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c© 2022 The Author(s)
https://doi.org/10.1007/s00023-022-01186-w Annales Henri Poincaré
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1. Introduction

The Lieb–Thirring (LT) estimates play an important role in the analysis of
properties of quantum systems. They concern the sum of powers of moduli of
negative eigenvalues of a given self-adjoint operator. Most common are such
estimates for a Schrödinger operator H(V ) = −Δ − V in R

d. Denote by λj =
λj(H(V )) the negative eigenvalues of H(V ). Then, the classical LT estimate
has the form:

∑

λj<0

|λj |γ ≡ Tr ([H(V )]−)γ ≤ LT(d, γ)
∫

Rd

V+(X)
d
2 +γdX. (1.1)

This estimate holds with γ ≥ 0 for d ≥ 3, γ > 0 for d = 2, and γ ≥ 1
2 in

dimension d = 1. There is an almost 50 years long history of proving this kind
of estimates and of searching best possible constant LT(d, γ), starting from
the initial paper by Lieb and Thirring [12]. This history is presented in the
recent book [6] and review papers cited there, and we will not reproduce it
here. In this book, several strategies of proving (1.1) are discussed, leading to
different values of LT(d, γ) and admitting different generalizations.

Probably, the most elementary method of proving (1.1) consists of deriv-
ing this inequality from its special case γ = 0; the latter inequality is called
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the CLR estimate, also with almost 50 years’ history,

N−(H(V )) ≡
∑

λj<0

1 ≤ CLR(d)
∫

Rd

V+(X)
d
2 dX, d ≥ 3, (1.2)

where N−(·) denotes the number of negative eigenvalues of the operator in
question. The best constant in (1.2) is unknown, and therefore, this method
cannot give the optimal constant in (1.1).

More generally, one is interested in LT and CLR type inequalities for the
operator,

Hl(V ) = (−Δ)l − V, 0 < l < ∞.

Here, the CLR inequality has the form:

N−(Hl(V )) ≤ C1.3

∫
V+(X)

d
2l dX; 2l < d, (1.3)

while the LT inequality becomes

Tr (Hl(V )−)γ ≤ C1.4

∫
V (X)

d
2l +γdX, γ > 0 for d ≥ 2l; γ ≥ 1 − d

2l
for d < 2l.

(1.4)

For l �= 1, d > 1, the sharp constant in (1.4) is not known yet, see [8].
Recently a certain progress was made in the eigenvalue analysis of Schrö-

dinger type operators with strongly singular potentials, namely, the ones being
singular measures, see [10,11,16–18]. In particular, in dimension d > 2l a
version of the CLR estimate was proved, see [16], Corollary 4.4. We formulate
here the particular case of our present interest.

Theorem 1.1. Let μ be a locally finite Borel measure on R
d, d > 2l, satisfying

the condition

μ(B(X, r)) ≤ A(μ)rs, s > d − 2l, 0 < r < ∞, X ∈ M ≡ suppμ, (1.5)

where B(X, r) is the ball of radius r centered at X. Suppose that the density
V (X) ≥ 0 belongs to Lϑ,μ, ϑ = s

2l−d+s , and consider the measure P = V μ.

Then, for the Schrödinger operator Hl(P ) = (−Δ)l − P, defined by the qua-
dratic form:

hl,P [u] =
∫

|∇lu|2dX −
∫

V (X)|u|2μ(dX), (1.6)

the estimate holds

N−(Hl(P )) ≤ C(d, l, s)A(μ)ϑ−1

∫
V (X)ϑμ(dX). (1.7)

We will omit the order l in the notation of operators and quadratic forms
further on.

The simple standard calculation (following, e.g., [1]) used to derive the
usual LT inequality from the CLR estimate, does not work directly for the
case of a singular measure. We present it here and show at which point the
reasoning breaks down.
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Let V be a function in Lϑ(Rd), d > 2l, γ > 0. For λ > 0, the function
(V −λ)+ belongs to L d

2l
(Rd) and we have, by the variational principle and the

usual CLR (1.3) applied to the potential (V − λ), the estimate

N−(H(V ) + λ) = N−(H(V − λ)) ≤ N−(H(V − λ)+)

≤ C

∫
((V (X) − λ)+)

d
2l dX. (1.8)

After this, the substitution of (1.8) in the right-hand side of
∑

|λj(H(V ))|γ = γ

∫ ∞

0

λγ−1N−(H(V ) + λ)dλ (1.9)

leads to the LT estimate (1.4).
Now, if we try to repeat (1.8) with a singular measure P = V μ instead

of a function V , we see that P − λdX is not a singular measure any more and
we may not apply (1.7). However, this approach can be modified, and this is
shown in the present paper. The result is the following.

Theorem 1.2. For d > 2l, let μ be a singular measure satisfying (1.5) with
some s > d − 2l. Then, for γ > 0,

Tr (H(V μ)−)γ ≤ C1.10A(μ)θ−1

∫
V+(X)θμ(dX), (1.10)

with constant C1.10 not depending on V, μ and

θ ≡ θ(d, s, l, γ) =
s + 2lγ

s − d + 2l
(1.11)

For s = d, i.e., for a measure P absolutely continuous with respect to the
Lebesgue measure, the exponent θ equals ϑ = d

2l + γ, so it coincides with the
exponent in (1.4). Another case which our result can be compared with is the
estimate established by R.Frank and A.Laptev, see [5]. There, for l = 1, the
singular measure μ is the Lebesgue measure on the hyper-plane R

d−1 in R
d.

This measure satisfies (1.5) with s = d − 1, the exponent θ in (1.11) equals
d − 1 + 2γ, and it coincides with the exponent found in [5]. The reasoning in
[5] uses essentially the particular structure of the operator and the separation
of variables; therefore, the authors, using more specific methods, were able to
obtain the sharp value of the constant in the estimate for d ≥ 2 and γ ≥ 3/2—
which is out of reach for our approach. However, as a special case of our result,
we obtain a generalization of the estimate in [5] with non-sharp constant for
any order of the operator, with the hyperplane xd = 0 replaced by an arbitrary
Lipschitz surface of dimension s > d − 2l, sufficiently regular at infinity.

The direct approach for proving Theorem 1.2 covers, naturally, only the
set of parameters (d, l, s) for which the CLR estimate is established, namely
2l < d, s > d − 2l.

As for the case 2l ≥ d, we use a modification of the direct variational
approach, proposed in [21] for the one-dimensional case and later extended to
the multi-dimensional one in [4,14]. It is described also in the book [6]. (Note
that it is based upon the construction present in the original proof of the CLR
bound in 1972.) We extend this approach to a wide class of singular measures,
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so combined with the basic instruments used in [16] in proving the CLR-type
estimate, it enables us to establish the proper version of the LT estimate for
the whole range of parameters for operators with a singular measure satisfying
(1.5). It turns out that this approach works for the case d > 2l as well, so the
theorem to follow contains, in particular, an alternative proof of Theorem 1.2.

Theorem 1.3. Let the measure μ satisfy (1.5) with s > d − 2l for d > 2l,
alternatively, with s > 0 for d ≤ 2l. Let the exponent γ satisfy γ > 0 for
d ≥ 2l, γ ≥ 1 − d

2l for d < 2l. Then, the estimate (1.10) holds for any
V ∈ Lθ,μ, θ = s+2lγ

s−d+2l .

It is interesting to note that in [16], for CLR type estimates, the conditions
imposed on the measure μ are different for different relations between d and
2l. As it has been already mentioned in Theorem 1.1, for d > 2l, the measure
μ must satisfy the upper estimate (1.5); for d < 2l, an opposite estimate
is required, namely μ(B(X, r)) ≥ B(μ)rs, while for d = 2l an order sharp
eigenvalue estimate requires both inequalities for μ(B(X, r)), see [15,18]. In
the opposite, our LT type inequalities require only the upper estimate (1.5)
for all admissible values of d, l, s.

In Sect. 2, we collect some facts about measures and functional inequal-
ities, needed for further considerations. For a singular measure μ, one should
be careful in the definition of the operator H(V μ). This topic is discussed in
Sect. 3. Then, we present proofs of our main theorems. Finally, we discuss
some examples.

It should be noted that the variational approach, the one used in the pa-
per, never gives sharp, semiclassical, value of the constant in the LT inequality.
The same can be said in the singular case under consideration. Moreover, no
semiclassical heuristic hints at the moment for what this sharp value should
be. It is a challenging problem to determine such value by finding the semiclas-
sical asymptotics of the LT quantity for singular measures, at least for ones
supported on Lipschitz surfaces.

The author thanks Frank et al. [6] who acquainted him with a preliminary
version of their book. He thanks also the Referees for their helpful remarks and
suggestions.

2. Preliminaries

2.1. Geometry Considerations

An important fact in measure theory, which our approach is based upon, was
established in [18], Theorem 4.3. The two-dimensional version was proved ear-
lier in [11], see Lemma 2.13 there.

We consider only open cubes. For a fixed cube Q in R
d, a cube Q is called

parallel to Q if all one-dimensional edges of Q are parallel to the ones of Q.
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Lemma 2.1. Let μ be a locally finite Borel measure on R
d containing no point

masses. Then, there exists a cube Q such that for any open cube Q parallel to
Q, measure of the boundary of Q equals zero, μ(∂Q) = 0.

A simple consequence of Lemma 2.1 is the following:

Lemma 2.2. Let μ be a locally finite Borel measure on R
d, M = suppμ,

containing no point masses, and Q be the cube whose existence is granted
by Lemma 2.1. Let X be some point in R

d. Consider the family of cubes
Qt(X) with edgelength t centered at X and parallel to Q. Then, for any μ-
measurable function F (Y ), F ∈ L1,loc,μ, and any α > 0 the function t 	→
|Qt(X)|α ∫

Qt(X)
F (Y )μ(dY ) is continuous for t ∈ [0,∞).

Lemma 2.1 together with the Besicovitch covering theorem (see, e.g., [3],
Theorem 1.1 or [6], Proposition 4.35) leads to the following property.

Lemma 2.3. Let F be a nonnegative function in L1,μ,loc, positive on a set of
positive measure. In conditions of Lemma 2.1, for any A > 0, α > 0 it is pos-
sible to find a covering Υ of suppμ by cubes Q parallel to each other such that
J(Q,F ) := |Q|α ∫

Q
F (Y )μ(dY ) = A for each cube Q ∈ Υ and the covering can

be split into the finite union of (no more than) κ = κ(d) families, Υ = ∪j≤κΥj ,
such that in each Υj the cubes are disjoint. In particular, the multiplicity of
the covering Υ is not greater than κ.

Proof. We fix the cube Q given by Lemma 2.1. For each X ∈ R
d, the function

t 	→ J(Qt(X), F ) tends to +∞ as t → ∞ and J(Qt(X), F ) → 0 as t → 0. By
Lemma 2.2, J(Qt(X), μ) is a non-decreasing continuous function of t variable,
and therefore, there exists a value t = t(X), not necessarily unique, such that
J(Qt(X)(X), F ) = A. Such cubes Qt(X)(X), X ∈ R

d, form a covering of R
d,

and therefore, the existence of a subcovering Υ is granted by the Besicovitch
theorem. �

2.2. Embedding and Trace Inequalities

Further basic results are the ones about the embedding of the Sobolev space
into Lq-space with respect to a singular measure. Most of them are borrowed
from the book [13] or derived from those.

We suppose that measure μ satisfies the one-sided estimate (1.5) with
some s > d − 2l, s > 0. As for the exponent q, it is supposed that q ≤ s

d−2l

for d > 2l, q < ∞ for d = 2l, and q ≤ ∞ for d < 2l. Such values of q will be
called admissible. By ‖u‖q,μ,Q we denote the norm of a function u in Lq,μ(Q),
q ≤ ∞. By H l(Q) the usual Sobolev space of order l is denoted.

Lemma 2.4. For any unit cube Q1 ∈ R
d, for an admissible q, the inequality

holds

‖u‖2
q,μ,Q1

≤ C2.1A(μ)
2
q ‖u‖2

Hl(Q1)
, (2.1)

for all u ∈ H l(Q1) ∩ C(Q1), with constant C2.1 not depending on u, μ.
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For 2l ≤ d, Lemma 2.4 is a particular case of Theorem 1.4.5 in [13]. For
2l > d, (2.1) follows immediately from the embedding of H l(Q1) into C(Q1).

Our next point is to find out how the inequality (2.1) changes when the
unit cube Q1 is replaced by an arbitrary cube Qt with edge t.

Lemma 2.5. For a cube Qt ⊂ R
d, for any t > 0, the inequality holds

‖u‖2
q,μ,Qt

≤ C2.1t2l−d+ 2s
q A(μ)

2
q

(‖∇lu(X)‖2
2,Qt

+ t−2l‖u(X)‖2
2,Qt

)
, (2.2)

for u ∈ H l(Qt) ∩ C(Qt)

Proof. The inequality follows from (2.1) by means of the scaling X 	→ tX,
using the scaling homogeneity properties of the norms involved and the fact
that a measure μ transforms under this scaling to the measure μ̃ which satisfies
condition of the form (1.5), but with A(μ̃) = tsA(μ). �

We will also need a trace theorem for functions on the whole space R
d,

both for the case of large dimension, d > 2l and low dimension, d ≤ 2l.

Lemma 2.6. Let the measure μ in R
d satisfy (1.5) with s > d − 2l, s > 0.

Let q ∈ [2, 2s
d−2l ] for d > 2l, q ≥ 2 for d ≤ 2l. Then, for all functions u ∈

H l(Rd) ∩ C(Rd) the inequalities hold

‖u‖2
Lq(μ) ≤ CA(μ)

2
q ‖u‖2τ

L2(Rd)‖∇lu‖2−2τ
L2(Rd)

, τ =
d

2l
− s

ql
, (2.3)

‖u‖2
Lq(μ) ≤ CA(μ)

2
q (‖u‖2

L2(Rd) + ‖u‖2
L2(Rd)), (2.4)

‖u‖2
Lq(μ) ≤ CA(μ)

2
q td−2l− 2s

q (‖∇lu‖2
L2(Rd) + t−2l‖u‖2

L2(Rd)). (2.5)

In particular, for q = 2, it follows that the quadratic form
∫ |u(X)|2μ(dX) is

infinitesimally bounded with respect to ‖∇lu‖2
L2(Rd)

The first statement (2.3) in Lemma is a particular case of Theorem 1.4.7/1
in [13]; applying here the inequality aτ b1−τ ≤ aτ + b(1 − τ), we obtain (2.4);
finally, using the scaling X → t

1
2 X, we arrive at (2.5).

Suppose now that a μ-measurable function V ≥ 0 belongs to Lθ,μ(Qt),
with θ = 1 for d < 2l, θ > 1 for d = 2l, and θ ≥ d

2l for d > 2l. Then, we apply
the Hölder inequality and Lemma 2.5 and obtain the basic estimate.

Lemma 2.7. For u ∈ H l(Qt) ∩ C(Qt), 2
q + 1

θ = 1,

∫

Qt

|u(X)|2V (X)μ(dX) ≤
(∫

Qt

V (X)θμ(dX)
) 1

θ
(∫

Qt

|u(X)|qμ(dX)
) 2

q

≤

CA(μ)
2
q t2l−d+ s

q

(∫

Qt

V (X)θ

) 1
θ

(∫

Qt

|∇u(X)|2dX + t−2l

∫

Qt

|u(X)|2dX

)
.

(2.6)
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3. Definition of the Schrödinger Operator

The Schrödinger operator H(V μ) corresponding to the formal differential ex-
pression HV μ = (−Δ)l − V μ will be defined by means of the quadratic forms.
Here, the complication in the direct definition consists in the fact that for
d ≥ 2l, the Sobolev space H l(Rd) is not embedded into the space of contin-
uous functions C(Rd). Therefore, for a set M of zero Lebesgue measure, the
restriction of a function u ∈ H l to M is not intrinsically defined. For d < 2l,
functions in H l(Rd) are continuous and this complication does not arise.

A detailed study of the restriction of functions in H l(Rd) to, possibly
fractal, sets of lower Hausdorff dimension can be found in [20] and in [2]. We
are interested in more specific results, which admit a more elementary proof.

Lemma 3.1. Let the measure μ satisfy condition (1.5) with s > d − 2l (i.e.,
s > 0 for 2l > d.) Suppose that V ≥ a0 belongs to Lν,μ,loc where ν = s

s−(d−2l)

for d > 2l, ν > 1 for d = 2l and ν = 1 for d < 2l. Then, the trace operator ΓC

from H l(Rd)∩C(Rd) to L2,V μ,loc admits a continuous extension Γ : H l(Rd) →
L2,V μ,loc.

Proof. By the last statement in Lemma 2.3, we may add an arbitrary con-
stant to the function V and suppose that V ≥ 1. To extend Γ to the whole
of H l(Rd), for a given u ∈ H l(Rd), we take a sequence un ∈ H l ∩ C(Rd) con-
verging in H l(Rd) to u. This sequence is a Cauchy sequence in H l(Rd), i.e.,
‖un −um‖Hl → 0. By (2.6), it follows that on every cube Q, ΓC(un −um) → 0
in L2,V μ(Q). Thus, ΓCun is a Cauchy sequence in L2,V μ(Q), and by the com-
pleteness of the latter space, ΓCun converges to some v ∈ L2,V μ(Q), which
we accept for the trace of u in L2,V μ(Q), v = (Γu)|Q. Such v should be un-
derstood as an equivalence class of functions in L2,V μ(Q), differing on a set
of V μ-measure zero. Obviously, such element v does not depend on the choice
of the Cauchy sequence un. Also, the traces of u corresponding to different
intersecting cubes are consistent, as elements in L2,V μ,loc; thus, Γu is defined
globally. �

Now we show that the quadratic form h+[u] ≡ hP− [u] =
∫
Rd |∇lu

2|dX +∫ |u(X)|2V−(X)μ(dX), defined on u ∈ H l(Rd) ∩ C0(Rd) for a lower semi-
bounded function V−, is closable in L2(Rd).

Lemma 3.2. Let μ satisfy condition (1.5) with s > d − 2l (i.e., s > 0 for
2l > d.) Suppose that V− ≥ a0 belongs to Lν,μ,loc where ν = s

s−(d−2l) for
d > 2l, ν > 1 for d = 2l and ν = 1 for d < 2l. Then, the quadratic form
h+[u] =

∫
Rd |∇lu|2dX +

∫
V−(X)|u(X)|2μ(dX) defined on H l(Rd) ∩ C(Rd) is

closable on L2(Rd).

Proof. As before, by Lemma 2.3, we can suppose that a0 > 0. Let un ∈
H l(Rd) ∩ C(Rd) be a Cauchy sequence in hP−-metric, ‖um − un‖2

Hl(Rd) +∫
V−(X)|um(X) − un(X)|2μ(dX) → 0, m,n → ∞. Since the Sobolev space

H l(Rd) and the weighted space L2,V μ are complete, there exist limits un → u
in H l(Rd) and un → v in L2,V μ. By estimate (2.6), for any cube Q, since V− ∈
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Lν,μ(Q), the restrictions of un to suppμ∩Q converge to v in L2,V μ. Therefore,
u = v, V μ−almost everywhere. So, if u = 0, it follows that h+[un] → 0, and
this, by definition, means that the form hP− is closable. �

The domain of the closure of the form hP− is the set of functions u ∈
H l(Rd) such that Γu ∈ L2,V μ.

Now we add the negative part to the form h+. Let V = V+ − V−, V± ≥
0, V− ∈ Lν,μ,loc, as in Lemma 3.2, V+ ∈ Lν,μ. Then, the quadratic form
h(V μ)[u] =

∫
Rd |∇lu|2dX − ∫

V |u|2V μ(dX) is closed. It will be justified by
means of the following important inequality for the quadratic form of the
Schrödinger operator

Lemma 3.3. Suppose that V− satisfies conditions of Lemma 3.2 and the func-
tion V+ ≥ 0 on M = suppμ satisfies (V+ − a)+ ∈ Lν,μ for some a ∈ R. Set
V = V+ − V−. Then, the quadratic form

f [u] =
∫

|u(X)|2V+(X)μ(dX),

defined on H l(Rd) ∩ C(Rd) satisfies

f [u] ≤ c0

∫

Rd

|∇lu(X)|2dX + c1

∫

Rd

|u(X)|2dX

for some c0 ∈ (0, 1).

Proof. By choosing a sufficiently large, we can make ‖(V+−a)+‖Lν,μ
arbitrarily

small, less than a given ε > 0. So, by (2.6),

f [u] ≤
∫

(V+ − a)+|u|2μ(dX) ≤ ε‖u‖2
Hl .

�

Thus, by the KLMN theorem, the quadratic form:

h[u] = h−[u] − f [u] =
∫

|∇lu(X)|2dX −
∫

V (X)|u(X)|2μ(dX)

is a closable lower semi-bounded form in L2, and it defines a self-adjoint
operator H = H(V μ) which we accept for the Schrödinger operator H =
(−Δ)l − V μ in R

d.
In a similar way, we define the Neumann operator in a cube Q determined

by the quadratic form:

hV μ,Q[u] =
∫

Q

|∇lu(X)|2dX −
∫

Q

V (X)u(X)μ(dX)

defined initially on functions u ∈ H l(Q) ∩ C(Q) with V ∈ Lν,μ(Q). We denote
this operator by H(V μ)N

Q .
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4. Proofs

4.1. The LT Estimate: The Easy Case

We give the proof of Theorem 1.2.

Proof. By the variational principle, it suffices to consider the case V ≥ 0.
We will use the ‘elementary’ approach explained in the Introduction. Namely,
for a given λ > 0, we find a CLR type estimate for the number of negative
eigenvalues of the operator H(V μ) + λ and then integrate over λ ∈ (0,∞).

To do it, we find a lower estimate for the quadratic form of the operator
H(V μ) + λ. We have, for u ∈ H l(Rd) ∩ C(Rd),

((H(V μ) + λ)u, u) =
1
2

∫
|∇lu|2dX

−
(∫

V (X)|u(X)|2μ(dX) − 1
2

∫

Rd

|∇lu|2dX − λ

∫
|u(X)|2dX

)
.

By estimate in (2.5), for q = 2, setting t = c(λ/2)− 1
2l with proper c,

λ

∫

Rd

|u(X)|2dX ≥ −1
2

∫

Rd

|∇lu|2dX + C4.1A(μ)−1λ
s−d+2l

2l

∫
|u(X)|2μ(dX).

(4.1)

Therefore, for the quadratic form hV μ + λ the lower estimate follows

(hV μ + λ)[u] ≥ 1
2

∫

Rd

|∇u(X)|2dX + C4.1A(μ)−1λ
s−d+2l

2l

∫
|u(X)|2μ(dX) −

∫
V (X)|u(X)|2μ(dX). (4.2)

It follows that the number of negative eigenvalues of H(V μ) + λ is not
greater than the number of such eigenvalues of the quadratic form on the right-
hand side in (4.2). To estimate this latter quantity, we apply the CLR bound
(1.7) and (1.9):

N−(H(V μ) + λ) ≤ C

∫
(V (X) − CA(μ)−1λ

s−d+2l
2l )

s
s−d+2l

+ μ(dX).

Therefore, we arrive at

Tr (H(V μ)−)γ = γ

∫ ∞

0

N−(H(V μ) + cA(μ)−1λ
s

s−d+2l )λγ−1dλ

≤ C

∫
μ(dX)

∫ ∞

0

(V (X) − CA(μ)−1λ
s−d+2l

2l )
s

s−d+2l

+ λγ−1dλ. (4.3)

In calculating the integral over λ in (4.3), we introduce the new variable ζ =
λ(V (X)A(μ))

2l
s−d+2l , and after this change of variables obtain (1.10). �
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4.2. The LT Estimate: The Hard Case

Now we present the proof of Theorem 1.3. The reasoning covers all values
of d, l, therefore, for d > 2l this is an alternative proof to the previous one.
As before, we consider V ≥ 0. The proof follows the structure of the one in
[14,21]; see also [6]. By m = m(d, l) we denote the dimension of the space of
polynomials of degree less than l in R

d.

Lemma 4.1. For some constants c0, c1 depending on γ, d, l, s, for any cube Q =
Qt ⊂ R

d and any V ≥ 0, V ∈ Lθ(Q),

N−(H(V μ)N
Q + |Q|−2l) = 0, if A(μ)

2θ
q |Q|ρ

∫

Q

V θμ(dX) ≤ c0 (4.4)

and

N−(H(V )N
Q ) ≤ m, if A(μ)

2θ
q |Q|ρ

∫

Q

V θμ(dX) ≤ c1, (4.5)

where θ = s+2lγ
s−d+2l , q = 2θ

θ−1 = s+2lγ
d
2 −l+lγ

, ρ = θ
d [2s

q − d + 2l] = 2lγ
d .

Proof. By definition of q, the inequality (2.2) is valid. Using the Hölder in-
equality, we obtain

∫

Q

|u(X)|2V μ(dX) ≤
(∫

Q

V (X)θμ(dX)
) 1

θ
(∫

|u(X)|qμ(dX)
)2/q

≤ C4.6A(μ)1−θ−1
(∫

Q

V (X)θμ(dX)
) 1

θ

|Q|1− s
d

∫

Q

(
|∇lu|2 + |Q|− 2l

d |u|2
)

dX.

(4.6)

Thus, if for Q = Qt, the coefficient

C4.6A(μ)2/q

(∫

Q

V (X)θμ(dX)
) 1

θ

|Q|1− s
d

is not greater than 1, or, equivalently,
∫

Q
V (X)θμ(dX) < A(μ)1−θ|Q|θ( s

d −1)

C−θ

4.6, we have
∫

Q

|∇lu|2dX −
∫

Q

|u|2V μ(dX) ≥ −|Q|−2 l
d

∫

Q

|u|2dX

for all u ∈ H l(Q). This inequality means that operator H(V μ)N
Q has no spec-

trum below −|Q|− 2l
d . To justify the second assertion of the lemma, we argue

similarly, but apply the Poincaré inequality |Q|− 2l
d

∫
Q

|u|2dX ≤ C
∫

Q
|∇lu|2dX

for functions u ∈ H l(Q) subject to
∫

Q
up(X)dX = 0 for all polynomials p of

degree below l, i.e., on the subspace H̃ l(Q) of functions satisfying the above or-
thogonality condition. Therefore, we can repeat (4.6) for functions u ∈ H̃ l(Q),



Lieb–Thirring Estimates for Singular Measures

omitting the second summand on the right in the last line in (4.6), thus ob-
taining

∫

Q

|u(X)|2V μ(dX) ≤ C4.7xm4.7A(μ)2/q

(∫

Q

V (X)θμ(dX)
) 1

θ

|Q|1− s
d

×
∫

Q

(|∇lu|2)dX. (4.7)

Therefore, if
∫

Q
V (X)θμ(dX) ≤ A(μ)− 2θ

q C−θ

4.7|Q|−θ(1− s
d ), we have

∫

Q

|∇lu|2dX −
∫

Q

|u|2V μ(dX) ≥ 0, u ∈ H̃ l(Q).

So, the quadratic form of the Schrödinger operator ((−Δ)l − V μ)N
Q is non-

negative on a subspace of codimension m(d, l) in H l(Q), and therefore, this
operator has not more than m(d, l) negative eigenvalues. �

The idea that the covering approach can produce not only eigenvalue
estimates but also estimates for LT sums appeared, independently, in the thesis
by Weidl, see the papers [21] and [14], and also in [4]. In fact, it is an improved
version of the Neumann part of the classical bracketing. We present it for our
case, modifying the presentation in [6].

Lemma 4.2. Let μ be a locally finite Borel measure, V ∈ L1,loc,μ, V ≥ 0 and
let Υ be a covering of suppV by cubes, parallel to each other, such that Υ =
∪j≤κΥj , and in each Υj the cubes are disjoint. Then,

(1) for any λ ≥ 0,

N−(H(V μ) + λ) ≤ C
∑

Q∈Υ

N−(H(κV μ)N
Q + λ), (4.8)

and
(2) for γ > 0,

Tr (H(V μ)−)γ ≤ C
∑

Tr ((H(κV μ)N
Q )−)γ .

Proof. The second part of lemma follows from the first one by means of the
identity (1.9). To prove the first statement, we recall the variational principle
(the Glazman lemma) in the ‘codimension version’: for an operator defined
by the quadratic form g[u] in a Hilbert space H, the number of negative
eigenvalues equals the smallest value of codimension of the subspace L in a
form-core for g, such that g[u] ≥ 0 for u ∈ L. The codimension of a subspace
is understood here as the number of linearly independent continuous linear
functionals that are annulled on L. Therefore, to obtain an upper bound for
the number of negative eigenvalues, we need to construct a collection of such
functionals. For the operator H(V μ) + λ, the quadratic form is

(h + λ)[u] =
∫

|∇lu(X)|2dX −
∫

V (X)|u(X)|2μ(dX) + λ

∫
|u(X)|2dX,
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and the inequality (h + λ)[u] ≥ 0 means
∫

V (X)|u(X)|2μ(dX) − λ

∫
|u(X)|2dX ≤

∫
|∇lu(X)|2dX

So, let Q be some cube in the covering Υ and wQ
k , be an orthonor-

mal system of eigenfunctions of H((κV μ)N
Q + λ), corresponding to negative

eigenvalues, continued by zero outside Q. Each of these functions generates
a functional φQ

k in H l(Rd), the scalar product φQ
k (u) = (u,wQ

k ). There are
nQ = N−(H(κV μ)N

Q + λ) such functionals; therefore, LQ, the intersection of
the null spaces of these functionals has codimension nQ. On this subspace, the
inequality

∫

Q

V (X)|u(X)|2μ(dX) ≤ λ

∫

Q

|u(X)|2dX +
∫

Q

|∇lu(X)|2dX (4.9)

holds.
Now we consider such collections of functionals for all cubes Q ∈ Υ and

set L = ∩Q∈ΥLQ. This is the space on which all functionals φQ
k annul. The

subspace L has codimension not greater than the sum of codimensions of all
LQ, Q ∈ Υ,

codim (L) ≤
∑

Q∈Υ

N−(H(κV μ)N
Q + λ)). (4.10)

Now we evaluate the quadratic form h(V μ) on L. We sum the inequality (4.9)
over all cubes Q ∈ Υ :

∑

Q∈Υ

∫

Q

V (X)|u(X)|2μ(dX) ≤
∑

Q∈Υ

∫

Q

(
λ|u(X)|2 + |∇lu(X)|2) dX. (4.11)

For the term on the left in (4.11), since Υ is a covering of suppV ,
∑

Q∈Υ

∫

Q

V (X)|u(X)|2μ(dX) ≥
∫

Rd

V (X)|u(X)|2μ(dX). (4.12)

On the right in (4.11), since Υ is a covering with multiplicity no greater than
κ, we have

∑

Q∈Υ

∫

Q

(
λ|u(X)|2 + |∇lu(X)|2) dX ≤ κ

∫

Rd

(
λ|u(X)|2 + |∇lu(X)|2)dX.

(4.13)

We substitute (4.12), (4.13) in (4.11), which gives
∫

Rd

κ−1V (X)|u(X)|2μ(dX) ≤
∫

Rd

(
λ|u(X)|2 + |∇lu(X)|2) dX. (4.14)

The inequality (4.14) is valid for u ∈ L, on a subspace of codimension satisfying
(4.10). By the variation principle, this means that

N−(H(κ−1V μ) + λ) ≤
∑

Q∈Υ

N−(H(V μ)N
Q + λ), (4.15)

which is equivalent to (4.8). �
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Now we finish the proof of Theorem 1.3.

Proof. We follow the reasoning in [6]. We set A = κ−1 min(c0, c1) and apply
Lemma 2.2 with the function F = V θ and α = ρ. Thus, we obtain a covering Υ
of suppF by cubes Q ∈ Υ, parallel to each other, such that |Q|ρ ∫

Q
V θμ(dX) =

A, Υ = ∪κ
ν=1Υι and each family Υι consists of disjoint cubes. We denote by

Vj the restriction of V to M ∩ Qj . From Lemma 4.1 it follows that for each
cube Q ∈ Υ, operator H(V μ)N

Q has at most m negative eigenvalues, and these
eigenvalues, if they exist, are larger than −C|Q|− 2l

d , therefore,

Tr ((H(V μ)N
Q )γ

−) ≤ mC|Q|−2lγ/d = mC|Q|−ρ.

By the choice of A, the expression on the left-hand side is not greater than
mCA(μ)θ−1

∫
Qj

V θμ(dX). Thus, we obtain for each of cubes in Υ :

Tr ((H(V μ)N
Q )γ

−) ≤ mC

∫

Q

V θ(X)μ(dX). (4.16)

Adding these inequalities, by Lemma 4.2, we arrive at (1.10). �

5. Examples

The leading example of our main Theorem is a measure on a Lipschitz surface
in R

d. Such surface Σ, with dimension m and codimension d = d−m, is locally
defined by the equation y = φφφ(x) in proper local co-ordinates X = (x, y) ∈
R

m × R
d with Lipschitz d− component vector-function φφφ. As μ we take the

natural surface measure induced by the embedding of Σ into R
d, represented in

the above local co-ordinates as μ(dX) = (det(1 + (∇φφφ(x))∗(∇φφφ(x)))
1
2 dx. This

measure coincides with the m-dimensional Hausdorff measure on Σ. We sup-
pose that the Lipschitz constants in all local representations of Σ are bounded
by a common quantity Λ. In this case, the measure μ satisfies condition (1.5)
with s = m locally, for small r, in any neighborhood where the above repre-
sentation of the surface is valid, with constant A depending on the quantity
Λ. We suppose that (1.5) is satisfied for all r > 0 with the same or, probably,
larger, constant A. This requirement imposes some regularity conditions at
infinity. In this case, our Theorem 1.3 gives the following Lieb–Thirring type
estimate.

Example 5.1. Let Σ be a Lipschitz surface, as above, and V (X),X ∈ Σ be a
μ measurable function, V− ∈ Lθ,μ(Σ), where θ = θd,m,l,γ = m+2lγ

m+2l−d , and γ is
a positive number as in Theorem 1.3. Then,

Tr (−Δ − V μ)γ
− ≤ Cd,l,γA(μ)θ−1

∫

Σ

V (X)θμ(dX).

We present some examples of Lipschitz surfaces satisfying the above con-
ditions.
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Example 5.2. A global Lipschitz graph. Let E ⊆ R
d−1 be a closed set and

y = φ(x), x ∈ E be a Lipschitz function on E with Lipschitz constant Λ. Then,
the graph Σ ∈ R

d of the function φ satisfies (1.5) with A = ωm−1(1 + Λ2)m/2,
where ωm−1 is the volume of the unit ball in R

m−1, and estimate (1.10) is
valid.

Example 5.3. Products. Let Σ1 ⊂ R
d1 , Σ2 ⊂ R

d1 be Lipschitz surfaces of
dimension mι, ι = 1, 2 with Hausdorff measures μι, satisfying estimates of the
form (1.5) of order sι = mι with constants Aι. Consider their direct product
Σ = Σ1 × Σ2 ∈ R

d, d = d1 + d2. One can see that Σ is a Lipschitz surface
of dimension m1 + m2 in Rd with constant A = CA1A2. The estimate (1.10)
holds with γ > 0 for 2l ≤ d1 + d2, γ > 1 − d1+d2

2l for 2l > d1 + d2. More
generally, the estimate (1.10) holds for finite products of measures satisfying
conditions of the form (1.5).

Example 5.4. Cylinders. Let μ1 be a measure in R
d1 satisfying a condition of

the form (1.5) with exponent s1. Consider the cylindrical measure μ = μ1 ⊗μ2

in R
d1+d2 where μ1 is the Lebesgue measure in R

d2 . Such measure satisfies
(1.5) with exponent s = s1 + d2.

Example 5.5. Fractal sets. We recall the general construction of fractal sets,
introduced by Hutchinson [9]. Let SSS = {S1, ...Sk} be a finite collection of
contractive similitudes (i.e., compositions of a parallel shift, a linear isometry
and a contracting homothety) on R

d, h1, ..., hk are their coefficients of con-
traction. We suppose that the open set condition is satisfied: there exists an
open set V ⊂ R

d such that ∪Sι(V ) ⊂ V and Sι(V ) ∩ Sι′(V ) = ∅, ι �= ι′.
By the results of Sect. 3.1 (3), 3.2 in [9], there exists a unique compact set
K = K(SSS) satisfying K = ∪ι≤kSjK. This set is, in fact, the closure of the set
of all fixed points of finite compositions of the mappings Sι. The Hausdorff
dimension s of the set K(SSS) is determined by the equation

∑
hs

ι = 1. Let
μ be the s-dimensional Hausdorff measure μSSS on K(SSS). As explained in [7],
Corollary 2.11.(1), p. 6696, estimate (1.5) is valid for such μ with exponent s.
Therefore, our result, Theorem 1.3, gives the LT estimate for Hl(V μ).

Example 5.6. Lipschitz pre-images. Let μ be a singular measure in R
d satis-

fying (1.5), M = suppμ, Φ be a Lipschitz mapping of an open set Ω ⊂ R
d′

to a neighborhood of M. A measure μ′ in Ω is induced by this mapping,
μ′(E) = μ(Φ(E)). If Λ is the Lipschitz constant for Φ, then the image of a ball
with radius r is inside a ball with radius Λr, therefore, μ′ satisfies condition
(1.5) with the same exponent s and the constant A(μ′) = ΛsA(μ.) The general
results on LT estimates carry over to the measure μ′.

Example 5.7. Noncompact fractals. Let μ be a fractal measure in R
d with

compact support, as in Example 5.5, of Hausdorff dimension s. Consider a
lattice L of rank m ≤ s in R

d and construct the measure μL, the sum of shifts
of μ by vectors in L. Such measure μL satisfies (1.5) with the same value of s.
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One can combine constructions in the above examples to obtain more
measures for which the LT inequality holds.
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