CHALMERS

UNIVERSITY OF TECHNOLOGY

Waveform Memory for Real-Time FPGA Test of Fiber-Optic Receiver
DSPs

Downloaded from: https://research.chalmers.se, 2024-03-20 11:21 UTC

Citation for the original published paper (version of record):

Romon Sagredo, R., Borjeson, E., Mirani, A. et al (2022). Waveform Memory for Real-Time FPGA
Test of Fiber-Optic Receiver DSPs. 2022 IEEE Nordic Circuits and Systems Conference, NORCAS
2022 - Proceedings. http://dx.doi.org/10.1109/NORCAS57515.2022.9934184

N.B. When citing this work, cite the original published paper.

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

This document was downloaded from http://research.chalmers.se, where it is available in accordance with the IEEE PSPB
Operations Manual, amended 19 Nov. 2010, Sec, 8.1.9. (http://www.ieee.org/documents/opsmanual.pdf).

(article starts on next page)

Wavetorm Memory for Real-Time FPGA Test
of Fiber-Optic Receiver DSPs

Rafael Romoén Sagredo

Chalmers University of Technology
Gothenburg, Sweden
rafaelromon @protonmail.com

Magnus Karlsson
Photonics Laboratory
Chalmers University of Technology
Gothenburg, Sweden
magnus.karlsson@chalmers.se

Abstract—Verification of advanced circuit implementations
poses many challenges. For complex digital signal processing
(DSP) circuits, logic simulations may be prohibitively slow when
non-stationary scenarios are considered. A real-time emulation
technique like the Fiber-on-Chip (FoC) approach can significantly
speed up DSP logic verification. However, a potential weakness
with this type of emulation is that it does not use data ob-
tained from experiments, but synthetically creates test data. We
introduce a waveform memory, which can be integrated with
FoC systems and similar emulators, and which allows measured
waveforms to be stored and fed to DSP circuits under test.
We perform real-time FPGA experiments where we evaluate a
carrier-phase recovery (CPR) module that is tested using either
waveform data or synthetic data. Our results for the two different
data sets show that the CPR module behaves similarly, both
qualitatively and quantitatively, which indicates that the synthetic
phase-noise model is a valid replacement of measured data.

Index Terms—DSP, emulation, real-time, FPGA, optical com-
munication

I. INTRODUCTION

Today’s communication systems critically rely on digital
signal processing (DSP) algorithms to compensate for different
channel impairments. As communication systems evolve, more
advanced and complex algorithms are employed to improve
system performance. However, the increasing algorithm com-
plexity has negative consequences for the following DSP
hardware implementation steps. For example, it is challenging
to verify advanced DSP circuit implementations under varying
channel conditions, since logic simulation run-time becomes
prohibitively long.

General-purpose emulator platforms, such as Palladium
from Cadence and Veloce Strato from Siemens, facilitate
hardware debug and reduce logic verification time. Targeting
fiber-optic communication systems, the Fiber-on-Chip (FoC)
emulation approach considers not only the receiver DSP to
be verified, but it additionally emulates both transmitter and
communication channel so that a complete end-to-end commu-
nication system is integrated in an FPGA or ASIC [1, 2, 3].
Here, transmitter and channel impairments are synthetically

Erik Borjeson
Dept. Computer Science and Engineering Dept. Computer Science and Engineering
Chalmers University of Technology
Gothenburg, Sweden
erikbor @chalmers.se

Ali Mirani
Photonics Laboratory
Chalmers University of Technology
Gothenburg, Sweden
mirani @chalmers.se

Per Larsson-Edefors
Dept. Computer Science and Engineering
Chalmers University of Technology
Gothenburg, Sweden
perla@chalmers.se

modeled in digital circuits. Since the emulator circuits are un-
der software control, we can run infinitely long emulations dur-
ing which time-varying channel effects can be programmed,
making the test and verification process reproducible.

While the synthetic models in an FoC system have been
calibrated to experimental data, they do not represent actual
data from experiments. This paper addresses the integration of
experimental waveforms in an FoC system to enable side-by-
side run-time analysis of synthetic and real channel data.

II. RELATED WORK

Concepts similar to the waveform memory of this paper
have been used for verification of other types of systems.
The wireless open-access research platform (WARP) proposed
in [4] is an FPGA-based radio platform for prototyping radio
networks. Capture and playback features allow a designer to
move RF transmission data to a computer for further analysis
or process these data items using custom DSP algorithms on
the FPGA. Zhao et al. introduced a waveform playback system
for radar applications [5], which uses two FPGAs connected
to a disk array server for storage. Waveform data stored in the
server are used by the FPGAs for waveform playback; one
FPGA for wide-band transmissions, another for narrow-band
transmissions. The waveforms reconstructed by the FPGAs can
then be used for real-time DSP tests.

III. BACKGROUND

Optical fiber communication refers to the method of trans-
mitting information by sending modulated pulses of light
through an optical fiber. As with most analog channels, a signal
transmitted through an optical fiber is subjected to noise, in
this case caused by optical and electronic phenomena. The
primary source of noise in fiber-optical systems is amplified
spontaneous emission, which is due to spontaneous emissions
generated by optical amplifiers and which can be modeled as
additive white Gaussian noise (AWGN).

——3 1Q symbols

‘ timers counters ‘

> FoC control signals

transmitter channel

-3 captured signals

phase
noise

delay
demodulator analysis -3
- DUT - :

RNG l:;l modulator l:;l RRC l:7
A

S Bl
x x

x

)I recorder |(

comm.
computer €-------
control
i L
RAM

Fig. 1: Block diagram of an FoC system (adapted from [2]).

Since coherent optical communication schemes gained trac-
tion around 2005 [6], many transmission impairments have
been electronically compensated at the receiver by DSP cir-
cuits [7] and even as early as 2008 a real-time prototype of a
coherent receiver was published [8]. To test these DSP circuits
during development, one (very complex) option is to set up
optical-electronic experiments that continuously provide the
DSP electronics with data. Another option is to use logic
simulations where the DSP-under-test (DUT) is fed with one
batch of input test vectors captured in an oscilloscope. A
different concept is to emulate the whole system; not only the
DUT but also the transmitter and channel. This is the approach
taken in the Fiber-on-Chip (FoC) concept [1, 2, 3], where
synthetic digital models of channel impairments are used to
generate a continuous stream of data to the DUT.

Fig. 1 shows an FoC system with data generation, mod-
ulation and pulse shaping (RRC) in the transmitter as well
as channel impairments, such as AWGN, polarization-mode
dispersion (PMD) and phase noise. Consider now, for instance,
that we want to investigate how a carrier phase recovery
(CPR) algorithm performs in the presence of the phase noise
introduced by phase fluctuations in the carrier and local
oscillators. Using the FoC system in Fig. 1, we can then
implement the CPR algorithm in VHDL inside the DUT
module, activate phase noise emulation (but bypass PMD
emulation), and perform a real-time test on an FPGA.

IV. DESIGN AND IMPLEMENTATION

This section will describe how we design, implement and
integrate a waveform memory in an FoC system. The im-
plementation presented in this paper is partially based on

the Chalmers Optical Fiber Channel Emulator (CHOICE), a
VHDL implementation of the FoC approach [9].

Fig. 2 shows an example of how the waveform memory
can be integrated in an FoC system using the CHOICE
environment. The waveform memory is implemented as a
new experimental mode of operation, which is based on
measurement data and which is implemented in parallel to
FoC’s synthetic mode of random input data generation and
synthetic impairment models. Since we need synchronization
interfaces to both the double data rate (DDR) memory and
the DSP under test, two different clock regions are required;
a memory clock region and a playback clock region. For the
latter, we use a configurable clock that is set to the working
clock rate of the DSP module, as long as this rate is lower
than that of the memory clock region.

In Fig. 2, grayed out entities show the synthetic channel
path. A multiplexer-like entity is used to switch between the
synthetic and experimental modes of operations. The function-
ality of the latter mode is encapsulated in the two top-level
modules described in the following sections, Sections IV-A
and IV-B:

A. Control Module

The control module is located in the memory clock region
and handles the interfacing to external components and com-
munication with the testbench.

1) DDR Controller: The generic DDR controller performs
read and write operations to an external DDR module. In
order to improve portability and reduce the complexity of
the implementation, the controller relies on an external Xilinx
IP block, the memory interface generator (MIG), to interface
with the DDR module. The MIG generates a pre-engineered

=3 1Q symbols Memory Clock Region Playback Clock Region
— i
------>» control signals
» capturedsignals | | se-eeeooeo ———{ results I‘" ,,,
----- ; R |
computer €---------- -i----» UART |€--; : RAM E \ H
P dela |
| H H B 8 = i demodulator analysis -
P : g3 DS |—
: : : g5
' 5 ' - :l playback i >|I waveform | - i
: i SR 1 NG
! manager
i DDR |, ... DSP :
e :
DDR memory Control Testbench
FPGA

Fig. 2: Block diagram of the waveform memory implemented into an FoC system.

waveform cache

reference

bit > bit bit

bit DSP

playback
control

sampl

sample ‘sample ‘sample ‘ sample <----
Signal DDR word memory
Data DDR word | manager
DDR word °
T T T T T Tooe Toe Tor T e A
blt‘blt‘blt‘blt‘blt‘bll‘blt‘blt‘blt‘bll (---E d
Reference DDR word g DDR word
Data DDR word i v
DDR word [DDR
controller

DDR Memory,

FPGA

bit T ampl
BRAM FIFO |
sample

sample

sample
BRAM FIFO

Fig. 3: Block diagram for the memory resources in the waveform memory.

controller and a physical layer (PHY) to interface Xilinx
7-series FPGA user designs with external DDR3 SDRAM
devices [10].

2) Memory Manager: This submodule handles all memory
operations requested by the other components in the waveform
interface, interacting directly with the DDR controller. It keeps
track of the different sections of the DDR memory used to
store sample (symbol) and result data; essentially turning the
DDR memory into a series of circular buffers.

3) Playback Controller: The playback controller slices
each 512-bit word stored in the DDR memory into the corre-
sponding number of samples (symbols) of experimental data
and loads them into the cache memory used in the testbench
entity. It essentially acts as a bridge between the memory
manager and the testbench waveform cache, controlling the
flow of the DSP tests.

4) Communications Controller: The communications con-
troller allows a designer to control the waveform memory
through an UART interface and enables loading of experi-
mental data and retrieval of recorded DSP outputs. It is also
used to start and stop the current real-time experiment.

B. Testbench Module

The testbench module is located in the playback clock
region and houses the DSP under test along with other support
modules used during playback.

1) Waveform Cache: This cache memory is used to store
the section of experimental data currently being processed by
the DSP under test, as two BRAM FIFO buffers sharing read
and write enable signals. One buffer stores signal samples
and one reference symbol, with one sample/symbol per word.
Since this entity interacts with the memory clock region, the
write and read interfaces of the FIFO buffer run on different
clocks; see Section IV-C for more details on how memory
resources are interconnected within the waveform memory.

2) DSP Recorder: The recorder captures a rolling window
of the output of the DSP and stores it into the external DDR
memory via the memory manager.

3) Analysis: The analysis submodule is made up of a
series of test circuits that allow continuous and autonomous
evaluation of a DSP implementation, regarding bit errors, etc.

C. Memory Resources

When implementing high-throughput memory-intensive
systems, DDR SDRAM is often used as a low-bandwidth

Control Process
testbench controller

Recorder Process
DSP recorder

Memory Process
testbench controller

load cache

data cache
available full

m

manager
No \ready

store in request
DDR new Data

run test

Fig. 4: Flow diagram of the DSP tests.

bulk data storage, while block RAM (BRAM) on the FPGA is
used as higher-bandwidth cache memories throughout the sys-
tem [11]. In the waveform memory shown in Fig. 3, an external
DDR memory module is used as long-term storage for experi-
mental and reference data, with multiple samples/symbols and
reference bits stored per row. Small BRAM FIFOs are used
to store single samples/symbols with their corresponding bits
in each row, acting as a cache memory for the data currently
being processed by the DSP under test.

D. Testing DSP Implementations with the Waveform Memory

In order to test a DSP implementation using the waveform
memory in an FoC system, the designer sets the operating
mode to memory using the UART interface, loads the DDR
memory with experimental data and resets the current test run.

After an appropriate amount of time has passed, the designer
can download a window of the DSP output and access the
performance metrics generated by the analysis module through
the same UART interface.

Fig. 4 shows a flow diagram that illustrates the functionality
and the interaction of the different modules used in the
implementation. Three main parallel processes are used:

o The control process loads the current section of ex-
perimental data into the cache memory and performs

the DSP tests. Since the cache memory cannot provide
samples/symbols to the DSP while it is being loaded with
new data, the target DSP is stalled by driving its clock
enable signals low.

o The memory process requests new data to the memory
manager when needed by the control process.

o The recorder process stores results from the DSP test into
DDR memory.

E. Design Decisions and Trade-offs

1) Using DDR memory for bulk storage: Even though its
low bandwidth results in the use of supporting cache memories
for the system to maintain a high throughput, the DDR’s high
storage capacity allows for storing the large amounts of data
required by this implementation.

2) Using memory interface generator (MIG): Even though
relying on an external IP block (MIG) requires the use of
Xilinx boards for implementation, the increased complexity
of implementing a native DDR controller could result in a
longer implementation process and reduce the robustness of
the final solution

3) Using a UART interface for communications: UART
was chosen mainly due to its wide availability in FPGA
boards, however, its low speed represents a bottleneck in the
testing process. Future versions of the waveform memory
would benefit from a faster communication interface like
Peripheral Component Interconnect (PCI) or Ethernet.

V. USE CASE: BPS VERIFICATION

In this section we present the result of real-time verifications
of a blind-phase search (BPS) carrier-phase recovery (CPR)
algorithm [12], using both a synthetic channel and the de-
veloped waveform memory. For these experiments, an FoC
system including the waveform memory was synthesized and
uploaded to a Xilinx KC705 evaluation board, which features
a Kintex-7 FPGA and a 1-GB DDR3 memory [13]. For a
16-QAM single-polarization system, using 8 bits to represent
each I/Q symbol component, 1 GB of memory corresponds to
4 -10% samples.

A. DSP Under Test

We use a BPS circuit implementation which is described
in [14]. In the BPS algorithm, each input symbol is rotated
with a number of test phases. The current phase is estimated as
the test phase, which results in the minimum average distance
between the rotated input symbols and the closest constellation
point. Finally, the transmitted symbol is recovered by using the
complex conjugate of the recovered phase to rotate the input
symbol. Since the number of test phases has a large impact on
the BPS circuit’s total resource usage, the parabolic interpo-
lation method described in [15] is used. Our implementation
uses an 8-bit representation for each symbol component, an
averaging window of 64 symbols and two different settings
for the number of test phases: 4 and 8, where the former
has previously been shown to result in an inadequate phase
compensation [14].

Pilot sequence Payload Pilot symbols
[5) [5) 0 00 %) 5]
0 00
0 00
e o eo0o0o0 e o
D — «—>
1024 symbols 32 symbols

< »

32768 symbols

Fig. 5: Waveform frame obtained from the optical testbed.

B. Experimental Data and Synthetic Channel

To provide the implemented waveform memory with data
for testing and validation, we use fiber transmission data
captured from a 10-GBd back-to-back link in an optical testbed
with an optical SNR (OSNR) of 33 dB and a laser source
with a wavelength of 1550.12 nm and a linewidth <100 kHz.
These recorded transmissions consist of a series of frames
made up of 4-QAM pilots and a 16-QAM payload. As shown
in Fig. 5, each frame consists of 2'° symbols, starting with
a 1024-symbol 4-QAM pilot sequence, followed by the 16-
QAM payload, with a 4-QAM phase pilot introduced every
32 symbols.

Since the captured data contain impairments that are typi-
cally compensated for by DSP modules in front of the CPR,
all impairments aside from phase noise were compensated
for in software using the pilot symbols and the QAMPy
Python DSP chain [16]. After removing the pilot symbols, the
symbol stream was looped front-to-back to create a continuous
waveform with a continuous phase change, as shown in Fig. 6,
before being transferred to the FPGA.

T
----- generated waveform
—— data in memory

AR

=

Phase

{ i i
/ V| \

=g

13

,:*r’-‘\i‘, ‘\Iv!s'\\ e Y4 "-\g‘;_‘

T T T T
75000 100000 125000 150000

Samples

T T T
0 25000 50000

Fig. 6: Phase noise of the data transmitted to the DSP.

The synthetic channel path of the FoC system contains
a transmitter with random data generation, and a channel
emulator with AWGN [17] and a phase noise generator [1].
These generators were set to mirror the properties of the
experimental data from the optical testbed, using the same
amount of AWGN and a linewidth symbol-duration product
of 100 kHz/10 GBd = 107°.

(c) ()]

g
S0 0%

L X33
sebé
| oes

b db b
tedbedb k...

(e) ()

Fig. 7: Constellation plots for the experimental data (orange, left) and
the synthetic channel model (cyan, right). (a) and (b) show the input
symbols, (c) and (d) the BPS output with four test phases, and (e)
and (f) the BPS output using eight test phases. The 16-QAM decision
regions are marked with red lines.

C. Test and Analysis

Constellation diagrams of 55,552 BPS input symbols, cor-
responding to one forward and one backward run of the
experimental data shown in Fig. 6, are shown in Fig. 7a and 7b
for the experimental and synthetic data, respectively. Since the
synthetic channel path is based on pseudo-random generators,
the two different data sets are not identical but they exhibit
similar properties.

A total of 55,552 symbols were captured by the recorder
module at the output of the CPR module (Fig. 2), stored
in the waveform memory and subsequently downloaded from
the FPGA to allow for plotting of constellations. The output
constellations for a BPS using four test phases are shown
in Fig. 7c and 7d, for the experimental and synthetic data,
respectively. The former results in a bit-error rate (BER) of
0.99-10~%, while the latter results in 1.3-10~%. As expected,
four test phases yield a relatively high BER; indeed the BPS
requires more test phases to perform adequately for 16-QAM,
as predicted in previous work [14].

Increasing the number of test phases to eight and resynthe-
sizing the DSP circuit on the FPGA results in the constellations
shown in Fig. 7e and 7f. Here, the BPS is able to recover the

received samples back to the original 16-QAM constellation;
the BER is less than 1.8 - 1072, Most of the points recovered
appear centered within the decision regions of the demodula-
tor, shown by red lines in the diagram.

A higher BER is expected for the synthetic data, as the
linewidth setting used when generating the synthetic phase
noise represents a worst-case scenario for the lasers used in
the optical testbed. However, the results from the experimental
data and the synthetic channel model are in good agreement,
showing that the synthetic model can replace measurement
data to enable real-time DSP tests.

VI. CONCLUSION

In this paper, we introduced a waveform memory design
that offers a novel way of testing DSP implementations for
communication systems. Our approach allows data captured
from communication transmission experiments to be trans-
ferred to an FPGA system to drive real-time DSP circuit
evaluations. When using the waveform memory to test DSP
implementations we found the results to be qualitatively and
quantitatively in agreement with tests conducted with synthetic
data based on pseudo-random data generation and synthetic,
digital channel models. Having access to both an experimental
data mode and a synthetic channel mode on a real-time
DSP evaluation platform offers many new test capabilities; it
becomes possible to 1) perform very deep BER evaluations, 2)
use reproducible test scenarios, and 3) stress test DSP modules
for worst-case system parameter variations that are difficult to
capture in experimental data.

The limited memory of the oscilloscopes typically used to
capture the experimental data puts an upper bound on the
number of symbols that can be stored. A synthetic channel
does not have this limitation, allowing for longer simulations,
where system parameters can be easily updated at run-time,
enabling analysis of deep-BER properties of the DSP cir-
cuits. The maximum length of experimental data, which the
waveform memory is able to store, depends on the type of
transmission and the target hardware of the implementation.
For the configuration presented in this paper, the waveform
memory is able to store up to 4-10% samples with a throughput
of 0.8 Gbit/s which corresponds to 0.004s in a 10-GBd
transmission, enough to calculate the BER of complex DSP
implementations.

Even though the waveform memory was presented as a
way to test DSP for optical communication systems, there
is nothing inherent to optical fiber communications in the
waveform memory. The concepts introduced in this paper
can be used to implement a generic waveform playback
device able to test DSP implementations for multiple types
of communication systems.

REFERENCES

[1]1 E. Borjeson, C. Fougstedt, and P. Larsson-Edefors, “Towards FPGA
emulation of fiber-optic channels for deep-BER evaluation of DSP im-
plementations,” Advanced Photonics Congress, SPPCom, p. SpTh1E.4,
2019.

[4]

[6]

[7]
[8]

[9]

P. Larsson-Edefors and E. Borjeson, “Fiber-on-Chip: Digital FPGA
emulation of channel impairments for real-time evaluation of DSP,” in
Opt. Fiber Commun. Conf. (OFC), 2022, p. W3H.3.

E. Borjeson and P. Larsson-Edefors, “Fiber-on-Chip: Digital emu-
lation of channel impairments for real-time DSP evaluation,” [EEE
J. of Lightwave Technology, early access, Aug. 19, 2022, doi:
10.1109/JLT.2022.3200248.

J. L. Hershberger, E. A. Thompson, and T. S. Loos, “A real-time WARP-
based data capture and playback test bed for DSP applications,” in [EEE
Digital Signal Processing and Signal Processing Education Meeting
(DSP/SPE), 2013, pp. 48-53.

Y. Zhao, Y. Su, R. Huang, P. Hu, and Z. Chen, “Design and imple-
mentation of a radar waveform playback system for real-time digital
signal processing test,” in Sixth Asia-Pacific Conf. on Antennas and
Propagation (APCAP), 2017, pp. 1-3.

S. Tsukamoto, D.-S. Ly-Gagnon, K. Katoh, and K. Kikuchi, “Coherent
demodulation of 40-Gbit/s polarization-multiplexed QPSK signals with
16-GHz spacing after 200-km transmission,” in Opt. Fiber Commun.
Conf. (OFC), 2005, p. PDP29.

J. Zhao, Y. Liu, and T. Xu, “Advanced DSP for coherent optical fiber
communication,” Applied Sciences, vol. 9, no. 19, 2019.

H. Sun, K.-T. Wu, and K. Roberts, “Real-time measurements of a 40
Gb/s coherent system,” Opt. Express, vol. 16, no. 2, pp. 873-879, Jan.
2008.

E. Borjeson
Optical Fiber

Chalmers
Available:

and P. Larsson-Edefors, “CHOICE -
Channel Emulator,” 2022. [Online].

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

https://www.cse.chalmers.se/research/group/vlsi/choice/

7 Series FPGAs Memory Interface Solutions, Xilinx. [Online].
Available: https://docs.xilinx.com/v/u/1.7-English/ug586_7Series_MIS
M. Milford and J. McAllister, “Valved dataflow for FPGA memory
hierarchy synthesis,” in IEEE Int. Conf. on Acoustics, Speech and Signal
Processing (ICASSP), 2012, pp. 1645-1648.

T. Pfau, S. Hoffmann, and R. Noe, “Hardware-efficient coherent digital
receiver concept with feedforward carrier recovery for M-QAM constel-
lations,” IEEE J. of Lightwave Technology, vol. 27, no. 8, pp. 989-999,

April 2009.
KC705 Evaluation Board for the Kintex-7 FPGA,
Xilinx. [Online]. Available: https://docs.xilinx.com/v/u/en-

US/ug883_K7_KC705_Eval_Kit

E. Borjeson, C. Fougstedt, and P. Larsson-Edefors, “VLSI implemen-
tations of carrier phase recovery algorithms for M-QAM fiber-optic
systems,” IEEE J. of Lightwave Technology, vol. 38, no. 14, pp. 3616—
3623, 2020.

H. Sun, K. Wu, S. Thomson, and Y. Wu, “Novel 16QAM carrier recovery
based on blind phase search,” in Eur. Conf. Opt. Commun. (ECOC),
2014, p. Tu.1.3.4.

J. Schroder, M. Mazur, and M. Brehler, “QAMPy a DSP
chain for optical communications,” 2019. [Online]. Available:
https://zenodo.org/record/2638956

G. Liu, “Opencores: Gaussian noise generator,” 2015. [Online].

Available: https://opencores.org/projects/gng

