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Abstract

We introduce a rigorous approach to the many-body spectral theory of extended
anyons, that is quantum particles confined to two dimensions that interact via
attached magnetic fluxes of finite extent. Our main results are many-body mag-
netic Hardy inequalities and local exclusion principles for these particles, leading
to estimates for the ground-state energy of the anyon gas over the full range of the
parameters. This brings out further non-trivial aspects in the dependence on the any-
onic statistics parameter, and also gives improvements in the ideal (non-extended)
case.
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1. Introduction

In many-body quantum mechanics, the notion of particle indistinguishability
and statistics plays a fundamental role. Namely, particles of the same kind are typi-
cally logically identical and fall into two classes: bosons or fermions, giving rise to
such diverse phenomena as Bose–Einstein condensation and coherent propagation
of light in the former case, and the Fermi sea with its implications for conduction
bands, atomic structure, etc., in the latter. However, while these are the only two
options for fundamental particles that propagate in three-dimensional space, for
quantum systems confined to lower dimensions there is a possibility for effective
particles (quasiparticles) escaping the usual boson/fermion dichotomy. We shall
here consider the two-dimensional case where the quantum state of a system of N
particles at positions x j ∈ R

2 may be described by a square-integrable, normalized,
complex wave function � : R

2N → C, where |�(x)|2 is interpreted as the proba-
bility density of finding the particles at positions x = (x1, . . . , xN ).1 If the particles
are indistinguishable the density needs to be symmetric under permutations of the
particle labels:

|�(x1, . . . , x j , . . . , xk, . . . , xN )|2 = |�(x1, . . . , xk, . . . , x j , . . . , xN )|2, j �= k.
(1.1)

However, the exact phase of � is not an observable quantity and therefore (1.1)
leaves room for an exchange phase:

�(x1, . . . , x j , . . . , xk, . . . , xN ) = eiαπ�(x1, . . . , xk, . . . , x j , . . . , xN ), j �= k,
(1.2)

where α ∈ R (2Z-periodic) is called the statistics parameter. If α = 0 the particles
are called bosons (symmetric �), and if α = 1 they are fermions (antisymmetric
�). Because of the antisymmetry, fermions obey Pauli’s exclusion principle [61]
leading to Fermi–Dirac statistics, while bosons do not, leading to Bose–Einstein
statistics. These are indeed the familiar possibilities found in introductory quantum
mechanics textbooks, however, upon investigating the argument more carefully one
realizes that one needs to be more precise with what is meant with the exchange
j ↔ k in (1.1)–(1.2).Namely, the exchange should in fact be viewed as a continuous
loop in the manifold of positions x of N identical particles, and then topology plays
a crucial role. Thuswe define (1.2) tomean a continuous simple exchange of a single
pair of particles (in two dimensions counterclockwise and with no other particles
enclosed; furthermore the exchange phase can be shown to be independent of which
pair of particles is considered). In three dimensions and higher, the direction of the
exchange does not matter and a double exchange is topologically the same as no
exchange; therefore the group of continuous exchanges reduces to the group of
permutations and one ends up with the usual bosons or fermions. In two spatial
dimensions, on the other hand, the exchange group is the braid group and it then
turns out that any phase eiαπ ∈ U(1) in (1.2) is allowed [23,31,76,77,79] (see

1 Herewe restrict to the simplest case ofC-valuedwave functions corresponding toabelian
anyons, while C

n-valued, possibly non-abelian, anyons are also possible [20,58].
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also [65, p. 386]). The corresponding particles are therefore called anyons [77]. We
refer to [20,28,33,57,58,60,68,78] for extensive reviews on this topic.

The relative change of phase of the wave function � with respect to changes of
the coordinates may be geometrically understood as due to the curvature of a corre-
sponding complex line bundle of which � is a section. This is naturally described
by a magnetic field, and in the case of anyons one may indeed model the above
statistics phase as induced by a magnetic field of Aharonov–Bohm type. Namely,
one could start with � ∈ L2

sym((R2)N ) (or � ∈ L2
asym((R2)N )) being bosonic

(fermionic) and then attach magnetic fluxes to the particles so that their winding
around each other gives rise to the correct phase (1.2). This is commonly called the
magnetic gauge picture for anyons, and it is actually in this form that theymaymost
realistically arise in a real physical system. The most promising such realization
is in the context of the fractional quantum Hall effect (FQHE) [21,22,27,30,69], a
strongly correlated planar electron (or bosonic atom [5,10,55,62,73]) system in a
strong transverse external magnetic field, where particles have the freedom to bind
magnetic flux and thereby become anyons [1,30,48]. However, in this scenario
the flux typically has some extent determined by the experimental conditions, and
one therefore talks about extended anyons [9,47,52,71] as opposed to the purely
theoretical (but conceptually attractive) ideal anyons which are purely pointlike.2

Denoting the size of the flux, say its radius if disk-shaped, by R ≥ 0 we can thus
talk about R-extended anyons, and one may also introduce a dimensionless param-
eter γ̄ := R�̄1/2 to describe the state of the system, where �̄ denotes the average
density of the particles. The parameter γ̄ is the ratio of the magnetic dimension to
the average interparticle distance and has therefore been called the magnetic filling
ratio in [71,72].

Our interest in this paper is to study a free gas of such extended anyons, that is
ignoring any additional interactions as a simplifying first step, and focusing on the
most basic aspect: its ground-state energy. We consider this in the thermodynamic
limit (cf. [6,36]), that is the limit as both the number of particles N and the volume
(area) of the system V tends to infinity while keeping the density �̄ = N/V fixed.
In the ideal non-interacting case, the quantum gas consisting of a large number
of bosons or fermions in a large volume at fixed density has been completely
understood since the early days of quantummechanics and is nowadays often given
as a textbook exercise, as it only amounts to adding up eigenvalues of a one-body
operator. However, the purely anyonic case α ∈ (0, 1) still remains an unsolved
problem after almost four decades, owing to the fact that the statistical many-body
interaction cannot be completely removed in favor of a one-body description as for
bosons and fermions. The simplest case of two anyons can be solved exactly [2,
31,77], that of three and four anyons has been studied numerically [56,66,67],
and beyond that various approximative descriptions have been proposed [7,8,17,
25,64,71,72,74,75,78]. One of these is called average-field theory (cf. mean-field
theory [47,78]) whereby the magnetic flux of the anyons is seen as sufficiently

2 By ideal in this context we mean that the only interaction is statistical and independent
of any energy, momentum or length scale (cf. [28, p. 146]).
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spread out (in other words γ̄ should be sufficiently large) so that the particles are
effectively moving in a (locally) uniform magnetic field, say B(x) ∼ 2πα�(x)
where 2πα is the flux of each anyon and �(x) the local density, and therefore have
a definite magnetic ground-state energy given by that of the lowest Landau level,
hence proportional to |B| ∼ 2π |α|�. In other words the energy per particle in this
approximation is given by

2π |α|�̄ (1.3)

in the case of the homogeneous gas. Another approximation has been to assume
that the gas is so dilute that only two-particle interactions are relevant [2,54].

Except for a small number of results concerning the mathematical formulation
of the many-anyon problem [3,12,13,42], there has not been much progress on
the rigorous mathematical side until recently. In [49] the case of ideal anyons was
considered using a local approach involving a relative magnetic Hardy inequality
and a local exclusionprinciple, leading to afirst set of non-trivial rigorous bounds for
the ground-state energy of the ideal anyon gas. These bounds,whichwill be outlined
below, have an interesting non-trivial dependence on the statistics parameter α in
that they depend, in the many-body limit, solely on the quantity

α∗ := inf
p,q∈Z

∣
∣(2p + 1)α − 2q

∣
∣, (1.4)

which is zero unless α is an odd-numerator fraction α = μ/ν ∈ Q (reduced, with
ν ≥ 1) and in which case α∗ = 1/ν. In [51] a fundamental question concerning
operator domains for ideal anyons was settled and applications of the local energy
bounds to interacting systems were considered. Also, the validity of an average-
field approximation for the case of almost-bosonic (α → 0) R-extended anyons
was proved in [47] (see also [11]).

Here we shall consider the homogeneous R-extended anyon gas in the thermo-
dynamic limit and build on the local approach of [49] to prove a lower bound for the
ground-state energy per particle with statistics parameter α ∈ R\{0} and magnetic
filling ratio γ̄ = R�̄1/2 ≥ 0 of the form

Ce(α, γ̄ )�̄,

where C > 0 is a universal constant and (see Fig. 1 below for intermediate values)

e(α, γ ) ∼
{ 2π

|ln γ | + π( j ′α∗)
2 ≥ 2πα∗, γ → 0,

2π |α|, γ � 1.

Here j ′ν denotes the first positive zero of the derivative of the Bessel function
Jν (and j ′0 := 0). This bound effectively interpolates between a dilute regime
involving (1.4) and a high-density regime with a dependence on α matching that of
average-field theory (1.3). Also in the case of even-numerator α, where α∗ = 0, the
bound is strictly positive but vanishes in the dilute limit in a way similar to that of a
dilute Bose gas in two dimensions [41,63]. This may however not be so surprising
in the case that α ∈ 2Z (composite bosons; cf. [27]), considering the periodicity in
the statistics parameter for ideal anyons.
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1.1. The Extended Anyons Model

In order to state our results precisely we need to introduce some notation that
will be used throughout the paper.

We take as our concrete model for R-extended anyons a set of N identical
bosons, to each of which has been attached a magnetic field in the shape of a
disk with radius R and total flux 2πα, and which is felt by all the other particles
(cf. [9,47,48,52,71]). Such flux centered at the origin can be given explicitly by
the magnetic vector potential αA0 with

A0(x) := (x − ·)⊥
|x − · |2 ∗ 1BR(0)

πR2 = x⊥

|x|2R
, curlA0(x) = 2π

1BR(0)

πR2 (x).

Here (x, y)⊥ := (−y, x), that is a π/2 counterclockwise rotation, BR(x) denotes
the open ball/disk of radius R centered at x ∈ R

2, and

|x|R := max{|x|, R},
which can be interpreted as a regularized distance. Starting from a conventional
magnetic Hamiltonian formulation, the (non-relativistic) free kinetic energy oper-
ator is then

T̂α :=
N
∑

j=1

D2
j , (1.5)

where we have normalized physical units so that �2/(2m) = 1 and themagnetically
coupled momentum operator for each particle j is given by

Dj := −i∇x j + αA j (x j ),

where

A j (x) := (x − ·)⊥
|x − · |2 ∗

∑

k �= j

1BR(xk )

πR2 =
∑

k �= j

(x − xk)⊥

|x − xk |2R
,

corresponding to the total magnetic field felt by the particle x j

curl αA j = 2πα
∑

k �= j

1BR(xk)

πR2
R→0−→ 2πα

∑

k �= j

δxk . (1.6)

We note that this form for the magnetic interaction is not only convenient but also
realistic from the perspective of the FQHE [48]. Also note that we allow for any
α ∈ R here.

The operator (1.5) acts on the bosonic Hilbert space L2
sym(R2N ) as an

unbounded operator. Let us denote by DN
α,R the natural (minimal as well as maxi-

mal [51, Theorem 5]) domain of the magnetic gradient

D : L2
sym(R2N ;C) → L2(R2N ;C

N )

� �→ D� = (−i∇ + αA)� = ((−i∇ j + αA j )�
)N
j=1,
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then this is also the natural form domain of (1.5), and T̂α := D∗D. In the case
R > 0 (as well as for α = 0) we have DN

α,R = H1
sym(R2N ), since A is then a

bounded perturbation of −i∇. On the other hand, if R = 0 then A is singular and
these spaces are typically different (see [51, Section 2.2]). For R = 0 and α ∈ 2Z

(respectivelyα ∈ 2Z+1), however,DN
α,0 is gauge-equivalent toD

N
0,0 = H1

sym(R2N )

(respectively DN
1,0 = U−1H1

asym(R2N )):

D(α+2n) = U−2nD(α)U
2n, DN

α+2n,0 = U−2nDN
α,0, n ∈ Z, (1.7)

where U is the isometry (singular gauge transformation)

U : L2
sym/asym → L2

asym/sym, (U�)(x) :=
∏

1≤ j<k≤N

z j − zk
|z j − zk |�(x),

with z j the complex coordinate representatives of x j given by identifying R
2 with

C. In other words, for ideal anyons the spectrum of the operator T̂α is 2-periodic in
α, however we will find that this is not the case for extended anyons.

We define the one-body density associated with any normalized state � ∈
L2(R2N ) by

��(x) :=
N
∑

j=1

∫

R2(N−1)
|�(x1, . . . , x j−1, x, x j+1, . . . , xN )|2

∏

k �= j

dxk,

with
∫

	
�� the expected number of particles to be found on 	 ⊆ R

2, while �̄ :=
N/|Q0| denotes the average density if confined to a domain (typically a square)
Q0 ⊆ R

2, that is for states � with supp� ⊆ QN
0 . Furthermore, with

�� := {x ∈ (R2)N : ∃ j �= k s.t. x j = xk
}

,

the fat diagonal of the configuration space (R2)N , we note that we may use the
density of C∞

c (R2N\��) ∩ L2
sym(R2N ) in the domain DN

α,R (again, see [51, Theo-
rem 5]).

1.2. Main Bounds

We are now ready to state our main results for R-extended anyons. For the
reader’s convenience we outline and compare to the previously studied ideal case,
which is also improved in several aspects in this work.

Our study of the homogeneous anyon gas relies on two key insights which were
brought together in [49] for ideal anyons. On the one hand, we follow an idea origi-
nally used byDyson andLenard in their proof of the stability ofmatter for fermionic
Coulomb systems [16] (see also [15,32]). They realized that the Pauli exclusion
principle is strong enough (for many purposes, including the stability of matter)
acting only between pairs or small numbers of particles. It is in fact sufficient that
the local kinetic energy is strictly positive for two particles and that it grows at least
linearly with the number of particles, in contrast to the true ground-state energy
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for fermions which grows with N according to the Weyl asymptotics for the sum
of Laplacian eigenvalues, that is as N 1+2/d in dimension d. We refer to such a
bound as a local exclusion principle, and the method has recently been generalized
to interacting bosonic gases with the Pauli principle replaced by repulsive interac-
tions [45,46,49–51], and to point-interacting fermionic gases [19]. Essentially the
idea is based on splitting the full domain to which the gas is confined into subdo-
mains whose size is chosen so that the expected number of particles in each domain
is not too large or, for that matter, too small. By estimating the local contribution
to the energy from each subdomain one can obtain bounds for the total energy of
the gas which are of the correct order.

The second key idea that we will use is based on the observation that a pair
of fermions, due to their relative antisymmetry, experience an effective repul-
sion. This may be concretized in the following many-particle Hardy inequality
for fermions [24, Theorem 2.8]:

N
∑

j=1

∫

RdN
|∇ j�|2 dx ≥ d2

N

∑

1≤ j<k≤N

∫

RdN

|�(x)|2
|x j − xk |2 dx, (1.8)

valid for any N -body state� ∈ H1
asym(RdN ) in any dimension d ≥ 1. Antisymme-

try is in fact crucial here, as the inequality is not valid for bosons (the corresponding
optimal Hardy constant vanishes in two dimensions). A local version of (1.8), given
below, was obtained in [49] for ideal anyons, that is with d = 2 and with the right-
hand side remaining linear in N , thus providing a local exclusion principle for
anyons. It was shown that this inequality may be combined with the Dyson–Lenard
approach to yield global bounds for the energy of the gas depending on the statistics
parameter.

We start with an observation which is only helpful in the sufficiently extended
case. Namely, for ideal anyons the singular magnetic potential A effectively
excludes the diagonals�� from the configuration space, much like a strong repulsive
point interaction. For R-extended anyons we have instead the following effective
repulsive short-range interaction of soft-disk type:

Lemma 1.1. (Short-range magnetic interaction) For any α ∈ R, R > 0, N ≥ 1,
and � ∈ DN

α,R = H1
sym(R2N ) we have that

N
∑

j=1

∫

R2N
|Dj�|2 dx ≥ 2π |α|

∑

j �=k

∫

R2N

1BR(0)

πR2 (x j − xk) |�|2 dx. (1.9)

Note that this repulsion is not at all as powerful as (1.8) upon taking the limit R → 0
(or equivalently �̄ → 0), because functions in H1(R2N ) may be approximated by
smooth functions supported away from diagonals as R → 0 [51, Lemma 3], such
that the right-hand side of (1.9) vanishes identically. However the inequality will
be useful in the case that R ∼ �̄−1/2, that is γ̄ ∼ 1.

Now, defining (denoted Cα,N in [49])

αN := min
p∈{0,1,...,N−2}min

q∈Z |(2p + 1)α − 2q|, α∗ := inf
N≥2αN = lim

N→∞αN ,

(1.10)
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wemay state the following local many-particle magnetic Hardy inequality for ideal
anyons which was given in [49, Theorem 4]:

Theorem 1.2. Let α ∈ R, R = 0, N ≥ 1 and 	 ⊆ R
2 be open and convex. Then,

for any � ∈ DN
α,0,

N
∑

j=1

∫

	N
|Dj�|2 dx ≥ α2

N

N

∑

j<k

∫

	N

|�|2
r2jk

1	◦	(x j , xk) dx,

with the reduced support 1	◦	(x j , xk) := 1Bδ(X jk )(0)(r jk), and

r jk := (x j − xk)/2, X jk := (x j + xk)/2, r jk := |r jk |, δ(x) := dist(x, ∂	)

pairwise coordinates and distances.

For fermions,withα = 1 andαN = α∗ = 1, considered on the full two-dimensional
plane 	 = R

2, this is exactly the inequality (1.8). For anyons the dependence on
the statistics parameter α comes in via the expressions (1.10) as will be explained
below.

Our firstmain result is the following improvement and extension of Theorem1.2
to R-extended anyons, thereby providing us with a concrete (and indeed useful)
measure of the long-range effect of the statistical magnetic interaction:

Theorem 1.3. (Long-range magnetic interaction) Let α ∈ R, R ≥ 0, N ≥ n ≥ 1
and 	 ⊆ R

2 be open and convex. Then, for any � ∈ DN
α,R and κ ∈ [0, 1),

n
∑

j=1

∫

	n
|Dj�|2 dx

≥ 1

n

∫

	n

∣
∣
∣
∣

n
∑

j=1

Dj�

∣
∣
∣
∣

2

dx

+ 1

n

∑

j<k

∫

	n

(

(1− κ)
∣
∣∂r jk |�|∣∣2 + c(κ)2

α2
N

r2jk
1A(x j , xk) |�|2

)

dx

≥ 4π(1− κ)
1

n

∑

j<k

∫

	n
g

(
c(κ)αN√
1− κ

,
3R/δ(X jk)

1− 3R/δ(X jk)

)2 1A(x j , xk)
4πδ(X jk)2

|�|2 dx,

where D j may depend on the positions of all N particles x ∈ R
2N , the support

1A(x j , xk) := 1Bδ(X jk )−3R(0)\B3R(0)(r jk)

describes a maximal annulus contained in 	 (with some R-dependent margins)
in terms of the relative coordinate, and g(ν, γ ) for ν ∈ R+ and 0 ≤ γ < 1
is the square root of the smallest positive solution λ associated with the Bessel
equation−u′′−u′/r+ν2u/r2 = λu on the interval [γ, 1]with Neumann boundary
conditions, while g(ν, γ ) := ν for γ ≥ 1.
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In the ideal case R = 0 the inequality is valid with c(κ) ≡ 1 (hence take κ = 0),
while for any R ≥ 0 it holds at least for c(κ) = 4.7 · 10−4κ/(1+ 2κ).

Moreover, the function g has the following properties:

ν ≤ g(ν, γ ) ≤ j ′ν, g(ν, γ ) ∼
{

j ′ν ≥
√
2ν, γ → 0,

ν, γ → 1,

where j ′ν denotes the first positive zero of the derivative of the Bessel function Jν
(and j ′0 := 0).

Theorem 1.3 will be applied to study the energy of the homogeneous anyon gas
according to the local strategy outlined above. In such a setting 	 is typically not
the domain to which our gas is confined, but rather a subdomain thereof, and n is
the number of particles present in 	 while N is the total number of particles in the
gas. This more complicated division of particles is needed in the statement of the
theorem because the magnetic derivatives depend on all particles, not just those in
	, which is even more relevant in the extended case.

We note that the above inequality may in some sense be viewed as a refinement
(with respect to the angular dependence in pairwise relative coordinates) of the
usual (pointwise) diamagnetic inequality:

Lemma 1.4. (Diamagnetic inequality) For any α ∈ R, R ≥ 0, N ≥ 1 and � ∈
DN

α,R we have that

N
∑

j=1

∫

R2N
|Dj�|2 dx ≥

N
∑

j=1

∫

R2N

∣
∣∇ j |�|∣∣2 dx.

For R > 0, the vector potential satisfies A ∈ L∞(R2N ) ⊆ L2
loc(R

2N ) and
hence it is covered by standard theorems; see for example [34, Theorem 7.21]. For
R = 0 it is not, but the above diamagnetic inequality still holds in this case, as was
proved in [51, Lemma 4] (and actually our understanding of the form domainDN

α,0
alluded to above depends on this general formulation of the inequality).

Note that |�| ∈ L2
sym(R2N ). Therefore the diamagnetic inequality of

Lemma 1.4 says that the kinetic energy for anyons is always higher than that for
bosons, while the short-range inequality of Lemma 1.1 tells us that the anyons also
feel an effective repulsion proportional to |α|whenever they overlap. Taking a com-
bination of these two bounds would then correspond to a two-dimensional soft-disk
repulsive Bose gas, whose energy in the dilute limit tends to zero logarithmically
with the density (here the magnetic filling ratio γ̄ := R�̄1/2 → 0) [41]. On the
other hand, Theorem 1.3 provides a local bound for the energy in the form of a long-
range inverse-square repulsion similar to (1.8), and whose strength depends on the
fractionality of α via αN → α∗. While this ‘statistical repulsion’ does not change
the above repulsive picture much in the regime of high densities (γ̄ � 1) where
the anyons already feel each other’s magnetic fields by (partially) overlapping, it
makes a significant difference in the dilute limit, actually resulting in a uniform
bound for the energy from below in terms of ( j ′α∗)

2 ≥ 2α∗.
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γ̄

α∗ = 0

α∗ = 1/3

α∗ = 1

γ̄

α = 1/3

α = 2/3

α = 1

α = 2
α = 3

Fig. 1. The universal lower bound for e(α, γ̄ ) plotted as a function of γ̄ for some fixed values
of α, in the hypothetical case C = 1, c = 1/

√
3 for illustrative purposes. The figure to the

right shows the general behavior over the full range of γ̄ , while that on the left shows the
behavior in the dilute limit plotted in logarithmic scale where the long-range dependence on
α∗ becomes relevant

As discussed in [49], and further in [43], the reason for the dependence on
αN ≥ α∗ and not directly α in the bounds of Theorems 1.2 and 1.3 is the local
gauge invarianceof the pairwise relativemagnetic potential.Namely, in an exchange
of a pair of particles additional flux may also be enclosed. Apart from the flux
corresponding to the simple exchange (1.2), enclosing p other particles in such an
exchange loop contributes an additional 2pmultiples of the exchange flux, yielding
the factor 2p + 1 in (1.10). At the same time, any even multiple of a unit flux may
be compensated for (gauged away) by an opposite and equally large orbital angular
momentum of that same particle pair, thus explaining the subtraction of an arbitrary
even integer 2q in (1.10). However, for odd-numerator rational α there can never be
a complete cancellation of this type, and therefore there is always some long-range
pair repulsion, α∗ > 0 [49, Proposition 5].

All these effects are summarized in the following theorem concerning the R-
extended anyon gas, which is our second main result (see Fig. 1 for an illustration):

Theorem 1.5. (Universal bounds for the homogeneous anyon gas) Let e(α, γ̄ ),
where γ̄ = R�̄1/2, denote the ground-state energy per particle and unit density
of the extended anyon gas in the thermodynamic limit at fixed α ∈ R, R ≥ 0 and
density �̄ > 0 where Dirichlet boundary conditions have been imposed, that is

e(α, γ̄ ) := lim inf
N , |Q0|→∞
N/|Q0|=�̄

(
1

�̄N
inf

�∈DN
α,R∩C∞

c (QN
0 )

‖�‖2=1

〈�, T̂α�〉
)

.

Then

e(α, γ̄ ) ≥ C

(

2π
|α|min

{

2(1− γ̄ 2/4)−1, Kα

}

Kα + 2|α| ln(2/γ̄ )
1γ̄ <2 + 2π |α|1γ̄≥2

+πg(cα∗, 12γ̄ /
√
2)2(1− 12γ̄ /

√
2)3+
)

,
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for some universal constants C, c > 0, Kα ≥ 2 (is defined in Lemma 5.1), and g
as in Theorem 1.3. Furthermore, for any α ∈ R we have for the ideal anyon gas
that

e(α, 0) ≥ 1

2
2πα∗

(

1− O
(

α
1/3∗
))

. (1.11)

As mentioned, our approach to obtain the above theorem is to first formulate
the effects of the short- and long-range interactions in the form of local exclusion
principles, an approach that goes back to Dyson and Lenard’s original proof of the
stability of matter for fermionic Coulomb systems [16]. This method was further
developed in [45,46,49,51], not only to treat homogeneous gases but also to prove
Lieb–Thirring inequalities (that is uniform kinetic energy bounds in accord with the
Thomas–Fermi approximation for the inhomogeneous Fermi gas; cf. [35,37,38])
with the usual Pauli exclusion principle for fermions replaced by more general
repulsive interactions for bosons. The reason for the factor 1/2 in (1.11) compared
to the expected value 2πα∗ (at least if comparing to the Fermi gas at α = α∗ = 1
and assuming a linear interpolation to small α such that α = α∗) is that the long-
range exclusion principle, which is applied locally on boxes of a tunable size, only
increases linearly with the number of particles and is strongest on a scale where
about two particles fit in each box.We provide further bounds for e(α, γ̄ ) in various
parameter regimes in Theorem 6.1.

It should be remarked that our local exclusion principles also can be used to
prove Lieb–Thirring inequalities. We postpone the extended case to future work
but note that the ideal case is directly improved by the present results, namely
replacing [49, Lemma 8] with the local exclusion principle of Lemma 5.3 below
yields the following bounds for ideal anyons, where the constant ( j ′αN

)2 ≥ 2αN ≥
α2
N improves the one in [49, Theorems 1 and 11]:

Theorem 1.6. (Lieb–Thirring inequality for ideal anyons) With α ∈ R, R = 0,
N ≥ 1 and � ∈ DN

α,0 we have that

〈

�, T̂α�
〉

≥ C
(

j ′αN

)2
∫

R2
��(x)2 dx,

and if V : R
2 → R is an external one-body potential, acting by V̂ (x) :=

∑N
j=1 V (x j ), then

〈

�,
(

T̂α + V̂
)

�
〉

≥ −C ′ ( j ′αN

)−2
∫

R2
V−(x)2 dx,

for some positive universal constantsC andC ′ = (4C)−1, and V± := max{±V, 0}.
The question concerning optimality of the above bounds with respect to their

dependence on α in the dilute limit is a very difficult one, and will be discussed
elsewhere [43]. However, we would like to point out that it was suggested in [50]
(see also [44]) that a class of FQHE-inspired trial states with a clustering behavior
could minimize the energy for certain fractions, and here we find additional support
for this claim; cf. Fig. 3 below. Furthermore, there was in [50], then based on the
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weaker bounds of [49], a slight inconsistency in the behavior with respect to odd-
numerator α which is remedied by the improved bounds presented here.

The structure of the paper is as follows. We lay the foundations in Sections 2
and 3 by proving the short-range bound of Lemma 1.1, and the basis for the long-
range bound in the form of a relative magnetic Hardy inequality with symmetry.
Then themain body of the paper, Section 4, is concerned with the application of this
Hardy inequality to prove the long-range bound of Theorem 1.3. This turns out to
become surprisingly challenging in the extended case due to the oscillatory nature
of an effective potential, and in fact takes up the largest part of the proofs section.
In Section 5 the long- and short-range bounds are applied to prove local exclusion
principles for anyons, and finally in Section 6 we discuss the homogeneous anyon
gas in the thermodynamic limit.

2. Short-Range Interaction

The short-range interaction given byLemma1.1 comes as a simple consequence
of the well-known magnetic inequality (see for example [18, Lemma 1.4.1] or [4,
p. 171])

∫

	

|(∇ + iA)u|2 ≥ ±
∫

	

curlA |u|2, u ∈ H1
0 (	), 	 ⊆ R

2. (2.1)

This inequality also follows directly from integrating the straightforward identity

|(∇ + iA)u|2 = |((∂1 + i A1) ± i(∂2 + i A2))u|2 ± curl J[u] ± A · ∇⊥|u|2,
with J[u] := i

2 (u∇ū − ū∇u).

Proof of Lemma 1.1. Splitting the coordinates according to x = (x j ; x′) for each
particle j , we write for the left-hand side of (1.9)

N
∑

j=1

∫

R2(N−1)

∫

R2
| (∇ j + iαA j

(

x j
))

�
(

x j ; x′
) |2 dx jdx

′

≥
N
∑

j=1

∫

R2(N−1)

∫

R2
2π |α|

∑

k �= j

1BR(xk)

πR2

(

x j
) |� (x j ; x′

) |2 dx jdx
′,

where we used the expression (1.6) for curl αA j (x j ) in (2.1).We have thus obtained
the right-hand side of (1.9). ��

We note that the Dirichlet boundary conditions on� and u are in fact necessary
here since the bound (2.1) is otherwise invalid, as can be seen by taking A = βA0,
β → 0, and the trial state u = 1. Similarly, had we considered the inequality
(1.9) locally on a small enough domain (compared to R) we would have found a
contradiction as α → 0, unless Dirichlet boundary conditions are enforced.
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3. Relative Magnetic Inequality

For the long-range statistical interaction between anyons we take the same
starting point as in [49], namely, the core observation is the validity of a relative
magnetic Hardy inequality which respects the symmetry of the anyon problem.
Non-symmetric versions of this inequalitywere introduced and studied in [29] (one-
particle version) and in [24, Theorem 2.7] (many-particle version); see also [53], [4,
Chapter 5.5] and references therein. However, as was pointed out in [49], symme-
try is crucial in order to obtain non-trivial bounds in the many-particle limit. We
formulate the following version of the inequality quite generally.

Initially, consider a magnetic field b : BR(0) → R defined on a disk of radius
R > 0, and assumed to be determined by a suitable continuous vector potential
a : BR(0) → R

2 as b = curl a. Then the normalized flux inside a smaller disk of
radius r ∈ [0, R) is given by

�̂(r) := 1

2π

∫

Br (0)
b = 1

2π

∫

∂Br (0)
a · dr′. (3.1)

Note that if we were only given a : 	 → R
2 on some annulus 	 = BR(0)\B̄R′(0),

with 0 < R′ < R, that is if we only knew b on 	 (so that only the right-hand
side of (3.1) makes sense for r ∈ (R′, R)), then b can nevertheless be extended
(non-uniquely) to the full interior BR′(0), for example by taking

b|BR′ (0) =
2π�̂(R′)
π(R′)2

or b|BR′ (0) = 2π�̂(R′)δ0,

with �(R′) here defined in terms of a as in (3.1) (note that we are not considering
extending a). Then both expressions for �̂(r) in (3.1) are well defined and agree
for all r ∈ (R′, R). We also note that if the magnetic field is antipodal-symmetric
on 	, that is b(−r) = b(r) for all r ∈ 	, then the corresponding potential must (if
gauge-normalized correctly) be antipodal-antisymmetric, a(−r) = −a(r), r ∈ 	,
and vice versa.

Lemma 3.1. (MagneticHardy inequalitywith symmetry)Let	 = BR2(0)\B̄R1(0),
with R2 > R1 ≥ 0, be an annular domain in R

2. Let a : 	 → R
2 be a continuous

vector potential corresponding to a magnetic field b, b|	 = curl a, that is defined
on the entire disk BR2(0) such that the normalized flux �̂(r) given by (3.1) is finite
for all r ∈ (R1, R2). Furthermore, assume that a is antipodal-antisymmetric resp.
b is antipodal-symmetric on 	, that is a(−r) = −a(r) resp. b(−r) = b(r) for
r ∈ 	.

Then, for any antipodal-symmetric u ∈ C∞(	), that is with u(−r) = u(r) for
all r ∈ 	,

∫

	

|(−i∇ + a)u|2 dr ≥
∫

	

(
∣
∣∂r |u|

∣
∣
2 + inf

k∈Z
∣
∣�̂(r)− 2k

∣
∣2
|u|2
r2

)

dr.
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Alternatively, if instead u is antipodal-antisymmetric, u(−r) = −u(r) for all
r ∈ 	, then
∫

	

|(−i∇ + a)u|2 dr ≥
∫

	

(
∣
∣∂r |u|

∣
∣2 + inf

k∈Z
∣
∣�̂(r)− (2k + 1)

∣
∣2
|u|2
r2

)

dr.

Proof. We apply the techniques from [29], with symmetry taken into account as
in [49, Lemma 2]. We start by letting h[a] denote the magnetic quadratic form on
	,

h[a](u) :=
∫

	

|(−i∇ + a)u|2 dr

=
∫ R2

R1

∫ 2π

0

(|(−i∂r + ar )u|2 + r−2|(−i∂ϕ + raϕ)u|2)r dϕdr,

where ar := r−1r · a and aϕ := r−1r⊥ · a. For the first term above we use
the diamagnetic inequality |(∂r + iar )u| ≥

∣
∣∂r |u|

∣
∣, while for the second we can

for each r ∈ (R1, R2) explicitly diagonalize the self-adjoint operator Kϕ(r) :=
−i∂ϕ+raϕ(r, ϕ) acting on L2(S1). The corresponding eigenvalues and normalized
eigenfunctions of this operator are given by:

λk(r) = −k + (2π)−1r
∫ 2π

0
aϕ(r, ϕ) dϕ = −k + �̂(r),

ψk(r, ϕ) = (2π)−1/2ei(ϕλk (r)−r
∫ ϕ
0 aϕ(r,η) dη),

for k ∈ Z. Because of the antipodal-antisymmetry of a, implying antipodal-
symmetry of aϕ , that is aϕ(r, ϕ) = aϕ(r, ϕ + π), we have that

ψk(r, ϕ + π) = (−1)kψk(r, ϕ).

Therefore, only the even/odd terms will contribute upon expanding u ∈
L2
sym/asym(	) as

u(r, ϕ) =
∑

k∈Z
uk(r)ψk(r, ϕ) =

∑

k∈Ze/o

uk(r)ψk(r, ϕ),

with Ze := 2Z and Zo := 2Z + 1.
By the above remarks and Parseval’s identity we find that

h[a](u) =
∫ R2

R1

∫ 2π

0
|(∂r + iar )u|2 r dϕdr +

∫ R2

R1

∑

k∈Ze/o

|λk(r)|2|uk(r)|2 r−1 dr

≥
∫ R2

R1

∫ 2π

0

∣
∣∂r |u|

∣
∣2 r dϕ dr +

∫ R2

R1

inf
k∈Ze/o

|λk(r)|2
∑

k∈Ze/o

|uk(r)|2 r−1 dr

=
∫ R2

R1

∫ 2π

0

(∣
∣∂r |u|

∣
∣
2 + r−2 inf

k∈Ze/o
|λk(r)|2|u|2

)

r dϕ dr.
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Thus the estimate we are left with is

h[a](u) ≥
∫ R2

R1

∫ 2π

0

(∣
∣∂r |u|

∣
∣2 + r−2 inf

k∈Ze/o

∣
∣�̂(r)− k

∣
∣2|u|2)r dϕ dr,

which proves the lemma. ��
The above lemma not only extends the inequality of [49, Lemma 2] tomore gen-

eral (extended)magnetic fields, but also improves it by keeping the radial derivative.
This turns out to be crucial in order to obtain an improved dependence on α in the
dilute limit. We note that in [24] the radial derivatives were effectively discarded
in two dimensions.

4. Analysis of the Long-Range Interaction

We set out to prove Theorem 1.3 and first note that by the remarks in Section 1.1
we may assume without loss of generality that � ∈ C∞

c (R2N\��). Proceeding as
was done in [49] for the non-extended case R = 0, we start from the expression
for the kinetic energy on a domain 	 ⊆ R

2,

∫

	n

n
∑

j=1

|Dj�|2 dx, where Dj = −i∇x j + α

N
∑

k=1
k �= j

(x j − xk)⊥

|x j − xk |2R
,

and we are considering the first n particles x j=1,...,n ∈ 	while the remaining N−n
ones may reside anywhere in R

2. Using that, for any z = (z j ) j ∈ C
n ,

n
∑

j=1

|z j |2 = 1

n

∑

1≤ j<k≤n
|z j − zk |2 + 1

n

∣
∣
∣
∣

n
∑

j=1

z j

∣
∣
∣
∣

2

,

we have that

∫

	n

n
∑

j=1

|Dj�|2 dx = 1

n

∑

1≤ j<k≤n

∫

	n−2

∫

	2
|(Dj − Dk)�|2 dx jdxk

∏

l �= j,k

dxl

+ 1

n

∫

	n

∣
∣
∣
∣

n
∑

j=1

Dj�

∣
∣
∣
∣

2

dx, (4.1)

where we also note that the magnetic field present in the last (total momentum)
term simplifies to

n
∑

j=1

Dj = −i
n
∑

j=1

∇x j + α

n
∑

j=1

N
∑

k=n+1

(x j − xk)⊥

|x j − xk |2R
,

by the antisymmetry of the vector potential, and thus vanishes if n = N .
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Wenow study the inner integral in (4.1) for the j < k particle pair, and introduce
relative coordinates:

r jk := (x j − xk)/2, X jk := (x j + xk)/2, r jk := |r jk |,
giving

∫

	2
|(Dj − Dk)�|2 dx jdxk

=
∫

	2

∣
∣
∣

(

−i(∇x j − ∇xk )+ α
∑

l �= j

(x j − xl)⊥

|x j − xl |2R
− α
∑

l �=k

(xk − xl)⊥

|xk − xl |2R
)

�

∣
∣
∣

2
dx jdxk

=
∫

	2

∣
∣
∣

(

−i∇r jk+αa0(r jk)+α
∑

l �= j,k

(al(X jk , r jk)−al(X jk ,−r jk))
)

�

∣
∣
∣

2
dx jdxk ,

(4.2)

where the relative vector potentials are given by

a0(r) := 4r⊥

|2r|2R
= r⊥

|r|2R/2

and al(X, r) := (X+ r − xl)⊥

|X+ r − xl |2R
.

Hence, for any positions x′ = (x1, . . . , x�j , . . . , x�k, . . . , xN ) ∈ R
2(N−2) of the

other particles and for each center-of-mass coordinateX = X jk ∈ 	 of the particle
pair, we observe that the resulting magnetic vector potential

a(r) := αa0(r) + α
∑

l �= j,k

(al(X, r) − al(X,−r))

is antipodal-antisymmetric on the relative disk

	X := Bδ(X)(0), δ(x) := dist(x, ∂	),

with a corresponding antipodal-symmetric magnetic field

b := curl a = 2πα

(
1BR/2(0)

π(R/2)2
+
∑

l �= j,k

(
1BR(xl−X)

πR2 + 1BR(−(xl−X))

πR2

))

(4.3)

(given here for R > 0). Also, the smooth function defined relative to X and x′ by

u(r) := �(x1, x2, . . . , x j = X+ r, . . . , xk = X− r, . . . , xn, . . . , xN )

is antipodal-symmetric on 	X. Hence, we may apply the relative magnetic Hardy
inequality of Lemma 3.1 (for R = 0 we split into concentric annuli avoiding the xl
as in [49, Theorem 4]) to obtain that

∫

	2
|(Dj − Dk)�|2 dx jdxk ≥

∫

	

∫

	X

|(−i∇ + a)u|2 4 drdX

≥
∫

	

∫

	X

(
∣
∣∂r |u|

∣
∣2 + ρ(r)

r2
|u|2
)

4 drdX, (4.4)
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where
ρ(r) := inf

q∈Z
∣
∣�̂(r)− 2q

∣
∣
2
, (4.5)

and �̂(r) here, and in what follows, denotes the flux through the disk Br (X) of the
magnetic field (4.3):

�̂(r) = 1

2π

∫

∂Br (0)
a · dr′ = 1

2π

∫

Br (0)
b.

Note that themagnetic field is induced by the particle configuration (x′; x j , xk), and
the only dependence which remains after fixing x′ in (4.1) and X = X jk in (4.4)
is that of the relative coordinate r = r jk . With the remaining particle positions
expressed relative to the coordinate X, yl := xl − X, we can write the normalized
flux �̂(r) as:

�̂(r) = α

(∫

Br (0)

1BR/2(0)

π(R/2)2
+ 2

∑

l �= j,k

∫

Br (0)

1BR(yl )

πR2

)

. (4.6)

Hence ρ(r) depends only on the arbitrary but fixed configuration (yl)l ∈ R
2(N−2).

By the above discussion, the problem of bounding the kinetic energy (4.1) has
been reduced to studying the radial Schrödinger operator in (4.4) with explicit
scalar interaction potential ρ(r)/r2. This potential is essentially an inverse-square
repulsion, modulated with a coupling strength ρ(r) which measures how well the
normalized flux �̂(r) stabilizes away from the even integers. In the dilute situation
the flux and hence also ρ would for the most part be constant, however we could
have significant oscillations of ρ(r) between one and zero whenever many particles
are enclosed over short differences in the radial variable r (see Fig. 2). Controlling
these oscillations turns out to be a significant challenge, and the entire remainder
of this section shall be concerned with proving the following theorem, from which
Theorem 1.3 follows.

Theorem 4.1. For any 0 ≤ R ≤ L/6, κ ∈ [0, 1], u ∈ W 1,2([R, L], rdr), and ρ

defined in (4.5)–(4.6) with (yl)l ∈ R
2(N−2) arbitrary, we have that

∫ L

R

(

|u′|2+ ρ(r)

r2
|u|2
)

r dr ≥
∫ L

R

(

(1−κ)|u′|2 + c(κ)2
α2
N

r2
1[3R,L−3R]|u|2

)

r dr,

with c(κ) = 4.7 · 10−4κ/(1+ 2κ). In the case R = 0 we may take c(κ) ≡ 1.

Remark 4.2. The margins which appear here as a cut-off for the potential are not
optimal and could be improved with more work, to the cost of an even weaker
constant. The main reason for the weakness of the constant c(κ) is the fact that we
have chosen to control the above form by means of filling the gaps around the zeros
of the potential by smearing it over longer (but not too long) intervals, and that in
the worst possible situation there are very large regions of intense oscillation and
many such zeros.

By considering the special case α = αN = 1 and densely packed, overlapping
particles (that is when γ̄ is large) distributed so that the effective magnetic field
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r

ρ

α2∗

1

r

ρ/r

Fig. 2. The function ρ(r) and the effective potential ρ(r)/r for a random (uniformly dis-
tributed) configuration of 30 particles in a disk of radius L = 20R with α = α∗ = 1/3
plotted from r = 0 to r = L , where α2∗ resp. α2∗/r are shown for comparison. As one can
see, the effective potential is generally quite a lot larger than α2∗/r

r

ρ

α2∗

1

r

ρ/r

Fig. 3. The same as in Fig. 2, now for 10 particles in a disk of radius L = 60R with α = 2/3
(α∗ = 0), and with a single particle close to our center of mass and the remaining nine in
clusters of three. Note that in this case the effective potential can become identically zero on
long intervals

is approximately constant, we find that c(κ) cannot be greater than 1/
√
3, which

is what the corresponding constant would be if one applied the same argument to
the case of a homogeneous magnetic field (see below). However, for α∗ ≤ 1/2
(or small enough so that ρ is larger than α2∗ for a sufficiently large set of radii),
we expect that the ground-state energy of the left-hand side (though difficult to
compute in general) should in almost all situations be bounded by that with ρ(r)
replaced by α2

N (compare Fig. 2). We discuss further possible improvements to the
constant c(κ) at the end of Section 4.5.

Proof of Theorem 1.3. Inserting the bound of Theorem 4.1 with L = δ(X) into
the expressions (4.4), (4.2), and (4.1), we obtain the first bound of the theorem.
Furthermore, by rescaling v(r) := u((L − 3R)r) and considering the minimizer v

which is the solution of the Bessel equation

−v′′(r)− v′(r)/r + ν2v(r)/r2 = λv(r), v′(γ ) = 0, v′(1) = 0,

with the minimal eigenvalue λ = g
(

ν = c(κ)αN√
1−κ

, γ = 3R/L
1−3R/L

)2 ≥ 0, one obtains
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∫ L−3R

3R

(

(1− κ)|u′|2+ c(κ)2
α2
N

r2
|u|2
)

r dr = (1− κ)

∫ 1

γ

(

|v′|2+ c(κ)2

1− κ

α2
N

r2
|v|2
)

r dr

≥ (1−κ)g
( c(κ)αN√

1− κ
, γ
)2
∫ 1

γ

|v|2r dr = (1−κ)
g
(
c(κ)αN√

1−κ
, γ
)2

L2(1− 3R/L)2

∫ L−3R

3R
|u|2r dr,

and therefore, after the simplifying estimate (1−3R/L)−2 ≥ 1, the second bound of
Theorem 1.3. The properties of g described in the theorem are direct consequences
of Proposition A.1 and A.2. ��

Before continuing with the proof of Theorem 4.1 we note that, although this
method involving the magnetic Hardy inequality turns out to be sufficient and
indeed well-suited for our purposes, it does not deal well with strong magnetic
fields (hence also the presence of a large external field), as the following example
shows. The strongmagnetic fields arising from a large overlap between the particles
will instead be handled by the short-range part of the interaction, Lemma 1.1.

Proposition 4.3. (Constantmagnetic field on a disk)The ground-state energyλ1(β)

for the Neumann form (with no symmetry imposed) with a constant magnetic field
b(r) = β ≥ 0 on the unit disk,

λ1(β) := inf‖u‖2=1

∫

B1(0)

∣
∣(−i∇ + βr⊥/2)u

∣
∣2 dr,

satisfies

λ1(β) ∼ �0β as β →∞, where �0 ≈ 0.59.

However, the ground-state energy for the corresponding lower bound obtained from
the Hardy inequality,

μ1(β) := inf‖u‖2=1

∫

B1(0)

(
∣
∣∂r |u|

∣
∣
2 + inf

k∈Z |k − βr2/2|2 1

r2
|u|2
)

dr,

is bounded from above by g(1/2, 0)2 = ( j ′1/2)2 independent of β.

Proof. The first estimate follows for example from [18, Theorem 5.3.1], while the
second from bounding the infimum by 1/4 and taking as a trial state the Bessel
function u(r) = J1/2( j ′1/2r). ��

4.1. A One-Dimensional Projection Bound

Our strategy in order to find a uniform bound for the scalar interaction of
Theorem 4.1 will be to borrow a bit of the radial kinetic energy to smear ρ over
intervals whenever it has critical oscillations. As a preliminary to the proceeding
analysis we therefore study the localized effective quadratic form

hI,ρ(u) :=
∫

I

(

κ|u′|2 + ρ

r2
|u|2)r dr, κ ∈ [0, 1],
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on an interval I = (r1, r2) ⊆ R+, and our goal is to find a bound of the form

hI,ρ(u) �
∫

I

|u|2
r

dr,

that is corresponding to ρ being constant.

Lemma 4.4. Let I be an interval (r1, r2), such that r1 ≥ R and |r2 − r1| ≤ 2R,
and let ρ ∈ L∞(I ) be non-negative with ‖ρ‖∞ ≤ 1. Then for any κ ∈ [0, 1] we
have that ∫

I

(

κ|u′|2 + ρ

r2
|u|2)r dr ≥ κρ̄

β(κ)

∫

I

|u|2
r

dr,

where ρ̄ denotes the weighted mean on I ,

ρ̄ :=
∫

I

ρ

r
dr
/ ∫

I

dr

r
,

and β(κ) is an explicit function satisfying κ < β(κ) < κ + 1/4.

Remark 4.5. This lemma can be proven under more general conditions; the only
condition on I needed for our proof is that r2/r1 is sufficiently small. The current
setting is simply what we require later.

Proof of Lemma 4.4. By the change of variables r = et and with ũ(t) = u(et )
we find that

hI,ρ(u) = h̃(ũ) :=
∫

ln(I )

(

κ|ũ′|2 + ρ̃|ũ|2) dt.
For this quadratic formwe can perform a projection-type argument to bound the first
eigenvalue of the associated operator H̃ := −κ d2

dt2
+ ρ̃ (with Neumann boundary

conditions), which in turn will imply a bound of the desired form.
Let P denote the orthogonal projection onto the ground state ψ0 ≡ 1/

√|ln(I )|
of −d2/dt2, where |ln(I )| = ln(r2/r1), and let P⊥ = 1 − P . Then

(− d2

dt2
)

P =
0 and

(− d2

dt2
)

P⊥ ≥ π2/|ln(I )|2P⊥ (the first non-zero Neumann eigenvalue of

−d2/dt2).
Since ρ̃ ≥ 0, an application of Cauchy–Schwarz’ and Young’s inequalities

yields, for any u ∈ L2(ln(I )) and μ > 0, that
∣
∣〈u, (P ρ̃P⊥ + P⊥ρ̃P)u〉∣∣ = ∣∣〈ρ̃1/2Pu, ρ̃1/2P⊥u〉 + 〈ρ̃1/2P⊥u, ρ̃1/2Pu〉∣∣

≤ μ‖ρ̃1/2Pu‖22 + μ−1‖ρ̃1/2P⊥u‖22
= 〈u, (μP ρ̃P + μ−1P⊥ρ̃P⊥)u〉.

Hence we see that

ρ̃ = (P + P⊥)ρ̃(P + P⊥) ≥ (1− μ)P ρ̃P + (1− μ−1)P⊥ρ̃P⊥.

The operator P ρ̃P is equal to ‖ρ̃‖1/|ln(I )|P , where

‖ρ̃‖1 =
∫

ln(I )
ρ̃ dt =

∫

I
ρ(r)r−1 dr,
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and P⊥ρ̃P⊥ we bound from above by ‖ρ̃‖∞P⊥.
We find that for any μ ∈ (0, 1) the operator H̃ satisfies

H̃ ≥ κ
(

− d2

dt2

)

P + κ
(

− d2

dt2

)

P⊥ + (1− μ)P ρ̃P + (1− μ−1)P⊥ρ̃P⊥

≥ (1− μ)

|ln(I )| ‖ρ̃‖1P +
(

κπ2

|ln(I )|2 + (1− μ−1)‖ρ̃‖∞
)

P⊥

≥ min

{
(1− μ)‖ρ̃‖1

|ln(I )| ,
κπ2

|ln(I )|2 + (1− μ−1)‖ρ̃‖∞
}

.

With |r2 − r1| = |I | ≤ 2R and r1 ≥ R we find that

|ln(I )| = ln
(r2
r1

)

= ln
(

1+ |I |
r1

)

≤ ln
(

1+ 2R

R

)

= ln(3).

Hence, writing μ = 1 − κ/β, β > κ , and using that ‖ρ̃‖∞ = ‖ρ‖∞ ≤ 1,
‖ρ̃‖1/|ln(I )| ≤ 1 we have that

min

{
(1− μ)‖ρ̃‖1

|ln(I )| ,
κπ2

|ln(I )|2 + (1− μ−1)‖ρ̃‖∞
}

≥ κ
‖ρ̃‖1
|ln(I )| min

{
1

β
,

π2

ln(3)2
− 1

β − κ

}

,

where we assumed the positivity of the second argument (this will be clear by the
choice of β below). Note that the first argument of the minimum is decreasing in
β > κ while the second one is increasing. Thus to find the maximizing β we only
need to solve the equation 1/β = π2/ ln(3)2 − 1/(β − κ). Plugging the solution,
given by

β(κ) = π2κ +√π4κ2 + 4 ln(3)4 + 2 ln(3)2

2π2 > κ,

into the above yields

H̃ ≥ κ

β(κ)

‖ρ̃‖1
|ln(I )| =

κρ̄

β(κ)
.

Finally, since β(κ) is a convex function for κ ∈ [0, 1] we can simplify this
expression using

β(κ) ≤ β(0) + (β(1) − β(0))κ =: Lβ(κ),

and by simple numerical estimates one finds that Lβ(κ) < κ + 1/4. ��
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4.2. Number-Theoretic Structure of the Effective Scalar Potential

To proceed with the analysis we will need a more precise understanding of how
ρ depends on the positions of the other particles. Note first that we may assume
that α > 0 using the reflection-conjugation symmetry. We then begin by writing
for the normalized flux

�̂(r) = α(1+ 2N(r)), r ≥ R/2,

where we introduce the particle counting function

N(r) :=
N−2
∑

l=1

∫

Br (0)

1BR(yl )

πR2 . (4.7)

Recall that in the expression (4.6) for the flux �̂, all particles are treated relative
to the fixed center of mass X of the considered particle pair, and have also been
renumbered for convenience: yl := xl − X ∈ R

2, with l ∈ {1, . . . , N − 2}.
In terms of the function N we have that

ρ(r) = min
q∈Z
(

α(1+ 2N(r))− 2q
)2

, N(r) = 1

2α
�̂(r)− 1

2
, (4.8)

and we may cover the interval [R/2, L] by smaller intervals Jq labeled by the
minimizer q ∈ N (note the monotonicity of the function N(r), and that we might
already have q � 1 on the first such interval at r = R/2). Each Jq contains, except
possibly for the first and last such interval, exactly one zero of ρ which we denote
by rq :

ρ(rq) = (α(1+ 2N(rq))− 2q)2 = 0 ⇔ N(rq) = q

α
− 1

2
,

so that

|N(rq) − p| = 1

2α
|(2p + 1)α − 2q| ≥ αN

2α
∀p ∈ {0, 1, . . . , N − 2}. (4.9)

We then also have the very useful identity

ρ(r) = |α(1+ 2N(r))− 2q|2 = |α(1+ 2N(r))− α(1+ 2N(rq))|2
= 4α2|N(r)−N(rq)|2, (4.10)

whenever r ∈ Jq . Let us denote by e−q and e+q the nearest points to the left resp.
right of rq where ρ(r) = 1, then

ρ(e±q ) = 1, and ρ(r) = 4α2(N(r)−N(rq))
2 < 1 ∀r ∈ (e−q , e+q ) ⊆ Jq .3

3 Typically we have that e+q = e−q+1 and Jq = [e−q , e+q ] unless ρ stabilizes at 1 on some

interval between rq and rq+1, in which case e+q < e−q+1 and the intervals Jq and Jq+1
overlap.
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Fig. 4. The function N(r) (green) together with ρ(r) (blue) and α2∗ (yellow), for α = 3/7,
over an interval where the enclosed number of particles increases from 12 to 30. Two separate
zeros rq and rq ′ of ρ, with q ′ = q + 2, are indicated together with the corresponding points
z±q , e±q and z±q ′ , e

±
q ′

Finally, we also denote by z−q and z+q the nearest points to the left resp. right of rq
where N(z−q ),N(z+q ) ∈ Z, and hence N(z+q ) − N(z−q ) = 1, and we observe due to
(4.9), (4.10) and monotonicity that

ρ(r) ≥ α2
N ∀r ∈ Jq\

(

z−q , z+q
)

. (4.11)

Recall that this constant depends in a non-trivial way on number-theoretic aspects
of the parameter α, and that it remains bounded away from zero for all N if and
only if α is an odd-numerator rational number (see [49, Proposition 5]). To clarify
the above definitions, two sets of points rq , e±q , z

±
q are illustrated in Fig. 4 for a

particular particle configuration.
Hence, we can reduce our problem to studying precisely those smaller intervals

around each zero of ρ not covered by (4.11). To this endwe let Iq denote the interval
(z−q , z+q ) around the zero rq ∈ [R/2, L]. When considering a fixed Iq we may for
notational simplicity drop the subscripts q when referring to its endpoints. Observe
by the size of each particle that |Iq | ≤ 2R, and furthermore that there is always at
least one particle covering the entire interval:

Lemma 4.6. If rq ≥ R/2 is a zero of ρ then with Iq constructed as above there
exists a particle centered at yl , at a distance d = |yl | = |xl − X|, such that
Iq ⊆ [d − R, d + R]. In other words, the angular projection of some particle
completely covers Iq .



332 Simon Larson & Douglas Lundholm

Proof. Let Iq = (z−, z+) and let Ñ(r) be the particle counting function corre-
sponding to our particle configuration but where we remove all particles (seen as
closed disks B̄R(yl)) that have empty intersection with the closed disk B̄z−(0), that
is we remove all particles that are centered at a distance strictly larger than z− + R
from the origin. By the construction of Iq , there is at least one particle that has
non-empty intersection with ∂Bz−(0) (not counting any fully enclosed ones), since
otherwiseN(r)would be constant here which contradicts the choice of z−. Let now
r ′ be the radius such that all the particles that intersected ∂Bz−(0) are completely
contained in the closed disk B̄r ′(0). By the construction of Ñ(r), its value at r ′ is
an integer which, since there were particles intersecting ∂Bz−(0), is strictly larger
than Ñ(z−) = N(z−), but then, since Ñ(r) ≤ N(r), the function N(r) must take at
least one integer value on (z−, r ′]. Thus, by the definition of z+ we conclude that
z+ ≤ r ′, which completes the proof. ��

4.3. Geometric Structure of the Particle Counting Function

To proceed we will need more information on the local behavior of the particle
counting function N(r). We note that

N(r) =
N−2
∑

l=1

|Br (0) ∩ BR(yl)|
πR2 ,

where yl are the centers (in relative coordinates) of the N − 2 particles not in our
presently studied pair.

To analyzeN(r) we thus need to work with the area of the intersection of pairs
of disks. An elementary, although slightly tedious, calculation yields the following
expression.

Proposition 4.7. Let B1 = Br1(x1) and B2 = Br2(x2) be disks of radii r1, r2, with
r1 ≤ r2, centered at the points x1 and x2. Then with d = |x1 − x2| we have for the
area of intersection, in the non-trivial regime d ≤ r1 + r2 and d + r1 ≥ r2, that

|B1 ∩ B2| = r21 arccos
(d2 + r21 − r22

2dr1

)

+ r22 arccos
(d2 + r22 − r21

2dr2

)

− 1

2

√

(−d + r1 + r2)(d + r1 − r2)(d − r1 + r2)(d + r1 + r2).

If d > r1 + r2 the area is zero and if d + r1 < r2 the area is πr21 .

Differentiating the flux contribution from a single particle located at yl ∈ R
2,

given by
F(|yl |, r) := |Br (0) ∩ BR(yl)|/(πR2),

we find for arbitrary d, r ≥ 0 that

f (d, r) := ∂

∂r
F(d, r) =

⎧

⎪⎨

⎪⎩

2r/R2, if r ≤ R − d,

0, if r > R + d or r < d − R,
2r

πR2 arccos
(
d2+r2−R2

2dr

)

, otherwise.

(4.12)
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d − R d rmax(d) d + R

Fig. 5. The one-particle profile f (d, ·) and its lower bound f∧(d, ·) plotted over the support
of f . The profile depicted is for d = 3R/2, while as d increases this profile more and more
resembles the upper half of a disk

In what follows we will frequently use that f (d, ·) is essentially concave on its
support (compare Fig. 5); the precise statement and its proof is found inAppendixB.
Furthermore, it satisfies some simple bounds:

Lemma 4.8. With f (d, ·) denoting the one-particle profile (4.12)we have for d ≥ 0
and r ≥ R the following bounds:

f (d, r) ≤ f�(d, r) := 2

R
1(d−R,d+R)(r),

f (d, r) ≥ f∧(d, r) := 2(R − d + r)

πR2 1(d−R,d)(r)+ 2(d + R − r)

πR2 1[d,d+R)(r).

Proof of Lemma 4.8. The upper bound for f given by the lemma is clear from
the geometric construction of f and F . The value of f is equal to the length of the
circle segment ∂Br (0) ∩ BR(x) where |x| = d, divided by πR2, and clearly this
cannot exceed 2/R. For the lower bound we use concavity.

For d ≥ R the function f (d, ·) is concave on its support [d − R, d + R]
(see Appendix B). Moreover, f∧(d, ·) is continuous, piecewise linear and has the
same support as f (d, ·). By the construction of f∧ and the concavity of f (d, ·) it
suffices to prove that the inequality holds at the maximum of f∧(d, ·), that is that
f (d, d) ≥ f∧(d, d), which is clear: for d ≥ R we have that f (d, d) is a decreasing
function and that limd→∞ f (d, d) = 2

πR = f∧(d, d).
For d < R we have that f (d, ·) and f∧(d, ·) are concave on [R, d + R] and

zero otherwise (see Appendix B). By the linearity of f∧(d, ·) on this interval it
is sufficient to prove that f (d, R) ≥ f∧(d, R), which follows since f (d, R) =
2

πR arccos
( d
2R

) ≥ 2d
πR2 = f∧(d, R). ��

The following lemma captures in a convenient form essential aspects of the
shape of the particle profile, and will play an important role in the analysis on
intervals of oscillation below:
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Lemma 4.9. (Shape lemma) If r ∈ [r1, r2] with r1 ≥ R and r2 − r1 ≤ R/2, we
have that

N ′(r1) +N ′(r2) ≥ N ′(r).

Remark 4.10. The assumption r2 − r1 ≤ R/2 can be relaxed slightly by instead
requiring that r1 is sufficiently large. In particular, in the limit r1 → ∞ the one-
particle profile approaches a half disk and it is then geometrically clear that the
statement holds whenever r2 − r1 ≤ R.

Proof of Lemma 4.9. By linearity it is sufficient to prove that the inequality holds
with N ′ replaced by the one-particle profile f (d, ·) for any d ≥ 0.

The proof utilizes that the profile f (d, ·) is concave on its support intersected
with [R,∞), which is shown in Appendix B. If in addition d ≥ R the profile
is concave on its full support (d − R, d + R), also shown in Appendix B. Thus,
whenever (r1, r2) does not contain the maximum of f (d, ·) the statement is clear,
since if this is the case f (d, ·) is monotone here and thus has its maximum value
in either r1 or r2.

Thus we may assume that the unique maximum of f (d, ·) is attained at a point
rmax(d) in (r1, r2). Moreover, by the concavity of f (d, ·) it suffices to consider the
case when |r2− r1| = R/2. The inequality we wish to prove can now be written as

f (d, rmax(d)) ≤ f (d, r1)+ f (d, r1 + R/2), (4.13)

which should hold for all r1 ≥ R such that rmax(d) ∈ (r1, r1 + R/2).
Case 1: d ≥ R. In this case it holds that (r1, r1 + R/2) ⊆ (d − R, d +

R), since rmax(d) ∈ (d − R/2, d + R/2). This can be verified by considering
∂
∂r f (d, r)|r=d+R/2, which can be shown by straightforward computation to be
decreasing in d and moreover it is negative at d = R. Similarly, ∂

∂r f (d, r)|r=d−R/2
can be verified to be positive, and hence d − R/2 < rmax(d) < d + R/2.

This implies that the right-hand side of (4.13) is a concave function of r1, and
hence its minimum value is attained at one of the extremal points of the allowed
intervals. But this is precisely when either r1 or r2 is equal to rmax(d), in which
case the statement is trivial by the non-negativity of f .

Case 2: d ≤ 2R/3. By similar calculations as in Case 1, we have that
∂
∂r f (d, r)|r=R < 0 for d ≤ 2R/3. Then by concavity f (d, ·) is a monotonically
decreasing function on [R, d + R]. Thus f (d, r1) ≥ f (d, r) and the statement
follows.

Case 3: 2R/3 < d < R. Again the function f (d, ·) is concave on (R, d + R).
Thus we again only need to consider the extremal cases of the intervals (r1, r2)
containing the maximum of f (d, ·) on this interval. This reduces to three different
options. Either r1 = R, or r2 = d + R, or one of the endpoints of the interval is
located at the maximum. In the last case the statement is trivially true.

If we were in the second option then (r1, r2) = (d + R/2, d + R). Through a
similar computation as above one checks that on this interval f (d, ·) is monotone,
and hence the statement follows.

If however (r1, r2) = (R, 3R/2) the inequality is reduced to

f (d, r) ≤ f (d, R) + f (d, 3R/2).
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By scaling wemay without loss of generality assume that R = 1. Using the explicit
expression of f we need to show that

2r

π
arccos

(
d2 + r2 − 1

2dr

)

≤ 2

π
arccos

(
d

2

)

+ 3

π
arccos

(
d2 + 5/4

3d

)

.

Since for d ≤ R = 1 we have that rmax(d) ≤ 3/2, it follows that

f (d, rmax(d)) ≤ 3

π
arccos

(
d2 + rmax(d)2 − 1

2drmax(d)

)

,

but the function 3
π
arccos

( d2+r2−1
2dr

)

is decreasing in r , for 1 ≤ r ≤ d + 1, and thus
we only need to verify the inequality

3

π
arccos

(
d

2

)

≤ 2

π
arccos

(
d

2

)

+ 3

π
arccos

(
d2 + 5/4

3d

)

.

This is equivalent to arccos
( d
2

) ≤ 3 arccos
( d2+5/4

3d

)

. We observe that the left-hand
side of this inequality is decreasing whilst the right is increasing. Thus it suffices
to check the validity at d = 2/3, which is a simple numerical evaluation. ��

4.4. Local Bounds for the Mean Potential

In this subsection we use the explicit form of N(r) uncovered above for r ∈
(R, L) and the projection argument of Lemma 4.4 to locally replace the effective
one-dimensional potential ρ(r)/r with some constant times α2

N/r . By Lemma 4.4
it suffices to prove that given an interval I ⊆ (R, L) of small enough measure we
have a suitable bound for the weighted mean ρ̄ on I . On intervals (4.11) where ρ

is already larger than α2
N we need not perform any detailed analysis. Thus the only

intervals that remain are those of the form Iq = (z−q , z+q ) ⊆ Jq close to the zeros
of ρ. The analysis is split into several parts depending on the behavior of ρ near a
specific zero. Our first bound provides a general estimate for ρ̄ on any subinterval
of the Jq constructed above (Section 4.2) which contains the unique zero of ρ on
this interval.

Lemma 4.11. Let (r1, r2), with r1 ≥ R/2, be such that on this interval ρ(r) =
|�̂(r) − 2q|2 for some fixed q ∈ Z and such that there exists some r0 ∈ (r1, r2)
with ρ(r0) = 0. Then, with δ(r) := min{r − r1, r2 − r}, we have that

∫ r2

r1

ρ(r)

r
dr ≥ 2α2

r2(r2 − r1)

(∫ r2

r1
N ′(r)δ(r) dr

)2

,

where as before N(r) denotes the particle counting function (4.7).

Proof of Lemma 4.11. On such an interval (r1, r2) we can, according to (4.10),
express ρ in terms of N as

ρ(r) = |α(1+ 2N(r))− α(1+ 2N(r0))|2 = 4α2|N(r)−N(r0)|2.
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Inserting this into the integral we wish to bound and using the trivial estimate
1/r ≥ 1/r2, we have that

∫ r2

r1

ρ(r)

r
dr ≥ 4α2

r2

∫ r2

r1
|N(r)−N(r0)|2 dr.

We split the above integral into two parts,
∫ r2

r1
|N(r)−N(r0)|2 dr =

∫ r0

r1
(N(r)−N(r0))

2 dr +
∫ r2

r0
(N(r0) −N(r))2 dr

=
∫ r0

r1

(∫ r0

r
N ′(t) dt

)2

dr +
∫ r2

r0

(∫ r

r0
N ′(t) dt

)2

dr.

Using the Cauchy–Schwarz inequality and changing the order of integration one
finds that

∫ r2

r1
|N(r)−N(r0)|2 dr

≥ 1

r2 − r1

((∫ r0

r1

∫ r0

r
N ′(t) dtdr

)2

+
(∫ r2

r0

∫ r

r0
N ′(t) dtdr

)2)

= 1

r2 − r1

((∫ r0

r1

∫ t

r1
N ′(t) drdt

)2

+
(∫ r2

r0

∫ r2

t
N ′(t) drdt

)2)

= 1

r2 − r1

((∫ r0

r1
N ′(t)(t − r1) dt

)2

+
(∫ r2

r0
N ′(t)(r2 − t) dt

)2)

.

To obtain the desired estimate we combine the above with the observation that both
t − r1 and r2 − t are larger than δ(t), and the elementary inequality 2(a2 + b2) ≥
(a + b)2,

∫ r2

r1

ρ(r)

r
dr ≥ 4α2

r2(r2 − r1)

((∫ r0

r1
N ′(r)δ(r) dr

)2

+
(∫ r2

r0
N ′(r)δ(r) dr

)2)

≥ 2α2

r2(r2 − r1)

(∫ r2

r1
N ′(r)δ(r) dr

)2

.

��
We now study ρ̄ on the intervals Iq = (z−q , z+q ) constructed earlier around zeros

of ρ, with N(z±q ) ∈ Z. We begin with a lemma providing a bound for the local
weighted mean on a certain subclass of these intervals where the potential is in
some sense well behaved.

Lemma 4.12. (Good intervals)Let Iq = (z−, z+)beoneof the intervals constructed
above which satisfies z− ≥ R. Then if either

|Iq | ≥ CR or
inf Iq N

′

supIq N
′ ≥

C2

π
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for some 0 < C ≤ 1, we have that

ρ̄Iq :=
∫

Iq

ρ(r)

r
dr

/ ∫

Iq

dr

r
≥ α2C4

24π2 .

Remark 4.13. We will later see that for our treatment of intervals Iq that are not
covered by this lemma we will need to choose C rather small, approximately C ≈
1/10.

Proof of Lemma 4.12. By Lemma 4.11 wemay estimate the integral of the poten-
tial by

∫

Iq

ρ(r)

r
dr ≥ 2α2

z+(z+ − z−)

(∫

Iq
N ′(r)δ(r) dr

)2

.

By Lemma 4.6 the interval Iq is covered by at least one particle. Thus for
r ∈ Iq we can bound N ′(r) from below by using our lower bound for the one-
particle profile f (d, r) and minimizing over particle positions d such that Iq ⊆
(d − R, d + R). Let as before f∧(d, r) denote the lower bound for f given by
Lemma 4.8. We conclude that

∫

Iq
N ′(r)δ(r) dr ≥ inf

d∈(z−−2R,z++2R)

∫

Iq
f∧(d, r)δ(r) dr.

As this integrand is piecewise linear in d wemust have that the integral isminimized
in one of the extremal points: a particle starting at z−, a particle ending at z+ or a
particle centered at (z+ − z−)/2. By symmetry the last alternative maximizes the
integral and thus we can discard this option. Moreover, the same symmetry implies
that the first two alternatives are equal. Through a straightforward calculation we
find that

∫

Iq
N ′(r)δ(r) dr ≥ 1

4π

{

|Iq |3/R2, if |Iq | ≤ R,

|Iq |, if |Iq | > R.

Thus if |Iq | ≥ CR, 0 < C ≤ 1, the above yields

∫

Iq

ρ(r)

r
dr ≥ α2C4

8π2z+
|Iq |.

If instead of |Iq | ≥ CR we have that

inf Iq N
′

supIq N
′ ≥

C2

π

we can obtain the same bound. Namely, if we again consider the bound given by
Lemma 4.11,

∫

Iq

ρ(r)

r
dr ≥ 2α2

z+(z+ − z−)

(∫

Iq
N ′(r)δ(r) dr

)2

,
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we find, using
∫

Iq
δ(r) dr = |Iq |2/4, that

∫

Iq

ρ(r)

r
dr ≥ α2

8z+
(inf
Iq

N ′)2|Iq |3 ≥
α2(inf Iq N

′)2

8z+(supIq N
′)2

|Iq | ≥ α2C4

8π2z+
|Iq |,

where we also used that (supIq N
′)|Iq | ≥

∫

Iq
N ′ = 1 for each q.

For the weighted mean we now find that

ρ̄Iq =
∫

Iq
ρ(r)/r dr
∫

Iq
1/r dr

≥ z−

|Iq |
∫

Iq

ρ(r)

r
dr ≥ z−α2C4

z+8π2 ≥ α2C4

24π2 ,

where we used that |Iq | ≤ 2R and z− ≥ R implies that z−/z+ ≥ 1/3. ��
The previous lemma does not cover the scenario whereN(r) increases rapidly,

resulting in rapid oscillations on many short intervals Iq . In the next lemma we
consider the remaining intervals Iq and use our geometric knowledge of N(r) to
show that these intervals cannot cover toomuchof our large-scale interval [R, L]. To
achieve this we first cover the remaining collection of intervals Iq with a collection
of intervals Jl such that |Jl | = R/2 for all l.

Lemma 4.14. (Bad intervals) Let J ⊆ (R, L] be an interval of length R/2. Then
the fraction of J covered by intervals Iq satisfying both

|Iq | < CR and
inf Iq N

′

supIq N
′ <

C2

π
, (4.14)

with C <
√

π/2, is less than
8C(π − C2)

π − 2C2 .

Proof. Let {Ik}mk=1 denote the subset of the intervals Iq for which (4.14) is satisfied
and J ∩ Ik �= ∅ for each k = 1, . . . ,m, and ordered from left to right (note in
particular that throughout this proof the labeling of the intervals differs from that
described below (4.8)). For further notational convenience we will let infk and supk
denote inf Ik N

′ and supIk N
′, respectively.Wewill also denote by ik and sk a (fixed)

choice of points in each Ik such that N ′(ik) = infk and N ′(sk) = supk .
We begin by showing that we may assume that the distance between any two

points in two consecutive intervals is less than R/2, allowing us to applyLemma4.9.
If, for some k ∈ {1, . . . ,m}, Ik = (z+k , z−k ) and Ik+1 = (z+k+1, z

−
k+1) are such that

z+k+1 − z−k > R/2, then since both intervals have non-empty intersection with J
we must have that m = 2. But this implies that |J ∩ (∪m

k=1 Ik)| ≤ 2CR and the
statement follows. Similarly the statement is true if m = 1.

Suppose that there exists a j such that i j < s j < s j+1 < i j+1. Then, since by
the above we may assume that i j+1 − i j < R/2, Lemma 4.9 implies that

max{sup j , sup j+1} ≤ inf j + inf j+1,
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but combined with (4.14) this leads to a contradiction:

max{sup j , sup j+1} ≤ inf j + inf j+1

≤ 2max{inf j , inf j+1} <
2C2

π
max{sup j , sup j+1},

which is impossible since 2C2

π
< 1.

Let us say that an interval Ik where sk < ik is of type A, and one where instead
ik < sk is of type B (note that ik �= sk by the assumption on Ik). We let A and B
denote the collections of intervals of type A and type B respectively.

The above contradiction argument yields that an interval of typeAcannot follow
one of type B, that is if we for some j have that I j ∈ A then Ik ∈ A for all k < j ,
and similarly, if I j ∈ B then Ik ∈ B for all k > j . We conclude that there is at most
one k such that Ik and Ik+1 are of different type, and Ik must then be of type A.

Aswewill now show, it turns out that the sequence of lengths |Ik | of consecutive
intervals starting at any interval of typeAandgoing to the left, resp. typeBandgoing
to the right, is monotonically decreasing and bounded from above by a geometric
sequence. By assumption (4.14), all |Ik | < CR, and in particular this holds for
the first interval in any such sequence. Using these observations we will be able to
bound the total measure of ∪k Ik .

We begin by studying a sequence starting at an interval of type A and going to
the left (note that such a sequence may not exist if all Ik ∈ B). We wish to prove
that |Ik | decreases along this sequence.

Let j be such that I j ∈ A. Then i j−1 < s j < i j , and by Lemma 4.9 we have
that sup j ≤ inf j−1+ inf j . Since we assume that inf j < C2/π sup j this implies
that

π − C2

C2 inf j <
(

1− C2

π

)

sup j < inf j−1 .

Theonly thingweused abovewas that I j ∈ A. Since this implies that also I j−1 ∈ A,
we can iterate this argument until we reach I1. This yields for k < j that

(π − C2

C2

) j−k
inf j <

(π − C2

C2

) j−k C2

π
sup j < infk . (4.15)

Using that |Ik | infk ≤ 1 ≤ |Ik | supk (for any k) we, for k < j , find that (4.15)
implies

|I j | ≥ 1

sup j
≥
(π − C2

C2

) j−k C2

π

1

infk
≥
(π − C2

C2

) j−k C2

π
|Ik |,

where we used that, for k ≤ j , infk > 0 since otherwise sup j would be zero which
cannot happen by the construction of the Ik’s. SinceC is small this proves the claim
in the case of type A intervals.

For the case of type B intervals the proof is almost identical and one finds
instead that, if I j ∈ B,

|I j | ≥
(π − C2

C2

)k− j C2

π
|Ik |, k > j.
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We are now ready to complete the proof of the lemma. Begin by finding j such
that I j ∈ A and I j+1 ∈ B (ifA, alt. B, is the empty set we take j = 0, alt. j = m).
Then using the above estimates we obtain that
∣
∣
∣
∣
J ∩
⋃

k

Ik

∣
∣
∣
∣
≤
∑

k

|Ik | =
∑

k≤ j

|Ik | +
∑

k> j

|Ik |

≤ |I j |
(

1+ π

C2

j−1
∑

k=1

( C2

π − C2

) j−k)

+ |I j+1|
(

1+ π

C2

m
∑

k= j+2

( C2

π − C2

)k− j−1)

< CR
(

1+ π

C2

∞
∑

l=1

( C2

π − C2

)l)+ CR
(

1+ π

C2

∞
∑

l=1

( C2

π − C2

)l)

= 4C(π − C2)

π − 2C2 R,

and dividing this quantity by |J | = R/2 completes the proof. ��

4.5. Proof of Theorem 4.1

What we have found is that the Lebesgue measure of the subset of J where ρ

is already large, or can be averaged to be large, is at least

(1

2
− 4C(π − C2)

π − 2C2

)

R.

Using this we can find a non-trivial uniform lower bound on ρ̄J and therefore,
using the local projection argument, we finally obtain that there exists a constant
c(κ) > 0 such that

∫ L

R

(

|u′|2 + ρ

r2
|u|2
)

r dr ≥
∫ L

R

(

(1− κ)|u′|2 + c(κ)2
α2
N

r2
1[3R,L−3R]|u|2

)

r dr.

We proceed as follows:

∫ L

R

(

|u′|2 + ρ

r2
|u|2
)

r dr =
∫ L

R
(1− κ)|u′|2r dr +

∫ L

R

(

κ|u′|2 + ρ

r2
|u|2
)

r dr

≥
∫ L

R
(1− κ)|u′|2r dr +

∫ L

R

(κ

2
|u′|2 + ρ̂

r2
|u|2
)

r dr,

where ρ̂ denotes a new weight obtained by replacing ρ(r) with 2κ
1+2κ

α2C4

24π2 on all
Iq covered by Lemma 4.12 that intersect (3R, L − 2R), by using Lemma 4.4 with
κ/2. Thus the only remaining zeros of ρ̂ on (3R, L − 2R) are those contained in
intervals Iq which satisfy the assumptions of Lemma 4.14. Let Q ⊂ N denote the
set of integers q for which Iq is such an interval. We now cover (3R, L − 3R) by
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a collection of disjoint intervals J ⊂ (3R, L − 2R), each of length |J | = R/2.
Specifically, we take the intervals

(

3R + (n−1)R
2 , 3R + nR

2

)

where n runs from 1

to
⌊ 2(L−5R)

R

⌋

. On each such J = (r1, r2) we then have that

∫

J

ρ̂

r
dr ≥ 1

r2

∫

J
ρ̂ dr ≥ 1

r2

∫

J∩(∪q∈Q Iq )c
ρ̂ dr ≥ 2κ

1+ 2κ

α2
NC

4

r224π2

∣
∣
∣J ∩

(⋃

q∈Q
Iq
)c∣
∣
∣.

By Lemma 4.14 we then obtain for the weighted mean of ρ̂ that

∫

J

ρ̂

r
dr
/ ∫

J

dr

r
≥ r1

r2

2κ

1+ 2κ

α2
NC

4

12π2

(1

2
− 4C(π − C2)

π − 2C2

)

, with
r1
r2

≥ 6

7
.

Thus for each J we can again apply Lemma 4.4 and obtain

∫

J

(κ

2
|u′|2 + ρ̂

r2
|u|2
)

r dr ≥
( 2κ

1+ 2κ

)2 C4

14π2

(1

2
− 4C(π − C2)

π − 2C2

) ∫

J

α2
N

r
|u|2 dr.

Applying this for each J we obtain the desired estimate with

c(κ)2 =
( 2κ

1+ 2κ

)2 C4

14π2

(1

2
− 4C(π − C2)

π − 2C2

)

.

Maximizing this in C ∈ (0, 1) we obtain for C ≈ 0.0996 the extremely small (but
positive) constant

c(κ) ≥ 5.3 · 10−4 κ

1+ 2κ
.

This concludes the proof of Theorem 4.1 and hence the treatment of the long-range
interaction of Theorem 1.3.

We note that with this choice of C we allow for approximately 80% of any
(and all) R/2 long interval contained in (R, L] to be covered by the intervals Iq
satisfying (4.14). As we expect that this is rather far from the actual situation for
most particle configurations there seems to be room for improvement in the above
considerations. One such improvement could be to use that the effective potential
must between every two Iq intervals go up to one and then back down again. Our
current method does not take this into account and is blind to the fact that there
must be helpful gaps between the Iq ’s.

Another way of improving this constant would be to refine the bounds in
Lemma 4.12 by using the precise shape of the one-particle profile instead of the
simpler lower bound provided by f∧. One could also take into account that all
intervals cannot be at the edge of a particle, that is make use of the observation that
a large number of the particles are likely to cover more than one interval Iq .
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5. Local Exclusion

We now formulate the obtained energy bounds for anyons in terms of local
exclusion principles, following [45,46,49–51], with some refinements to take both
the short- and the long-range magnetic interactions into account.

With a weight partition κ = (κ1, κ2, κ3) ∈ [0, 1]3, κ1 + κ2 + κ3 = 1, we can
write for the total kinetic energy for N anyons in a normalized state � ∈ DN

α,R

〈�, T̂α�〉 = κ1

N
∑

j=1

∫

R2N
|Dj�|2 dx+ κ2

N
∑

j=1

∫

R2N
|Dj�|2 dx+ κ3

N
∑

j=1

∫

R2N
|Dj�|2 dx

≥
∫

R2N

N
∑

j=1

(

κ1
∣
∣∇ j |�|∣∣2 + κ2

N
∑

k=1
k �= j

2π |α|1BR(0)

πR2 (x j − xk) |�|2 + κ3|Dj�|2
)

dx,

where we used Lemmas 1.4 and 1.1. We then make a partitioning of the plane R
2

into disjoint squares Q’s:

〈�, T̂α�〉 ≥
∑

Q

T κ
Q[�],

where the expected local energy on each square Q is given by (the definitions extend
to all κ ∈ R

3)

T κ
Q [�] :=

N
∑

j=1

∫

R2N

(

κ1
∣
∣∇ j |�|∣∣2 + κ2

N
∑

k=1
k �= j

2π |α|1BR (0)

πR2 (x j − xk) |�|2 + κ3|Dj�|2
)

1Q(x j ) dx

(5.1)≥
N
∑

n=0

Eκ
n (|Q|)pn(�; Q).

Here the local n-particle energy (translation invariant and with Neumann b.c.) is
given by

Eκ
n (|Q|) := inf∫

Qn |ψ |2=1

n
∑

j=1

∫

Qn

(

κ1
∣
∣∇ j |ψ |∣∣2+κ2

n
∑

k=1
k �= j

2π |α|1BR (0)

πR2 (x j − xk) |ψ |2+κ3|Djψ |2
)

dx,

(5.2)

and pn(�; Q) denotes the n-particle probability distribution induced from �,

pn(�; Q) :=
∑

A⊆{1,...,N },|A|=n

∫

(Qc)N−n

∫

Qn
|�|2

∏

k∈A
dxk
∏

l /∈A
dxl ,

having the normalizations
∑N

n=0 pn(�; Q) = 1 and
∑N

n=0 npn(�; Q) = ∫Q �� ,
the expected number of particles on Q. In (5.2) the operators Dj still depend on
all N particles, with the first n on Q, and we take the infimum over the remaining
N − n positions in R

2\Q.
The inequality (5.1) is obtained by simply partitioning the configuration

space R
2N , for example by inserting into the integrand the partition of unity

1 =∏N
k=1(1Q(xk)+1Qc (xk)) and expanding. This approach to bound the energy

goes all the way back to Dyson and Lenard [16].
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5.1. Short-Range Exclusion

We consider first the contribution to the local energy coming solely from the
short-range part of the magnetic interaction.

Lemma 5.1. (Local exclusion—short range) For any α ∈ R, R > 0 and Q ⊆ R
2

a square, and with γ (Q) := R|Q|− 1
2 , we have that

E (1,1,0)
n (|Q|) ≥ eSR(α, γ (Q), n)

|Q| (n − 1)+,

and

T (1,1,0)
Q [�] ≥ eSR(α, γ (Q),

∫

Q ��)

|Q|
(∫

Q
�� − 1

)

+
,

where

eSR(α, γ, n) :=

⎧

⎪⎨

⎪⎩

|α|min
{

(1− γ 2/2)−1+ , Kα/2
}

Kα + 2|α|(− ln(γ /
√
2)
)

+
for γ <

√
2,

2|α|γ−2n for γ ≥ √
2.

Here

Kα := √2|α| I0(
√
2|α|)

I1(
√
2|α|) ≥ 2, K0 := 2,

and Iν denotes the modified Bessel function of order ν.

Proof of Lemma 5.1. We consider the local energy form in (5.2). In the case that
γ (Q) ≥ √

2, the short-range potential in the second term covers the full domain Q
for every particle, and hence

E (1,1,0)
n (|Q|) ≥ 2π |α|

πR2 n(n − 1)+ = 2|α|
|Q| γ (Q)−2n(n − 1)+.

By convexity we then also have that

N
∑

n=0

E (1,1,0)
n (|Q|)pn(�; Q) ≥ 2|α|

|Q| γ (Q)−2
(∫

Q
��

)(∫

Q
�� − 1

)

+
.

In the case thatγ (Q) <
√
2,weuseDyson’s lemma [14] in twodimensions (see [36,

41,46]) to smear the potential to the full domain as done in [46, Proposition 19],
keeping part of the potential intact and smearing the rest. For n > 1 and any
κ ∈ [0, 1] we can bound the energy form in E (1,1,0)

n (Q) from below by

n
∫

Q2

(

(1− κ)
(∣
∣∇1|ψ |∣∣2 + 2π |α|

πR2 1BR(x2)(x1) |ψ |2
)

+ κ
2π |α|
πR2 1BR(x2)(x1) |ψ |2

)

dx

≥ (n − 1)+
∫

Q2

(

(1− κ)U (|x1 − x2|)1BR(x2)c (x1) + κ
2π |α|
πR2 1BR(x2)(x1)

)

|ψ |2 dx,
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with

U (r) := |Q|−1
(

1− R2

2|Q|
)−1( Kα

2|α| + ln

√
2|Q|1/2
R

)−1

1[R,
√
2|Q|1/2](r).

This expression arises from the application of Dyson’s lemma [36, Lemma 3.1] on
the star-shaped domain Q − x2 with the requirement that

∫
√
2|Q|1/2

R
U (r) ln(r/aR) rdr ≤ 1, U (r) = 0 for r < R,

and where the considered pair potential is

W (x) := W0

R2 1BR(0)(x), W0 = 4|α|,

with scattering length (see for example [46, Appendix A.2.4])

aR = R exp

(

− 1√
W0/2

I0(
√
W0/2)

I1(
√
W0/2)

)

= R exp

(

− Kα

2|α|
)

. (5.3)

We now demand that κ be chosen such that the potentials match:

(1− κ)U (r) = κ
2|α|
R2 ,

that is,

κ

1− κ
= γ (Q)2

(

1− γ (Q)2/2
)−1(

Kα + 2|α|(− ln(γ (Q)/
√
2)
))−1

.

However, note that the factor (1 − γ (Q)2/2)−1 in U diverges as γ (Q) → √
2

while the other potential term stays bounded, implying κ → 1. Hence, in order to
be able to bound 1− κ uniformly we instead truncate the potential U by replacing
the unbounded factor with

min
{(

1− γ (Q)2/2
)−1

, Kα/2
} ∈ [1, Kα/2],

also using that Kα ≥ 2 (see [59, Eqn. 10.33.1]). With this replacement in the above
we then find that

κ

1− κ
= γ (Q)2

min
{(

1− γ (Q)2/2
)−1

, Kα/2
}

Kα + 2|α|(− ln(γ (Q)/
√
2))

≤ γ (Q)2

2
≤ 1,

and hence κ ≤ 1/2 and 1− κ ≥ 1/2. Summing up, we find for all n ≥ 0 that

En(Q) ≥ (n − 1)+
|Q| (1− κ)2|α|min

{(

1− γ (Q)2/2
)−1
+ , Kα/2

}

Kα + 2|α|(− ln(γ (Q)/
√
2)
)

+
,

and may again use convexity in n to obtain the corresponding bound for
TQ[�]. ��
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Although not aiming to provide the sharpest possible bound, the above lemma
has the advantage of being relatively simple and it captures the overall dependence
of the pure short-range interaction on the parameters. In a certain regime however,
referred to below as the soft-core regime, the following version (which could in
some sense be viewed as amix between the two and three-dimensional cases studied
in [36,39–41]) will yield a comparatively good bound.

Lemma 5.2. (Soft-core exclusion) For any R ≥ 0 and Q ⊆ R
2 a square, and with

γ (Q) := R|Q|− 1
2 , we have that

E (κ,1−κ,0)
n (Q)

≥ 2π |α|(1−κ)
(

1−2γ (Q)
)2
+
n(n − 1)

|Q|
(

1− 2|α|γ (Q)−2n(n − 1)

π2κ/(1−κ)−2π |α|n(n − 1)

)

+
,

for any κ ∈ (0, 1), α ∈ R and n ≥ 2 such that π2κ/(1− κ) > 2π |α|n(n − 1).

Proof. Following [36] we write for the operator of the left-hand side

H = κ

n
∑

j=1

(−�x j ) + (1− κ)W,

with (assuming α > 0 for notational simplicity)

W = 2πα
∑

j �=k

1BR(0)

πR2 (x j − xk).

We apply the following result due to Temple [36,70]: If H = H0 + V , for some
Schrödinger operator H0 ≥ 0 and scalar potential V ≥ 0, then the ground-state
energy of H is bounded from below by

λ0(H0) + 〈V 〉ψ0 −
〈V 2〉ψ0 − 〈V 〉2ψ0

λ1(H0) − 〈V 〉ψ0

,

as long as λ1(H0)−〈V 〉ψ0 is positive. Hereψ0 denotes the normalized ground state
of H0, 〈V 〉ψ0 :=

∫

V |ψ0|2 is the expectation of V in the state ψ0, and λ0(H0) resp.
λ1(H0) is the first resp. second eigenvalue of H0.

In our case, H0 = −κ�N
Qn (the Neumann Laplacian) and ψ0 ≡ |Q|−n/2, we

have that

2πα
n(n − 1)

|Q| ≥ 〈W 〉ψ0 ≥ 2πα(1− 2γ (Q))2
n(n − 1)

|Q| ,

where for the lower bound one integrates the first particle of each pair on a smaller
domain with margin R away from the boundary. Moreover, by Cauchy–Schwarz

〈W 2〉ψ0 ≤
2α

R2 n(n − 1)〈W 〉ψ0 .
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Thus Temple’s inequality yields that

H ≥ 〈(1− κ)W 〉ψ0 −
〈(1− κ)2W 2〉ψ0 − 〈(1− κ)W 〉2ψ0

λ1(κ
∑

j (−� j )) − 〈(1− κ)W 〉ψ0

≥ (1− κ)〈W 〉ψ0

(

1− (1− κ)2αR−2n(n − 1)

κπ2/|Q| − (1− κ)〈W 〉ψ0

)

≥ 2πα(1− κ)(1− 2γ (Q))2
n(n − 1)

|Q|
(

1− 2αγ (Q)−2n(n − 1)

π2κ/(1− κ)− 2παn(n − 1)

)

,

as claimed. ��

5.2. Long-Range Exclusion

Wenow turn to local energy bounds for the pure long-range part of themagnetic
interaction.

Lemma 5.3. (Local exclusion—long range) For any α ∈ R, R ≥ 0 and Q ⊆ R
2 a

square, and with γ (Q) := R|Q|− 1
2 , we have that

E (0,0,1)
n (Q) ≥ eLR(α, γ (Q))

|Q| (n − 1)+,

and

T (0,0,1)
Q [�] ≥ eLR(α, γ (Q))

|Q|
(∫

Q
�� − 1

)

+
,

with
eLR(α, γ ) := π

24
g
(

cαN , 12γ
)2

(1− 12γ )3+,

where c = 5.3/
√
8 · 10−4.

For R = 0, the above bounds are valid with eLR(α, 0) = f (( j ′αN
)2) for all

α ∈ R, where f : [0, ( j ′1)2] → R is a function defined below satisfying

t/6 ≤ f (t) ≤ 2π t and f (t) = 2π t
(

1− O(t1/3)
)

(5.4)

(see Fig. 6 for both lower and upper bounds for f ).

The tiny constant c stems fromTheorem 1.3 and again we expect that it could be
replaced with c = 1/

√
3 or just slightly smaller (recall Remark 4.2). Accordingly

we have not aimed for the sharpest possible bounds in our proof for R > 0. Note
however that for R = 0 and in the limit α → 0, the two-particle energy per particle
is exactly the expected one from average-field theory, π( j ′α∗)

2 ∼ 2πα∗ ∼ 2π |α|
for suitable α, however the bound is only linear (and not quadratic) in n and hence
only good for small enough boxes Q, resulting in a worse constant (by a factor 1/2)
when applied below in the thermodynamic limit. Also note that the bounds involve
αN and not αn or α%∫Q ��& because there is a probability that more particles (in fact
all the way up to N ) can be found on Q.
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ν α

Fig. 6. Left A comparison between the optimized energy bounds for f (( j ′ν)2) on the unit
square as a function of ν ∈ [0, 1], obtained by means of the projection method (blue) and
Temple (yellow), as well as the upper and lower bounds given in (5.4) (green). Right A
numerical lower bound to the energy eLR(α, 0) = f (( j ′α∗)2) on the unit square as a function
of α. The bound uses the projection method and the erratic behavior is due to the function
α �→ α∗ being discontinuous at all odd-numerator rationals

Proof of Lemma 5.3. Ideal case.We begin with the more transparent case of R =
0, and note that we may set |Q| = 1 by scaling. Our starting point is the long-range
magnetic interaction bound provided byTheorem1.3. For the ideal case the theorem
states that

n
∑

j=1

∫

Qn
|Dj�|2 dx ≥ 1

n

∑

j<k

∫

Qn
( j ′αN

)2
1Bδ(X jk )

(r jk)

δ(X jk)2
|�|2 dx.

In order to convert this non-uniform potential to a uniform bound for the energy
we take part of the kinetic energy and then apply either Temple’s inequality as in
Lemma 5.2 or a projection argument as in [49, Lemma 7] or Lemma 4.4. To this
end we take a fraction κ ∈ [0, 1] of the original kinetic energy for which we use
the diamagnetic inequality and the identity

n
∑

j=1

|z j |2 = 1

n − 1

∑

j<k

(

|z j |2 + |zk |2
)

, z j ∈ C,

and on the remaining fraction 1− κ we use Theorem 1.3. We then obtain that

n
∑

j=1

∫

Qn
|Dj�|2 dx

≥ 1

n

∑

j<k

∫

Qn

(
κn

n − 1

(∣
∣∇ j |�|∣∣2 + ∣∣∇k |�|∣∣2)

+ (1− κ)( j ′αN
)2
1Bδ(X jk )

(r jk)

δ(X jk)2
|�|2
)

dx

≥ 1

n

∑

j<k

∫

Qn−2

∫

Q2

(

κ
(∣
∣∇ j |�|∣∣2 + ∣∣∇k |�|∣∣2)

+ (1− κ)( j ′αN
)2
1Bδ(X jk )

(r jk)

δ(X jk)2
|�|2
)

dx jdxkdx′



348 Simon Larson & Douglas Lundholm

≥ (n − 1)+ eLR(α, 0),

where eLR(α, 0) := f (( j ′αN
)2) and

f (t) := 1

2
sup

κ∈(0,1)
inf∫

Q2 |ψ |2=1

∫

Q2

(

κ
(∣
∣∇1|ψ |∣∣2+∣∣∇2|ψ |∣∣2)+(1−κ)t

1Bδ(X)
(r)

δ(X)2
|ψ |2
)

dx1dx2.4

(5.5)
We then use the convexity in n to obtain the corresponding bound for TQ[�] in
terms of eLR(α, 0). The upper bound f (t) ≤ 2π t is found simply by taking the
trial state ψ = ψ0 ≡ 1 and then κ = 0, carrying out the integration as below (with
δ̂ = 0).

We now wish to find a lower bound for the integral in f (t), which then is to be
maximized in κ . This is equivalent to finding a lower bound for the ground-state
energy of the Schrödinger operator

H := −κ�N
Q2 + t (1− κ)V, V (x1, x2) := V (r,X) = 1Bδ(X)

(r)

δ(X)2
.

However, to apply a projection bound or use Temple’s inequality requires that
V ∈ L∞(Q2) and V ∈ L2(Q2), respectively. As neither of these conditions are
satisfied for our V we use the fact that V ≥ 0 and thus truncating our potential will
only lower the energy. Therefore we instead study the eigenvalue problem with V
replaced by the truncated potential V̂ defined in relative coordinates by

V̂ (r,X) :=

⎧

⎪⎪⎨

⎪⎪⎩

1Bδ(X)
(r)

δ(X)2
, δ(X) ≥ δ̂

1Bδ(X)
(r)

δ̂2
, δ(X) < δ̂

(in slightly more compact notation, V̂ = min{V, 1/δ̂2}). As V̂ ∈ L∞(Q2),
‖V̂ ‖∞ = 1/δ̂2, it follows that also V̂ ∈ L2(Q2).

We proceed by calculating the expectation of V̂ and V̂ 2 in the ground state
ψ0 ≡ 1 of−�N

Q2 , as needed for the bounds. Through a straightforward calculation
one finds that

〈V̂ 〉ψ0 = 4
∫

Q

∫

QX

V̂ (r,X) drdX

= 4

(∫

[δ̂,1−δ̂]2

∫

QX

1

δ(X)2
drdX+

∫

Q\[δ̂,1−δ̂]2

∫

QX

1

δ̂2
drdX

)

= 4π
(

1+ 2δ̂2 − 8δ̂

3

)

,

4 It also turns out that we do not gain much by keeping the n-dependence in the first term
if we are aiming for a bound which is convex in n.
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and correspondingly for V̂ 2 we obtain

〈V̂ 2〉ψ0 = 4
∫

Q

∫

QX

V̂ (r,X)2 drdX

= 4

(∫

[δ̂,1−δ̂]2

∫

QX

1

δ(X)4
drdX+

∫

Q\[δ̂,1−δ̂]2

∫

QX

1

δ̂4
drdX

)

= 8π
( 8

3δ̂
+ 4 ln(2δ̂) − 5

)

.

Choosing δ̂ = η/2 for some η ∈ [0, 1] (this normalization is convenient) results in

〈V̂ 〉ψ0 = 4π
(

1+ η2

2
− 4η

3

)

, and 〈V̂ 2〉ψ0 = 8π
(16

3
η−1 + 4 ln η − 5

)

.

Our considerations here have been for	 = Q the unit square but also other domains
	 could be of interest. Similar calculations when 	 is the unit disk and δ̂ = η give
instead

〈V̂ 〉ψ0 = 4
(

1+ η2

2
− 4η

3

)

, and 〈V̂ 2〉ψ0 = 2
(16

3
η−1 + 4 ln η − 5

)

.

Let P denote the orthogonal projection onto the ground state ψ0 ≡ 1, and
let P⊥ = 1 − P . Then (−�N

Q2)P = 0, and with λ1(−�N
Q2) the first non-zero

Neumann eigenvalue,

(−�N
Q2)P

⊥ ≥ λ1(−�N
Q )P⊥ = π2P⊥.

Arguing as in Lemma 4.4, for any μ ∈ (0, 1) we obtain that

V̂ ≥ (1− μ)PV̂ P + (1− μ−1)P⊥V̂ P⊥,

the first of these operators is equal to 〈V̂ 〉ψ0 P , and we can control the second term
by using that ‖P⊥V̂ P⊥‖ ≤ ‖V̂ ‖∞ = 4/η2.

Thus, for any μ, κ, η ∈ (0, 1), we find that

H ≥ (1− μ)4π t (1− κ)
(

1+ η2

2
− 4η

3

)

P +
(

κπ2 + (1− μ−1)
4t (1− κ)

η2

)

P⊥

≥ min

{

(1− μ)4π t (1− κ)
(

1+ η2

2
− 4η

3

)

, κπ2 + (1− μ−1)
4t (1− κ)

η2

}

(P + P⊥).

The last expression, seen as a function in t , is piecewise linear and concave. Thus to
obtain the largest linear minorant of this function it suffices to find the largest value
attained at the right endpoint of our range of values t , that is at t = ( j ′1)2 ≈ 3.8996.

By the μ dependence of each of the two terms in the minimum this quantity is
seen to be maximal when the two terms are equal. Solving this quadratic equation
in μ and choosing η = κ = 0.68 we find that

H ≥ t/3 and hence f (t) ≥ t/6.
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To obtain that f (t) = 2π t (1 − O(t1/3)) we apply Temple’s inequality (as in
Lemma 5.2). In our current setting it yields that

H ≥ 〈t (1− κ)V̂ 〉ψ0 −
〈t2(1− κ)2V̂ 2〉ψ0 − 〈t (1− κ)V̂ 〉2ψ0

κλ1(−�N
Q2) − 〈t (1− κ)V̂ 〉ψ0

= 4π t (1− κ)

(

1+ η2

2
− 4η

3

− 2t (1− κ)

π

16
3 η−1 + 4 ln η − 5− 2π

(

1+ η2

2 − 4η
3

)2

κπ − 4t (1− κ)
(

1+ η2

2 − 4η
3

)

)

,

provided that κπ − 4t (1− κ)
(

1+ η2

2 − 4η
3

)

> 0. We decrease the above quantity
by throwing away positive terms and increasing the denominator of the last term
yielding

H ≥ 4π t (1− κ)

(

1− 4η

3
− 32

3π

(1− κ)tη−1

κπ − 4(1− κ)t

)

.

The positivity of denominator is then ensured if κ ≥ 4t
π
. We can thus, for t suffi-

ciently small, choose κ = tβ for some 0 < β < 1 to be fixed later. Inserting this
into our expression we find that

H ≥ 4π t (1− tβ)

(

1− 4η

3
− 32

3π

(1− tβ)tη−1

tβπ − 4(1− tβ)t

)

.

Setting η = tγ , γ > 0, we obtain that

H ≥ 4π t (1− O(tβ)− O(tγ )− O(t1−β−γ )),

and choosing β = γ = 1/3 yields

H ≥ 4π t (1− O(t1/3)).

Inserting this into (5.5) we have

f (t) = 2π t (1− O(t1/3)),

which completes the proof.
Extended case. Let, in the case that R ≥ 0, γ denote the relative length scale

of the interaction, γ = γ (Q) = R|Q|−1/2, and note that we may again rescale
everything so that |Q| = 1. We then proceed as above using projection, where the
bound from Theorem 1.3 is replaced by

n
∑

j=1

∫

Qn
|Dj�|2 dx ≥ (1−κ ′)1

n

∑

j<k

∫

Qn
g
(

ν,
3γ

δ(X jk) − 3γ

)21A(x j , xk)
δ(X jk)2

|�|2 dx,

where ν = c(κ ′)αN/
√
1− κ ′ and κ ′ ∈ (0, 1) is an additional parameter thatwemay

optimize over, howeverwewill in order to simplify the analysis take κ ′ = 1/2. Since
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δ(X jk) maximally takes the value 1/2, the above expression is zero for γ ≥ 1/12.
For 0 ≤ γ < 1/12 we can proceed by truncating to the, in γ , uniformly bounded
potential

V̂ (X, r) := 1

2
g
(

ν,
3γ

δ(X) − 3γ

)21 Â(x1, x2)

δ(X)2
,

with the support (consisting of truncated relative annuli)

Â := {(x1, x2) ∈ Q2 : 3γ + 1/4 ≤ δ(X) ≤ 1/2 and 3γ ≤ |r| ≤ δ(X)− 3γ },
and therefore, since g(ν, γ ) is monotonically decreasing in γ ,

‖V̂ ‖∞ ≤ 1

2(3γ + 1/4)2
g(ν, 0)2 ≤ 8( j ′ν)2.

Also, using the coarea formula and that |∇δ| = 1 almost everywhere, we obtain
that

〈V̂ 〉ψ0 =
1

2

∫

Q

∫

QX

g
(

ν,
3γ

δ(X)− 3γ

)21 Â(x1, x2)

δ(X)2
4drdX

= 2π
∫

Q
g
(

ν,
3γ

δ(X) − 3γ

)2
(

(δ(X)− 3γ )2 − (3γ )2
)

+
δ(X)2

dX

= 8π
∫ 1/2

3γ+1/4
g
(

ν,
3γ

t − 3γ

)2
(1− 6γ /t)(1− 2t) dt

≥ π

3
g(ν, 12γ )2(1− 12γ )3,

where in the last step we again used the monotonicity of g, and
∫ 1/2

3γ+1/4
(1− 6γ /t)(1− 2t) dt =

(
1

16
+
(3

2
− 6 ln

2

1+ 12γ

)

γ − 27γ 2
)

≥ 1

24
(1− 12γ )3,

where the lower bound is found by Taylor expansion around γ = 1/12.
Thus, the corresponding projection bound for the operator H = −κ�N

Q2+(1−
κ)V̂ reads

H ≥ min
{

(1−μ)(1−κ)
π

3
g(ν, 12γ )2(1−12γ )3+, κπ2−(μ−1−1)8(1−κ)( j ′ν)2

}

.

We take, for simplicity, μ = 1/2 and κ = 1/2, and use that g(ν, 12γ ) ≤ j ′ν ' π ,
to obtain the claimed bound
n
∑

j=1

∫

Qn
|Dj�|2 dx ≥ (n−1)+ eLR(α, γ ), eLR(α, γ ) = π

24
g(ν, 12γ )2(1−12γ )3+,

with ν = cαN and c = c(κ ′)/
√
1− κ ′ = 5.3/

√
8 · 10−4. Again we may use the

convexity in n to obtain the corresponding bound for TQ[�]. ��
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6. Application to the Homogeneous Anyon Gas

Let us finally consider the homogeneous gas in the thermodynamic limit, that
is N particles confined to a large box (square) Q0 ⊆ R

2, where we shall take
simultaneously N → ∞ and |Q0| → ∞ while keeping the density �̄ := N/|Q0|
fixed. The only dimensionless parameters are then themagnetic interaction strength

α ∈ R and the relative interaction length scale (magnetic filling ratio) γ̄ := R�̄
1
2 ,

also held fixed, so that in the limit the ground-state energy,

E0(N , Q0, α, R) := inf
{

〈�, T̂α�〉 : � ∈ DN
α,R ∩ C∞

c (QN
0 ), ‖�‖2 = 1

}

,

per particle must for dimensional reasons be given by

E0(N , Q0, α, R)

N
→ e(α, γ̄ )�̄, (6.1)

where e(α, γ̄ ) ≥ 0 is dimensionless. We have that e(0, γ̄ ) = 0 for all γ̄ ≥ 0,
corresponding to non-interacting bosons, and e(1, 0) = 2π for ideal fermions in
two dimensions due to the Weyl asymptotics for the Laplacian eigenvalues. We
also have a reflection-conjugation symmetry e(−α, γ̄ ) = e(α, γ̄ ) for all α, γ̄ .
Furthermore, in the dilute limit we should see a periodicity in the entire spectrum
with respect to any shift in α by an even integer, and in particular

e(α + 2n, 0) = e(α, 0) ∀ α ∈ R, n ∈ Z,

due to the gauge equivalence (1.7). On the other hand, average-field theory (1.3)
suggests a linear dependence e(α, γ̄ ) = 2π |α| for arbitrary α and large enough γ̄ .
Hence there must be some non-trivial interpolation between these two regimes of
low respectively high density.

Although the existence of the thermodynamic limit (6.1) might be expected on
physical grounds, as is indeed the case for bosons and fermions with reasonable
scalar interactions (see for example [6,35]), we are not aware of any proof of it
for anyons, whose interaction is long-range and magnetic instead of scalar. Fur-
thermore, there is for anyons also a subtlety in the choice of boundary conditions,
partly since topology plays an important role in the whole problem and therefore
periodic b.c. may seem problematic, and even in the case of a constant magnetic
field we know that Neumann and Dirichlet b.c. differ substantially (cf. Section 2
and Proposition 4.3). We shall therefore replace the limit (6.1) with the lim inf and
also stick to Dirichlet b.c. (‘hard-wall’ confined anyons) in all that follows.

Theorem 6.1. (Universal bounds for the homogeneous anyon gas) Let e(α, γ̄ ),
where γ̄ = R�̄1/2, denote the ground-state energy per particle and unit density
of the extended anyon gas in the thermodynamic limit at fixed α ∈ R, R ≥ 0 and
density �̄ > 0 where Dirichlet boundary conditions have been imposed, that is

e(α, γ̄ ) := lim inf
N , |Q0|→∞
N/|Q0|=�̄

E0(N , Q0, α, R)

�̄N
.
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Then

e(α, γ̄ ) ≥ C

(

2π
|α|min

{

2(1− γ̄ 2/4)−1, Kα

}

Kα + 2|α|(− ln(γ̄ /2)
) 1γ̄ <2 + 2π |α|1γ̄≥2

+ πg
(

cα∗, 12γ̄ /
√
2
)2

(1− 12γ̄ /
√
2)3+
)

, (6.2)

for some universal constant C > 0, with Kα given in Lemma 5.1, and c > 0 in
Lemma 5.3. Furthermore, for any α ∈ R and with f given in Lemma 5.3, we have
for the ideal gas that

e(α, 0) ≥ 1

4
f
((

j ′α∗
)2) = 1

2
2πα∗

(

1− O
(

α
1/3∗
))

. (6.3)

Moreover, for any fixed α ∈ R\{0} we obtain in the dilute limit that

lim inf
γ̄→0

e (α, γ̄ )

2π |ln γ̄ |−1 ≥ 1, and lim inf
γ̄→0

e (α, γ̄ ) ≥ π

81

(

j ′cα∗
)2 ≥ c

81
2πα∗,

(6.4)
while if γ̄ > 0 is arbitrary but fixed, and

|α| ≤ ε5 min
{

γ̄ 2, ε3γ̄−4}, 0 < ε <
√

π/8, (6.5)

then
e(α, γ̄ ) ≥ 2π |α|(1− O(ε)). (6.6)

Note that for the short-range part of the interaction, one can view the height
of the potential compared to the average density as a dimensionless interaction
strength, and that in the dilute limit (6.4) with fixed α > 0 we have that

α

R2 /�̄ = αγ̄−2 →∞,

corresponding to a hard-core interaction. On the other hand, under the conditions
in (6.5),

α

R2 /�̄ = αγ̄−2 ≤ ε5 ' 1,

and thus corresponding to a very weak soft-core interaction rather than a hard-core
one in this regime.

We also note that the average-field description with its linear dependence on
α has indeed been proved to be correct for the trapped anyon gas in a certain
almost-bosonic regime; see [47]. In the present context this corresponds to taking
Q0 fixed, α ∼ β/N and R ∼ N−η with 0 < η < 1/4, in which case we have that
γ̄ ∼ N 1/2−η → ∞ and αγ̄−2 ∼ N 2η−2 → 0 as N → ∞, that is a combined
high-density and weak soft-core limit. However, the sense in which average-field
theory then holds is that all the anyons become identically distributed subject to a
self-consistent magnetic field, and it should be remarked that the constant 2π that
is predicted by the usual (constant-field) average-field approximation and which
appears above does not take such self-interactions fully into account and may ulti-
mately be replaced by a larger effective constant, at least in a particular limit [11].
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Proof of Theorem 6.1. Let us begin with the universal bound (6.2) for all α, γ̄ .We
have a sequence of N ≥ 1 and squares Q0 ⊆ R

2 with N/|Q0| = �̄, and consider
in each case an arbitrary function � ∈ DN

α,R supported on QN
0 . Let us again write

T [�] := 〈�, T̂α�〉 = κ1

N
∑

j=1

∫

R2N
|Dj�|2 dx+ κ2

N
∑

j=1

∫

R2N
|Dj�|2 dx

+ κ3

N
∑

j=1

∫

R2N
|Dj�|2 dx (6.7)

≥
∫

R2N

N
∑

j=1

(

κ1
∣
∣∇ j |�|∣∣2 + κ2

∑

k �= j

2π |α|1BR(0)

πR2 (x j − xk) |�|2

+ κ3|Dj�|2
)

dx.

Take κ1 = κ2 = κ/2 and κ3 = 1− κ , and a partition of Q0 into M2 squares Q of
equal size. Then, by the local exclusion principles of Lemmas 5.1 and 5.3,

N−1T [�] ≥ N−1
∑

Q

T (κ/2,κ/2,1−κ)
Q [�] (6.8)

≥ N−1
∑

Q

|Q|−1
(κ

2
eSR
(

α, γ (Q),
∫

Q ��

)+ (1− κ)eLR
(

α, γ (Q)
))
(∫

Q
�� − 1

)

+

≥ N−1|Q0|−1M2
∑

Q

(∫

Q
�� − 1

)

+

×

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

κ
2 |α|min

{

(1− γ (Q)2/2)−1, Kα/2
}(

Kα + 2|α|(− ln(γ (Q)/
√
2)
))−1

+(1− κ) π
24 g
(

cαN , 12γ (Q)
)2

(1− 12γ (Q))3+, for γ (Q) <
√
2

κ|α|γ (Q)−2
∫

Q ��, forγ (Q) ≥ √
2.

Note that γ (Q)= γ̄ MN−1/2 and we are free to choose κ ∈ [0, 1] and the integer
M ≥ 1 as we like.We chooseM := μN 1/2 for suitableμ > 0, so that γ (Q) = μγ̄ .
Then for μ < min{√2/γ̄ , 1} we have, using

∑

Q(
∫

Q �� − 1)+ ≥ (N − M2)+,
that

N−1T [�] ≥ �̄μ2(1− μ2)+
(

κ

2
|α|min

{

(1− μ2γ̄ 2/2)−1+ , Kα/2
}

Kα + 2|α|(− ln(μγ̄ /
√
2)
) (6.9)

+ (1− κ)
π

24
g(cαN , 12μγ̄ )2(1− 12μγ̄ )3+

)

.

On the other hand for
√
2/γ̄ ≤ μ ≤ 1, we may use

1

M2

∑

Q

∫

Q
��

(∫

Q
�� − 1

)

+
≥ N

M2

(
N

M2 − 1

)

+
,
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which follows from convexity, to obtain that

N−1T [�] ≥ κ|α|�̄γ̄−2(μ−2 − 1)+.

Hence, in the case γ̄ ≥ 2 >
√
2 we can in the thermodynamic limit choose κ = 1

and μ = √
2/γ̄ in order to obtain that

e(α, γ̄ ) ≥ 1

2
|α|(1− 2/γ̄ 2) ≥ 1

4
|α|,

while for γ̄ < 2 we choose, for simplicity, κ = 2/3 and μ = 1/
√
2 obtaining that

e(α, γ̄ ) ≥ 1

288

(

12|α|min
{

2(1− γ̄ 2/4)−1+ , Kα

}

Kα + 2|α|(− ln(γ̄ /2))

+πg(cαN , 12γ̄ /
√
2)2(1− 12γ̄ /

√
2)3+
)

.

This proves the first part of the theorem with C = 1/288.
In the ideal case R = 0, and hence γ̄ = 0, we take κ = 0 and M ∼ √

N/2
in (6.8) (which means approximately 2 particles in each box) to obtain (6.3) from
(5.4) of Lemma 5.3.

The second bound in (6.4) follows immediately from (6.9) and the properties
of g, by setting κ = 0 and μ = 1/

√
2. For the first bound we set κ1 = 1 − κ ,

κ2 = κ and κ3 = 0 in (6.7) and use the result [41] of Lieb and Yngvason for
the dilute repulsive Bose gas in two dimensions. We find for the (bosonic, and
therefore positive; see [35, Corollary 3.1]) ground state �0 of this expression, with
fixed κ ∈ (0, 1) and α > 0, that

T [�]
N �̄

≥ 1− κ

N �̄

∫

R2N

( N
∑

j=1

∣
∣∇ j�0

∣
∣
2 +
∑

j<k

W (x j − xk) |�0|2
)

dx

= 4π(1− κ)

|ln a2R �̄|
(

1+ O
(|ln a2R �̄|−1/5))

= 2π(1− κ)

K ′
α,κ − ln γ̄

(

1+ O
(

(K ′
α,κ − ln γ̄ )−1/5)),

where we used that the pair potential

W (x) := W0

R2 1BR(0)(x), W0 = 4ακ/(1− κ),

has scattering length (cf. (5.3))

aR = R exp

(

− 1√
W0/2

I0(
√
W0/2)

I1(
√
W0/2)

)

= R exp(−K ′
α,κ ),

with

K ′
α,κ := 1√

2ακ/(1− κ)

I0(
√
2ακ/(1− κ))

I1(
√
2ακ/(1− κ))

= Kακ/(1−κ)

2ακ/(1− κ)
.
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Hence for any α > 0 and 0 < ε ' 1 we, by setting κ = ε and then taking the limit
γ̄ → 0, obtain that

|ln γ̄ |
2π

e(α, γ̄ ) ≥ (1− ε)
(

1+ K ′
α,ε|ln γ̄ |−1)−1(1+ O

(

(K ′
α,ε + |ln γ̄ |)−1/5))

→ 1− ε.

So for each fixed α ∈ R\{0}

lim inf
γ̄→0

e(α, γ̄ )

2π |ln γ̄ |−1 ≥ 1.

To obtain the bound (6.6) for the soft-core regime we follow [36,39–41]. Again
we partition Q0 intoM2 squares Q of equal size, and let � = |Q|1/2.With κ ∈ [0, 1]
we then have that

N−1T [�] ≥ N−1
∑

Q

T (κ,1−κ,0)
Q [�] ≥ N−1

∑

Q

∑

n≥0
E (κ,1−κ,0)
n (|Q|)pn(�; Q).

Set cn = ∑Q pn(�; Q)|Q|/|Q0|, that is cn is the fraction of cells Q containing
precisely n particles, then

∑

n≥0
cn = 1 and

∑

n≥0
cnn = �̄�2.

Rearranging the sum and from now on suppressing the weight κ = (κ, 1 − κ, 0)
we find that

N−1T [�] ≥ 1

�̄�2

∑

n≥0
En(|Q|)cn, (6.10)

which is precisely the starting point of the argument in [39–41].
Fix p ∈ N. Since the energy is superadditive, En+n′ ≥ En + En′ , we for all

n ≥ p have that

En(|Q|) ≥ (n/p)Ep(|Q|) ≥ n

2p
Ep(|Q|).

Applying Lemma 5.2 yields

En(|Q|) ≥ π |α|n(p − 1)

�2
K (p, �),

where

K (n, �) := (1− κ)

(

1− 2R

�

)2

+

(

1− 2|α|�2R−2n(n − 1)

π2κ/(1− κ)− 2π |α|n(n − 1)

)

+
,

if the expression in the last denominator is positive and K (n, �) := 0 otherwise.
If instead n < p we use that K (n, �) is decreasing in n to find

En(|Q|) ≥ 2π |α|n(n − 1)

�2
K (p, �).
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Splitting the sum (6.10) into two we thus find that

∑

n≥0
En(|Q|)cn =

∑

n<p

En(|Q|)cn +
∑

n≥p

En(|Q|)cn

≥ 2π |α|
�2

K (p, �)

(
∑

n<p

n(n − 1)cn + 1

2

∑

n≥p

n(p − 1)cn

)

.

We wish to minimize

∑

n<p

n(n − 1)cn + 1

2

∑

n≥p

n(p − 1)cn . (6.11)

Set

k := �̄�2 and t :=
∑

n<p

cnn ≤ k,

by convexity (6.11) is then larger than

t (t − 1) + 1

2
(k − t)(p − 1).

If p ≥ 4k − 1 and t ≤ k this is minimized at t = k, where it is equal to k(k − 1).
Thus by choosing p = (4�̄�2) we have shown that

N−1T [�] ≥ 2π |α|�̄
(

1− 1

�̄�2

)

+K (4�̄�2, �),

and hence, upon taking the thermodynamic limit N , |Q0| → ∞ with all the other
parameters kept fixed,

e(α, γ̄ ) ≥ 2π |α|(1−κ)
(

1− 1

�̄�2

)

+

(

1−2
γ̄

�̄1/2�

)2

+

(

1− 32|α|γ̄−2�̄3�6

π2κ/(1−κ)−32π |α|�̄2�4

)

+
,

(6.12)
as long as 32|α|�̄2�4 < πκ/(1− κ).

Given ε > 0, let us choose κ = ε and also demand that (�̄�2)−1 ≤ ε,
γ̄ (�̄1/2�)−1 ≤ ε, |α|γ̄−2�̄3�6 ≤ ε2, and |α|�̄2�4 ≤ επ/64. We therefore choose

� = (ε�̄)−1/2 max
{

1, ε−1/2γ̄
}

and then find that, together with the requirement (6.5) on α and ε which implies
|α|�̄2�4 ≤ ε3 < επ/64, all conditions above are satisfied, and the error terms in
(6.12) are of order ε or higher. ��
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Appendix A. Some Properties of Bessel Functions

Proposition A.1. For ν > 0 we let j ′ν denote the first positive zero of the derivative
of the Bessel function Jν . Then we have that√

2ν ≤ j ′ν ≤
√

2ν(1+ ν).

A proof of the above proposition and much more refined bounds for the zeros of
Bessel functions and their derivatives can be found in [26]. For completeness we
provide an elementary proof which covers our needs.

Proof. By a standard variational argument it can be shown that

inf
u

∫ 1
0

(|u′|2 + ν2r−2|u|2)r dr
∫ 1
0 |u|2r dr = ( j ′ν)2,

where the infimum is taken over all u ∈ W 1,2([0, 1], rdr) and is attained by u(r) =
Jν( j ′νr).

For ν > 0 and u ∈ W 1,2([0, 1], rdr) with u(0) = 0 we obtain using Hölder’s
inequality that

|u(t)|2 = 2*
[∫ t

0
ū(r)u′(r) dr

]

≤ 2

(∫ t

0
|u′(r)|2r dr

)1/2(∫ t

0
|u(r)|2r−1 dr

)1/2

= 2

ν

(∫ t

0
|u′(r)|2r dr

)1/2(

ν2
∫ t

0
|u(r)|2r−1 dr

)1/2

.

Through an application of Young’s inequality we then find

|u(t)|2 ≤ 1

ν

∫ t

0

(

|u′(r)|2 + ν2

r2
|u(r)|2

)

r dr ≤ 1

ν

∫ 1

0

(

|u′(r)|2 + ν2

r2
|u(r)|2

)

r dr,

and integrating both sides in t over (0, 1) against t dt yields
∫ 1

0
|u(t)|2t dt ≤ 1

ν

(∫ 1

0
t dt

)(∫ 1

0

(

|u′(r)|2 + ν2

r2
|u(r)|2

)

r dr

)

= 1

2ν

∫ 1

0

(

|u′(r)|2 + ν2

r2
|u(r)|2

)

r dr,

which implies that
∫ 1
0

(|u′|2 + ν2r−2|u|2)r dr
∫ 1
0 |u|2r dr ≥ 2ν.

Taking the infimum over all functions u ∈ W 1,2([0, 1], rdr) such that u(0) = 0, in
particular this includes Jν , we see that

( j ′ν)2 ≥ 2ν,

which completes the proof of the lower bound. To obtain the upper bound, simply
take u(r) = rν in the variational quotient above. ��
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In the case of R-extended anyons our bounds result in studying the behavior of
solutions to a Bessel-type eigenvalue equation of order ν with Neumann boundary
conditions on the interval (γ, 1), for some 0 < γ < 1. Thus it is of interest for
us to understand the behavior of the lowest eigenvalue of such an equation in both
parameters γ and ν.

Proposition A.2. Given ν > 0 and 0 < γ < 1, let g(ν, γ ) := √
λ, where λ denotes

the first positive solution to the eigenvalue equation

−u′′(r)− u′(r)
r

+
(ν2

r2
− λ
)

u(r) = 0, (A.1)

with the Neumann boundary conditions u′(γ ) = u′(1) = 0. Then, for fixed γ ,
g(ν, γ ) is a monotonically increasing function in ν. Also, for fixed ν, g(ν, γ ) is a
monotonically decreasing function of γ , and satisfies

ν < g(ν, γ ) < min{ j ′ν, ν/γ }.
Moreover, we have that limγ→0 g(ν, γ ) = j ′ν and limγ→1 g(ν, γ ) = ν.

Proof. That g(ν, γ ) is monotonically increasing in ν is clear from the variational
characterization of λ,

λ = inf
u

∫ 1
γ

(|u′|2 + ν2r−2|u|2)r dr
∫ 1
γ
|u|2r dr .

It is well known that the solution of the above differential equation is given
by a linear combination of the Bessel functions Jν(

√
λr) and Yν(

√
λr). Only if γ

were zero could we exclude the Bessel function of the second kind since it fails to
be in W 1,2([0, 1], rdr) and thus cannot be a solution. Thus the problem reduces to
finding the smallest λ > 0 such that the system

α J ′ν(
√

λγ ) + βY ′
ν(
√

λγ ) = 0

α J ′ν(
√

λ) + βY ′
ν(
√

λ) = 0

admits a non-trivial solution, which is equivalent to the determinant equation

J ′ν(
√

λγ )Y ′
ν(
√

λ) − Y ′
ν(
√

λγ )J ′ν(
√

λ) = 0.

Assuming that
√

λ is smaller than the first zero of Y ′
ν (this will be seen to be true

once we find our solution) we can equivalently solve the equation

J ′ν(
√

λ)

Y ′
ν(
√

λ)
= J ′ν(

√
λγ )

Y ′
ν(
√

λγ )
.

Letting Gν(x) := J ′ν(x)/Y ′
ν(x) we find that

G ′
ν(x) =

2(ν2 − x2)

πx3Y ′
ν(x)

2 ,
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0 ν
√

λ jν ν/γ

Fig. 7. The function Gν(x) (blue) and its dilation Gν(γ x) (yellow) plotted for ν = 1 and
γ = 1/2

where we used that Jν and Yν satisfy the Bessel Equation (A.1) and the well-known
identity Jν(x)Y ′

ν(x) − J ′ν(x)Yν(x) = 2/(πx); see for example [59, Eqn. 10.5.2].
Thus Gν(x) is strictly increasing on (0, ν) and decreasing after that. We also

know thatGν(0) = Gν( j ′ν) = 0. But then it is clear that the graph ofGν(x) and that
of its dilation Gν(γ x) must intersect between x = ν and the minimum of x = ν/γ

and x = j ′ν (compare Fig. 7), and as this solution is less than the first zero of Y ′
ν the

assumption above is seen to be true. Moreover, as γ → 0 we see that the solution
x = √

λ tends to the zero j ′ν and if instead γ → 1 it tends to the maximum point ν.
By the above geometric considerations we can conclude that for 0 < γ < 1

and ν > 0 we have that λ, the smallest positive eigenvalue of (A.1), satisfies

λ ∈ [ν2,min{ j ′ν, ν/γ }2],
and is monotonically decreasing in γ . ��

Appendix B. Concavity of the One-Particle Profile

We have several times used concavity properties of the one-particle profile
f (d, ·), which howevermay fail if d is small.More preciselywe have the following:

Proposition B.1. For any d ≥ 0 the function f (d, ·) given by (4.12) is concave on
its support intersected with [R,∞). If in addition d ≥ R the function is concave
on its full support [d − R, d + R].
Proof. Without loss of generality we may, and do, assume that R = 1. The proof
is then a straightforward computation. We begin with assuming that d < R = 1.
For such d the function f (d, ·) is C2 on [1, d + 1] (and zero on (d + 1,∞)) which
reduces the statement to proving that ∂2r f (d, r) ≤ 0 in this region. Calculating this
derivative one finds

∂2r f (d, r) = − 2((d2 − 1)3 − 3(d2 − 1)2r2 + (5+ 3d2)r4 − r6)

πr((r + 1− d)(1+ d − r)(d + r − 1)(1+ d + r))3/2
,



Exclusion Bounds for Extended Anyons 361

and clearly the overall sign is determined by that of the polynomial in the denomi-
nator

p(d, r) := (d2 − 1)3 − 3(d2 − 1)2r2 + (5+ 3d2)r4 − r6.

Weneed to prove that p ≥ 0 for (r, d) in the triangular region given by1 ≤ r ≤ d+1
where 0 ≤ d ≤ 1.

We first check the statement on the boundary of the region:

p(1, r) = r4(8− r2) > 0

p(d, 1) = d2(12− 6d2 + d4) > 0

p(d, d + 1) = (1+ r)(r − 1)(4r2 + 1− r4) > 0.

Thus all that remains is to check that we have no stationary points for p in the
interior of the region. Calculating the derivative in r one finds that

∂r p(d, r) = 6d(d2 − 1)2 − 12d(d2 − 1)r2 + 6dr4.

As this is a quadratic polynomial in r2 we can solve the equation pr (d, r) = 0 and
find that there are no solutions in our region. This completes the proof of the claim
in the case d < R = 1.

In the case d ≥ R = 1wewish to prove that f (d, ·) is concave on [d−1, d+1].
It is here convenient to study the problem in the variables d and η = r − d, and
letting

g(d, η) := f (d, d + η) = 2(d + η)

π
arccos

(
d2 + (d + η)2 − 1

2d(d + η)

)

,

d ≥ 1, η ∈ [−1, 1].
Differentiating twice in η we find that

∂2ηg(d, η) = 2P(d, η)

π(d + η)((1− η2)(2d + η − 1)(2d + η + 1))3/2
, (B.1)

where

P(d, η) := −8d4 + 8d3(η3 − 4η) + 12d2(η4 − 3η) + d(6η5 − 20η3 + 6η)

+ η6 − 5η4 + 3η2 + 1.

As before the sign of (B.1) is determined by that of the polynomial P . If we can
prove that P(d, η) ≤ 0 for all d ≥ 1 and −1 ≤ η ≤ 1 the claim follows. To this
end we proceed as above. The values of P on the boundaries of this region are (in
the same manner as before) readily checked to be negative:

P(d, 1) = −8d(d + 1)3 < 0,

P(d,−1) = −8d(d − 1)3 ≤ 0,

P(1, η) = (1+ η)4(η2 + 2η − 7) ≤ 0.
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What remains is to check stationary points in the interior. For this polynomial
solving either of the equations ∂ηP(d, η) = 0 or ∂d P(d, η) = 0 is slightly harder.
However, since certain terms cancel one can instead solve the equation

∂ηP(d, η) = ∂d P(d, η),

and the solutions are d = 0, η = −d − √
d2 − 1 and η = −d + √

d2 − 1. The
third solution is the only one contained within our region. Evaluating the derivative
at this solution we obtain

∂ηP(d,−d +
√

d2 − 1) = −32(d2 − 1)3/2,

and since this is non-zero in the interior of our domain, the proof is complete. ��
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