports
a slightly higher mean wind speed for all three turbines than LES. In

Renewable Energy 202 (2023) 537-553

900

750

600

450

y [m]

300

150

-0.5

[m?/s?]

(b)

simulation. (a) Streamwise mean velocity and (b) Turbulent kinetic energy k, normal and

545

Table 2
Comparison between measurement data and simulation.
Wind Wind Sim Sexp As Tig, Ty, ATi
direction  turbine [m/s] [m/s] [%] [-] [-] [%]
[degrees]
WT5 9.24 9.72 4.94 0.16 0.18 11.11
210 WT7 9.29 9.87 5.88 0.14 0.15 6.67
WT8 9.59 10.19 5.89 0.13 0.16 18.75
WTS 9.28 9.69 4.23 0.16 0.18 11.11
216 WT7 9.67 10.03 3.59 0.14 0.16 12.50
WT8 9.69 10.55 8.15 0.12 0.16 25.00
WTS 8.90 9.93 10.37 0.17 0.17 0.00
222 WT7 9.77 10.15 3.74 0.15 0.17 11.76
WT8 9.89 8.17 3.25 0.14 0.16 12.50

addition, the turbulence intensity predicted by LES underestimates the
actual values, maybe for the reason mentioned above. The minimum
difference between the predicted turbulence intensity by LES and the
measurement data is seen for case 3 (Dir. 222°) whereas the maximum
difference is observed for the reference case i.e., case 2 (Dir. 216°).

Table 2 displays a summary of the comparison between the mea-
surement and simulations for WT5, WT7 and WTS8 at three cases. Except
for some few cases, there is a fairly good agreement between the
measurement data and LES for the mean wind speed.

4.2. Flow characteristics over the entire wind farm

Fig. 12 displays the iso-surface of the horizontal mean wind speed

(s = 1/(8}) +(73)) and turbulent kinetic energy, defined as k

%(E: 0/}, at hub height (i.e., 90 m above the ground) for a period

of 60 min. As seen, wind turbine WT1, WT7 and WT8 have greater
hub-height mean wind speed than the other turbines, mostly related to
their elevations level (see Fig. 6b). On the other hand, WT2, WT6 and
WT4 experience higher inflow turbulence intensity at hub height than
the others. This motivates the study of inflow properties at each wind
turbine station in more detail.

4.3. Inflow characteristics

Fig. 13(a) and (b) present the time-averaged grid-filtered wind ve-
locity (s = w(&f) + (Eg)) and turbulent kinetic energy (k = % o0)))

along the vertical axis (y) at 1D upstream for WT1, WT7 and WT8 for
three wind directions extracted for a period of 60 min. The reason to
choose 1D upstream is to avoid the impact of the induced velocity by
the rotor on the upstream flow.

As expected, because of the terrain complexity and forest canopies
heterogeneity, the mean wind speed and turbulent kinetic energy pro-
files vary w.r.t. the turbines’ location and wind directions. The main
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WTS5, Dir. 210° WT7, Dir. 210° WTS, Dir. 210°
05 05 - 05
04} 0.4 0.4
0.3 03 03
02t 0.2 02
0.1 0.1 0.1 5 T
0 . [ - - ol -
0.1 014 018 022 026 0.1 014 018 022 026 0.1 014 018 022 026
WTS5, Dir. 216° WT7, Dir. 216° WTS, Dir. 216°
05 05 05
0.4 0.4 0.4
03} 03 03
0.2} 0.2 02 -
0.1 0.1 0.1 ’
0 0 0
01 0.14 0.18 0.22 0.26 0.1 0.1 0.14 0.18 0.22 0.26
el WTS5, Dir. 222° WTS, Dir. 222°
5 . i - 0.5 — 05— AL .
= 0.4 0.4
2 03 03
S
& 0.2 02
£ 0.1 0.1
= 0 0
2 oa 014 018 022 026 0.1 0.1 014 018 022 026

Ti [-]

Fig. 11. Relative frequency of samples of turbulence intensity collected at WT5, WT7 and WTS8, likely from neutral conditions (118 days in 2018). Red line is the mean value of
the 118 samples from the measurement data and Blue line is the mean value predicted by the LES simulations.

focus here is on the mean yaw angle across the rotor recalling that
the inlet inflow profile is veer and yaw-free and the Coriolis force is
not taken into account. As seen in Fig. 13(c), for all cases a larger
yawed flow occur at the lower part of the rotor plane (from 25 m to
125 m) while by increasing the distance from the ground, it decreases
and approaches zero.

Contrary to WT8 experiencing positive mean yaw angle on the
entire rotor swept area, WI7 mainly undergoes a negative inflow yaw
misalignment for the lower-half of the rotor and a positive inflow
yaw misalignment for the upper-half of the rotor for all three wind
directions. Moreover, WT5 is only negatively yawed for the lower
rotor region below 40 m for the case Dir. 210°. For all three wind
directions, WT5. WT7 and WT8 are operating under yawed flow below
the statistical static yaw error where the yaw control system is not
activated.

4.4. Comparison of aerodynamic and aeroelastic characteristics
The yaw misalignment of the incoming flow the so-called cross-wind

is one of the main sources of yaw loads/moments acting on a wind
turbine. Moreover, wind turbines located in complex terrain are usually
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subjected to both vertical and horizontal wind shears, including the
atmospheric turbulence. In addition, the vertical and horizontal wind
shears have large contributions on the yaw moment. The importance
of studying yaw moment is because the yaw loads are classified as the
fully reversing fatigue cycles (acting on the yaw drive of the horizontal
axis wind turbines’ yaw system) where the peak loads are usually much
larger than the mean loads [92].

To investigate the impact of the airflow distortion due to the com-
plex terrain and heterogeneous forest canopies in the range of static
yaw misalignment (~6°), the dynamic response of the wind turbines
without wake interference i.e., WT5, WT7 and WTS8 for three different
directions (210°, 216° and 222°) are computed using FAST simulation
tool. The extracted 60-minute time-varying flow field (from the CFD
simulation over the rotor swept area of the turbines) are fed into to
FAST for aerodynamic and aeroelastic analysis. Since the main focus
of this study is about the airflow distortion by the ground topography
within a wind farm (in the range of static yaw misalignment), four rel-
evant aero-structural variables i.e., “Wind1VelX” (axial wind velocity
at hub-height), “GenPwr” (electrical generator power), “YawBrMyp”
(pitch moment at the top of the tower about the lateral axis) and
“YawBrMzp” (yaw moment at the top of the tower about the vertical
axis) are investigated.
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Fig. 12. Iso-surface (at hub height, 90 m above the ground) of horizontal mean wind speed (s) and turbulent kinetic energy (k), over the entire computational domain for the
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As seen in Fig. 14(a), there is no significant difference in axial
mean wind speed for all three cases (wind directions). Except for
“YawBrMyp” and “YawBrMzp”, the other aero-structural signals follow
the trend of the streamwise mean wind speed to a great extent and
are therefore not presented. In addition, the predicted power “GenPwr”
(see Fig. 14(b) is proportionate to the “Wind1VelX” (axial wind velocity
at hub-height) as expected. However, a slightly different behavior in
“GenPwr” can be observed for WT8 with respect to the “Wind1VelX”
values. This is because of a higher turbulence intensity at directions 210
and 222 degrees w.r.t. direction 216 degrees. Normally, for mean wind
speeds lower than the turbine’s rated wind speed (i.e., 11.4 m/s for
the NREL 5-MW machine), a small increase of power due to turbulence
(the time instants of the wind speed above the mean velocity) will
recompense for the time instants of the wind speed below the mean
velocity [103].

Generally, the overall yaw moment is caused by the out of plane,
in-plane and tension forces together with flapwise bending moment.
Here, in addition to “YawBrMzp” (yaw moment at the top of the
tower about the vertical axis), “YawBrMyp” is presented because the
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azimuthally varying flapwise bending moment (or pitch moment) is the
dominant component of the yaw moment [92]. Furthermore, since the
hub-height mean wind speeds (see Fig. 13(a)) are below the rated wind
speed for NREL 5-MW (i.e., 11.4 m/s), there is no contribution of the
cyclic pitch on the mean yaw moment. The sign of the yaw moment
usually varies with respect to the inflow yaw angle. According to the
coordinate system used in FAST, the negative and positive tower-top
yaw moments are associated with the positive and negative inflow yaw
angles, respectively excluding the sheared inflow (a = 0). This is also
valid for low vertical shear exponents (e.g., « < 0.1). For higher vertical
shear exponents (e.g., « > 0.25) than the normal wind profile model
equal to 0.2 indicated in IEC 61400-1 standard [104], the yaw moment
may be positive under the positive-yawed inflow. Furthermore, below
the rated mean wind speed, the mean tower-top yaw moment for the
inflow with zero yaw misalignment is usually positive. On the other
hand, the tower-top pitch moment is always positive for both negative
and positive yawed inflow while it is larger for inflows with negative
yaw misalignments.
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Fig. 15. Power spectral density of pitch moment (“YawBrMyp”) for WT5, WT7 and WT8 at three wind directions.

Fig. 14 displays the mean values of four aforementioned signals.
Recalling the predicted mean yaw angle for the incoming flow at 1D
upstream WT5, WT7 and WT8 illustrated in Fig. 14(c), WT7 mainly
experiences a negative inflow yaw misalignment for the lower-half of
the rotor and a positive inflow yaw misalignment for the upper-half of
the rotor for all three wind directions. Noted that the predicted yawed
inflow at 1D upstream may be deflected more while approaching the
rotor because of the secondary flow induced by the rotor [105]. In
addition, all three cases for WT7 have the same mean vertical shear
exponent across the rotor swept area (« ~ 0.23). Hence, the lowest
tower-top pitch and yaw moments (see Fig. 14(c) and (d)) in case 3
for WT7 denote a slightly positive yawed inflow contrary to the case 2
and case 3.

WT8 experiences the positive yawed inflow (because of the negative
yaw moment values) upheld by Fig. 13(c). The vertical shear exponent
across the rotor for WT8 as seen in Fig. 13(a) is the lowest (a ~ 0.13)
in all three wind directions and it is below the power law exponent
assumed to be 0.2 as for the normal wind profile model in the interna-
tional standard IEC 61400-1 [104]. Hence, the impact of the vertical
shear exponent on the yaw moment may be not pronounced as for
WT5 and WT7. For WT5, the mean vertical shear exponent across the
rotor is the largest (see Fig. 13(a)) and it is approximately equal to 0.4,
i.e., three times and twice greater than the ones hold for WT7 and WT8,
respectively. This may be certified by the largest predicted tower-top
pitch moment demonstrated in Fig. 14(c). Recalling the role of the pitch
moment as the dominant source of the yaw moment [92], a larger pitch
moment may significantly increase the yaw moment. Hence, contrary
to the aforementioned general statement under zero vertically sheared
inflow condition (which may determine the sign of yaw moment w.r.t.
the sign of the cross-wind), the positive yaw misalignments for WT5
at all three wind directions despite the positive “YawBrMzp” for the
case 1 (Dir. 210°) and case 2 (Dir. 216°) may be deduced. This is fairly
supported by Fig. 13(c), except for the reference case (Dir. 216°) where
it is expected a smaller yaw moment at Dir. 216° than Dir. 210°.

The NREL 5-MW wind turbine (used in this study) is a three-bladed
wind turbine encountering the cyclic yaw load (as the cumulative load
of all three rotor blades) at multiples of 3P i.e., OP, 3P, 6P, 9P and so
on where 1P denotes the rotor rotational frequency. Figs. 15 and 16
show the power spectral density of tower-top pitch and yaw moments,
respectively. In both figures, the peaks associated with 3P, 6P, 9P are
clearly visible. For the power spectra of the yaw moment (see Fig. 16),
there is another pick at f ~ 0.33 Hz indicated by v resembling the first
natural frequency of NREL 5-MW wind turbine tower [97]. This peak
may not be identified in case of a simulated flow field by LES with a
poor resolution [81,105] resulting in underestimation of the fatigue life
of a wind turbine.

5. Conclusion

The results from the numerical simulations display that for an
onshore wind farm located at the complex terrain covered by hetero-
geneous forest for three different mean wind directions (in the range
of static yaw misalignment) with a varying PAI about 8%-10%, the
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horizontal distortion of the undisturbed inflow over the entire rotor is
usually kept below the range of static yaw misalignment (~6°) for the
majority of the upstream wind turbines for all three cases. However, the
impact of a large vertical shear exponent leading to misinterpretation
of the results must be taken into consideration.

Among various forces/moments giving rise to the yaw moment, the
load imbalance of the rotor due to the vertical wind shear has the least
direct contribution on the yaw moment. However, for a mean vertical
shear exponent larger than a = 0.25, a positive yaw moment (contrary
to expectation) under the positive-yawed inflow may be observed.

The power spectral density of yaw moment reveals that how a
LES-based turbulent inflow with a poor grid resolution may lead to
underrate of the fatigue life of a wind turbine. Therefore, to excite
the first natural frequency of the wind turbine structural motions, the
cut-off frequency in the predicted inflow by LES must be similar. On
the other hand, obtaining a higher cut-off frequency for high-Reynolds
number flows increases rapidly the computational cost.
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