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ABSTRACT

Probabilistic programming and statistical computing are vibrant ar-
eas in the development of the Julia programming language, but
the underlying infrastructure dramatically predates recent develop-
ments. The goal of MeasureTheory.jl is to provide Julia with
the right vocabulary and tools for these tasks.

In the package we introduce a well-chosen set of notions from the
foundations of probability together with powerful combinators and
transforms, giving a gentle introduction to the concepts in this arti-
cle.

The task is foremost achieved by recognizing measure as the cen-
tral object. This enables us to develop a proper concept of densities
as objects relating measures with each others. As densities provide
local perspective on measures, they are the key to efficient imple-
mentations.

The need to preserve this computationally so important locality
leads to the new notion of locally-dominated measure, solving
the so-called “base measure problem” and making work with den-
sities and distributions in Julia easier and more flexible.
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1. Why measures?

Distributions are an insufficient abstraction for probabilistic mod-
eling.

Let’s first consider Bayesian modeling. In the posterior density of
the parameter θ given the observation or data x,

p(θ | x) = p(θ) p(x | θ)
p(x)

,

the denominator is called the model evidence. Computing it effi-
ciently is often difficult or unfeasible.

Some sampling algorithms circumvent this problem and only re-
quire knowing the density up to a constant factor. We then can work
with the “unnormalized posterior density” instead, but we want to
distinguish it from a proper probability density, because that differ-
ence determines which algorithms are available.

In developments like this using distributions, it’s common to begin
in terms of a distribution, but then carry around the unnormalized
posterior as a function. Fortunately, the meaning of this function
is usually clear from context. But structurally, this representation is
now divorced from its meaning. It’s no longer a Distribution object,
so the tools from the original library can no longer help. This is a
perspective we will take often.

Thus, starting with elements of our class of interest, a simple and
common operation has led us to something outside of this class.
This is analogous to the way polynomials over the reals lead to
the complex numbers. If “the shortest path between two truths in
the real domain passes through the complex domain” (Hadamard),
then the same argument can be made for measures as connection
between distributions.

As a second example, people working in Bayesian modeling some-
times use improper priors. Whatever one’s position on the merits of
this, we think it’s reasonable to make this approach possible. But an
improper prior does not integrate to one, so it’s not a distribution.

Also, other computational and statistical inverse problems can of-
ten be framed as Bayesian inversion problem with corresponding
“prior” for example taking the role of a regularization parameter
that might be improper, or even flat as in maximum likelihood esti-
mation.

A final and very different concern is the structure of most distri-
bution libraries, in which distributions are classified primarily ac-
cording to whether they are “discrete” or “continuous”. Such sys-
tems often lack facilities to use these in combination; some go so
far as to encode the distinction in the type system, making them
fundamentally incompatible.

But “discrete vs continuous” is a false dichotomy. For example,
in three dimensions we can (and often do) work with distributions
over points, lines, planes, or the entire space, or over spaces like a
simplex or the surface of a sphere. These can be combined in rich
ways, for example as a spike and slab prior for sparse modeling, or
as a parameterized subspace for low-rank modeling.

We can address all of these points by extending the system we work
with. Instead of distributions, our primary class of interest is mea-
sures, with distributions as a special case.

Of course, this special case is particularly useful. The point is not
to disregard distributions, but to change our focus to one allowing
a richer calculus for reasoning. Adapting Hadamard’s argument,
The shortest path between two distributional truths passes through
non-distributional measures.
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Contributions

Our work is novel in several ways. MeasureTheory.jl has

• Explicitly represented base measures with the same sophisti-
cation as the rest of the system, in particular more than just
“discrete or continuous”;

• A local approach for determining absolute continuity, which is
usually a global characteristic;

• Multiple parameterizations for a given measure, without a pro-
liferation of constructors; and

• Normalization and support constraints held separately from the
data-dependent computation, allowing for greater efficiency.

Some parts of our approach can been seen in existing systems,
though these are still far from universal:

• A rich set of combinators for building new measures from exist-
ing ones;

• Flexible type constraints, for example allowing measures with
symbolic parameters;

• Light-weight measure construction, replacing a common as-
sumption that once constructed, a measure will be used many
times. This is especially important for probabilistic program-
ming applications.

2. What are measures?

We’ll now describe some foundations to help the reader get a
deeper understanding of our approach. In particular, we’ll define
measures and probability distributions, relate them to familiar no-
tions such as volume and the probability of an event.

Throughout this discussion, it’s important to keep in mind that for
us the measure-theoretic abstractions are only means to an end.1
Our primary interest, and the goal of MeasureTheory, is to offer
support for applied probabilistic modeling. The package name is
owed to the fact, that the word measure alone is too vague.

Given a space X of possible outcomes and a set of subsets of X
called events, a probability distribution assigns each event a non-
negative quantity, called the probability or probability mass. Like-
wise, a measure assigns each measurable set a non-negative quan-
tity, also called a “mass”.

The space X could be the space {1, 2, 3, 4, 5, 6} suitable to model
a six-sided die, or X might be the 3-dimensional Euclidean space
R3 suitable to model “volume”, to give two examples.

One further such space that deserves mention is traditionally de-
noted Ω. This is an abstract space connected to the real-world no-
tion of probability, which we denote as Prob. Computationally, Ω
can be considered to be the set of possible initial states of a ran-
dom number generator rng::AbstractRNG, which is the source of
computational randomness.

1The stackoverflow discussion https://mathoverflow.net/q/11591
discusses books on measure theory; M.S. likes [21] as starting point and
uses [10] and [2] as reference. As we anticipate interest in connecting with
the actual theory, we give some pointers to more technical details in the
footnotes.

Ω has a special role of tying random quantities a program produces
and their distributions together, through the notion of random vari-
ables, which are functions X, Y from Ω taking values in spaces
X , Y such as {1, 2, 3, 4, 5, 6} or R3.2 The package Omega.jl [22]
uses random variables derived from Ω as core principle.

From a computational perspective, a Julia function taking only
an rng::AbstractRNG argument, making a number of calls to
rand(rng), and returning a value x ∈ X is a random variable
X : Ω → X . A simple example is

X(rng=Random.GLOBAL_RNG) = rand(rng, 1:6)

While mathematically X is a function from Ω, the argument ω is
often hidden like the function argument rng of its computational
counterpart—not a coincidence.

Each random variable X is tied to its probability law D, the dis-
tribution assigning probability to the events {X ∈ A} for each
(measurable) set A

Prob(X ∈ A) = D(A).

In that sense, classical distribution packages restrict themselves
very much to the task of providing a catalogue of useful proba-
bility laws, and a simple mechanism to provide a random draw (a
random variable) with that law, as function rand(rng, D). In the
example,

Prob(X ∈ A) = D(A) =
|A|
6

where |A| denotes the number of elements of A ⊂ {1, 2, · · · , 6}.

In MeasureTheory, measures have abstract super-type
AbstractMeasure.

Kolmogorov’s axioms

We now introduce Kolmogorov’s axioms, which describe laws that
characterize probability distributions, and, with one exception, also
measures.

Measures and probability distributions are both required to obey the
axiom that the (probability) mass of sets obtained as union of dis-
joint component sets3, equals the sum of the (probability) masses
of the components. So if sets A and B are not disjoint, the mass
of the union is computed from the mass of the components using
inclusion-exclusion. For probabilities this is

P (A ∪B) = P (A) + P (B)− P (A ∩B) .

Similarly for a measure µ,

µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B) .

In the case where A and B are disjoint, this reduces to

P (A ∪B) = P (A) + P (B) ,

2Additionally, one requires a random variable to be a measurable function,
that is, one for which the inverse image of an event ⊂ X is also an event
of Ω. This is a similar, but much weaker requirement to the definition of a
continuous function (“the inverse image of an open set is also open”).
3Precisely: union of a sequence of disjoint component sets.
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a property called additivity.4

The reader has encountered many measures before, whether they
were given that name. For example, counting measure gives the
number of elements of a set, and the Lebesgue measure gives
length, area, volume, etc in Euclidean space (CountingMeasure
and LebesgueMeasure in the package.)

So far our characterizations of measures and probability distribu-
tions are functionally identical. Indeed, the one distinguishing fea-
ture is the law of unit measure, which only for distributions requires
that

P (X) = 1 ,

and also Prob(Ω) = 1. Thus Ω can be considered the event “that
anything at all will happen”.

By this axiom, probability mass is a proportion, a quantity between
0 and 1. Only this axiom, which for measures is replaced by weaker
axiom µ(∅) = 0, sets the two apart. To reinforce that a distribu-
tion is also a measure, we’ll sometimes refer to it as a probability
measure.

This close relationship between measures and probability measures
is illustrated by the Lebesgue measure λ on X = R. The measure
of the full space is λ(R) = ∞. But restricting to the unit inter-
val gives λ([0, 1]) = 1. This restricted measure is a probability
distribution—the uniform distribution U([0, 1]) describing the law
of Julia function rand() giving random numbers in the interval
[0, 1].

We have not yet stated for which sets Kolmogorov’s axioms have
to hold for something to be called a measure or a probability:

σ-algebras and how to like them

A (probability) measure on X need not assign a (probability) mass
to every possible subset A ⊂ X , but only to each event for a prob-
ability measure, or measurable set more generally. Statements we
make about sets should be understood as restricted to this set-of-
sets, which can be different from one measure to the next.

Now, Kolmogorov’s axioms require a given measure to be defined
for X , and they also require that this set of measurable sets is closed
under the operations which the axioms allow (complements and
unions of sets or sequences of sets). This imposes an algebraic
structure to the measurable sets, called a σ-algebra, which is ex-
actly that: A set of sets ⊂ X (or ⊂ Ω in particular) closed under
complementation and countable unions and intersections.

This raises the question: Why not just use the power set, the “set of
all sets”, which is, after thinking about it, such a σ-algebra?

A key observation is that having defined probability mass for a
number of relatively simple sets, for example on all intervals, Kol-
mogorov’s axioms give a recipe to compute the probability mass

4The axioms also require a more general form of this to hold. If
{An | n ∈ N} are pairwise disjoint (that is, no two have any common ele-
ments), then it must be true that

P

(⋃
n∈N

An

)
=
∑
n∈N

P (An) ,

and similarly for more general measures, replacing P with µ. This exten-
sion of additivity to the countably infinite case is called σ-additivity.

of more complicated sets, and with those, even more in new ap-
plications of the axioms, etc. One says the σ-algebra is generated
by these sets. Indeed, Distributions.jl does not give means to
compute probability for arbitrary subsets of floating point numbers,
but gives a way of computing probability mass just of intervals of
the form (−∞, x] through the function cdf.

For spaces that are “small enough”, a meaningful probability can be
assigned to each subset of the space. But even in moderately sized
spaces this can become infeasible: Just representing a single arbi-
trary subset of the Float64-range, the computational abstraction of
the real line, would require staggering 2 306 Petabytes of memory.
This is not practical. And for any space containing a continuum
such as the real line it becomes not impractical but mathematically
impossible to assign a meaningful probability to all subsets.

But even the mathematical measure theory needs to stay clear of
the set of all subsets of uncountable spaces, because it turns out
that not even volume can be properly defined for all subsets of the
Euclidean space.5

Accordingly, as of this writing, MeasureTheory does not have first-
class σ-algebras, but rather considers them to be implicit to a given
measure. Having said that, σ-algebras do have a role to play in
applied measure theory, but we give only a pointer here. The prac-
tical importance of σ-algebras here lies therein that they also en-
code available information. Observe that each event A corresponds
to a question, with a probabilistic answer. For example, an event
A = {X ∈ [c, d]} corresponds to the question whether the ran-
dom variable X is in the interval [c, d] and there is a probability
Prob(A) that this will be the case. Assume we know whether some
of such questions A, B are answered (each with yes or no).

Then we also know that the answer to the complement Ac (no or
yes), and we always know that Ω has probability 1 and the corre-
sponding question is answered by ‘yes’. Likewise, if both A and B
can be answered given what we know, we also know the answer to
A ∪B.

As the reader might now suspect, such systems of known events
form a σ-algebra. In particular, for each random variable X there
is a σ-algebra associated with X that encodes what else we know
knowing X and how we should assign (conditional) probabilities
to other events knowing X.

This is a very relevant question for probabilistic programming
tasks and causal inference. But we’ve already mentioned that
MeasureTheory does not explicitly represent σ-algebras. Instead,
questions like these can be addressed using kernels (Section 6),
structures which can hold the conditional probabilities given we
find a way to assign them in a computationally efficient way.

Densities

A measure is often described in terms of its density. Before get-
ting to a more technical discussion, we hope a physical analogy
can help build some intuition. Imagine a wooden board with some
knots in it, where we might be interested in the mass of some
two-dimensional cut-out shape. This mass depends not only on the

5Another thing to keep in mind is that, for a function f : X → Y to be
measurable requires that “the inverse image of a measurable set must be
measurable”. So allowing more sets to B ⊂ Y to be measurable requires
either allowing more measurable A ⊂ X , or restricting the set of measur-
able functions.
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shape but also on its location and orientation, in particular the in-
clusion of knots. In this way we can start with a measure (here
Lebesgue measure) and use a density (the physical density of the
wood) to construct a new measure (the mass of any given cut-out
shape).

Of course, we do this all the time with distributions, building a
continuous distribution in terms of a probability density function
(pdf) over Lebesgue measure, or a discrete distribution in terms
of a probability mass function (pmf), which is just a density over
counting measure.

Somewhat more formally, a probability density in Euclidean space
is a local ratio of probability assigned to an infinitesimally small
volume/area dx around each point x, relative to that volume itself

f(x) =
Probability(dx)

Volume(dx)
.

“Volume” is not a distribution, but is in fact the Lebesgue measure
described above. Discrete distributions can be expressed similarly
using counting measure. There are certainly more events (sets) than
outcomes (elements), so a probability density gives a local and par-
simonious description of a distribution.

More generally, for measures µ and ν (and an absolute continuity
condition, to be discussed), the density is

f(x) =
µ(dx)

ν(dx)
=

dµ

dν
(x) .

As we see, density only makes sense relative to some base measure.

Limiting ourselves to distributions makes this awkward to even dis-
cuss, but allowing measures as first-class objects means we can
make this characterization more explicit, and thus more flexible.
What sets MeasureTheory apart from most libraries is that we don’t
sweep this under the rug, but rather address it head-on.

In place of Lebesgue or counting measure, any measure we can
express can play the role of dν above. This becomes crucial in
high-dimensional spaces, where working with other reference mea-
sures such as a product of normal distributions becomes a nu-
merical requirement. (Mathematically, there is no infinite dimen-
sional Lebesgue measure, so numerically, even high-dimensional
Lebesgue measures can be problematic. [15] for example allows to
express a target density with respect to product of normal distribu-
tions using the Boomerang sampler [4] for this reason.)

3. Locally dominated measures

One cannot expect to express a measure µ putting positive mass
on a set S relative to a second measure ν on S, if nothing is there
to compare, that is if µ(S) > 0 but ν(S) = 0. You can’t “make
something from nothing”.

Given measures µ and ν defined on a common space X , we say µ
is dominated by ν if ν(S) = 0 implies µ(S) = 0 (or equivalently,
µ(S) > 0 implies ν(S) > 0) for every measurable S. This is
denoted by µ ≪ ν, and is sometimes equivalently read as “µ is
absolutely continuous with respect to ν”.

The Radon-Nikodym Theorem states that µ ≪ ν if equivalently
there is a density function f , often written dµ

dν
:= f , with the prop-

erty that for every S,

µ(S) =

∫
S

f dν .

The concept of absolute continuity is very useful for formal manip-
ulations. However, the global nature of testing µ ≪ ν would re-
quire every support to be represented in a way that allows efficient
computation of this relation. In particular, in applications based on
Markov chain Monte Carlo, such global information about the mea-
sures at hand is not available.

Even with such a capability, this approach would have its problems.
It seems likely a user getting an error in response to requesting a
density would often respond by restricting measures accordingly
until the request can be fulfilled.

Because of this, we instead define µ to be locally dominated by ν
near x, written µ ≪x ν, if there is some neighborhood N ∋ x
such that ν(N) > 0 (so it’s not a degenerate case) and µ|N ≪ ν|N
(absolute continuity between the restricted measures). A local den-
sity can be defined similarly. In MeasureTheory, the density and
logdensity functions work in exactly these terms. For the remain-
der of this paper, “(log-)density” will always refer to the local (log-
)density, and “local” will often be taken as understood.

Density computations are typically done in log space. For ex-
ample, if we’re interested in dµ

dν
, we’ll typically instead compute

logdensity_rel(µ, ν, x).6 Here and below, we’ll often write
the math in terms of densities and the code in terms of log-densities,
despite unfortunate inconsistency between the two.

There are several benefits to working in log-space. Results are
much less likely to overflow or underflow, and the many products
and exponents become sums and products, respectively. which are
much more efficient to compute and to differentiate.

Working locally and in log-space also gives us a convenient anti-
symmetry,

logdensity_rel(µ, ν, x) == -logdensity_rel(ν, µ, x)

In particular, logdensity_rel(µ, ν, x) takes special values in
some common cases:

ν ≪x µ (else)

µ ≪x ν (finite) -Inf

(else) Inf NaN

4. Base measures and log-densities

It’s very useful for users to be able to call logdensity_rel for ar-
bitrary measures. But defining things directly in these terms would
require a definition for every pair of possible measures, which is of
course intractable.

We’ll now discuss the mechanics of defining a measure, followed
by a description of the end-user perspective.

6Density and log-density are always relative; the rel here is to indicate
that we want the density relative to a second measure which is explicitly
specified.

4



Proceedings of JuliaCon 1(1), 2021

Defining a measure

To define a new measure requires a base measure, the log-density
with respect to that base measure, and a support. A base measure
can be defined locally or globally. In the latter case, the local base
measure defaults to

basemeasure(µ::AbstractMeasure, x) = basemeasure(µ)

This allows users to define a base measure specific to a given neigh-
borhood if they prefer, or to define a global base measure when that
suffices.

For example, for a standard Normal measure, we have

basemeasure(::Normal{()}) = (1/sqrt2π) * Lebesgue(R)

logdensity_def(::Normal{()} , x) = - x^2 / 2

insupport(::Normal{()}, x) = true

Note the difference from a typical distribution-oriented implemen-
tation; the log-density consists only of −x2/2, with the normaliza-
tion term pushed into the base measure.

The normalization term is present for any normal distribution, even
those with a different mean or variance. So if we have a product
of normals, for example in a regression problem, the normalization
can be shared across them. For the simple example of n iid standard
Normals, this effectively rewrites the log-pdf

n∑
j=1

(
−1

2
log 2π −

x2
j

2

)
as − n

2
log 2π +

n∑
j=1

(
−
x2
j

2

)

Further simplification is clearly possible; doing this in a compos-
able way without sacrificing efficiency is the subject of ongoing
work.

Just as logdensity_def(µ,x) defines the log-density relative to
the default base measure, it’s often useful to be able to define the
log-density between two measures that are given explicitly. For
this, we have the three-argument logdensity_def(µ,ν,x).

Though this three-argument form is available as a primitive, it
would be intractable to use it to define log-densities for every pair
of measures. Instead, basemeasure forms a forest (a collection of
trees, with µ → ν if ν=basemeasure(µ)). The three-argument
logdensity_def connects trees to form a graph. For any two mea-
sures, MeasureTheory can traverse this graph at compile time to
determine how to compute the log-density.

The end-user perspective

From our above discussion of moving terms between the log-
density and the base measure, the reader may suspect that this can
be done arbitrarily, leaving no “natural” log-density for a given
measure. This is indeed the case; the log-density of a measure is
only determined relative to a particular base measure.

Our choice of basemeasure doesn’t reflect any mathemat-
ical invariant, only computational convenience. Accordingly,
basemeasure and logdensity_def should be considered imple-
mentation details, and not part of the user-facing interface.

The way MeasureTheory.jl is set up, repeated application of
basemeasure will eventually reach a fix point. That is, some mea-
sure will eventually be its own base measure. For such a measure,
logdensity_def is required to return zero. We refer to the fix point
reached in this way from a given measure as that measure’s root
measure.

Instead of logdensity_def, users should typically call
logdensity_rel(µ,ν,x) (which computes dµ

dν
(x)), or

logdensityof(µ,x), which gives the log-density relative to
the root measure. logdensityof was originally defined in [20],
and provides a convenient common ground for those not accus-
tomed to thinking of densities as being relative. We expect this to
be especially useful for new users.

5. Parameterized measures

A common challenge in building a library of distributions is the
choice of parameterizations. For example, in Stan [7], a negative
binomial distribution is parameterized by α and β, where

NegBinomial(y | α, β) =
(
y + α− 1

α− 1

)(
β

β + 1

)α (
1

β + 1

)y

.

In the Julia package Distributions.jl [12], this is instead given
by

NegBinomial(y | r, p) =
(
y + r − 1

r − 1

)
pr(1− p)y .

These are equivalent (let r = α and p = β
β+1

), and the incon-
sistency alone gives some evidence that it might be reasonable to
prefer one or the other depending on the circumstances. Yet most
libraries only allow one or the other (or yet another alternative) as
the negative binomial distribution. Other parameterizations require
entirely different names.

In MeasureTheory, our approach avoids this problem. A parame-
terized measure is defined by a struct of the appropriate type with
a named tuple par field. For example,

struct NegativeBinomial{N,T} <: ParameterizedMeasure{N}
par :: NamedTuple{N,T}

end

We can then write

NegativeBinomial(r=10, p=0.75)

or

NegativeBinomial(α=10, β=3)

Calls to rand, logdensity_def, etc then delegate to methods ac-
cording to the appropriate names. We use KeywordCalls.jl [18],
so all names are resolved statically at compile time.

6. Kernels

A kernel is a (measurable7) function κ that returns a measure.
Equivalently, it represents a family of measures parameterized by

7That is, the function x 7→ κ(x)(A) must be measurable for every fixed A.
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its argument. Writing M(Y ) for “measures on Y ”, we can write
this as

κ : X → M(Y ) .

A prominent application is a conditional distribution. In this case
κ is further restricted to be a Markov kernel,

κ : X → P(Y ) ,

where P(Y ) represents “probability measures on Y ”. If X and Y
are random variables defined on X and Y , the kernel κ defines a
probability measure assigning every measurable B ⊂ Y probabil-
ity

P (Y ∈ B | X = x) =: (κ(x))(B) .

In MeasureTheory, a kernel is represented as either a Julia function
or an AbstractTransitionKernel object. As a common special
case, a ParameterizedTransitionKernel pairs a measure con-
structor with a mapping into its parameter space, and makes the
functional relationship between argument of κ and the returned
measure transparent.

A Markov kernel, in particular, corresponds to the distribution of a
parametrized random variable, a function with random outcomes
(or to “mechanisms” in causal inference, for example in [16]). For
example, the kernel

κ : x 7→ Normal(x,
√
x)

corresponds to the random function

f(rng, x) = x +
√
x * randn(rng)

and can be expressed in MeasureTheory as

κ = kernel(Normal) do x
(µ=x, σ=

√
x)

end

or

κ = kernel(Normal; µ=identity, σ=sqrt)

The latter formulation decomposes the kernel into separate “param-
eter maps”, making relationships between x and the parameters of
κ(x) more explicit.

This could of course also be expressed as a parameterized measure.
The difference is that kernels are lighter weight to build and have all
the dynamism of functions, while the static nature of parameterized
measures can make it easier to express some optimizations.

7. Pointwise products and likelihoods

The pointwise product in probability often describes the fusion of
information, in this case the fusion of information from prior and
from the observations via the likelihood, but also shows up in re-
lated situation, such as sensor fusion in signal processing.

To begin, let’s consider the case of probability distributions domi-
nated by Lebesgue measure. For a parameter θ and data x, suppose
we have a prior density p(θ) and likelihood p(x|θ). Then Bayes’s
Law gives the posterior density

p(θ | x) = p(θ) p(x | θ)
p(x)

.

In practice, we rarely know the normalization factor p(x), so we of-
ten work in terms of the unnormalized posterior density, and write

p(θ | x)︸ ︷︷ ︸
posterior

∝ p(θ)︸︷︷︸
prior

p(x | θ)︸ ︷︷ ︸
likelihood

.

Because the product does not include normalization, in general it
does not integrate to one, and so it’s not a probability density func-
tion. But there are no such problems as a density for a measure. We
now consider this more general formulation.

Given a parameter space Θ and observation space X , a
Likelihood ℓ consists of

(1) a kernel ℓκ : Θ → M(X),
(2) an observation ℓx ∈ X , and
(3) a base measure ℓβ ∈ M(X).

A likelihood can be treated as a function Θ → R≥0, by defining

ℓ(θ) =
dℓκ(θ)

dℓβ
(ℓx)

Of particular interest is the case where the base measure ℓβ is

ℓβ = θ̂ ≡ argmax
θ

dℓκ(θ)

dρ
(ℓx)

for any non-singular measure ρ; this corresponds to the relative
likelihood. In MeasureTheory, we allow the base measure to be
specified, but take as a default the root measure of ℓκ(θ).

Note that a likelihood ℓ takes a point in Θ to an evaluated den-
sity in a different space (the observation space X). In particular, a
likelihood is not a measure.

Rather, a given likelihood acts on measures, taking a “prior” mea-
sure µ to “unnormalized posterior” measure µ ⊙ ℓ. Relative to an-
other measure α, this has density

d(µ⊙ ℓ)

dα
(θ)︸ ︷︷ ︸

unnormalized posterior

≡ dµ

dα
(θ)︸ ︷︷ ︸

prior

ℓ(θ)︸︷︷︸
likelihood

Treating likelihoods and pointwise products explicitly in this way
gives an easy route to many performance optimizations. For exam-
ple, the likelihood of a linear model can be computed very effi-
ciently in terms of basic linear algebra, and in cases of conjugacy
the pointwise product simplifies to a measure that can be expressed
in closed form.

8. Product and power measures

Given measures µ on X and ν on Y , the (independent) product
measure µ⊗ ν is a measure on X × Y . Just as Lebesgue measure
on R is generated by defining its value on intervals, the product
measure is generated by defining

(µ⊗ ν)(A×B) = µ(A) ν(B) ,

for any measurable A ⊂ X and B ⊂ Y . MeasureTheory code uses
exactly this notation, µ ⊗ ν. This can be extended recursively to
products of any finite number of measures.
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If µ is defined in terms of a base measure α and likewise ν over β,
the product measure has base measure α⊗ β and density

d(µ⊗ ν)

d(α⊗ β)
=

dµ

dα

dν

dβ
.

A special case of this is when µ = ν. In MeasureTheory we refer
to this as a power measure, written µ^2 or µ^n for higher dimen-
sions. More generally, the second argument can be a Tuple, so for
example µ^(2,3) extends µ as a product measure over 2 × 3 ma-
trices.

A second special case is when we have a collection of values to-
gether with a kernel. For this we use the For combinator. So in a
regression model, we might express the response as coming from

For(1:n) do j
Normal(β * x[j], σ)

end

This is exactly the product measure

n⊗
j=1

Normal(βxj , σ) .

More generally, suppose we have a measure µ on a space X and a
kernel κ : X → M(Y ). Then we can define a measure on X × Y
as follows.

For a given x ∈ X with µ ≪x α, let νx = κ(x) have base measure
βx. Then similarly to the independent product, we have

d(µ⊗ νx)

d(α⊗ βx)
=

dµ

dα

dνx
dβx

.

9. Superposition and mixtures

A superposition is the measure-theoretic analog of a mixture
model. For measures µ and ν with f = dµ

dα
and g = dν

dβ
, the super-

position, written µ+ ν, is a measure with base measure α+ β and
density

d(µ+ ν)

d(α+ β)
=

f dα+ g dβ

dα+ dβ

=
f dα

dα+ dβ
+

g dβ

dα+ dβ

=
f

1 + dβ
dα

+
g

dα
dβ

+ 1

=
f

1 +
(

dα
dβ

)−1 +
g

dα
dβ

+ 1
.

Using the inverse in this final line allows dα
dβ

to computed once and
then re-used. Also note that in the special case where α = β, this
reduces to f+g

2
.

An important special case of superposition occurs when µ and ν are
finite measures on some space Ω, and µ(Ω) + ν(Ω) = 1. This is
equivalent to a convex combination of probability densities, called
a mixture.

Conveniently, a product of measures distributes over superposition.
That is, if α and β are measures on a common space X and γ and
δ are measures on Y , then

α⊗ (γ + δ) = α⊗ γ + α⊗ δ ,

and

(α+ β)⊗ γ = α⊗ γ + β ⊗ γ .

A very common special case of superposition is a spike and slab
prior, a mixture of a Dirac measure (a point mass) with a con-
tinuous measure. This is useful for sparse Bayesian modeling, as
implemented in the sparse ZigZag sampler, described in [5] and
implemented in [15] using MeasureTheory.

10. Density decomposition

Especially for probability measures, it’s common for the log-
density with respect to Lebesgue or counting measure to have sev-
eral types of terms. Given an observation x and any relevant pa-
rameters, there are typically

• Terms that are data-dependent, each involving some nontrivial
function of x (and possibly also of the parameters),

• Terms that are parameter-dependent, and
• Terms that are constant.

In addition, it’s common to have an “argument check” to be sure x
is in the support of the distribution.

Depending on the application, we can often ignore some of these.
For example, we may know x is in the support by construction, or
from a previous check. In these cases, any use of resources to check
arguments is wasteful.

There are many cases where it’s important for performance to
have constant and parameter-dependent terms separated from data-
dependent ones. Suppose µ is a measure with log-density of the
form

log
dµ

dν
(x) = ℓ(x; θ) = f(x, θ) + g(θ) + C .

If we instead observe an iid product of N observations, the log-
density is

N∑
j=1

ℓ(xj ; θ) =

N∑
j=1

[f(xj , θ) + g(θ) + C]

= N [g(θ) + C] +

N∑
j=1

f(xj , θ) .

This final form can be much more efficient, because it reduces N
repeated computations of g(θ) + C to one.

In some cases it’s important to avoid computing g(θ) + C at all.
For correlation matrices, it’s common to use the LKJ prior [11].

Rather than work with correlation matrices directly, it’s convenient
to work in terms of the Cholesky decomposition. For this purpose,
MeasureTheory includes an LKJCholesky measure. This is typi-
cally used as a prior with fixed parameters k and η, which give
the dimensionality and “concentration” of the measure. The rela-
tive cost of normalization (which is irrelevant for MCMC) can be
computed as
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function relative_normcost(k, η)
µ = LKJCholesky(k, η)
L = rand(µ).L
f_cost = @belapsed logdensity($µ, $L)
g_plus_C_cost = @belapsed Dists.lkj_logc0($k, $η)
return g_plus_C_cost / (g_plus_C_cost + f_cost)

end

So for example, in 10 dimensions with η = 2.0 this gives

julia> relative_normcost(10, 2.0)
0.76428528899935

That is, 76% of the time is spent in normalization. If our applica-
tion doesn’t need it, three-fourths of the computation time is simply
wasted.

For these reasons, we break the representation of the log-density
into several pieces (now additive terms in log-space):

• Constant terms, − 1
2
log 2π .

• Parameter-dependent terms, − log σ .

• Data-dependent terms, − 1
2

(
x−µ
σ

)2 .

The two-argument logdensity then computes only the data-
dependent terms, with the constant and parameter-dependent terms
pushed to the base measure. This makes it easy to defer computa-
tion of these terms until they are required.

11. Affine transforms

A particularly expressive way to build new measures in terms of
existing ones is through a pushforward. Given a measure µ and a
function f defined on its support, the pushforward of µ through f
is a measure f∗µ defined by

f∗µ(S) = µ(f−1(S)) .

In the following sections, we first discuss in the context of proba-
bility measures before the more general case.

Forward parameterization

Starting with a k-dimensional multivariate random variable z, an
affine transform is a “linear transform with a shift”. We can use this
to define a new random variable x, as

X = σZ+ x0 ,

with σ and x0 of the appropriate dimensions.8 If E[Z] = 0, then x
has mean

E[X] = σE[Z] + x0 = x0

and variance matrix

V[X] = E[(X− x0)(X− x0)
t] = E[σZZtσt] = σV[Z]σt .

Note that if V[Z] = Ik, we get V[X] = σσt, so we can arrive at a
given positive semidefinite V[X] = Σ by taking σ to be its lower

8We would typically use µ in place of x0, if not for the unfortunate potential
confusion with µ as a name for a measure.

Cholesky factor. Also, in the special case of a one-dimensional
Gaussian, this gives the familiar V[X] = σ2.

We call this the forward parameterization because it’s especially
convenient for sampling, sometimes referred to as “running the
model forward”. Unfortunately, the cost of this convenience is a
relatively awkward expression for the density. In this case, we start
with x and need to solve z, finally adjusting according to the deter-
minant of the transformation:

pX(x) =
1

|σ|
pZ(z) =

1

|σ|
pZ

(
σ−1(x− x0)

)
,

where |σ| is the determinant of the square matrix, and the second
equality comes from solving for z, which gives z = σ−1(x− x0).
More generally (when the transform is not expressed as a matrix),
this role is played by the determinant of the Jacobian,

∣∣dx
dz

∣∣.
This requires solving a linear system. Even with σ being lower-
triangular, this involves division operations and the allocation of a
temporary vector for storage of z.

In many cases, we prefer the density (or log-density, really) to be
fast to evaluate. This leads us to a kind of dual approach to the
above.

Inverse parameterization

An alternative parameterization of a multivariate Gaussian is in
terms of its precision matrix, Λ = V[X]−1. Similarly to above,
we’ll write λ for the lower Cholesky factor of Λ, so λλt = Λ. The
parameterization is then specified by

Z = λ (X− µ) .

In this parameterization, λ is an inverse scale or rate parameter.
Solving for z is of course now very simple, and the density becomes

pX(x) = |λ| pZ(z) = |λ| pZ(λ(x− µ)) .

In exchange, forward sampling becomes awkward,

X = λ−1Z+ µ .

Generalization

Given an injective map f : z 7→ x and measures µ ≪z α, the
pushforward has density

d f∗µ

d f∗α
(x) =

dµ

dα

(
f−1(x)

)
=

dµ

dα
(z) .

Note that there’s no Jacobian to be found! This is because the mea-
sure and base measure are either both transformed, or both not.
In fact, the Jacobian

∣∣dx
dz

∣∣ only comes into play when we compute
“across the transform”, and even then it’s not in every case.

Changing our notation slightly, the general case is

f∗µ(dx)

α(dz)
=

1∣∣∣ f∗α(dx)
α(dz)

∣∣∣ µ(dz)α(dz)
.

This decomposes the problem into two subproblems. First we must
compute

∣∣∣ f∗α(dx)
α(dz)

∣∣∣. This plays the role of the determinant of the Ja-
cobian, but is specific to the base measure α. In particular, α might
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be a discrete measure, in which case this factor is one. Finally, we
compute µ(dz)

α(dz)
, which is just the (pre-transformation) density, more

familiar from previous discussion as dµ
dα

(z).

For the Lebesgue case, if the Jacobian
∣∣dx
dz

∣∣ is not square but, say,
n× k for n > k, the resulting measure will be embedded into a k-
dimensional affine subspace of Rn. This can be convenient for low-
rank modeling, which can be important for high-dimensional data.
If σ has QR decomposition σ = QR, we can use |R| in place of |σ|
or

∣∣dx
dz

∣∣ above, since columns of Q are orthonormal (so it’s a change
of basis and does not “stretch” the space). Our implementation is a
variation of this that’s equivalent but more efficient to compute.

12. Extensions

Despite it being a very new package, MeasureTheory.jl there is
already active work to build up on it and to extend it.

PointProcesses.jl[8] defines point processes, in particular re-
quiring the concept of random measure.

ManifoldMeasures.jl[1] implement measures on a manifold, us-
ing Hausdorff measure as the base measure.

MultivariateMeasures.jl[17] gives high-performance imple-
mentations of logdensity for multivariate measures, using
LoopVectorization.jl[9].

Soss.jl[19] is a probabilistic programming language that has re-
cently adopted MeasureTheory.jl as a foundation. In particular,
every Soss Model is an instance of AbstractMeasure, and has an-
other Soss model as its base measure.

As mentioned in Section 9, ZigZagBoomerang.jl[15] allows sam-
pling with a spike and slab prior for sparse Bayesian inference and
makes use the freedom to choose appropriate reference measures.
These models can be expressed using Soss.

Mitosis.jl[23] uses MeasureTheory.jl to represent Bayesian
networks via Markov kernels and defines transformations on those.

13. Related work

While the vast majority of research in computational statistics
works explicitly in terms of probability distributions, a few authors
have addressed measures more generally:

• Borgström et al [6] describe the Fun system in F# in terms of
measure transformer semantics, but discusses only finite mea-
sures.

• Narayanan et al [13] describe Hakaru, a system for Bayesian
modeling using measures. Here, a measure is a functional

µ[f ] =

∫
f dµ ,

represented as a program. Hakaru’s combinators are then ex-
pressed as compilers taking programs as the inputs.

• Radul and Alexeev [14] describe the base measure problem of
losing track of a base measure when applying a transformation,
and suggest standardizing around Hausdorff measure as a solu-
tion. This problem doesn’t arise for us, because the base measure
is always taken into account.

In Julia [3], the Distributions.jl package [12] is very
popular for computations on distributions. The drawbacks of

Distributions.jl are essentially those described in the first few
sections of this paper. Current advantages over MeasureTheory are
the extensive range of distributions it implements and its popularity
and familiarity to many Julia users. MeasureTheory.jl currently
has Distributions.jl as a dependency, and uses it as a fall-back
for many computations. For convenience, we also re-export the
Distributions module under the handle Dists.

14. Conclusion

We have introduced the concepts and implementation of
MeasureTheory.jl. This package is very new, so we expect there
will be some changes as it matures. For this reason we have lim-
ited our discussion to aspects of the implementation we believe are
relatively stable.

We hope this work can become a common foundation for proba-
bilistic modeling in Julia. In particular, we believe this approach
is especially well-suited for use in probabilistic programming, for
which Julia has such a robust and active community.

We welcome discussion and community involvement with this
package, as well as additional extensions to those we have de-
scribed.
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