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A B S T R A C T   

Utilizing the random forest model, feasibility of training machine learning regressor models to predict critical 
temperatures of superconductivity from Density Functional Theory (DFT) based electronic band structures is 
explored. This complementarity between experiment and theory draws inspiration from the merging of Kohn- 
Sham and Bogoliubov-De Gennes equations [W. Kohn, W, EKU Gross, and LN Oliveira, Int. J. of Quant. Chem., 
36(23), 611–615 (1989)]. Features in the Kohn-Sham Density Functional Theory band structure away from EF 
becoming decisive for the superconducting gap demonstrates this divide-and-conquer physical understanding. 
Not committing to any microscopic mechanism for the SC at this stage, it implies that in different classes of 
materials, different electronic features are responsible for the superconductivity. However, training on known 
members of a class, the performance of new members may be predicted. The method is validated for the A15 
materials, including both binary A3X and ternary A6XY intermetallics, A = V, Nb, demonstrating that the two do 
indeed belong to the same class of superconductors.   

1. Introduction 

Superconductivity (SC) is a state of matter that is as robust as it is 
elusive. Its potential technological importance is matched only by our 
fascination for the phenomenon. Correspondingly, titanic efforts have 
been undertaken over the years in formulating and exploring possible 
principles guiding the search for new superconducting materials. 
Groundbreaking complementary contextual, conceptual, and phenom-
enological approaches [1–3] were developed, focusing on different as-
pects of the phenomenon. Challenging in this endeavor is that the 
phenomenon is confined to a narrow energy window in vicinity of the 
Fermi energy, where mixing of hole- and particle states takes place, as 
reflected in the Cooper pairing. Experimental studies on fundamental 
characteristics have served to establish and consolidate this under-
standing further [4,5] leading the way to technological applications. 

Thus, superconductivity results from entanglements among states 
across EF that serve to suppress competing resistive thermal excitations. 
For a material to host SC, the fine interplay between hole- and electron 
states must be protected by resilient atomic structural elements or else 
spontaneous crystal symmetry breaking will cause lifting of the required 
electronic degeneracy at EF. In fact, residual protected degeneracies at 
EF are understood to result owing to structural relaxations where lifting 
some degeneracies leaves others protected. As a rule, ambiguity remains 
whether the said resulting features will correlate constructively to 

produce SC, or if any competing electronic order will prevail, or if SC 
will emerge from coopetition between competing orders. 

As of today, there is a mismatch between our quantum mechanical 
description of materials that harbor superconductivity, and the details 
that unambiguously lead to the phenomenon. Consequently, as of today, 
any claimed prediction of new superconducting materials based on 1st 
principles alone must be deemed accidental, leaving us with traditional 
empirics-based serendipity or proposing new compounds based on 
essential similarities with already known superconductors. Such classes 
of superconductors include the cuprates [6], the layered iron-based 
materials [7], and the A15 intermetallics [8]. Currently, a new class of 
hydride based materials exhibiting possible room-temperature super-
conductivity albeit at very high pressures (~100–200 GPa) are being 
explored experimentally [9,10] as well as by means of physics based 
machine learning [11] guided by the Eliashberg spectral function for 
electron-phonon coupling. Yet, it was shown in a recent machine 
learning study – based on 145 experimental element specific materials 
features [12] – that predictability for one class of superconductors was 
not transferable to other classes. Hence, while the SC phenomenon is 
generic, albeit of either type I and type II, the essential materials features 
and the way they cooperate is unique to each class of superconducting 
materials. 

Even if constrained to apply within individual structural classes, still, 
supervised machine learning could provide a powerful predictive tool in 
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identifying and ranking yet missing members in the same class. Here we 
explore the extent to which 1st principles electronic band structures – as 
obtained from Kohn-Sham Density Functional Theory (KS DFT) calcu-
lations – can replace all the said 145 experimental element specific 
materials features in the supervised machine learning [12]. In as much 
as this approach remains unbiased concerning the mechanism for su-
perconductivity, it leaves room for further developments in forthcoming 
studies. Here, conceptual, yet intuitive, justification for such a 1st 
principles-augmented supervised machine learning method is high-
lighted and demonstrated. Indeed, considering that top and bottom 
branches of bands that cross EF are commonly unproblematic for KS 
DFT, by interpolation between the said branches, the crystal orbitals in 
vicinity of EF in turn become a consequence of the continuity of the 
band. The remaining crucial ambiguity is owing to the a priori 
single-particle Kohn Sham crystal orbitals representation. Were the 
electron-electron and electron-phonon inter- and intra-band virtual 
scatterings to be considered explicitly, the said orbitals would acquire 
non-integer occupations. Fundamental work in line with this under-
standing has been undertaken previously, including solving the 
Bogoliubov-de Gennes (BdG) equations [13] in the framework of KS DFT 
[14,15]. It was emphasized by Kohn et al. [16] that for an all-electronic 

mechanism for superconductivity, e.g., owing to Friedel oscillations 
[17], BdG-KS equations analogous to KS DFT would result, while in case 
of electron-phonon coupling the functional becomes system dependent, 
i.e., non-universal. A multi-band all-electronic realization, see [18–20], 
emerges from an multiconfigurational representation of the 
electron-electron interaction [21,22], whereby local near-degeneracies 
are included explicitly in the truncated variational Configuration 
Interaction wave function. To date, while consolidating our basic un-
derstanding, such efforts have had no predictive impact in search of new 
superconducting materials. 

From [12] and [16] it is inferred that if all members of a class of 
superconductors share a common mechanism of superconductivity, then 
emerging properties of their KS crystal orbitals may indeed serve de-
scriptors of the SC, i.e., correlating with TC. This would offer an alter-
native means to account for the crucial fine hole-particle interplay – 
missing in KS DFT [23] but inferred by the Hohenberg-Kohn theorem 
[24] – by replacing all-formal approaches by supervised learning, 
thereby associating KS DFT band structure features to experimental TC 
measurements. Repeatedly, for non-pathologic cases, it would follow 
that unknown members of a class of superconductors could be predicted 
from the known members of this class from their KS DFT band 

Fig. 1. Top left: Generic band structure in the range [− 5,5] eV in conjunction with density of states emphasizing the top of d+ bundle and bottom of d− bundle (red 
lines). Top right: The 7 bands that cross EF and the atomic characteristics of the crystal orbitals. Bottom: Sum-over-states in the range EF ± 0.1 eV illustrating the 
superimposed orbitals characteristics at EF, cf. top right. 
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structures. 
To test the validity of this inference, firstly, a sufficiently large class of 

superconducting materials is required for efficient training, secondly, the 
applicability of KS DFT within the generalized gradient approximation 
(GGA) should be uncontested for the material class considered, and 
thirdly, the ability to predict materials that extend the class should be 
conclusive. 

These requirements are fulfilled for the archaic vanadium and 
niobium based quasi-one-dimensional A15 A3B class of superconduc-
tors, A = V or Nb [25]. These systems have been studied extensively by 
means of electronic structure calculations over the years [26–28], and 
some essential properties are shown in Fig. 1. Thus, the A-sublattice is 
understood to form interwoven chains of V or Nb. A near-degenerate 
manifold of states at EF results, originating mainly from the fivefold 
atomic d-orbitals, where the two atomic dδ-orbitals oriented orthogonal 
to the individual chains’ directions become separated from the dσ and 
the two dπ components. Characteristic is the subdivision of the partial 
density of states owing to this D-manifold into d+ and d− bundles, where 
EF resides at the top of the d+ bundle. The decisive interchain coupling to 
switch on and attenuate the TC for the SC, however, is controlled by the 
B element. One effect is owing to the B elements in the group 13 and 14, 
placing a set of coalescing bands close to EF, in vicinity of the R point. 
This effect originates from the p-character of these elements [29], cf. 
Fig. 1 again. 

In what follows, the ability to associate experimental TCs with 
computed band structures by means of supervised machine learning is 
demonstrated. Accuracy of models trained on three different subsets of 
the data is compared, the {V3X} subset, the {Nb3X} subset, and the joint 
{Nb3X; V3X} subset, respectively. The accuracy of a model trained on 
one subset to predict the TCs of members of its own subset is evaluated 
by means of leave-one-out cross validation LOOCV. More crucially, the 
ability of a model, trained on one subset, to predict the TCs of members 
of the remaining ternary and/or binary subsets, is reported. Pearson 
correlation coefficient ρ(Tpred

C ,Texp
C ), Root Mean Square Error (RMSE) as 

well as Mean Absolute Error (MAE) are employed to quantify the per-
formance. All results are summarized as heatmaps of the resulting 
ρ(Tpred

C ,Texp
C ), MAE, and RMSE in Figure S1. 

2. Computational method 

Binary and ternary Nb- and V-based A15 (A3B) entries with reported 
TC’s were extracted from the SuperCON database [30]. The maximum 
reported TC was taken as the nominal one for each compound. Subsets of 
the binary entries were reserved for training machine learning. Out of 
the total 26 binary entries included in the dataset, 13 are Nb3X and 13 
V3X. Moreover, the complete sets of V6XY and Nb6XY, 5 and 8 entries 
respectively, in the SuperCON database were included to evaluate the 
degree to which the proposed 1st principles based supervised machine 
learning approach is valid. 

It is inferred that A15 structures with higher long-range order 
correlate with higher TC [25]. Thus, the A6B2 unit cell was deemed 
appropriate in the electronic structure. Each composition was subject to 
spin-polarized DFT calculations employing the GGA PBE functional [31] 
and allowing for full geometry optimization. On the fly norm conserving 
pseudopotentials compatible with 1200 eV cut-off energy were 
employed to describe the impact of core electrons, while the Brillouin 
zone was sampled with a 0.05 Å− 1 k-points separation [32]. For this, the 
CASTEP code [33] within the Materials studio 6.0 suite [34] was 
employed. The convergence criteria included 2⋅10− 3 Å (displacement) 
and 2⋅10− 5 eV/atom (energy). The band structure was calculated using 
0.01 Å− 1 k-point sampling separation along the Γ→X→M→R→Γ 
trajectory. 

Employing spline interpolation, all bands were sampled uniformly in 
k-space. Thus, the 1st Brillouin zone was sampled using 100 bins across 
the specified trajectory. For each k-bin the band structure was sampled 

in the ranges [− 5,5] eV with 0.05 eV E-bin distance, i.e. 200 E-bins. The 
resulting k-resolved DOS (kDOS) was calculated by creating a 2D-histo-
gram for the 100 × 200 bins (20 000 features), thereby rendering the 
repeated sampling of the band structures possible and manageable. It is 
noted that partitioning the band structure into bins renders the explicit 
association of a k-state with its band lost. Moreover, k-states associated 
with a bin in one system need not belong to the same bands as the k- 
states of other systems that are ascribed to the same bin. Any such 
implication should be “rediscovered” by the random forest regression. 

To allow for the similarity of different band structures to emerge, 
smoothening by means of average (or mean) filtering was considered on 
the form 

f L
H(En, kn′ ) =

1
H⋅L

∑n+
H− 1

2

i=n− H− 1
2

∑n
′
+L− 1

2

j=n′ − L− 1
2

f 1
1

(
Ei, kj

)
(1) 

Thereby, the new value of a feature becomes an average that includes 
its surrounding. Here, filtering on a square kernel of size H, i.e. H = L, 
were compared for H = 1,3,5,…,13, cf. Fig. 2. Other filtering strategies 
are left for future studies. Here, it is noted that the L-averaging renders 
the kDOS and DOS data increasingly similar and that the case H = L = 1 
corresponds to the original kDOS without filtering. 

Dependence of model and prediction on reduction of features used in 
the kDOS by excluding those with an absolute Pearson correlation co-
efficient value, |ρ(kDOS,TC)| less than a threshold was investigated. The 
Pearson correlation coefficient is defined as: 

ρ(X,Y) = cov(X, Y)
σ(X)σ(Y) =

∑n
i=1(xi − x)(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(xi − x)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n
i=1(yi − y)2

√

Where n is the size of the subset on which the correlation is calcu-
lated. Note also that the correlation coefficient calculation is in fact 
performed separately for each bin in the kDOS i.e. ρ(kDOS, TC) =

ρ(kDOS(Ei,kj),TC), c.f. Figure S8. The value of ρ ranges between − 1 and 
+1, where the former corresponds to perfect (negative) anti-correlation 
and the latter to perfect (positive) correlation, 0 corresponds to no 
correlation. Here, when reducing the feature set based on correlation it 
is performed on the absolute value of ρ(kDOS,TC) as both positive and 
negative correlations are in fact correlations. Another possibility would 
be to base the reduction on the square of ρ. 

The resulting reduced feature set, which is calculated on the {Nb3X, 
V3X} subset to ensure that the feature sets are equal across different 
train/test-sets for comparability, is visualized in Fig. 3 while the full 
Pearson correlation maps, |ρ(kDOS,TC)|, also for {Nb3X} and {V3X} are 
visualized in Figure S8. Feature reduction based on only the training set 
is discussed in section S1 in the Supplementary Information.“ 

The machine learning was performed using random forest regressor 
models with 10 trees from the scikit-learn framework for Python. 

3. Results and discussion 

3.1. Leave-one-out cross-validation 

The performances and internal consistencies of the models as well as 
the impact of filtering can be assessed by inspecting the results of 
LOOCV regressions for the three training subsets as shown in Figures S2- 
S4 and summarized in Fig. 4a-c. It is noted that both mean filtering and 
feature reduction based on the absolute of the Pearson correlation co-
efficient |ρ(kDOS, TC)| independently improve on model performance. 
Also, while reducing the feature set to only relevant features do enhance 
the model, too few features may hamper the model training and per-
formance, cf. Fig. 4a-f, H = 1, |ρ(kDOS,TC)| >0.8. Obviously, for |ρ(kDOS,
TC)| >0.8, increasing the mean filtering tolerance from H = 1 to H = 13 
renders the a priori sparse feature set increased as it allows for additional 
inferred similarity between band structures to emerge. This way, com-
pounds that are a priori deemed dissimilar may acquire similarity, 
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allowing for model performance to be tuned. 

3.2. Testing on the rest 

The ability of the 1st principles based random forest supervised 
machine learning method, when trained on all members of each of the 
three different subsets {V3X}, {Nb3X}, {Nb3X;V3X} to predict TCs of 
members outside of the training subsets is shown in Figures S5-S7 and 
summarized in Fig. 4d-f. For both {V3X} and {Nb3X} subsets, we find 
that irrespective of mean filtering, training on the unreduced kDOS 
feature set – |ρ(kDOS,TC)| ≥ 0 – upon predicting the rest, yields no 
impressive results. This holds for all H ≤ 13, and this despite LOOCV on 
each subset showing fair results, cf Fig. 4a-c. Rather, enhanced model 
accuracy is obtained  

a by training on either binary subsystem after reducing the feature set 
to those features that show a priori correlation based on the full bi-
nary dataset c.f. Figure S8 for the difference in |ρ(kDOS,TC)| when 
calculated on the different subsets. Once feature set is screened on 
relevance, significant accuracy increase is obtained upon employing 
the mean filtering, cf. H = 1 and H = 13 for |ρ(kDOS,TC)| > 0.8 in 
Fig. 4d-e and Figures S6-S7. 

b for all H on the unreduced |ρ(kDOS,TC)| ≥ 0 feature set, if both bi-
nary subsets are included in the training. This is owing to the 

complementarity of the two subsets, this enhancing co-correlated 
features while damping out others, see Fig. 4f and Figure S5. 

Indeed, it is repeatedly noted that reducing the feature set to include 
increasingly more relevant features, enhances the model performance 
only to a degree beyond which the model training becomes hampered by 
feature sparsity, cf. |ρ(kDOS,TC)| ≥0 and |ρ(kDOS,TC)| > 0.8 for H = 1 in 
Fig. 4a-f and Figures S2-S7. Given this, it is truly remarkable how model 
performance is recovered and even surpassed upon applying the mean 
filtering, cf. |ρ(kDOS,TC)| > 0.8 for H = 1–13 in Figures S2-S7 and Fig. 4 
again. 

It becomes particularly gratifying to note that – with one exception – 
the ability of the model that is trained on the all-binaries subset to 
predict the TCs of the ternary A6XY systems (see Fig. 4f) is as good as it 
gets. In the case of Nb6SiSn, experiment reports 8.3 K [35] while ma-
chine learning predicts ~20 K. This compound however is notoriously 
difficult to make [36], as is already the superconducting binary A15 
Nb3Si, which is metastable at ambient conditions [37,38]. While 
renewed attempts at measuring the TC of Nb6SiSn is indeed in place, no 
sensational enhancement is expected beyond 20 K from the model. 

Evidence to the fact that the two intermetallic systems {V3X} and 
{Nb3X} do indeed belong to the same class of superconductors is pro-
vided by this experiment augmented 1st principles method. This follows 
by inspecting the degrees to which the model that trains on TCs and band 

Fig. 2. The effect of mean filtering on the kDOS of Nb3Al using a kernel of size HxH, cf. Eq.1. Note that the case H = 1 corresponds to unfiltered kDOS.  

Fig. 3. Pearson correlation maps based on all binaries, exhibiting the impact of reducing the feature set to those features that display correlation |ρ(kDOS,TC)| > 0.2 
to 0.8. Columns, left to right, show the impact of mean filtering using a square kernel of size H. Areas in black represent the remaining feature set (pixels) which 
fulfills the said criteria thereby forming basis for the threshold dependent correlation, and regression diagrams, see Fig. 2 and Figures S2-S7. Where there are fewer 
than 100 features left, red encapsulation is used to highlight the features. 
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structures of the {Nb3X} subset is able to predict the TCs of the {V3X} 
subset and vice versa. Clearly, the band structure characteristics of the 
two subclasses correlate with SC in the same way. The slight asymmetry 
in efficiency of the two models, in predicting TCs of the other, is due to 
the {Nb3X} subset containing more compounds with higher TCs than the 
{V3X} subset, cf. Figs. 4d & e and S6-S7. 

For a phenomenon that per se is inaccessible to KS DFT, the degree to 
which 1st principles kDOS based features provide decisive descriptors 
for how TC in the A3X intermetallics depends on choice of X element is 
truly remarkable. The striking effectiveness of the random forest 
regression based supervised machine learning method is taken to vali-
date other models that employ KS DFT to describe essential aspects of 
the normal state of SC. Mutual predictive powers of the {Nb3X} and 
{V3X} training subsets, one predicting the other, is indeed promising. 
The higher quality of training on {Nb3X} subset emphasizes yet again 
the importance of well-balanced data to support the training. 

A main result of machine learning is the ability to put in question the 

validity of individual data. Here, we found that the 8.3 K TC reported for 
a material with nominal Nb6SnSi composition is not owing to super-
conductivity in the single-phase A15 structure of the same 
stoichiometry. 

Finally, it is noted that the distribution of electronic band structure 
features correlating with TC, and as determined from the corresponding 
Pearson correlation coefficients, do not single out the EF region. 
Crucially, this is taken to support the notion that once a class of super-
conductors has been identified, band structure signatures away from EF, 
and thus possible to assess by KS DFT, become decisive for the tuning of 
properties at EF, the superconducting gap included. This is consistent 
with the Hohenberg-Kohn theorem. 

In conclusion, by providing proof-of-concept, this work hopes to 
pave the way for 1st principles in silico mining for superconductors, 
predicting new ones as well as reassessing failed ones. It opens up for a 
novel fruitful exploratory interplay between high-throughput electronic 
structure calculations and synthesis. Necessary requirement for this 

Fig. 4. Summary of the random forest regression analysis based on mean filtering and feature space reduction based on calculating the Pearson correlation coef-
ficient, cf. Figures S2-S7. (a-c) Leave-one-out cross-validation LOOCV analysis, showing the ability to predict members within the subset based on training on all but 
one of the members. (d-f) Results of training on one subset of the data and testing on members of the remaining subsets. Rows: Impact on prediction owing to 
reduction of features to those that display a priori correlation, |ρ(kDOS,TC)| ≥ 0, that is no reduction: and |ρ(kDOS,TC)| > 0.8. Columns: Impact of mean filtering on H 
× H adjacent elementary bins, H = 1,7,13. Nb is blue, V is red. 
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fundamentally physics based supervised machine learning approach is 
subdividing superconducting materials into classes and training on 
materials that share essential structural elements. We envisage this 
methodology to be extendable to all classes of superconducting mate-
rials. In parallel, disentangling the co-opetive interplay between features 
that become decisive for the mechanism for the superconductivity is 
work in progress. 
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