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This paper provides a comprehensive explanation for the lift force acting on a freely
deformable bubble rising in a linear shear flow and examines how the lift force scales
with the undisturbed shear rate in cases governed by different lift force mechanisms.
Four distinct flow mechanisms are identified from previous studies, and the associated
bubble-induced vorticity dynamics are outlined. We provide a theoretical framework
to qualitatively explain the lift force acting on a bubble in terms of moments of the
bubble-induced vorticity. We support our theoretical framework with three-dimensional
multiphase direct numerical simulations to illustrate how the vorticity dynamics associated
with the four mechanisms generate the lift force. These findings provide a comprehensive
explanation for the behaviour of the lift force in a wide range of relevant governing
parameters. Additionally, our simulation results show how differently the lift force scales
with the shear rate, depending on the dominating lift force mechanism. These results
indicate that the shear rate should, in general, be accounted for in highly viscous flows (low
Galilei numbers) or at significant bubble deformations (moderate-to-high Eötvös numbers)
when modelling the lift force coefficient.

Key words: bubble dynamics, gas/liquid flow, vortex dynamics

1. Introduction

When a bubble rises with a relative velocity in a shear flow, the surrounding liquid exerts
a force on the bubble in a direction perpendicular to its relative motion. This force is
commonly known as the shear-induced lift force. Accurate models for the lift force are
important to correctly predict the spatial distribution of the bubbles in many bubbly flow
applications (Mudde 2005; Ertekin et al. 2021). For example, in bubbly pipe flows, the
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lift force causes the bubbles to migrate either towards the pipe wall or the pipe centre,
depending on the two-phase flow conditions (Lucas, Krepper & Prasser 2001). This change
of the lift force direction also affects the flow stability in bubble columns because the
direction influences whether the bubbles spread uniformly or in clusters (Lucas, Prasser &
Manera 2005; Mazzitelli & Lohse 2009).

Because of its practical importance, research related to discovering fundamental features
of the lift force has been going on for more than 60 years. Based on previous studies,
we distinguish four mechanisms that govern the net lift force acting on clean bubbles
depending on the specific flow conditions. Lighthill (1956) described analytically the
inviscid and weakly sheared flow past a sphere and showed that the lift force is induced by
a pair of counter-rotating vortices in the sphere’s wake. Auton (1987) further developed
this work and evaluated the lift force acting on the sphere by calculating the effect of
the vortices on the velocity field. In low-Reynolds-number shear flows, Saffman (1965)
derived an analytical expression for the lift force acting on a solid sphere. This expression
was extended for spherical bubbles by Legendre & Magnaudet (1997) and a connection
was outlined between the lift force and the vorticity generated at the surface of the bubble.
Today, it is well established that for a spherical bubble in laminar shear flows and at any
bubble Reynolds number, the lift force is positive (towards the pipe wall in upward pipe
flows) (Legendre & Magnaudet 1998).

However, there are additional distinct physical mechanisms that generate a lift force
on non-spherical (and deformable) bubbles in linear shear flows. In particular, at low
Reynolds numbers, a deformation-induced lift force acts on non-spherical bubbles in a
shear flow (Magnaudet, Takagi & Legendre 2003), and, at higher Reynolds numbers, the
vorticity produced at the deformed bubble surface is stretched and tilted into a pair of
counter-rotating streamwise vortices with the opposite sign to that for spherical bubbles
(Adoua, Legendre & Magnaudet 2009). The governing mechanisms for deformed bubbles
generate lift forces that scale differently and act in the opposite direction than the lift forces
generated by the governing mechanisms for spherical bubbles. Therefore, under certain
conditions, the net lift force may change sign (bubbles migrate towards the pipe centre
in upward pipe flows). The sign reversal has been observed in both simulations (Ervin &
Tryggvason 1997; Bothe, Schmidtke & Warnecke 2006; Adoua et al. 2009; Dijkhuizen,
van Sint Annaland & Kuipers 2010) and experiments (Tomiyama et al. 2002; Aoyama
et al. 2017; Hessenkemper et al. 2021).

The relative importance between the four lift force mechanisms varies with the flow
conditions and results in a highly nonlinear behaviour of the net lift force. The nonlinearity
makes it very difficult to develop universally applicable lift force models. This difficulty
is clearly illustrated by the numerous and rather different lift force correlations proposed
in the literature (Pang & Wei 2011).

Although all four mechanisms were identified in previous studies, there is still a lack
of a comprehensive explanation for all mechanisms based on the same observable and
quantifiable flow features. This deficiency limits a clear understanding of the net lift force
behaviour at different flow conditions, makes it difficult to quantify the relative importance
of each mechanism and, therefore, hinders the development of more universally applicable
lift force models.

Our aim is, therefore, to provide a general description of the flow phenomena behind
the four lift force mechanisms based on the same flow features. Specifically, we provide
a theoretical framework for the force acting on a bubble in a linear shear flow in terms
of moments of the bubble-induced vorticity by extending the previous works of, e.g.
Wu (1981), Noca, Shiels & Jeon (1999) and Biesheuvel & Hagmeijer (2006). Based
on these results, we provide formulations that explain the lift forces induced by the
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different mechanisms. Then, we perform three-dimensional (3-D) multiphase direct
numerical simulations (DNS) to support our theoretical framework and illustrate how the
lift force mechanisms can be explained in terms of bubble-induced vorticity dynamics.
Finally, based on our findings, we qualitatively explain how the different mechanisms
cause the nonlinear net lift force behaviour under a wide range of relevant flow conditions.

Our simulations also show how the lift force scales with the shear rate under conditions
governed by the different mechanisms. This study extends the current knowledge regarding
the role of the shear on the lift force, which is an important aspect to consider when
developing improved lift force models.

2. Background

This section provides a brief overview of the state of the art of the lift force acting on clean
bubbles in linear shear flows. We begin with presenting the governing parameters of the
problem and then introduce and describe the different lift force mechanisms identified in
previous works. We continue to discuss how these mechanisms influence the behaviour of
the net lift force and then describe how the lift force scales with the shear rate depending
on the governing mechanism.

2.1. Governing parameters
The problem of a clean bubble rising in a linear shear flow is described entirely by the
following five dimensionless parameters (Tripathi, Sahu & Govindarajan 2014): the Galilei
number Ga = ρl

√
gDD/μl that relates buoyancy to viscous forces; the Eötvös number

Eo = ρlgD2/σ that relates buoyancy to surface tension forces; the dimensionless shear
rate Sr = |ω∞|D/

√
gD; the density ratio ρr = ρl/ρg; and the dynamic viscosity ratio

μr = μl/μg.
We define D as the spherical equivalent bubble diameter, g is the value of gravitational

acceleration, σ is the surface tension, ω∞ is the shear rate of the surrounding flow and
the symbols l and g indicate the liquid and gas phases, respectively. For all the simulation
cases in this paper, we use the density and viscosity ratios of ρr = 1000 and μr = 100 that
represent the most relevant gas–liquid systems.

Sharaf et al. (2017) investigated the effects of ρr and μr on the bubble dynamics in
the range ρr, μr ∈ [10, 10 000] for a bubble rising in a quiescent liquid with the other
governing parameters kept constant. They obtained very similar bubble shapes and rise
velocities in the entire investigated ranges but noted a change in the bubble trajectories
at the highest density and viscosity ratios. Still, if ρr and μr are of similar orders of
magnitude as our ratios, no significant effect of ρr and μr on the bubble dynamics is
expected (Loisy, Naso & Spelt 2017). In addition, Bunner & Tryggvason (2002) studied
the effects of ρr and μr on the bubble dynamics and argued that at ratios above 50, the
pressure and viscous forces acting on the bubble interface by the gaseous phase are much
smaller than the forces acting on the interface by the liquid phase. Hence, at ratios larger
than 50, the effects of the density and viscosity ratios are essentially negligible. By fixing
the density and viscosity ratios (well above 50), we have three independent dimensionless
parameters (Ga, Eo, Sr) that essentially govern our problem of a bubble rising in a linear
shear flow.

The Galilei (Eötvös) number plays a similar role to the more familiar Reynolds (Weber)
number, but is defined with the characteristic rise velocity

√
gD due to buoyancy forces

rather than the relative velocity between the liquid and the bubble. The Reynolds and
Weber numbers are defined as Re = ρl|V rel|D/μl and We = ρl|V rel|2D/σ where |V rel| is
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the quasisteady relative velocity of the bubble. Considering that |V rel| is unknown a priori,
the Galilei (Eötvös) number is better suited to describe the problem of a rising bubble
than the Reynolds (Weber) number. Nevertheless, by using the Froude number, Fr =
Re/Ga = |V rel|/

√
gD, it is straightforward to map between functions f (Ga) ↔ f (Re),

f (Eo) ↔ f (We). Note also that Fr ≈ O(1) for the bubbles considered in this study.
To facilitate the discussions in this paper, it is useful to define a number of approximate

ranges of our governing parameters. Based on the differences in the characteristic
behaviour of the bubble dynamics and the lift force, we consider the Galilei number low
at Ga ≤ O(1), moderate at Ga = O(10) and high at Ga ≥ O(100). The Eötvös number is
deemed low at Eo ≤ O(0.1), moderate at Eo = O(1) and high at Eo ≥ O(10), while the
dimensionless shear rate is regarded low at Sr ≤ O(0.001), moderate at Sr = O(0.01) and
high at Sr ≥ O(0.1).

2.2. Brief overview of previous studies on lift force mechanisms
In this work we focus on four distinct lift force mechanisms that together qualitatively
explain the behaviour of the lift force observed in our own simulations and previous
numerical and experimental studies.

The first mechanism is denoted the Saffman-mechanism, and it governs the lift force
for spherical bubbles (low Eo) at low Ga numbers. In principle, the same mechanism
governs the lift force acting on a solid sphere in similar conditions. Although viscous
effects dominate at low Re numbers, Bretherton (1962) showed that no transverse force
on a single rigid spherical particle could be derived based on creeping flow equations in
a unidirectional flow field. This motivated Saffman (1965) to take small inertia effects
into account and thereby successfully derive an analytical solution for the lift force
acting on solid spheres at low Re numbers in shear flows. Legendre & Magnaudet (1997)
extended the results of Saffman (1965) for spherical drops or bubbles at arbitrary viscosity.
Physically, the Saffman-mechanism is a result of that the particle induces velocities that
are advected asymmetrically by the surrounding shear flow (Legendre & Magnaudet
1998). Therefore, the resulting velocity and pressure fields induce a force on the particle
with a non-zero transverse component. In terms of vorticity, the Saffman-mechanism
is a consequence of the vorticity generated at the bubble surface and the asymmetric
advection of that vorticity by the surrounding shear flow (Legendre & Magnaudet 1997,
1998; Magnaudet & Eames 2000).

For a spherical bubble with a higher Ga number, the Lighthill- or L-mechanism
increasingly dominates over the Saffman-mechanism (the L-mechanism dominates at
Re > 20 for spherical bubbles in Legendre & Magnaudet (1998)). The L-mechanism arises
because the bubble disturbance field stretches and tilts the vorticity in the upstream shear
flow into a pair of counter-rotating streamwise vortices in the bubble wake (Lighthill
1956; Auton 1987; Adoua et al. 2009). This pair of vortices induces a liquid motion in
the transverse direction that pushes the bubble in the opposite transverse direction due
to Newton’s third law. Despite the fundamental differences between the Saffman- and
L-mechanisms, it is interesting to note that, as pointed out by Legendre & Magnaudet
(1998), both mechanisms are governed by vorticity and the asymmetric advection due to
the shear flow. Both the Saffman- and L-mechanisms dominate the lift force acting on
spherical bubbles and induce a positive lift force (towards a higher relative velocity).

For deformed bubbles, two other distinct mechanisms are important to consider. The
first one is termed the A-mechanism and is a consequence of the fact that bubbles, at
low-to-moderate Ga, and moderate-to-high Eo, are deformed asymmetrically by the liquid
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shear flow (Taylor 1932; Ervin & Tryggvason 1997; Tomiyama et al. 2002; Magnaudet
et al. 2003; Zhang, Ni & Magnaudet 2021). Ervin & Tryggvason (1997) studied such
bubbles numerically and showed a relation between the sign of the bubble circulation and
the sign of the lift force for two-dimensional (2-D) bubbles rising in a linear shear flow. In
these simulations, an almost circular bubble experienced a positive lift force but a negative
circulation. In contrast, an asymmetrically deformed bubble experienced a negative lift
force but a positive circulation. In the same study, bubble simulations in three dimensions
with similar governing parameters showed the same sign of the lift force as their 2-D
counterparts. In two dimensions (the xy-plane), the only non-zero vorticity component
is ωz and the circulation around the bubble interface is ΓB = ∫

AB
ωz dA, where AB is

the bubble area. These findings also suggest a connection between the bubble-induced
ωz and the induced lift force on bubbles at low Ga conditions. By way of analogy, the
lift force on a 2-D airfoil in inviscid flows is also a direct consequence of the induced
vorticity and the corresponding circulation around the airfoil, according to the well-known
Kutta–Joukowski theory (Wu 1981; White 2011).

The other mechanism relevant for deformed bubbles is termed the S-mechanism. It
governs the lift force in an intermediate range of moderate-to-high Ga numbers and at
sufficiently high bubble deformations (moderate-to-high Eo) (Adoua et al. 2009). The
S-mechanism results from the stretching and tilting of the vorticity generated at the bubble
surface into a pair of counter-rotating streamwise vortices in the bubble wake. These
vortices have the opposite sign compared with those in the L-mechanism and, therefore,
induce a negative lift force. The key difference between the S- and L-mechanisms is that,
in the S-mechanism, the streamwise vorticity originates from the vorticity generated at the
bubble surface. In contrast, in the L-mechanism, the streamwise vorticity is generated by
stretching and tilting of the vorticity in the upstream shear flow.

In summary, the Saffman- and L-mechanisms dominate for spherical bubbles and
generate lift forces in the positive direction. Conversely, for deformed bubbles, the A- and
S-mechanisms generally dominate and induce lift forces in the negative direction. Figure 1
represents an overview of the governing mechanisms, the direction of the lift force, and the
corresponding sign of the lift force coefficient CL (defined in (2.1)) in the (Ga, Eo)-phase
plane. In addition, typical bubble shapes and trajectories from our simulations are included
to illustrate the effect of the (Ga, Eo)-parameters and the wide range of bubble dynamics
that is obtained. The dashed lines in figure 1 are a schematic representation of the regions
where the four lift force mechanisms dominate the net lift force. The location of these lines
is loosely based on the previous studies discussed in this section and the available CL data
shown in figure 2.

Based on the above brief overview of the four lift force mechanisms, it is interesting to
note that although they have distinct physical explanations, they can all be interpreted
in terms of the bubble-induced vorticity. Therefore, in this work, we focus on how
bubble-induced vorticity can explain all four mechanisms. First, it is, however, appropriate
to discuss how the four lift force mechanisms and the governing parameters (Ga, Eo, Sr)
influence the net lift force acting on the bubble.

2.3. Behaviour of the net lift force
The same functional form of the lift force is typically assumed for all values of the
governing parameters. Nevertheless, depending on the governing parameters, the lift force
is induced by different physical mechanisms that, in general, do not scale similarly. The
most common functional form is appropriate for the lift force acting on a spherical bubble
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A-mechanism
CL < 0

Saffman-mechanism
CL > 0

L-mechanism
CL > 0

S-mechanism
CL < 0

100

10–1

100 101 102

Ga
103

Eo

Figure 1. The (Ga, Eo)-phase plot illustrating the different behaviours of the lift force. The dashed lines
represent qualitative indications of the regions where the four lift force mechanisms dominate the net lift force
acting on a single bubble in a linear shear flow. Typical bubble shapes and trajectories (blue lines behind the
bubbles) are shown for the case where the liquid velocity relative to the bubble is higher on the right-hand side
of the bubble (representation of the relative velocity field above the plot). The bubble positions in the phase
plot indicate the parameters used in their respective simulations. The bubble trajectories are scaled to more
clearly show the direction of the lateral motion. Note also that in some regions, Sr influences what mechanism
dominates the net lift force and this dependence is investigated in § 6.5.

101

1.0

0.5

0

–0.5

–1.0

100

10–1

101 102

Ga

Eo CL

103

Figure 2. The (Ga, Eo)-phase plot with CL data (dots) obtained from available experimental and numerical
data on freely deforming bubbles in linear shear flows with moderate-to-high Sr. The contours illustrate the
CL,fit-surface obtained by fitting (2.2) to these points and the soft constraint CL,fit = 0.5 at high Ga and low Eo
since theoretically CL = 0.5 for a spherical bubble in a weakly sheared inviscid flow (Auton 1987). The colour
scale of the data points and contours is limited to the range [−1, 1] for visualization purposes. The dashed
black line indicates the contour line CL,fit = 0. The large variation of CL at high Eo or low Ga illustrates the
change of scaling of the lift force in regions of the phase-space governed by the different lift force mechanisms.

at high Ga and weakly sheared flows (where the L-mechanism dominates) and is given by
(Ẑun 1980; Auton 1987; Drew & Lahey 1987)

FL = −CLΩgρlV rel × ωU, (2.1)
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where CL is the lift force coefficient, Ωg is the bubble volume, ρl is the liquid density,
V rel = V − U is the relative velocity between the bubble (V ) and the undisturbed liquid
(U) evaluated at the bubble position and ωU = ∇ × U is the undisturbed liquid vorticity
evaluated at the bubble position.

Although, in principle, CL = f (Ga, Eo, Sr), the functional form of (2.1) is still suitable
for slightly deformed bubbles at low-to-moderate Eo, and moderate-to-high Ga numbers
(where the L-mechanism still dominates). This is illustrated in figure 2 where the
CL-contours show relatively small variations within the ranges of, say, Eo < 1 and Ga >

10.
The CL-contours in figure 2 are computed by fitting a surface (defined by (2.2)) to

the available experimental and numerical data (dots in figure 2) on freely deforming
bubbles in shear flows obtained in Dijkhuizen et al. (2010), Aoyama et al. (2017), Feng &
Bolotnov (2017), Ziegenhein, Tomiyama & Lucas (2018) and Hessenkemper et al. (2021) at
moderate-to-high Sr. The fitted surface is described by the ratio of two third-order surfaces

CL,fit = − 9
10 x3 − 97

10 x2y + 79
10 x2 − 7xy2 + 10xy − 49

10 x − 21
5 y3 − 19

5 y + 18
5 y2 + 1

x3 − 23
5 x2y + 51

10 x2 + 21
5 xy2 − 41

10 xy + 87
10 x − 3y3 + 31

5 y − 1
2 y2 − 4

, (2.2)

where x = log10(Ga) and y = log10(Eo). Despite some scatter in the available data, the
absolute standard deviation is 0.09 between the fitted surface and the data points. At
high Ga and low Eo, the CL,fit-surface approaches the analytical solution of CL,s,∞ = 0.5
(Auton 1987) for a spherical bubble in a weakly sheared inviscid flow. At around Ga < 3
and far from known data points the expression (2.2) is not suitable.

For approximately spherical bubbles (low Eo numbers), CL is always positive but
increases rapidly at low Ga numbers where the Saffman-mechanism dominates (Legendre
& Magnaudet 1998). The increase of CL at low Ga clearly demonstrates that the lift force
scales differently when the Saffman-mechanism dominates.

A different lift force scaling is also displayed for more deformed bubbles
(moderate-to-high Eo), where CL varies significantly to account for the forces induced
by the A- and S-mechanisms. Because of the two latter mechanisms, CL decreases and
reaches negative values for sufficiently high Eo (a sign reversal of CL occurs roughly in
the range 2 < Eo < 4 for all Ga considered in figure 2).

In summary, the behaviour of the net lift force clearly varies with the governing
parameters (Ga, Eo), and we aim in this paper to provide a comprehensive explanation for
these variations. In addition, we should also introduce how the third governing parameter,
the non-dimensional shear rate Sr, influences the net lift force.

2.3.1. Influence of the shear rate on the lift force
The formulation of (2.1) assumes that the lift force scales linearly with the shear rate.
Still, when the L-mechanism is not dominant, the scaling with the shear rate can be highly
nonlinear. Thus, CL in (2.1) takes into account also the nonlinear scaling with the shear
rate, so that CL = f (Ga, Eo, Sr).

Several studies have investigated the effect of Sr on CL with conclusions varying
depending on the phase-space region (Ga, Eo, Sr) under investigation. In very viscous
flows (low Ga), Legendre & Magnaudet (1997) extended the theoretical lift force
predictions of Saffman (1965) and McLaughlin (1991) to spherical drops of arbitrary
viscosity. For a spherical bubble in very viscous flows, the lift coefficient defined in (2.1)
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becomes (Legendre & Magnaudet 1998)

CL,Saffman = 6
π2 (ReSrV)−1/2J(ε), (2.3)

where SrV = |ω∞|D/|V rel|, ε = (SrV/Re)1/2 and J(ε) is the value of a 3-D integral
numerically evaluated by McLaughlin (1991). According to (2.3), CL is clearly a complex
function of both Re (or Ga) and Sr in the low Ga and low Eo regime.

Legendre & Magnaudet (1998) investigated numerically the lift force acting on fixed
spherical bubbles in linear shear flows. They found that CL increased as Re decreased for
Re < 5 and that CL was significantly dependent on Sr at Re < 5. The increase of CL at low
Ga can qualitatively be observed in figure 2 in the region Ga < 10, Eo < 1. In addition, for
spherical bubbles at moderate-to-high Ga where the L-mechanism dominates, Legendre
& Magnaudet (1998) showed that CL was nearly independent of Sr and that CL tended
asymptotically towards the analytical prediction of CL,s,∞ = 0.5 as Ga → ∞.

In the experimental work of Tomiyama et al. (2002), CL was studied in the approximate
ranges (6 < Ga < 88), (1.4 < Eo < 5.7) and (Sr < 0.2). Within these parameter ranges,
the authors did not observe any significant effect of Sr on CL.

Dijkhuizen et al. (2010) used a front-tracking DNS technique to study CL in the
parameter ranges of approximately (4 < Ga < 1640), (0.1 < Eo < 11) and (Sr < 0.1).
The authors concluded that Sr had no significant effect on CL. However, we will show
that within the same ranges of Ga and Eo, but using other values of Sr, the shear rate can
significantly alter the value of CL and even change its sign.

The change of sign in CL due to variations of Sr was also studied numerically by
Adoua et al. (2009) that examined the lift force acting on fixed bubbles of prescribed
oblate spheroidal shapes in weakly viscous linear shear flows. Their parameter ranges
were (50 ≤ Reb ≤ 4000), (0 ≤ Srb ≤ 0.2) and (1.0 ≤ χ ≤ 2.7), where Reb = 2bU0/ν and
Srb = 2ω∞b/U0 are defined using the major semiaxis b of the bubble, the prescribed
relative velocity U0, the liquid kinematic viscosity ν and χ = b/a is the ratio of the major
to minor semiaxes of the bubble.

In the work of Adoua et al. (2009), the change of sign of CL due to Sr is explained
by the different scaling of the lift forces induced by the S- and L-mechanisms. Their
results suggest that the S-mechanism induces a negative lift force that is almost invariant
with Sr (at least at low Sr). In contrast, the L-mechanism induces a positive lift force
proportional to Sr. Consequently, it is argued that the L-mechanism will always dominate
the S-mechanism provided Sr is large enough.

Thus, given a negative lift force at low Sr, the lift force will change sign at a
sufficiently high Sr value. However, the use of fixed oblate spheroidal bubbles in the
simulations of Adoua et al. (2009) limits the conditions at which the results are relevant
to situations where Re = O(100–1000), We = O(1) and Sr 
 1. Therefore, it is unclear if
the L-mechanism will always dominate at high enough Sr also for freely deformable and
moving bubbles outside these parameter ranges.

Clearly, the dominating lift force mechanisms vary depending on the considered
phase-space region (Ga,Eo,Sr). As indicated by the above brief review, our understanding
of the behaviour of the lift force and how it is influenced by Sr is limited to specific regions
of the phase-space. Therefore, one of the aims of this paper is to shed light on how the lift
force scales with the shear rate under conditions where the different lift force mechanisms
dominate.
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g

U
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z
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rmrf

r̂B

x̂

ẑ

ŷ

û

Figure 3. Schematic view of the problem. A freely moving and deformable bubble rises due to buoyancy in an
infinite linear shear flow where gravity acts in the negative y-direction. We consider an undisturbed shear flow
with dUy/dx < 0 so that for a positive (negative) CL the bubble moves in the positive (negative) x-direction.
The coordinate systems illustrate the non-inertial MRF and the laboratory reference frame. The velocity field
û is the velocity relative to the MRF, and the MRF follows the bubble in the laboratory reference frame (i.e.
V mrf = V ).

3. Problem statement

In this paper we aim at providing a comprehensive explanation of the four lift force
mechanisms that induce the lift force acting on a bubble rising in a linear shear flow.
We also aim at determining how the lift force scales with the undisturbed shear rate in
cases governed by the different lift force mechanisms.

Specifically, we study freely moving and deformable bubbles rising in an infinite linear
shear flow. Gravity acts in the negative y-direction and induces a buoyancy force on the
bubble that acts in the positive y-direction. We consider the case of an undisturbed liquid
linear shear flow U = (0, x dUy/dx, 0) with the shear rate ω∞ = dUy/dx < 0 so that the
undisturbed liquid velocity relative to the bubble is higher on the bubble side towards the
positive x-direction. Figure 3 shows a schematic view of this problem. According to (2.1),
this set-up gives a lift force coefficient CL that is positive if the lift force acts in the positive
x-direction and a negative CL if the lift force acts in the negative x-direction.

We provide a theoretical framework that relates the lift force acting on the bubble to
moments of bubble-induced vorticity. In addition, we support the theoretical framework
by performing fully resolved 3-D multiphase DNS simulations of freely moving and
deformable bubbles in a linear shear flow. These simulations confirm the validity of the
theoretical framework and demonstrate the specific vorticity dynamics associated with the
four lift force mechanisms.

Then, we examine with our simulations how CL scales with Sr under conditions where
the different lift force mechanisms dominate. This investigation indicates the regions of
the phase-space (Ga,Eo,Sr) where CL is independent of Sr (the lift force scales linearly
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with the shear rate) and the regions where the CL coefficient needs to account for any
nonlinear scaling.

Within the shear-rate study, we extend the work of Adoua et al. (2009) to freely
moving and deformable bubbles. Particularly, we study whether their findings that the
L-mechanism always dominates the S-mechanism at high enough shear rates also hold for
freely moving and deformable bubbles (at high Ga and Eo > 1), where the lateral bubble
motion and asymmetric bubble deformations may influence the net lift force behaviour.

3.1. Considerations in the present investigation
In general, a rising bubble can experience transient lift forces even without the presence
of shear in the surrounding liquid flow (Magnaudet & Mougin 2007; Ern et al. 2012).
Such lift forces give rise to unsteady bubble trajectories that display a fascinating range
of behaviours, some of which develop over relatively long spatiotemporal scales. For
example, Cano-Lozano et al. (2016) and Tripathi, Sahu & Govindarajan (2015) used DNS
to study single bubbles rising in a quiescent liquid and obtained rectilinear, zigzagging,
spiralling and even chaotic bubble trajectories depending on the governing parameters.

In the non-rectilinear trajectories, the bubble experiences a fluctuating lift force
corresponding to the unsteady lateral motion. By averaging this lift force over a sufficient
number of oscillations, we obtain a quasisteady lift force. The latter force is generally
non-zero with the shear present in the undisturbed liquid flow and zero without the
presence of shear. We focus in this work on the behaviour of this quasisteady lift force
acting on freely moving and deformable bubbles in a linear shear flow.

We assume that no phase change occurs. Furthermore, possible non-ideal effects on
the lift force, such as the presence of walls, free stream turbulence and the presence
of other bubbles, are not considered. In the presence of surfactants, the contaminated
bubble interface may become less mobile, the surface tension modified and the bubble
shape therefore altered. Surfactants, therefore, change the surface vorticity generation
and bubble dynamics and thus influence the lift force acting on the bubble (Hayashi &
Tomiyama 2018). Surfactants would therefore modify the regions of the phase-space where
the different lift force mechanisms dominate the net lift force, although the fundamental
flow phenomena of each mechanism should be the same. Even though all non-ideal flow
conditions certainly influence the bubble dynamics (Bunner & Tryggvason 2003; Lu &
Tryggvason 2008), we believe it is essential first to understand the behaviour of the lift
force in the simplest case of a single isolated clean bubble in linear shear flows. For this
reason, we consider the lift forces on clean, freely moving and deformable (realistically
shaped) bubbles.

4. Numerical framework

Although presenting the theoretical framework before the numerical framework may seem
logical, we choose to do it here in the opposite order. The reason is that we want to
introduce in this section a moving reference frame (MRF) technique, which is a crucial
part of the numerical framework but also of great relevance in the theoretical part of our
analysis.

The different lift force mechanisms have undoubtedly a complex interaction and thus
need to be considered together. Also, since the mechanisms interact with the bubble shape
and motion, it is essential to capture the latter features realistically. For these reasons,
we use a multiphase DNS framework based on the volume of fluid approach. In this
framework, we use a MRF technique to facilitate tracking of the bubbles for sufficiently
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long periods to obtain quasisteady quantities. The numerical framework is outlined in this
section, but a detailed description and validation can be found in Hidman et al. (2022).

We start by non-dimensionalizing all relevant variables by scaling with the diameter
D, gravitational acceleration g, the surrounding liquid density ρl and the liquid viscosity
μl. The non-dimensional variables are the spatial coordinates x∗

i = xi/D, velocity u∗
i =

ui/
√

gD, time t∗ = t/
√

D/g, density ρ∗ = ρ/ρl, dynamic viscosity μ∗ = μ/μl, pressure
p∗ = p/(ρlgD), gravitational acceleration g∗

i = gi/g and the bubble interface curvature
κ∗ = κD. Unless otherwise stated, all variables in the remainder of this paper are
non-dimensionalized accordingly and the asterisk notation is henceforth omitted.

In this work we study the quasisteady dynamics of a bubble rising in a linear shear flow.
For this problem, it is not trivial to a priori select the required size of the computational
domain since the bubble dynamics may develop over relatively large spatial scales.
Because of the large density ratio coupled with the gravitational force, the bubble rises
at a high velocity and may travel long vertical distances. Also, at high liquid shear, the
bubble can be both advected large vertical distances by the high-velocity shear flow and,
due to the lift force, reach the horizontal boundaries of the domain. In addition, the lift
force has been shown to be sensitive to boundary effects, and thus a sufficient distance
between the bubble and the domain boundaries needs to be maintained. To solve these
challenges, we use a MRF technique that allows the computational domain to follow the
motion of a bubble and to keep the bubble at its initial position within this domain.

We change the frame of reference from a laboratory, or absolute, reference frame to a
non-inertial reference frame moving with the bubble by making the following change of
variables:

t̂ = t, (4.1)

x̂i = xi − xmrf ,i, (4.2)

ûi = ui − Vmrf ,i, (4.3)

where x̂i and ûi are the non-dimensional position and velocity within the MRF, and xmrf ,i
and Vmrf ,i are the absolute position and velocity of the MRF itself. An illustration of these
reference frames is shown in figure 3. Here, r̂B represents the bubble centre of mass in the
MRF, the gravity acts in the negative y-direction, and the surrounding liquid shear flow
field is given by Uy = −Srx.

The non-dimensional governing equations for the two-phase flow in the non-inertial
MRF are

∂ ûi

∂ x̂i
= 0, (4.4)

ρ

(
∂ ûi

∂ t̂
+ ûj

∂ ûi

∂ x̂j

)
= ρ

(
gi − amrf ,i

)− ∂p
∂ x̂i

+ 1
Ga

∂

∂ x̂j

(
μ

(
∂ ûi

∂ x̂j
+ ∂ ûj

∂ x̂i

))
+ κ̂δSn̂i

Eo
,

(4.5)

∂c
∂ t̂

+ ∂cûi

∂ x̂i
= 0, (4.6)

where amrf ,i represents the acceleration of the MRF, δS is the Dirac distribution function
that localizes the surface tension term at the interface and c is the volume fraction field.
The density ρ and viscosity μ are computed using

ρ(c) = c + (1 − c)/ρr, (4.7)

μ(c) = (c + (1 − c)μr)
−1, (4.8)
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where the symbols l and g indicate the liquid and gas phases. The viscosity is defined
with a harmonic mean that is generally more accurate at the gas–liquid interfaces with
a continuous shear stress that we consider in this work (Tryggvason, Scardovelli &
Zaleski 2011). The MRF should follow the bubble trajectory and keep the bubble at its
initial relative position within the MRF. We achieve this by continuously updating the
acceleration of the MRF using a proportional integral derivative (PID)-controller that
minimizes the distance between the bubble centre of mass and its initial position. This
approach keeps the velocity of the MRF approximately equal to the bubble absolute
velocity Vmrf ,i ≈ Vi. The entire approach is described in detail in Hidman et al. (2022).
We also provide a validation case in Appendix B to confirm that the MRF technique
predicts the same bubble dynamics as when using an absolute reference frame and that the
predicted lift force agrees with available experimental and numerical studies. Additional
comparisons of the predicted lift force using the MRF technique to previous studies are
also presented in § 6.5.

The governing equations are solved using the open-source code Basilisk (Popinet 2015)
(see basilisk.fr) that has been used extensively for DNS of bubbly flows, see for example
Innocenti et al. (2021) and Zhang et al. (2021). This code features a cell-centred Cartesian
and a tree-structured grid with an efficient adaptive refinement technique that allows us
to perform high-resolution 3-D simulations at a feasible computational cost. The surface
tension term in (4.5) is implemented with a well-balanced discretization, and the curvature
is computed using an accurate height-function method (Popinet 2018).

The system of partial differential equations is solved using a time-splitting projection
method, where standard, second-order, numerical schemes are used for the spatial
gradients, and the velocity advection term is discretized with the Bell–Colella–Glaz
second-order unsplit upwind scheme (Popinet 2003). Here, the pressure and velocity
components are solved using a Helmholtz–Poisson-type equation, and the pressure
correction is solved as a Poisson problem. For these problems, an efficient multilevel
solver is used on the tree-structured grid. The scalar and velocity fields are discretized
in time using a staggered second-order method where the velocity is determined at time
n + 1 and the scalar fields at n + 1/2. To maintain a sharp interface, the piecewise-linear
interface reconstruction method is used to reconstruct the volume fraction field as a
line in two dimensions or a plane in three dimensions in each computational cell
containing the interface (Scardovelli & Zaleski 1999). Then, the volume fraction field
is advected using a geometric flux estimation based on the reconstructed interface. This
procedure ensures a volume fraction field with a minimal amount of smearing at the
interface.

4.1. Computational domain, grid and time step settings
There are several numerical challenges to consider when using the framework outlined
above. First, the lift force is very sensitive to boundary effects at low Ga and low Sr.
Theoretical predictions suggest that the inertia and viscous effects induced by the bubble
motion are comparable at a distance DS = O((GaSr)−1/2) (Legendre & Magnaudet 1998).
To minimize possible boundary effects, we select the domain size so that the distance
DΓ between the bubble and a domain boundary is always DΓ ≥ 10DS. Because of the
MRF technique, which keeps the bubble at its initial position in the domain, it is thus
sufficient to ensure that the bubble initial position fulfils this requirement. To predict the
correct bubble dynamics, the domain must also capture the part of the bubble wake that
significantly influences the bubble motion. For this reason, we generally use a domain
size of approximately (40D)3 (see Appendix A for the specific cases), where the bubble is
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Boundary Pressure Normal velocity Tangential velocity

Top ∇np = −ρlg ûn = ûBC,n ∇t û = ∇tU
Bottom p = 0 ∇nû = 0 ∇t û = ∇tU
Lateral ∇np = 0 or p = −ρlgy ûn = ûBC,n or ∇nû = 0 ∇t û = ∇tU

Table 1. Boundary conditions for the computational domain. Here, n denotes the normal direction and t the
tangential directions of the specific boundary. The lateral boundaries are specified as either inlet or outlet,
depending on the direction of the normal boundary velocity.

placed in the centre of the domain and at 2/3 of the vertical height. This set-up captures
the bubble wake almost 27D behind the bubble, similarly to the wake refinement region
in Cano-Lozano et al. (2016) that studied rising bubbles in a wide range of the governing
parameters.

The boundary conditions of the computational domain are defined in table 1 where a
hydrostatic pressure field is imposed. The lateral boundaries have either inlet or outlet
boundary conditions depending on the normal boundary velocity direction according to
ûBC(x̂, t) = U(x̂, t) − V mrf (t).

Since the forces acting on the bubble are intimately connected with the vorticity
generated at the bubble surface, we need to take special care to adequately resolve the
viscous boundary layers surrounding the bubble. The thickness of the boundary layer is
approximately O(D/(2Ga1/2)) (Adoua et al. 2009) and at least four grid points should be
placed within the boundary layer to resolve it sufficiently (Legendre & Magnaudet 1998;
Adoua et al. 2009; Kusuno & Sanada 2021). Grid independence studies and validation
cases have been performed using this grid resolution criterion with satisfactory results for
all the tested cases. In Appendix C, we present a grid convergence study for the case with
the highest Ga, and Eo-number, studied in this work, and in Appendix A we specify the
maximum grid resolution for each simulation case.

We use the adaptive grid refinement technique in Basilisk, where two criteria are used
to determine where and to what extent the grid is refined. These criteria are based on a
wavelet decomposition method of the volume fraction and velocity fields (Van Hooft et al.
2018) and provide grid refinements in the regions where the second spatial derivatives of
the fields are high. For the velocity field, this method ensures refinement in the viscous
boundary layers and bubble wakes, and for the volume fraction field, the refinement
method gives an accurate resolution of the bubble interface. The grid is either refined
or coarsened based on absolute thresholds for the error allowed in both fields. These
thresholds are chosen as εf = 0.01 for the volume fraction field and εu = 0.003 for the
velocity field and have been verified to give grid-independent results in bubbly flows
(Innocenti et al. 2021).

The time step size is variable and determined using the common Courant–Friedrichs–
Lewy criterion (with a Courant number of 0.5), and, since we are dealing with deformable
interfaces and surface tension forces, we also consider the time step constraint due to
capillary waves. The non-dimensional capillary constraint is Δt ≤

√
(Δx)3Eo/2π, where

Δx is the cell size used at the interface (Denner & van Wachem 2015). This is typically
the limiting constraint in our simulation cases and is hence prohibiting the use of very low
Eo numbers.
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4.2. Evaluating the lift force coefficient CL

We determine the lift force coefficient by evaluating the time-averaged forces at a
quasisteady bubble motion. Using this approach, the time-averaged momentum exchange
between the phases is correct (Dijkhuizen et al. 2010). In non-dimensional form, the
time-averaged equation of motion is defined as(

1
ρr

+ C̄AM

)
dV
dt

= −3
4

C̄D|V rel|V rel − C̄LV rel × ωU +
(

1 − 1
ρr

)
g, (4.9)

where the overline represents time-averaged quantities, a weak correlation is assumed
between the force coefficients and the flow parameters, and the respective terms are the
inertia, drag, lift and buoyancy force. Effects due to the Basset force are neglected. At a
quasisteady relative velocity dVrel/dt = 0, the bubble absolute velocity becomes

dV
dt

= dV rel

dt
+ dU(rB)

dt
= (V · ∇)U . (4.10)

We assume ρr  1, note that Vx = Vrel,x and define the steady undisturbed vorticity field
ωU = (0, 0, −Sr) in the linear shear flow (where we use ω∞ < 0). By solving for C̄D in
the y-direction of (4.9) and substituting the result into the x-direction of (4.9) we obtain an
expression for the lift force coefficient as

C̄L = |V rel|Vrel,x

(Vrel,x)(|V rel|Vrel,x) + (Vrel,y)(|V rel|Vrel,y)

(
1
Sr

+ C̄AMVrel,x

)
. (4.11)

In the cases with oscillating trajectories, we compute the time-averaged CL from (4.11)
over typically 5–10 oscillation periods, excluding the initial transient before reaching
a quasisteady motion. In the remainder of the paper we omit the overline notation of
CL for brevity. The added mass coefficient depends on the shape of the bubble and
is approximated by the linearized relation of Klaseboer et al. (2001) and Kusuno &
Sanada (2021): CAM = 0.62χ − 0.12. The absolute difference in the CL-values using this
relation and the value of CAM = 0.5, valid for spherical bubbles, is less than 0.01 for
all cases in this study since typically the relative velocity in x-direction is small and
1/Sr  C̄AMVrel,x. Equation (4.11) is similar to the expressions used by Bothe et al.
(2006), Dijkhuizen et al. (2010), Aoyama et al. (2017) and Ziegenhein et al. (2018) to
determine CL in both experimental and numerical studies. We also confirm that evaluating
(4.11) in our numerical framework predicts CL in agreement with the results of Legendre
& Magnaudet (1998), where CL was determined by evaluating a stress-integral on the
fixed spherical bubble surface. We simulate the case (Ga = 50, Eo = 0.1, Sr = 0.05) and
obtain CL = 0.46 using (4.11) with Re = 93 and χ = 1.04 at a steady state. This is very
close to the CL = 0.451 reported for the corresponding case in Legendre & Magnaudet
(1998) and their Table 5.

5. Theoretical framework

This section provides a theoretical framework to explain the underlying mechanisms
behind the lift force acting on a bubble in a linear shear flow. Because of the connection
with the vorticity dynamics, outlined in § 2.2, it seems appropriate to seek an explanation
for all four distinct lift force mechanisms in terms of vorticity rather than velocity. By
considering the vorticity field, it proves to be possible and useful to divide the flow field
into regions where the vorticity is either significant or approximately zero.
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For this analysis, we consider the vorticity dynamics in a control volume moving with
the bubble and, specifically, the rate of change of the bubble-induced vorticity moments.
This approach provides relation (5.1) (derived in Appendix D) for the total force acting on
the bubble due to the bubble-induced vorticity. Based on relation (5.1), we examine in § 5.2
the vorticity dynamics that induce transverse forces on the bubble and provide, in § 5.3 and
§ 5.4, relations that explain the lift forces induced by the different lift force mechanisms.
The predictions of the formulae are then supported by numerical demonstration cases
presented in §§ 6.1–6.4.

5.1. Relation between total force and bubble-induced vorticity in linear shear flow
The total force D acting on the bubble in a linear shear flow due to the bubble-induced
vorticity ω̃ in a reference frame x̂, moving with the bubble, is defined as

D = − d
dt

(
1
2
ρl

∫
Ωl+Ωg

x̂ × ω̃ dΩ

)
+ ρlΩg

dV rel

dt
, (5.1)

where Ωl is the liquid volume encompassing all bubble-induced vorticity, Ωg is the volume
occupied by the bubble and V rel = V − U(rB) is the relative velocity between the bubble
and the undisturbed liquid. A detailed derivation of (5.1) is given in Appendix D. The
relation (5.1) is a reformulation of the relation between the vorticity moments and forces
acting on bodies in viscous flows, presented in for example Wu (1981), Noca et al. (1999)
and Biesheuvel & Hagmeijer (2006), into a MRF and in the presence of a surrounding
shear flow. We have also validated in Appendix E that (5.1) evaluated in our numerical
framework predicts drag forces on both fixed spheres and rising bubbles in agreement
with well-known correlations. Based on (5.1), we analyse the vorticity moments that may
induce transverse forces on the bubble in the coming sections.

5.2. Relation between the transverse force and bubble-induced vorticity in linear shear
flow

We aim to provide a qualitative explanation for the lift force induced by the bubble-induced
vorticity dynamics. For this purpose, we use a methodology similar to that which Wu
(1981) used to determine the forces acting on a body in viscous flows.

Consider the bubble rising in a linear shear flow illustrated in figure 4. Gravity acts in
the negative y-direction and induces a buoyancy force that makes the bubble rise in the
positive y-direction. The liquid volume Ωl surrounds the bubble and the entire disturbance
field generated by the bubble motion. Two subregions that follow the motion of the bubble
are defined within Ωl; the MRF-region with a constant volume Ωmrf and the wake-region
Ωwake, where the volume increases as the bubble rises and the wake grows longer. The
velocity field within these moving regions is described by û and the bubble centre of mass
in the laboratory reference frame is rB(t) = rmrf (t) + r̂B, where r̂B is steady in the MRF.
The boundary between the two regions is sufficiently far downstream of the bubble so that
the velocity is approximately the background shear flow Û .

The MRF-region contains the near vortical system that consists of the vorticity inside
the bubble, attached boundary layers and recirculation zones. The wake region contains the
trailing vortical system and comprises all the vorticity that has been shed by the bubble
and then passed into the wake region. To simplify our analysis of the physical mechanisms
behind the lift force, we assume a steady bubble relative motion. At a steady-state, the
net vorticity flux from the MRF-region to the wake-region is zero (Batchelor 1967;
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g

U Ωl

Ωg

Ωmrf

Ωwake

y

z
x

rmrf

Vy

Vx

x̂ẑ

ŷ

û

r̂B

Figure 4. Schematic view of the reference frames and fluid regions considered in the analysis leading to (5.2),
(5.8) and (5.12). The MRF and wake regions follow the motion of the bubble and contain all the vorticity
generated by the bubble motion. The dashed blue line represents the boundary between the MRF and the wake
regions, and it is located sufficiently far downstream of the bubble so that û ≈ Û . At a steady bubble motion,
there is no net vorticity flux across this boundary.

Wu 1981). However, before reaching a steady state, the bubble may have generated and
shed a net total vorticity into the wake region and this vortical system is defined as the
starting vorticity complex. Since the net vorticity flux between the regions is zero at
steady-state, the principle of total vorticity conservation (Appendix F) states that the total
amount of vorticity in both regions is constant, but of the opposite sign. It is, therefore,
sufficient to know the total vorticity in, for example, the MRF-region to determine the total
vorticity of the starting vorticity complex within the wake region.

The assumption of a steady bubble relative motion limits the use of the theoretical
framework to bubbles rising with a rectilinear trajectory. For non-spherical bubbles, at high
Ga conditions, the bubbles may, however, exhibit oscillatory or even chaotic trajectories
(Cano-Lozano et al. 2016) that are induced by unsteady additional flow phenomena related
to surface vorticity generation (Magnaudet & Mougin 2007). These flow phenomena do
not produce an average force on the bubble in the transverse directions and are therefore
not generating the average lift force that we study in this work. The previously discussed
lift force mechanisms nonetheless exist also in the cases with unsteady trajectories (Adoua
et al. 2009) although it is not possible to distinguish between the vorticity related to the
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lift and the vorticity related to the unsteady trajectory in the present theoretical framework
using instantaneous vorticity fields. However, by time-averaging the bubble-induced
vorticity fields over a sufficient number of oscillation periods it could be possible to
estimate the time-averaged lift force acting on the bubble. Since the theoretical framework
aims at elucidating the vorticity dynamics behind each lift force mechanism and not to
provide universal relations to compute interfacial forces, we therefore focus on rectilinear
cases with a steady motion where no averaging procedure is necessary.

In principle, the lift force acts perpendicularly to the relative velocity vector of the
bubble that is generally not aligned with the vertical y-axis. However, the major component
of the lift force vector is generally in the x-direction, and we are interested here in
explaining qualitatively the vorticity dynamics that induce the lateral motion of the bubble
in the x-direction. For simplicity, we focus therefore on the x-component of (5.1) given by

Dx = − d
dt

(
1
2
ρl

∫
Ωl+Ωg

(ω̃zŷ − ω̃yẑ) dΩ

)
+ ρlΩg

dVrel,x

dt
. (5.2)

At a steady bubble relative motion (dVrel,x/dt = 0), (5.2) can be split into two
contributions

Dx = Dx,ωz + Dx,ωy = 0, (5.3)

Dx,ωz = − d
dt

(
1
2
ρl

∫
Ωl+Ωg

ω̃zŷ dΩ

)
, (5.4)

Dx,ωy = d
dt

(
1
2
ρl

∫
Ωl+Ωg

ω̃yẑ dΩ

)
. (5.5)

In (5.3), the total force Dx exerted by the liquid on the bubble is zero because the
component of the lift force in the x-direction is balanced by an opposite drag force of
equal magnitude that also manifests as changes to the vorticity moments. Since (5.4)
and (5.5) feature the volume integral of all bubble-induced vorticity, it is in general not
possible to differentiate precisely between the vorticity moments related to the lift or drag
force. Instead, we aim to determine which vorticity moment of Dx,ωz and Dx,ωy that is
comparable to the lift force in the regions of the phase space governed by the different lift
force mechanisms.

Specifically, we evaluate the force predicted by Dx,ωz and Dx,ωy separately in our DNS
simulations. The magnitude and sign of these contributions are then compared with the
magnitude and sign of the lift force predicted by (4.11) and (2.1) in the same simulation.
This comparison shows qualitatively the vorticity moment that governs the lift force in
a specific case. Note that if one of the components Dx,ωz and Dx,ωy have the same sign
and magnitude as the lift force, the other component will have the same magnitude but
opposite sign according to (5.3) and therefore the latter component will be the dominant
contribution to the drag force.

We analyse in the coming section the vorticity moments associated with the Saffman-
and A-mechanisms that govern the lift force at low-to-moderate Ga conditions and
then move to the S- and L-mechanisms in § 5.4, which dominate the lift force at
moderate-to-high Ga conditions.
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5.3. Vorticity dynamics in Saffman- and A-mechanisms
In the works of Legendre & Magnaudet (1997, 1998), the Saffman-mechanism is attributed
to the bubble surface vorticity and the asymmetric advection of that vorticity due to the
shear flow. In our cases, the background shear flow induces such asymmetric advection of
the ω̃z component generated at the bubble surface, in the xy-plane, specifically at the plane
ẑ = ẑB. This explanation clearly indicates a connection between the Saffman lift force
and the ω̃z component of the bubble-induced vorticity. As described in § 2.2, and shown
numerically by Ervin & Tryggvason (1997), also the A-mechanism seems to be related to
the generation of ω̃z at the bubble surface. Since (5.4) shows that the ω̃z component can
generate such lift forces, we seek an explanation for the Saffman- and A-mechanisms in
terms of the bubble-induced ω̃z.

We start by providing an approximate relation that we can evaluate numerically in our
simulations for the force in the transverse x-direction induced by Dx,ωz in (5.4) at a steady
bubble motion. Then, we compare the predicted force Dx,ωz from our DNS simulations to
the magnitude and sign of the lift force predicted from the bubble trajectory using (4.11)
and (2.1) in the same simulation. We make this comparison for a case governed by the
Saffman-mechanism in § 6.1 and for a case governed by the A-mechanism in § 6.2.

Since all ω̃z is contained within the Ωmrf and Ωwake regions (depicted in figure 4), we
can reformulate the volume integral of (5.4) into these two regions according to

Dx,ωz = −1
2
ρl

d
dt

(∫
Ωwake

ω̃zŷ dΩ +
∫

Ωmrf +Ωg

ω̃zŷ dΩ

)
. (5.6)

The ω̃z-field in the constant volume Ωmrf is steady at a steady bubble motion, and the
second term on the right-hand side of (5.6) therefore equals zero. At a steady bubble
motion (dVrel,x/dt = 0), there is no net vorticity generation at the bubble surface and no
net vorticity flux between the Ωmrf and Ωwake regions. Consequently, the total vorticity
in Ωwake can be determined by the starting vorticity complex shed by the bubble before
reaching a steady motion. The starting vorticity complex is far from the bubble and is thus
approximately advected with the undisturbed flow Û . The average ŷ-position of the starting
vorticity complex hence decreases proportionally to Ûy(rB(t)) = Uy(rB(t)) − Vy(t) =
−Vrel,y. Note also that the viscous diffusion process in the starting vorticity complex does
not change the vorticity moment (Wu 1981). Equation (5.6) can now be approximated as

Dx,ωz ≈ 1
2
ρlVrel,y

∫
Ωwake

ω̃z dΩ, (5.7)

or, by considering the total vorticity conservation principle,
∫
Ωmrf +Ωg

ω̃z dΩ =
− ∫

Ωwake
ω̃z dΩ , the equation (5.7) can be reformulated as

Dx,ωz ≈ −1
2
ρlVrel,y

∫
Ωmrf +Ωg

ω̃z dΩ. (5.8)

This result shows that the bubble-induced ω̃z induces a force in the transverse x-direction
if the volume integral of ω̃z in the region Ωmrf around the bubble is non-zero. Such a
distribution of ω̃z is certainly possible due to the asymmetric flow around the bubble in
the xy-plane. Equation (5.8) also states that the sign of the induced force is determined
by the sign of the total vorticity in the vortical system near the bubble. Equation (5.8) is
analogous to the relation for the lift per unit length of any cross-sectional profile derived
in Wu (1981) and can readily be evaluated in our numerical simulations since we utilize
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the MRF technique and do not necessarily retain the starting vorticity complex inside the
computational domain. The use of (5.4) or (5.6) is, however, strictly speaking only valid
at a steady bubble motion in infinite domains and the mentioned expressions are thus
challenging to evaluate numerically.

The above analysis leads to other interesting conclusions. At a steady motion, the same
rate of negative and positive vorticity is generated and transported away from the bubble
surface, but the asymmetric advection of this vorticity, due to the shear flow, does not
change the y-moment of ω̃z. Therefore, the asymmetric advection of the surface vorticity
at a steady state does not generate any transverse force according to (5.8). It is rather the
effect of the shear flow that induces the asymmetric distribution of ω̃z around the bubble
so that

∫
Ωmrf +Ωg

ω̃z dΩ /= 0 during the period 0 < t < tsteady, where tsteady is the time the
bubble has reached a steady motion. For a spherical bubble rising in a quiescent liquid,
the problem is symmetric around the plane x̂ = x̂B, and the same amount of negative and
positive ω̃z is generated on either side of that symmetry plane, giving

∫
Ωmrf +Ωg

ω̃z dΩ = 0
and thus no transverse force is induced.

In summary, it is clear that the linear shear flow can generate an asymmetric distribution
of surface vorticity around the bubble that induces transverse forces. In §§ 6.1 and 6.2,
we support the theoretical framework presented here and demonstrate using our DNS
simulations that (5.8) indeed predicts the same sign and approximate magnitude as the
lift force evaluated from the bubble trajectory in the cases dominated by the Saffman- and
A-mechanisms.

5.4. Vorticity dynamics in L- and S-mechanisms
As previously mentioned, the L- and S-mechanisms are related to a pair of counter-rotating
streamwise (ωy) vortices in the bubble wake. Since no ωy is present in the undisturbed
liquid, the bubble disturbance field must generate the ωy that is then advected into the
bubble wake. Adoua et al. (2009) showed that the generation of ωy is fundamentally
different in the L- and S-mechanisms and that this generation is governed by the vorticity
transport equation according to

Dω

Dt
= (ω · ∇)û + ν∇2ω. (5.9)

With no ωy present upstream of the bubble, the generation of ωy is due to the stretching
and tilting term (first term on the right-hand side of (5.9)). The y-component of this term
is (with ωy = 0)

(ω · ∇)uy = ωx
∂ ûy

∂x
+ ωz

∂ ûy

∂z
. (5.10)

In the L-mechanism, it is the upstream undisturbed vorticity ωz that is stretched and
tilted by the flow field around the bubble into ωy that is then advected into the bubble
wake. The L-mechanism is thus related to the second term on the right-hand side of
(5.10). This term generates ωy with a sign that differs on either side of the plane ẑ = ẑB
because ∂ ûy/∂z changes sign here. The relative vertical velocity between the bubble and
the liquid, ûy, is zero at the top bubble stagnation point and decreases (higher negative
values) towards the surrounding free stream. Thus, ∂ ûy/∂z < 0 at ẑ > ẑB and ∂ ûy/∂z > 0
at ẑ < ẑB. Consequently, since the upstream ωz < 0 in our cases, the second term on the
right-hand side of (5.10) becomes ωz∂ ûy/∂z > 0 for ẑ > ẑB and ωz∂ ûy/∂z < 0 for ẑ < ẑB.
The L-mechanism therefore generates streamwise vortices in the bubble wake with the
signs ωy > 0 for ẑ > ẑB and ωy < 0 for ẑ < ẑB.
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The S-mechanism is, conversely to the L-mechanism, related to the first term on the
right-hand side of (5.10). In the S-mechanism, it is the vorticity produced at the bubble
surface ωx that is stretched and tilted by the upstream velocity gradient ∂ ûy/∂x into the
ωy that is advected into the bubble wake. At ẑ > ẑB, ωx > 0 and ∂ ûy/∂x < 0 (at least on
average due to the undisturbed shear flow in our cases) so that ωx∂ ûy/∂x < 0. At ẑ < ẑB,
still ∂ ûy/∂x < 0 but the surface vorticity ωx < 0 so that ωx∂ ûy/∂x > 0 at this side of the
bubble. Consequently, the S-mechanism generates streamwise vortices in the bubble wake
with the signs ωy < 0 for ẑ > ẑB and ωy > 0 for ẑ < ẑB.

Evidently, the L- and S-mechanisms generate ωy of different sign on either side of
the plane ẑ = ẑB that is then advected into the bubble wake. As positive and negative
vorticity is cancelled due to cross-diffusion, the sign of ωy present in the bubble wake
(in the two counter-rotating vortices) is determined by the mechanism that dominates the
ωy generation. The ωy generated by the L-mechanism is governed by the ωz present in
the undisturbed upstream shear flow. In the S-mechanism, the generated ωy is instead
governed by the ωx generated at the bubble surface. Magnaudet & Mougin (2007) found
that, for oblate spheroid bubbles in a uniform flow, the non-dimensional maximum surface
vorticity is proportional to the bubble interface curvature and, specifically, the aspect ratio
as χ8/3 (for high enough aspect ratios). Because of the rapid growth of the generated
surface vorticity with an increased interface curvature, the S-mechanism dominates the
L-mechanism when the bubble is sufficiently deformed (at higher Eo-numbers). This is
clearly seen in figure 2 where CL changes sign at approximately 2 < Eo < 4 (due to the
S-mechanism at moderate-to-high Ga and due to the A-mechanism at low-to-moderate
Ga).

However, in an inviscid flow, the vorticity generated at the bubble surface cannot diffuse
into the surrounding flow, and the S-mechanism should hence diminish as Re → ∞.
Adoua et al. (2009) showed that the surface vorticity flux is of O(χ4Re−1/2) (and
thus diminishes as Re → ∞) but that the χ4-dependence makes the S-mechanism still
significant in the ranges of Re and Ga considered in this study. It should also be noted that
the interface curvature can be much larger for real-shaped bubbles than for the oblate
spheroids considered by Magnaudet & Mougin (2007) and Adoua et al. (2009). The
surface vorticity flux, and the significance of the S-mechanism, can therefore be even
higher for real-shaped bubbles, at high Eo and finite Ga, than the predicted O(χ4Re−1/2)
for oblate spheroids.

The ωy generated by the L- and S-mechanisms induces a force in the x-direction on
the bubble according to Dx,ωy in (5.5). Note that ωy = ω̃y in our cases. To estimate the
transverse force due to the L- and S-mechanisms, we should thus examine how the total
ẑ-moment of ω̃y changes. By again dividing the liquid region in (5.5) into the Ωmrf and
Ωwake regions, depicted in figure 4, we get

Dx,ωy = 1
2
ρl

d
dt

(∫
Ωwake

ω̃yẑ dΩ +
∫

Ωmrf +Ωg

ω̃yẑ dΩ

)
. (5.11)

At a steady-state, the time derivative of the Ωmrf + Ωg integral equals zero (since there
is no average motion in the ẑ-direction), and we, therefore, focus on the Ωwake region.
In the latter region, the starting vorticity complex does not contribute to a change of the
vorticity moment because the complex is not significantly advected in the ẑ-direction and
the viscous diffusion does not change the vorticity moment (Wu 1981).

There is no flux of ω̃yẑ across the lateral boundaries of Ωwake. It is therefore only the
growth of the wake in the streamwise direction that changes the vorticity moment. The
growth of the wake increases the total ẑ-moment of ω̃y at a rate proportional to the flux
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of ω̃yẑ across a downstream cross-section Awake (at ŷ = ŷdownstream) below the bubble.
The flow velocity across Awake, at the bubble wake position, is approximately Ûy(rB(t)) =
−Vrel,y and the (5.11) can then be estimated as

Dx,ωy ≈ 1
2
ρlVrel,y

∫
Awake

ω̃yẑ dA. (5.12)

According to (5.12), a distribution of ω̃y < 0 at ẑ < ẑB and ω̃y > 0 at ẑ > ẑB
(corresponding to the L-mechanism) induces a force in the positive x-direction, while the
opposite signs of ω̃y (S-mechanism) induce a force in negative x-direction. This is exactly
the behaviour we expect based on the above analysis and the previous studies described in
§ 2.2. Equation (5.12) is also analogous to the relations provided by Wu (1981) to compute
the forces acting on bodies in viscous flows from the vorticity moments. We will assess if
(5.12) indeed dominates the lift force for a case governed by the L-mechanism in § 6.3 and
for the S-mechanisms in § 6.4.

6. Simulation results

In this section, we present the results from our 3-D multiphase DNS simulations. First,
we start with one simulation case for each lift force mechanism. These cases support
the theoretical framework and illustrate how the vorticity dynamics associated with each
mechanism can explain the induced lift force. Then, we present our simulation results that
investigate how the lift force scales with the shear rate at flow conditions governed by the
different lift force mechanisms.

6.1. Demonstration of Saffman-mechanism from DNS simulations
The Saffman-mechanism dominates for spherical bubbles (low Eo) at low Ga. We use here
the parameters (Ga = 3.18, Eo = 0.4) that physically match those of a 1.4 mm air bubble
in 25 ◦C soybean oil.

As mentioned in § 4, the lift force is excessively sensitive to boundary effects at
low values of Ga and Sr. For this reason, we use a domain size of (120D)3 with the
bubble kept in the centre throughout the entire simulation. To clearly demonstrate the
Saffman-mechanism, we use a high shear of Sr = 0.5 where the induced lift force, and
thus the bubble-induced vorticity, is high. At such a high shear rate, the starting vorticity
complex is more effectively advected away from the bubble, and the vorticity surrounding
the bubble at a steady motion can be integrated to evaluate the force acting on the bubble
using (5.8). It should, however, be noted that, in this case with such a low Re = 0.78, the
viscous diffusion process smears the bubble-induced vorticity in all directions. Therefore,
there is no clear distinction between the starting vorticity complex and the near-vortical
system. The assumption about a shed starting vorticity complex leading to (5.8) is therefore
not exactly fulfilled for this case. Nonetheless, (5.8) can still provide an estimate of the
order of magnitude and, in particular, the sign of the lift force induced by the vorticity
near the bubble. We evaluate (5.8) by integrating ω̃z in a cube of (10D)3 around the bubble
centre where all |ω̃z| ≥ O(Sr) is contained at a steady bubble motion. This integration
gives a value of Dx,ωz ≈ 0.036 while the lift force predicted by the bubble trajectory
using (4.11) and (2.1) is FL = 0.055. These values suggest that the major part of the lift
force, in this case, originates from the asymmetric distribution of ω̃z and thus that the
Saffman-mechanism is indeed a consequence of this distribution. These values also show
that, according to (5.3), the other vorticity moment Dx,ωy has the same magnitude as Dx,ωz
but the opposite sign and is therefore more related to the drag force.
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Figure 5. Cross-section of the flow field at ẑ = ẑB in the simulation case (Ga = 3.18, Eo = 0.4, Sr = 0.5)

dominated by the Saffman-mechanism. The contours represent the disturbance vorticity field ω̃z, the arrows
are the liquid phase velocity vectors and the streamlines inside the bubble illustrate the three recirculation
zones.

A cross-section of the flow field for the case (Ga = 3.18, Eo = 0.4, Sr = 0.5) is shown
in figure 5. Here, the contours represent the disturbance vorticity field ω̃z generated by
the bubble surface; the arrows illustrate the relative liquid velocity field û and, in the gas
(bubble) phase, streamlines of û are added to visualize the different recirculation zones.
Because of the Saffman-mechanism, the bubble moves in the positive x-direction at a
steady bubble motion. Similarly to the simulation cases in Ervin & Tryggvason (1997),
the bubble shows a stronger recirculation zone at the side with the higher relative velocity,
which in their 2-D simulations gave a negative bubble circulation and a lift force in the
positive x-direction. In our case, we have a net negative vorticity in the volume surrounding
the bubble and, following (5.8), a lift force acting in the positive x-direction. For a more
deformed bubble (higher Eo) but at the same Ga number, we expect, however, that the
A-mechanism dominates and the lift force to change sign. This case is demonstrated next.

6.2. Demonstration of A-mechanism from DNS simulations
The A-mechanism dominates at low-to-moderate Ga and moderate-to-high Eo. To
illustrate the effect of the bubble deformation, compared with the almost spherical bubble
in § 6.1, we specify the same Ga = 3.18 but increase the deformability by specifying
Eo = 20. This case corresponds to the case in § 6.1 but with reduced surface tension and,
physically, represents the case of a 10 mm air bubble in glycerine.

We use the same domain size of (120D)3 and keep the bubble in the centre of the domain
using the MRF approach. Because of the low surface tension, the bubble breakup occurs
at the highest shear rates we test, Sr = (0.4, 0.5). Instead, we use Sr = 0.1, which gives a
steady bubble shape and motion. As expected, the A-mechanism now dominates and the
lift force evaluated based on the bubble trajectory in (2.1) is negative FL = −0.072. By
again integrating the ω̃z in a cube of (10D)3 around the bubble (with the same arguments

952 A34-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

91
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.917


The lift force on deformable and freely moving bubbles

0–0.50  0.500.25

ω∼z
–0.25
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Figure 6. Cross-section of the flow field at ẑ = ẑB in the simulation case (Ga = 3.18, Eo = 20, Sr = 0.1)

dominated by the A-mechanism. The contours represent the disturbance vorticity field ω̃z, the arrows are the
liquid phase velocity vectors and the streamlines inside the bubble illustrate the two recirculation zones.

as in § 6.1), it gives a predicted lift force of Dx,ωz ≈ −0.075 using (5.8). The same sign
and similar magnitude of FL and Dx,ωz indicate that the A-mechanism is also governed by
the y-moment of ω̃z.

Figure 6 shows a cross-section of the flow field at ẑ = ẑB for this case (Ga = 3.18,
Eo = 20, Sr = 0.1). The contours represent the disturbance vorticity field ω̃z; the arrows
visualize the liquid phase velocity field relative to the bubble, and the streamlines
inside the bubble illustrate the recirculation zones in the gas phase. Compared with the
recirculation zones in figure 5, the zone at the higher relative velocity side no longer
dominates. This feature is also in line with the observations of Ervin & Tryggvason
(1997) for the bubble experiencing a negative lift. In this case, the asymmetric bubble
shape generates a total positive amount of ω̃z around the bubble, as compared with a
total negative amount in the spherical bubble case of the previous section. The total
positive amount of ω̃z induces, according to (5.8), the negative lift force associated with
the A-mechanism.

With this demonstration case and the case in the previous section, we support our
theoretical framework and show that the Saffman- and A-mechanisms, that dominate at
low Ga numbers, are indeed governed by the ω̃z generated at the bubble surface. Next, we
demonstrate how the generation of ω̃y at intermediate to high Ga also induces lift forces
corresponding to the L- and S-mechanisms.

6.3. Demonstration of L-mechanism from DNS simulations
The L-mechanism dominates at moderate-to-high Ga and low-to-moderate Eo, and for
this demonstration case we use the parameters (Ga = 240, Eo = 0.1, Sr = 0.05) that
correspond physically to a 0.8 mm air bubble in 100 ◦C water.
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Figure 7. Isosurfaces of the streamwise vorticity ω̃y in the case (Ga = 240, Eo = 0.1, Sr = 0.05) dominated
by the L-mechanism. The blue surface indicates the value −0.05, and the red is 0.05. (a) The bubble is moving
freely in all directions. (b) The bubble is kept fixed in the x- and z-directions using a body force on the bubble
but is free to move in the y-direction. The plane below the bubble illustrates the downstream cross-section Awake
at which the integration of Dx,ωy is performed in (5.12). The bubble in (a) moves in the positive x-direction,
and the relative transverse velocity generates a secondary ω̃y field at the bubble surface (also illustrated in
figure 8) with the opposite sign as the dominant trailing vortices, generated by the L-mechanism, in the wake.
The streamwise vorticity is cancelled by cross-diffusion in the wake, and the force Dx,ωy predicted by (5.12)
goes to values much smaller than the lift force at a steady state. This does not happen in (b), where the lift force
induced by the trailing vortices is instead balanced by an artificial body force keeping the bubble fixed in the
x-direction. (a) Freely moving and (b) fixed in the x- and z-directions.

As discussed in § 5.4, the L-mechanism is related to a pair of counter-rotating
streamwise vortices in the bubble wake with the signs ω̃y > 0 at ẑ > ẑB and ω̃y < 0 at
ẑ < ẑB. These vortices are generated by the stretching and tilting of the upstream shear flow
and induce a transverse force on the bubble in the x-direction according to (5.12). However,
this transverse force causes the bubble to move in the x-direction, and consequently, at a
steady bubble motion, a drag force of equal magnitude acts in the opposite x-direction.
The drag force is related to a secondary ω̃y field generated at the bubble surface, due to
motion of the bubble in the x-direction, which has the opposite sign as the ω̃y generated
by the L-mechanism in the bubble wake (see figures 7a and 8a). The ω̃y generated by both
the drag and the L-mechanism is cancelled due to cross-diffusion in the bubble wake and
the transverse force Dx,ωy , evaluated by (5.12), therefore approaches values much lower
than the lift force at a steady bubble motion. In the L- and S-mechanisms, the lift and
the drag force are thus both dominated by the Dx,ωy vorticity moment of (5.3). However,
this is not the case in the Saffman- and A-mechanisms, where the lift and the drag forces
are governed by the different vorticity moments, Dx,ωz and Dx,ωy , respectively, that could
therefore be evaluated separately.

We evaluate the transverse force induced by the two counter-rotating vortices in the
bubble wake by fixing the bubble position in the x- and z-directions. The bubble is fixed
using an artificial body force acting on the bubble and with this approach, no secondary ω̃y
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Figure 8. Contours of the streamwise vorticity ω̃y in the plane ŷ = ŷB for the cases in figure 7. The black
line illustrates the position of the bubble-liquid interface. (a) The bubble is moving freely in all directions.
(b) The bubble is kept fixed in the x- and z-directions using a body force on the bubble but is free to move
in the y-direction. The bubble in (a) moves in the positive x-direction due to the lift force that generates the
secondary streamwise vorticity ω̃y around the bubble of the opposite sign as the trailing vortices, generated by
the L-mechanism (shown in figure 7). In (b), there is no relative transverse velocity and the ω̃y is only generated
according to the stretching and tilting terms of (5.10). (a) Freely moving and (b) fixed in the x- and z-directions.

is generated at the bubble surface (compare figures 7b and 8a) due to the transverse bubble
motion. Therefore, the force induced by the ω̃y is entirely related to the L-mechanism and
can be evaluated separately from the drag. Specifically, the total transverse force Dx,ωy in
the fixed bubble case represents the lift force induced by ω̃y generated by the L-mechanism,
and this force is balanced by the applied body force Fcontrol,x instead of the drag force.

The body force is determined using another PID-controller, similar to the methodology
in Feng & Bolotnov (2017), which minimizes the distance between the bubble position and
its initial position in the x- and z-directions. In the vertical y-direction, the bubble is free to
move, and we follow it with the MRF technique. This approach allows us to compare the
control force required to keep the bubble fixed in the x-direction with the transverse force
induced by the ω̃y according to (5.12). Moreover, this comparison lets us confirm whether
ω̃y in the counter-rotating vortices indeed governs the lift force in this case.

Figure 7(b) shows isosurfaces of the streamwise vorticity at a steady bubble motion in
the y-direction and steady control forces in the x- and z-directions. Here, the wake consists
of several vortices associated with the stretching and tilting terms of (5.10). However, one
vortex on either side of the plane ẑ = ẑB dominates and has a sign associated with the
L-mechanism. The plane below the bubble shows the contours of ω̃y in the bubble wake.
This downstream cross-section of the wake also illustrates the area Awake that we use to
compute the integral of the z-moment of ω̃y in (5.12). For the integration, we specify Awake
as 10D downstream of the bubble position with an extent of 10D in the x- and z-directions.
This plane intersects all bubble-induced ω̃y present in the wake but limits the influence of
small amounts of ω̃y generated at the domain boundaries. Integrating over Awake and using
the steady-state velocity Vrel,y = 4.25 in (5.12) gives a predicted lift force Dx,ωy = 0.046
with the same (positive) sign as the one predicted for the L-mechanism in § 5.4. The
control force required to keep the bubble at a fixed x-position shows some variations in
the interval Fcontrol,x ∈ (−0.06, −0.07). There is, hence, a fair agreement between the
predicted Dx,ωy (due to the counter-rotating streamwise vortices) and the control force
Fcontrol,x (that acts in the opposite direction to keep the bubble steady). Equating the
negative control force value with the right-hand side of (2.1) gives a CL ≈ 0.6 that is
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comparable to the values presented in figure 13 for the similar case of high Ga, freely
moving and close to spherical bubble shapes. This demonstration case shows that the
force produced by the counter-rotating streamwise vortices in the bubble wake can indeed
explain the lift force for this case, although we have a finite Ga and a non-spherical bubble
shape (χ = 1.34).

Using the same approach of fixing the bubble position with a body force, we now
demonstrate that ω̃y generated by the S-mechanism at more moderate Ga, but at higher
Eo, can explain a net lift force with the opposite sign.

6.4. Demonstration of S-mechanism from DNS simulations
In this demonstration case, we use the parameters (Ga = 60, Eo = 5, Sr = 0.1) where the
bubble has a steady terminal motion relative to the shear liquid flow. In this case, the
S-mechanism dominates and, as a result, we observe a pair of counter-rotating streamwise
vortices in the bubble wake with the opposite signs compared with the L-mechanism,
ω̃y < 0 at ẑ > ẑB and ω̃y > 0 at ẑ < ẑB. We use the same approach as discussed in the
previous § 6.3 where we evaluate the force produced by the vortices using the (5.12) and
keep the bubble fixed in the x- and z-directions using a body force on the bubble.

The streamwise vorticity in the bubble wake is illustrated in figure 9, from where it is
clear that the two dominating trailing vortices on either side of the plane ẑ = ẑB have the
opposite sign to the two dominating vortices in figure 7. We integrate the z-moment of ω̃y
across the downstream cross-section illustrated by the plane below the bubble in figure 9.
Here, we specify Awake as 6D downstream of the bubble position with the extents of 6D
in the x- and z-directions to again capture the bubble-induced ω̃y in the wake but limit the
influence of the small amount of ω̃y generated at the domain boundaries. Integrating over
this area and using the relative bubble velocity Vrel,y = 1.03 in (5.12) gives a predicted lift
force Dx,ωy = −0.011 with the same (negative) sign as predicted in § 5.4. The control
force acting in the opposite direction to keep the bubble at a fixed x-position is, at a
steady-state, Fcontrol,x = 0.013. The total lift force is the opposite of the steady control
force and equating this value with the right-hand side of (2.1) gives CL = −0.25 that is in
fair agreement with the corresponding freely moving case and experimental data shown
in figure 9. This agreement shows that the negative lift force induced by the S-mechanism
can also be explained by the counter-rotating streamwise vortices in the bubble wake.

The demonstration cases presented here and in §§ 6.1–6.3 confirm that the Saffman-
and A-mechanisms are governed by ω̃z generated at the bubble surface and that the
L- and S-mechanisms induce lift forces that are a consequence of the streamwise vorticity
in the bubble wake. These demonstration cases thus support the theoretical framework and
provide a comprehensive explanation for the different lift force mechanisms in terms of
the bubble-induced vorticity moments. The demonstration cases are designed to be clearly
dominated by the respective mechanism, but it would also be interesting to investigate the
transition between the different regimes schematically shown in figure 1. Then it would
be possible to more precisely determine the transition border and the dominating lift force
mechanism in the entire phase-space. This is, however, a topic for future studies and not
further addressed here. Instead, we next examine how the shear rate influences the lift force
induced by the different mechanisms and how the complex interaction of the mechanisms
can qualitatively explain the highly nonlinear behaviour of the net lift force.

6.5. Influence of shear rate on the lift force
In this section, we study how CL defined in (2.1) scales with the shear rate Sr for
specific sets of parameters (Ga, Eo), where the different lift force mechanisms dominate.
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Figure 9. Isosurfaces of the streamwise vorticity ω̃y in the case (Ga = 60, Eo = 5, Sr = 0.1) dominated by
the S-mechanism. The blue surface indicates the value −0.05 and the red is 0.05. The bubble is kept fixed in
the x- and z-directions using a body force on the bubble but is free to move in the y-direction. The plane below
the bubble illustrates the downstream cross-section Awake at which the integration of the z-moment of ω̃y is
performed in (5.12). Above the bubble, two small regions with the opposite sign are present that are related to
the L-mechanism. In this case, it is, however, clear that the streamwise vorticity generated at the bubble surface
due to the S-mechanism dominates.

Equation (2.1) represents the standard lift force formulation and suggests a linear scaling
with the shear rate (Ẑun 1980; Auton 1987). Therefore, variations of CL at different shear
rates Sr indicate a nonlinear scaling of the lift force, whereas a constant CL for varying Sr
indicates a linear scaling of the lift force.

The Saffman-, A- and S-mechanisms do not, in general, induce lift forces that scale
linearly with the shear rate. Therefore, CL may vary with Sr depending on the governing
lift force mechanism. An extensive parameter investigation in the entire three-parameter
space (Ga, Eo, Sr) is limited by the high computational cost of the DNS simulations,
where a single moderate-to-high Ga case with an unsteady trajectory takes around four
weeks using almost 500 central processing units. Instead, we aim to examine how CL(Sr)
varies for parameters in the phase space (Ga, Eo) where the different lift force mechanisms
dominate.

We test Sr values corresponding to the low (≤ O(0.001)), moderate (O(0.01)) and
high (≥ O(0.1)) regimes. The lowest values of Sr are, however, due to the domain size
requirements discussed in § 4.1, unfeasible for the low Ga cases. Some specific Sr values
are also chosen for a quantitative comparison with existing experimental or numerical
studies. All our simulation results are summarized in Appendix A where we also include
a few additional cases not discussed in this section.

6.5.1. The CL scaling with Sr: Saffman-mechanism
Here, we examine how CL(Sr) behaves in a case where we can compare our simulations
with the available experimental data of Aoyama et al. (2017) and the theoretical predictions
of (2.3). We use the same simulation set-up and governing parameters (Ga = 3.18,

Eo = 0.4) as described in § 6.1 (but with an increased domain size of (240D)3 for the
lowest Sr value) and test the values Sr = (0.01, 0.052, 0.1, 0.5). This set of parameters
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Exp. Ga = 3.18, Eo = 0.4, Re = 0.77

Exp. Ga = 3.54, Eo = 0.27, Re = 0.87

Exp. Ga = 3.72, Eo = 0.08, Re = 0.87

Equation (2.3), Re = 0.77
0

Figure 10. Here, CL versus Sr for the case (Ga = 3.18, Eo = 0.4) governed by the Saffman-mechanism. The
experimental data is from the study of Aoyama et al. (2017) and the dashed line is the theoretical prediction for
spherical bubbles in (2.3) evaluated with Re = 0.77 that we obtain in our simulations. The bubble aspect ratio
in our simulations is around χ = 1.01 for Sr ≤ 0.1 but increases to χ = 1.07 for Sr = 0.5.

corresponds roughly to a 1.4 mm air bubble in 25 ◦C soybean oil with a maximum shear
rate of around 40 s−1.

The CL values from these simulations are shown in figure 10. Here, we include three
relevant experimental cases by Aoyama et al. (2017) and the analytical solution of (2.3)
with Re = 0.77 and by rescaling Sr = SrVFr with Fr = Re/Ga = 0.24 that corresponds
to the values obtained in our simulation cases.

We note a fair agreement between our simulations and the experimental data, although
the governing parameters are not the same for all experimental cases. For the same
parameters (Ga = 3.18, Eo = 0.4, Sr = 0.052), our simulation and the corresponding
experiment give a Re = 0.77 in excellent agreement, while the CL-values show an absolute
difference of approximately 0.25. This discrepancy may be due to possible boundary
effects, discussed in § 4.1, in the experimental study for this case where inertia and viscous
effects are comparable at a distance of O((GaSr)−1/2) ≈ 6D and the distance between the
bubble and a vertical wall in the experiment set-up is approximately 10D. Thus, to capture
all inertia effects responsible for the lift force, a distance much larger than the 10D used in
the experiment should be maintained, and, for this reason, we keep the bubble 60D from
the computational boundaries.

The simulation results agree with the analytical solution at Sr ≥ O(0.1) and show the
same trend of a maximum CL(Sr) at around Sr = 0.1. At Sr = 0.01 however, the analytical
solution approaches zero while our simulation predicts CL = 0.88. This difference may
also be due to the boundary effects that are proportional to O((GaSr)−1/2) and should
thus affect the results the most at the lowest Sr value. The CL value at the lowest Sr is
therefore not certain. Still, in the case (Ga = 3.18, Eo = 0.4, Sr = 0.01) we increased the
domain size from (120D)3 to (240D)3 and CL only changed from 1 to 0.88, and in the case
(Ga = 3.18, Eo = 0.4, Sr = 0.052) no significant change of CL was obtained. It should
also be noted that, at Sr = 0.01, the lift force magnitude is only approximately 0.2 % of
that of the drag force and thus only has a minor influence on the bubble dynamics.

The bubble aspect ratio in the simulation cases is χ = 1.01 for Sr ≤ 0.1 but increases
to χ = 1.07 at Sr = 0.5. The CL-value at Sr = 0.5 is therefore influenced by the
non-sphericity, and this could in part explain the difference with the analytical prediction
that assumes spherical bubbles.
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(b)(a)

(c) (d )

Figure 11. Bubble shapes at a steady bubble motion for the case (Ga = 3.18, Eo = 20) at various
dimensionless shear rates Sr. This case is governed by the A-mechanism and shows a clear asymmetric
deformation at increasing Sr. The black arrows represent the velocity field relative to the bubble û in the
plane ẑ = ẑB: (a) Sr = 0.01; (b) Sr = 0.052; (c) Sr = 0.1; (d) Sr = 0.2.

In summary, it is clear that CL is a complex function of all governing parameters
(Ga, Eo, Sr) in the low Ga and low Eo region of the phase space. In this region, the
analytical solution for spherical bubbles, (2.3), is in fair agreement with our simulations
of freely deformable and moving bubbles, although non-spherical shapes and boundary
effects should be taken into account. In the next section, we study the effects of highly
deformable bubbles on the lift force at the same low Ga conditions.

6.5.2. The CL scaling with Sr: A-mechanism
In this case, we use the same Ga = 3.18 and simulation settings as in § 6.5.1 but specify
Eo = 20 to obtain more deformed bubbles that are dominated by the A-mechanism.
Physically, these parameters correspond approximately to a 10 mm air bubble in glycerine.
We simulate cases with Sr = (0.01, 0.052, 0.1, 0.2) until the bubbles reach a steady
motion and compute CL based on that motion. We also tested high shear rates of
Sr = (0.4, 0.5) but obtained bubble breakups, so no quantitative data are given for these
cases.

The bubble aspect ratio χ and the Re-number increase with Sr from χ = 1.1, Re = 0.75
at Sr = 0.01 to χ = 1.83, Re = 0.92 at Sr = 0.2. The steady-state bubble shapes at each Sr
are shown in figure 11, where the velocity field relative to the bubble û at the plane ẑ = ẑB
is illustrated with black arrows. At the increasing Sr value, the bubble is increasingly
elongated with a higher interface curvature on the high relative velocity side. For the
cases with Sr = (0.4, 0.5), small satellite-bubbles detach in the region of the high interface
curvature.

The significant change of the bubble shape with Sr influences the behaviour of the net
lift force and results in a CL that scales almost linearly with Sr. The CL values obtained in
our simulations are shown in figure 12. Here, CL increases from CL = −7.5 at Sr = 0.01
to CL = −4.1 at Sr = 0.2.

The results are closely fitted by the correlation CL,A = −7.75 + 14.63Sr0.86 that
indicates CL → −7.75 as Sr → 0 for this case governed by the A-mechanism. However,
in the case (Ga = 3.18, Eo = 0.4) governed by the Saffman-mechanism (§ 6.5.1), the
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Figure 12. Here, CL versus Sr for the case (Ga = 3.18, Eo = 20) governed by the A-mechanism. The bubble
aspect ratios increase from χ = 1.1 at Sr = 0.01 to χ = 1.83 at Sr = 0.2. At Sr = 0.4 and Sr = 0.5, the
bubbles break up, so no quantitative data are presented for these cases. The CL value increases almost linearly
with Sr in this case.

analytical prediction of (2.3) shows that CL → 0 as Sr → 0. These differences clearly
show that the lift force induced by the A- and Saffman-mechanisms scale differently as
Sr → 0. In the cases governed by the A-mechanism, CL approaches a finite constant value
as Sr → 0, and this indicates that the lift force (non-dimensionalized by ρlgD3) induced by
the A-mechanism is proportional to SrVrel,y at low Sr where the asymmetric deformation
of the bubble due to the shear rate is small. This is the same lift force scaling as in (2.1),
and this scaling is in qualitative agreement with the analytical solution (Equation(38) in
Magnaudet et al. (2003)) for the deformation-induced lift-force on an inviscid bubble
moving near a wall.

Based on the results here and in § 6.5.1, it is clear that Sr significantly influences CL
in the low Ga region of the phase space (Ga, Eo) that is dominated by the Saffman- and
A-mechanisms. That CL varies with Sr at low Ga is a consequence of the different lift
force scaling compared with (2.1) that is appropriate for almost spherical bubbles at high
Ga conditions. The value of CL thus compensates for the change of the lift force scaling at
conditions different from spherical bubble shapes and high Ga. Next, we will examine if
small deviations from spherical bubble shapes at high but finite Ga also result in a different
lift force scaling.

6.5.3. The CL scaling with Sr: the L-mechanism
Here, we examine a case governed by the L-mechanism but at a finite Ga = 100 and an
Eo = 0.1 that results in a bubble aspect ratio of χ ≈ 1.12 and Re ≈ 293. These governing
parameters match those of a 1 mm air bubble in water. We simulate the shear rates
Sr = (0.002, 0.02, 0.05, 0.2) where we can compare our results with available numerical
studies.

Based on the theoretical solution by Naciri (1992) and Adoua et al. (2009) presented a
correlation ((4.2) in Adoua et al. (2009)) to their numerical results at Sr = 0.059 (SrV =
0.02 scaled with Fr = 2.93 that we obtain in our simulations), that reads

CL(χ, Re) = 0.5 + 0.621(χ − 1) − 0.16χ5/2

1 + 0.0027Re3/2 . (6.1)
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Figure 13. Here, CL versus Sr for the case (Ga = 100, Eo = 0.1) governed by the L-mechanism. The case
(Ga = 102, Eo = 0.1) is taken from the numerical study of Dijkhuizen et al. (2010) and (6.1) is a correlation
to the numerical results in Adoua et al. (2009) for the aspect ratio χ = 1.12 and Re = 293 that corresponds to
values obtained in our simulations.

The CL values from our simulation cases are shown in figure 13. Here, the numerical
result for a deformable and freely moving bubble, (Ga = 102, Eo = 0.1, Sr = 0.02) by
Dijkhuizen et al. (2010), is included together with the CL value given by (6.1) for χ = 1.12
and Re = 293 that corresponds to the values obtained in our simulation cases. The CL
values in our simulations are in the interval [0.63, 0.68] and show a small variation with
Sr. A nearly constant CL for shear rates varying two orders of magnitude suggests that the
lift force indeed scales as in (2.1) although the bubbles are not exactly spherical and the
Ga number is finite.

We note a good agreement with the numerical study of Dijkhuizen et al. (2010) but
a larger deviation to (6.1). In the study of Adoua et al. (2009), the bubble is kept fixed,
and the relative velocity in the x- and z-directions is consequently zero. To assess how the
fixed bubble position influences the lift force, we performed additional simulations for the
cases Sr = (0.05, 0.2) where the bubble was kept at constant x- and z-positions using a
PID-controlled body force on the bubble (similar to the methodology in Feng & Bolotnov
(2017)). For both cases, the results show CL = 0.52 which is close to CL = 0.56 obtained
by (6.1) for fixed bubbles. There is thus a notable difference in CL when the bubble
experiences a relative velocity in the lateral directions at conditions similar to the present
cases. The reason for this difference is not certain, but there is undoubtedly a different
disturbance flow field generated around a bubble moving with a transverse velocity
compared with a fixed bubble, illustrated in figures 7 and 8. A different disturbance flow
field can certainly influence the induced lift force and at least partly explain the observed
difference in the CL-values. Next, we examine the effects of more deformable bubbles at
similarly high Ga conditions.

6.5.4. The CL scaling with Sr: the S-mechanism
Here, we study cases dominated by the S-mechanism in a region of the phase-space
(Ga, Eo) where previous studies (Tomiyama et al. 2002; Dijkhuizen et al. 2010) did not
observe a significant effect of moderate-to-high Sr on CL. We extend these studies to the
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Figure 14. Here, CL versus Sr for the case (Ga = 60, Eo = 5) governed by the S-mechanism. The cases
(Ga = 68, Eo = 4.2) are obtained from the experimental study by Tomiyama et al. (2002), the case
(Ga = 54, Eo = 5) is from the experiments by Aoyama et al. (2017) and the case (Ga = 62, Eo = 5.5) is
the value obtained in the numerical study of Dijkhuizen et al. (2010).

range of low-to-high Sr values and examine the possible effects of rectilinear or oscillating
trajectories.

Magnaudet & Mougin (2007) found that, for fixed oblate spheroidal bubbles in a
uniform flow, the wake is stable whatever the Re-number for a critical bubble aspect ratio
χc ≤ 2.21 and that above this value, the wake is unstable in a finite range of Re values.
These findings are in line with the results by Mougin & Magnaudet (2001) that showed
the wake instability is the cause of the path instability. At high Ga-numbers, we thus expect
the bubble trajectory to be rectilinear at some value below χc and unsteady above χc also
in the case of a linear shear flow.

In our first case we use the parameters (Ga = 60, Eo = 5) and test the values Sr =
(0.005, 0.01, 0.05, 0.1, 0.2) that result in Re ≈ 62 and χ ≈ 2.08 < χc. These cases have
a rectilinear trajectory with the corresponding CL shown in figure 14. We note a fair
agreement with the available experimental values (Tomiyama et al. 2002; Aoyama et al.
2017), but some deviation to the numerical results of Dijkhuizen et al. (2010) although the
sign and order of magnitude are the same. The experimental data at (Ga = 68, Eo = 4.2)

show almost constant CL-values in the range Sr = [0.04, 0.1]. This is the same trend we
observe in the entire range of low-to-high Sr that we examine.

Our second case has the parameters (Ga = 100, Eo = 4) and shows a zigzagging
trajectory in the xy-plane. We test the shear rates Sr = (0.002, 0.02, 0.05, 0.2) and
obtain Re ≈ 115 and an oscillating aspect ratio χ ∈ (2.25, 2.35) > χc. The corresponding
CL-values are shown in figure 15 where we again observe an almost constant CL
for low-to-high Sr-values varying two orders of magnitude. Minor variations of CL
were found also in the experimental study of Tomiyama et al. (2002) for the similar
case (Ga = 86, Eo = 5.8) at moderate-to-high Sr. We further note a good quantitative
agreement with the numerical study of Dijkhuizen et al. (2010) and the experiment by
Aoyama et al. (2017).

The CL value is constant for both cases and shows that the non-dimensional lift force
in this region of the phase-space has the same scaling, SrVrel,y, as in the definition of the
lift force in (2.1). This is interesting since the physical mechanisms behind the lift force
are fundamentally different in the S-mechanism than in the L-mechanism that is known
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Exp. Ga = 93, Eo = 2.6
Exp. Ga = 86, Eo = 5.8

Num. Ga = 91, Eo = 3.5
This work

Figure 15. Here, CL versus Sr for the case (Ga = 100, Eo = 4) governed by the S-mechanism. The case
(Ga = 91, Eo = 3.5) is from the numerical study of Dijkhuizen et al. (2010), the case (Ga = 93, Eo = 2.6)

is from the experimental study of Aoyama et al. (2017) and the cases (Ga = 86, Eo = 5.8) are from the
experiments performed by Tomiyama et al. (2002).

to scale as in (2.1) (Auton 1987). In the next section, we will examine cases at a higher
Ga-number governed by either the S- or L-mechanisms depending on the value of Sr.

6.5.5. The CL scaling with Sr: the S/L-mechanisms
In this section, we examine the two cases (Ga = 320, Eo = 2) and (Ga = 320, Eo = 10)

that represent conditions of high Ga and moderate-to-high Eo. These cases are in the
regime dominated by the L- and S-mechanisms, and here, we study how the varying
Sr influences the net lift force acting on the bubbles. As discussed in § 5.4, more
surface vorticity is generated by more deformed bubbles (with higher interface curvature).
Therefore, the S-mechanism is expected to influence the lift force more in the case
with Eo = 10 than at Eo = 2. On the other hand, the L-mechanism induces a lift force
proportional to Sr but less dependent on the shape of the bubble. The L-mechanism should
thus induce higher lift forces at higher Sr-values but of approximately equal magnitudes
for both Eo-values.

Bubbles in this regime of the phase-space (Ga, Eo) have previously been studied
by, for example Dijkhuizen et al. (2010), that simulated deformable and freely moving
bubbles. They did not observe a significant variation of CL at moderate-to-high Sr-values.
However, for fixed oblate spheroid bubbles with similar Re and χ -values as obtained in
our simulation cases here, Adoua et al. (2009) found that CL is almost constant at high Sr
but that CL becomes proportional to Sr−1 at low Sr. This behaviour is explained by the
fact that the lift force induced by the S-mechanism at low Sr is essentially independent of
Sr. They also found that CL does not change sign for any bubble aspect ratio, whatever the
Re number if Sr is high enough (> 0.1). This is attributed to that the L-mechanism will
always dominate at sufficiently high shear rates.

We extend the previous numerical studies by examining the influence of the shear on CL
for deformable and freely moving bubbles at low-to-high Sr-values. In particular, we study
if CL always changes sign to positive values at high Sr and if CL becomes proportional to
Sr−1 at low Sr also for deformable and freely moving bubbles with Eo > 1 (We > 1).

The results of Adoua et al. (2009) are scaled from the Reb and Srb parameters used in
their work (previously defined in § 2.3.1) to match the parameters of this paper. We note
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Fixed oblate spheroid Re = 295, χ = 2.5
Num. Ga = 330, Eo = 2
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Figure 16. Here, CL versus Sr for the case Ga = 320, Eo = 2 dominated by the L- and S-mechanisms. The CL
values for the fixed oblate spheroid bubbles are from the numerical study of Adoua et al. (2009) and the case
(Ga = 330, Eo = 2) is a freely deformable and moving bubble case from the numerical study of Dijkhuizen
et al. (2010). Our simulations show parameters oscillating around the time-averaged values Re = 462, χ̄ = 2.4,
We = 4.2, so that only a qualitative comparison should be made with the fixed oblate spheroid bubbles.

that the spherical-equivalent bubble diameter is D = 2bχ−1/3 so that Re = Rebχ
−1/3. To

scale Sr = Srbχ
−1/3U0/

√
gD we further need the ratio U0/

√
gD ≈ |V rel|/

√
gD = Fr that

we assume equal to unity since our simulation cases are in this region.
The CL values for various Sr in the case (Ga = 320, Eo = 2) are shown in figure 16.

Here, we include the result for a deformable and freely moving bubble from the work of
Dijkhuizen et al. (2010) and the results for fixed oblate spheroid bubbles in the numerical
study of Adoua et al. (2009). We use the latter results only for a qualitative comparison
and note a similar trend in our results that CL changes sign to positive as Sr increases.
Our results, however, do not indicate the same scaling of CL at low Sr as observed for the
oblate spheroid bubbles.

The bubbles in the case (Ga = 320, Eo = 2) show a zigzagging trajectory in the
xy-plane that slowly transitions into a helical trajectory and a bubble aspect ratio that varies
in the range of approximately χ ∈ (2.0, 2.8). This unsteady motion and shape can certainly
influence the time-averaged CL and change the scaling at low Sr. We acknowledge,
however, that more data at even lower Sr is needed for more definite conclusions. There is
also a quantitative difference with the freely deformable bubble, case (Ga = 330, Eo = 2),
in the study of Dijkhuizen et al. (2010) although CL = −0.01 in this study indicates that
the L- and S-mechanisms are of almost equal importance and CL would probably change
sign at even higher Sr.

In the case (Ga = 320, Eo = 10), the bubbles rise (in the laboratory reference frame)
with an approximately helical trajectory in the clockwise direction, with a radius of
approximately 0.2D, that is tilted in the negative x-direction. Figure 17 shows the
time-averaged CL values for all cases with (Ga = 320, Eo = 10) that should be more
influenced by the S-mechanism since the high Eo-number results in more bubble
deformation and higher interface curvatures. This is exactly what we observe, with a
greater (compared with the case (Ga = 320, Eo = 2)) time-averaged bubble aspect ratio
χ̄ = 2.9, the CL value is now negative at low-to-high Sr-values. In figure 17, we observe
a significant decrease of CL at low Sr in a qualitative agreement with the fixed oblate
spheroid bubbles in Adoua et al. (2009). However, our simulations do not show sign
change at high Sr, indicating that the S-mechanism still dominates at high Sr due to the
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Num. Ga = 348, Eo = 6.3
Num. Ga = 462, Eo = 9.2
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0

Figure 17. Here, CL versus Sr for the case Ga = 320, Eo = 10 dominated by the S-mechanism in our cases.
The CL values for the fixed oblate spheroid bubbles are from the numerical study of Adoua et al. (2009)
and the cases (Ga = 348, Eo = 6.2) and (Ga = 462, Eo = 9.2) are deformable and freely moving bubble
cases from the numerical study of Dijkhuizen et al. (2010). Our simulations show oscillating parameters with
time-averaged values of around Re = 265, χ̄ = 2.9, We = 6.8, so that only a qualitative comparison should be
made with the fixed oblate spheroid bubbles.

larger bubble deformation and consequently high surface vorticity generation. We also
note a good quantitative agreement with the deformable and freely moving bubbles in
Dijkhuizen et al. (2010) that also show negative CL values at the high Eo conditions.

In summary, we show that for deformable and freely moving bubbles, the L-mechanism
does not always dominate the lift force at high Sr, although even higher Sr-values would
be needed for definite conclusions. Simulations at Sr = 0.5 were performed, where we
observed a wake interaction effect, discussed in Appendix G, that significantly influenced
the bubble trajectory. Because of this effect, the CL-values for such cases are not included.
Our results also indicate that, at high Eo and high Ga conditions, CL can vary significantly
at low Sr. This is in agreement with the findings of Adoua et al. (2009) for fixed oblate
spheroid bubbles and is an effect of that the lift force induced by the S-mechanism is
almost independent of the shear at such low Sr-values.

7. Conclusions

We provide theoretical and numerical analyses of the four mechanisms (Saffman-, A-, S-
and L-mechanisms) behind the shear-induced lift force acting on a clean bubble in a linear
shear flow. Our analyses give a comprehensive explanation for the four mechanisms and
make it possible to quantify the induced lift forces.

In particular, we present a theoretical framework that explains the lift force induced by
each mechanism in terms of moments of the bubble-induced vorticity field. We identify
the vorticity dynamics associated with each mechanism and provide relations that quantify
the lift force induced by the vorticity. Equation (5.1) relates the force acting on the bubble,
due to the disturbance velocity field, to the moments of the bubble-induced vorticity.
This relation is used to formulate (5.8), that relates the near vortical system around the
bubble to the lift force induced by the Saffman- and A-mechanisms, and (5.12), that
relates the streamwise vorticity in the bubble wake to the lift force induced by the L-
and S-mechanisms.
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We support the theoretical framework with fully resolved 3-D multiphase DNS
simulations of freely moving and deformable bubbles in linear shear flows. Demonstration
cases are presented for each lift force mechanism that support the qualitative and
quantitative predictions of the theoretical framework and illustrate the vorticity dynamics
associated with each mechanism.

In addition, we present an extensive numerical investigation of how the lift force scales
with the shear rate under flow conditions where the different mechanisms dominate. A
summary of the simulation results is provided in Appendix A. This investigation shows
that CL is, in general, a function of all the governing parameters (Ga, Eo, Sr): at low Ga
and low Eo conditions, the bubbles are close to being spherical, and our results show a
complex dependence of CL on Sr that is in fair agreement with the analytical solution of
(2.3). The simulation results, however, indicate that small departures from spherical shapes
and an influence of boundary effects should be taken into account. The A-mechanism
dominates at low-to-moderate Ga and moderate-to-high Eo. Here, we observe large
asymmetric bubble deformations and negative CL-values that increase almost linearly with
Sr. At moderate-to-high Ga and low-to-moderate Eo, the bubbles have spherical or oblate
spheroidal shapes, and the L-mechanism dominates. At these conditions, our simulations
show only minor variations of CL with Sr, following the analytical solution of Auton (1987)
for spherical bubbles in inviscid flows. The S-mechanism dominates at moderate-to-high
Ga and at moderate-to-high Eo, where the bubbles show large deformations. At moderate
Eo and Ga ≈ 100, our simulation cases show small variations of CL with Sr, in fair
agreement with the experimental study of Tomiyama et al. (2002). At moderate-to-high Eo
and high Ga conditions, we, however, observe a complex interaction between the L- and
S-mechanisms. For low Sr, the S-mechanism dominates and induces a negative lift force
with a CL that decreases at decreasing Sr. At high Sr, the L-mechanism influences the net
lift force more and leads to a positive CL at moderate Eo while CL is still negative at high
Eo and high Sr, where the bubble is more deformed, and the S-mechanism still dominates.
These results show similar trends but also extend the findings of Adoua et al. (2009) for
bubbles at Eo > 1 (We > 1), where the bubble shape and motion may be unsteady and
non-symmetric.

At high Sr ≈ 0.5, we observe in some simulation cases, see Appendix G, a wake
interaction effect where the bubble-induced vorticity previously shed by the bubble is
advected upstream by the high shear liquid flow and interacts with the bubble. This
interaction significantly alters the bubble dynamics and makes it difficult to compute a
quasisteady lift force. Because of this effect, such high Sr values were not always possible
to include in the shear rate study.

The findings in the shear rate study extend our knowledge about how the lift force
scales with the shear rate in several relevant conditions in the (Ga, Eo) phase space.
The study can also be used as a guideline for developing improved lift force models.
We acknowledge, however, that the study is based on a limited number of parameter
sets (Ga, Eo) and that it, therefore, motivates further studies into the effect of the shear
on the lift force and to expand the parameter ranges previously explored. Our results
also motivate further studies into determining the relative importance of the different
lift force mechanisms under relevant flow conditions. Such studies could facilitate the
development of improved lift force models that take all the mechanisms into account. In
addition, the effects of surfactants on the lift force are practically very relevant and could
be further investigated numerically by, for example, implementing the method described
in Muradoglu & Tryggvason (2008) to account for a varying surfactant concentration at
the bubble interface.
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Appendix A. Lift coefficient data from our simulations

Ga Eo Sr Re We χ̄ CL cells D−1 domain size trajectory

3.18 0.4 0.01 0.77 0.02 1.00 0.88 68 (240D)3 rectilinear
3.18 0.4 0.052 0.78 0.02 1.01 1.46 68 (120D)3 rectilinear
3.18 0.4 0.1 0.77 0.02 1.01 1.44 68 (120D)3 rectilinear
3.18 0.4 0.5 0.78 0.02 1.07 0.86 68 (120D)3 rectilinear
3.18 20 0.01 0.75 1.11 1.10 −7.47 68 (120D)3 rectilinear
3.18 20 0.052 0.77 1.17 1.23 −6.59 68 (120D)3 rectilinear
3.18 20 0.1 0.81 1.30 1.43 −5.72 68 (120D)3 rectilinear
3.18 20 0.2 0.92 1.67 1.83 −4.07 68 (120D)3 rectilinear
9 4.5 0.05 4.78 1.27 1.16 −0.39 68 (60D)3 rectilinear
35 2.5 0.04 37.5 2.87 1.41 0.22 102 (20D)3 rectilinear
50 0.1 0.02 92.6 0.34 1.04 0.42 102 (20D)3 rectilinear
50 0.1 0.05 92.6 0.34 1.04 0.46 102 (20D)3 rectilinear
50 0.1 0.2 93.3 0.35 1.04 0.52 102 (20D)3 rectilinear
60 5 0.005 61.9 5.32 2.09 −0.21 102 (40D)3 rectilinear
60 5 0.01 61.9 5.32 2.09 −0.21 102 (40D)3 rectilinear
60 5 0.05 61.8 5.30 2.08 −0.22 102 (40D)3 rectilinear
60 5 0.1 61.7 5.29 2.08 −0.23 102 (40D)3 rectilinear
60 5 0.2 61.1 5.19 2.07 −0.22 102 (40D)3 rectilinear
80 7.5 0.05 75.3 6.64 2.63 −0.55 102 (40D)3 zigzagging
100 0.1 0.002 293 0.86 1.12 0.68 102 (80D)3 rectilinear
100 0.1 0.02 293 0.86 1.12 0.67 102 (40D)3 rectilinear
100 0.1 0.05 293 0.86 1.12 0.63 102 (40D)3 rectilinear
100 0.1 0.2 300 0.90 1.13 0.65 102 (40D)3 rectilinear
100 4 0.002 115 5.29 2.29 −0.21 102 (80D)3 zigzagging
100 4 0.02 114 5.20 2.29 −0.16 102 (40D)3 zigzagging
100 4 0.05 114 5.20 2.30 −0.17 102 (40D)3 zigzagging
100 4 0.2 114 5.20 2.32 −0.21 102 (40D)3 zigzagging
320 2 0.002 461 4.15 2.41 −0.31 164 (25D)3 zigzagging → helical
320 2 0.01 462 4.17 2.39 0.68 164 (25D)3 zigzagging → helical
320 2 0.1 463 4.19 2.38 0.49 164 (25D)3 zigzagging → helical
320 10 0.002 268 7.01 3.00 −4.51 164 (25D)3 helical
320 10 0.01 261 6.65 2.93 −1.00 164 (25D)3 helical
320 10 0.1 265 6.86 2.82 −0.57 164 (25D)3 helical

Table 2. Time-averaged lift force coefficient CL, Reynolds number Re, Weber number We and bubble aspect
ratio χ from our simulation cases. The cells D−1 is the maximum grid resolution used in the simulations and
the trajectory indicate the type of bubble trajectory observed in the simulations.
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Figure 18. Non-dimensional absolute bubble trajectory as predicted by the MRF and absolute reference frame
simulation cases. The governing parameters are (Ga = 35, Eo = 2.5, Sr = 0.04) and the domain sizes used
in the MRF and absolute reference frame cases are (20D)3 and (80D)3, respectively, with the initial bubble
position in the centre of the domain. In the MRF, the bubble is kept at the domain centre due to the MRF
technique while the bubble rises approximately 20D in the vertical direction in the absolute reference frame
case.

Appendix B. Validation of the MRF technique

Here, we prove that the implementation of the MRF technique gives the same result as
the corresponding case in an absolute reference frame. We choose the case (Ga = 35,
Eo = 2.5, Sr = 0.04) where we can compare the predicted CL with both experimental
(Aoyama et al. 2017) (Ga = 44, Eo = 2.25, Sr = 0.12) and numerical (Dijkhuizen et al.
2010) (Ga = 35, Eo = 2.5, Sr = 0.04) studies in the same parameter range. In the case
with an absolute reference frame, we use a domain size of (80D)3 with the bubble initially
positioned in the centre to ensure that the bubble is far from the domain boundaries during
the entire simulation where the bubble rises approximately 20D in the vertical direction.
In the MRF case, we use a domain size of (20D)3 with the bubble now kept in the centre
throughout the simulation by the PID-controlled MRF technique. In both reference frames,
we use the same grid resolution with a maximum of 102 cells D−1.

Figure 18 shows that the bubble trajectories predicted by the MRF and absolute reference
frame cases are in good agreement. In figure 19, the corresponding bubble velocities in the
x- and y-directions are also in excellent agreement and the steady CL value obtained using
(4.11) (CL = 0.22) in both the MRF and absolute reference frames agrees well with the
available experimental (CL,exp = 0.22) and numerical (CL,num = 0.2) studies.

Appendix C. Grid convergence study

We use in this study the grid resolution criterion of maintaining at least four grid points
within the viscous boundary layer with a thickness of approximately tbl = O(D/(2Ga1/2))
(Legendre & Magnaudet 1998; Adoua et al. 2009; Kusuno & Sanada 2021). To assess the
validity of this criterion in the present problem, we study the case with the highest Ga =
320 and highest Eo = 10 values that we study in this work. In this case, the bubble has a
transient non-axisymmetric shape with a high aspect ratio of up to χ̄ = 3 with high local
interface curvatures. Such bubble shapes require fine grid resolutions and additionally
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Figure 19. Instantaneous CL and non-dimensional absolute bubble velocity in the x- and y-directions predicted
by the MRF and absolute reference frame cases using the governing parameters (Ga = 35, Eo = 2.5,
Sr = 0.04). Both reference frames predict CL and velocities in excellent agreement, and the steady CL value is
in good agreement with the available experimental and numerical studies using similar governing parameters.

generate strong surface vorticity (Magnaudet & Mougin 2007) that influence the bubble
dynamics and the lift force. This case should therefore be critical in terms of grid resolution
requirements.

According to our criterion, we need approximately D/(tbl/4) = 140 cells D−1 for this
case. To assess if this is sufficient, we vary the maximum grid resolution from 20 up
to 168 cells D−1 using the adaptive grid refinement technique and compare the predicted
bubble trajectories, the time-averaged bubble aspect ratio χ , the time-averaged Re-number,
that is mainly influenced by the average rise velocity and the drag force, and the
time-averaged CL-value that is related to the transverse bubble velocity and the lift force.
Figure 20 shows helical bubble trajectories with a similar behaviour for all the tested grid
resolutions. The transition into the helical trajectory, however, takes a longer time at the
finer resolutions since the transition is probably triggered by small numerical deviations
from symmetry. The transition position for the finer resolution cases is nonetheless very
close. Figure 21 shows the cumulative moving time average of the instantaneous Re
number and bubble aspect ratio χ starting from t = 20 where all bubbles have reached
a helical trajectory. In the cases with 20 and 41 cells D−1, there is a significant change in
the average aspect ratio, and the Recma(t = 70) equals 264 and 268, respectively, indicating
that the interface and the surrounding flow are not sufficiently resolved. On the other hand,
at 82 and 164 cells D−1, the average aspect ratio is almost the same and the Recma(t =
70) = 265 for both cases. By computing CL using (4.11) over the last nine oscillation
periods of the bubbles, we get the values −0.65, −0.52, −0.61, −0.57 for the cases with
20, 41, 82, 164 cells D−1, respectively, showing that CL does not vary significantly at the
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Figure 20. Non-dimensional bubble trajectories for the case (Ga = 320, Eo = 10, Sr = 0.1) with varying
maximum grid resolutions of 20, 41, 82 and 164 cells D−1. All trajectories are helical with minor variations
due to the grid resolution.

finer grid resolutions that are comparable to the grid resolution criterion. We also note a
fair agreement between these CL-values and the CL = −0.66 predicted by Dijkhuizen et al.
(2010) for the similar case (Ga = 462, Eo = 9.2). In summary, this grid convergence test
shows that the adopted grid convergence criterion gives well-resolved solutions for both
the forces acting on the bubble and the bubble shape.

Appendix D. Expression for total force due to bubble-induced vorticity in linear
shear flow

We start by defining the total force exerted on a bubble by the liquid in terms of the
hydrodynamic stresses evaluated at the bubble interface

F Sg =
∫

Sg

(−pn̂ + τ · n̂) dS, (D1)

where Sg is the bubble interface area, τ is the viscous stress tensor and n̂ is the normal
vector pointing out from Sg. We could evaluate (D1) numerically in our simulations and
get the corresponding lift force component. However, this procedure will only give a
quantitative measure of F Sg but not provide any information on the underlying physical
mechanisms behind the lift force. According to Newton’s third law, the bubble exerts an
equal but opposite force on the liquid that induces changes to the surrounding flow field.
To understand the mechanisms behind the force acting on the bubble, it is, therefore, more
instructive to express the hydrodynamic force in terms of the corresponding changes to the
surrounding flow field.

Consider a liquid volume Ωl, with the outer boundary Sl, containing a gas bubble
with the volume Ωg. Assuming constant fluid densities, the external forces acting on

952 A34-40

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

91
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.917


The lift force on deformable and freely moving bubbles

30 40 50 60 70

20 cells/D
41 cells/D
82 cells/D
164 cells/D

3

2

20

30 40 50 60 7020

χ
cm

a

R
e cm

a

280

275

270

265

(b)

(a)

t/�D/g

Figure 21. Cumulative moving time average of the instantaneous bubble Re-number and bubble aspect
ratio χ over non-dimensional time for the case (Ga = 320, Eo = 10, Sr = 0.1) with varying maximum grid
resolutions of 20, 41, 82 and 164 cells D−1. The time averaging starts at t = 20, where the bubbles have
transitioned into a helical trajectory. The Re-number at t = 70 shows some variation between the two coarser
resolutions, while the final value is almost the same at the two finest resolutions. A similar, but a somewhat
more pronounced trend is observed for the average aspect ratio indicating that the solution converges at the two
finest grid resolutions.

the system are F Sl = ∫
Sl
(−pn̂ + τ · n̂) dS, FΩl = ρlΩlg and FΩg = ρgΩgg where g is

the gravitational acceleration vector. These forces induce changes to the fluid momentum
according to

F Sl + FΩl + FΩg = d
dt

(∫
Ωl+Ωg

ρu dΩ

)
+
∫

Sl

ρlu(ur · n̂) dS, (D2)

where u is the velocity field and ur is the relative velocity across Sl. We can
rewrite the volume integral in (D2) by imagining the bubble replaced by the
liquid with exactly the same motion as the bubble and by assuming constant fluid
densities according to

∫
Ωl+Ωg

ρu dΩ = ρl
∫
Ωl+Ωg

u dΩ − ρl
∫
Ωg

u dΩ + ρg
∫
Ωg

u dΩ

(Biesheuvel & Hagmeijer 2006). Now, (D2) becomes

F Sl + FΩl + FΩg = d
dt

(
ρl

∫
Ωl+Ωg

u dΩ

)
+ ρl

∫
Sl

u(ur · n̂) dS − ρlΩg
dV
dt

+ ρgΩg
dV
dt

,

(D3)
where V (t) = (1/Ωg)

∫
Ωg

u dΩ is the bubble absolute velocity.
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To study this problem it is convenient to again, see § 4, change to a reference frame
moving with the bubble. The variables now become

t̂ = t, (D4)

x̂ = x − rmrf (t), (D5)

û = u − V (t), (D6)

where rmrf (t) is the position of the MRF that follows the bubble motion and consequently
drmrf /dt = V (t). The force acting on the bubble by the liquid originates from both the
undisturbed background shear flow U and the disturbance velocity field induced by the
bubble ũ. To identify these contributions we split the velocity field into two parts according
to

û = Û + ũ, (D7)

Û = U − V (t), (D8)

where Û is the undisturbed flow in the MRF. The two flow fields in the MRF satisfy

∂Ûi

∂ x̂i
= 0, (D9)

ρl

(
∂Ûi

∂t
+ Ûj

∂Ûi

∂ x̂j

)
= −∂pÛ

∂ x̂i
+

∂τ Û
ij

∂ x̂j
+ ρl

(
gi − dVi

dt

)
(D10)

and

∂ ũi

∂ x̂i
= 0, (D11)

ρl

(
∂ ũi

∂t
+ Ûj

∂ ũi

∂ x̂j
+ ũj

∂Ûi

∂ x̂j
+ ũj

∂ ũi

∂ x̂j

)
= − ∂ p̃

∂ x̂i
+ ∂τ̃ij

∂ x̂j
+ f δS

i , (D12)

where f δS
i is the surface tension force localized at the bubble interface. Equation (D6),

(D7) and (D8) are then substituted into (D3). Using Newton’s second law we may also
substitute the last term on the right-hand side of (D3) with the surface and volumetric
forces acting on the bubble as ρgΩg(dV/dt) = F Sg + FΩg . By rearranging, and noting
that FΩg cancels, we get an expression for the interfacial force acting on the bubble in
terms of the separate flow fields according to

F Sg = − d
dt

(
ρl

∫
Ωl+Ωg

(Û + ũ + V (t)) dΩ

)
− ρl

∫
Sl

(Û + ũ

+ V (t))[(Û + ũ + V (t))r · n̂] dS + ρlΩg
dV
dt

+ FΩl + F Sl . (D13)

To simplify this problem we now envisage the volume Ωl so large that it encompasses the
entire disturbance field ũ induced by the bubble. Hence, the disturbance velocity ũ → 0
on Sl and consequently p̃ → 0 and τ̃ → 0 on Sl as well. Considering that no net force acts
on the undisturbed liquid velocity field U = Û + V (t), the Reynolds transport theorem
shows there is no net contribution from the integrals containing U in (D13) and thus these
can be removed. For the linear undisturbed shear flow of the present problem, ∇ · τU = 0
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and hence τU gives no net contribution to F Sl according to the divergence theorem. The
pressure field pU is the hydrostatic pressure distribution so that the total force acting on Sl
becomes F Sl = −ρl(Ωl + Ωg)g. With these simplifications into (D13) we get

F Sg = − d
dt

(
ρl

∫
Ωl+Ωg

ũ dΩ

)
+ ρlΩg

dV
dt

− ρlΩgg. (D14)

Now we turn our attention to the different contributions to F Sg from the undisturbed and
the disturbance liquid flow fields. To separate these contributions, we use an approach
similar to Maxey & Riley (1983) that derived the equation of motion for a rigid sphere.
The two flow fields give contributions to F Sg according to (D1)

F Sg = F Û
Sg

+ F̃ Sg =
∫

Sg

(−pÛn̂ + τ Û · n̂) dS +
∫

Sg

(−p̃n̂ + τ̃ · n̂) dS. (D15)

The right-hand side of (D15) may be converted into volume integrals using the divergence
theorem and then substituted with (D10) and (D12), respectively, so that the contributions
become

FÛ
Sg,i = ρl

∫
Ωg

(
∂Ûi

∂t
+ Ûj

∂Ûi

∂ x̂j
− gi + dVi

dt

)
dΩ, (D16)

F̃Sg,i = ρl

∫
Ωg

(
∂ ũi

∂t
+ Ûj

∂ ũi

∂ x̂j
+ ũj

∂Ûi

∂ x̂j
+ ũj

∂ ũi

∂ x̂j
− f δS

i

)
dΩ. (D17)

The force acting on the bubble by the undisturbed flow in (D16) can also be expressed in
terms of the undisturbed liquid flow U in the absolute reference frame according to

FU
Sg,i = ρl

∫
Ωg

(
∂Ui

∂t
+ Uj

∂Ui

∂xj
− gi

)
dΩ = ρl

∫
Ωg

(
DUi

Dt
− gi

)
dΩ. (D18)

In the present problem, U is steady and the only non-zero component is Uy = −Srx. Thus,
DUi/Dt = 0 and (D18) becomes

FU
Sg,i = −ρlΩggi. (D19)

Because ∇U is uniform, the third term on the right-hand side of (D17) can be evaluated
separately and recognized as a convective acceleration of the bubble by the undisturbed
shear flow. We also note that the surface tension force f δS

i is self-cancelling within Ωg so
that (D17) becomes

F̃Sg,i = Di + ρlΩgVrel,j
∂Ûi

∂ x̂j
, (D20)

Di = ρl

∫
Ωg

(
∂ ũi

∂t
+ Ûj

∂ ũi

∂ x̂j
+ ũj

∂ ũi

∂ x̂j

)
dΩ, (D21)

where Vrel,i = (1/Ωg)
∫
Ωg

ũi dΩ = Vi − Ui(rB) is the relative velocity between the bubble
and the undisturbed liquid evaluated at the bubble centre of mass. Here D represents the
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force acting on the bubble by the liquid disturbance velocity field ũi. The total force acting
on the bubble by the liquid is then

FSg,i = ρlΩgVrel,j
∂Ui

∂xj
+ Di − ρlΩggi, (D22)

where the first term represents the convective acceleration of the bubble due to the
undisturbed shear flow, the second term is the interfacial forces due to the disturbance
velocity field (such as drag, added mass and the lift force) and the third term is the
buoyancy force.

The second term on the right-hand side of (D14) can also be expressed as a combination
of convective and relative acceleration according to

ρlΩg
dVi

dt
= ρlΩg

(
dVrel,i(t)

dt
+ dUi(rB(t))

dt

)
= ρlΩg

dVrel,i

dt
+ ρlΩgVj

∂Ui

∂xj
. (D23)

Substituting (D22) and (D23) into (D14) we note that the convective acceleration and
buoyancy terms cancel for the present problem, and the final expression for the force acting
on the bubble due to the disturbance velocity field in the MRF becomes

D = − d
dt

(
ρl

∫
Ωl+Ωg

ũ dΩ

)
+ ρlΩg

dV rel

dt
. (D24)

In this study we are interested in studying the effect of the vorticity dynamics on the lift
force. To express D in terms of the vorticity field ω̃ we make use of the following identity
in three dimensions that relates the velocity field to the vorticity according to (Saffman
1993) ∫

Ω

ũ dΩ = 1
2

∫
Ω

x̂ × ω̃ dΩ − 1
2

∫
S

x̂ × (n̂ × ũ) dS. (D25)

Substituting (D25) into (D24), and again noting that ũ → 0 on Sl, gives

D = − d
dt

(
1
2
ρl

∫
Ωl+Ωg

x̂ × ω̃ dΩ

)
+ ρlΩg

dV rel

dt
, (D26)

that provides a relation between the bubble-induced vorticity and the resulting force acting
on the bubble.

Appendix E. Validation of vorticity-based force relation in the numerical framework

Here, we assess the validity of (5.1) and the use of this relation in our numerical framework
to compute the force acting on a body based on the induced vorticity moments. In the
first validation case, we simulate the flow past a fixed sphere at Re = 300. The sphere is
approximated as a fluid with the same density as that of the surrounding flow, but with a
viscosity 1000 times larger and a relatively high surface tension (Eo = 0.1). This set-up
gives an almost rigid body with an aspect ratio of χ = 1.01. The sphere is held fixed in the
computational domain using a PID-controlled body force that keeps the body at its initial
position.

In the second validation case, we simulate a bubble rising rectilinearly in a quiescent
liquid with the parameters (Ga = 99, Eo = 0.14) that corresponds to a 1 mm air bubble in
water. Here we use the moving reference frame technique to keep the bubble at its initial
position in the domain.
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y
x

z

Figure 22. Isocontours of the vorticity moment (x̂ω̃z − ẑω̃x) = ±0.1 related to the drag force on a rising
bubble with Ga = 99 and Eo = 0.14 at t = 10. The outer box illustrates the boundaries of the computational
domain, and the inner box is the control volume in which the vorticity moments are evaluated.

In both cases we evaluate the force acting on the sphere/bubble in the vertical y-direction
using (5.1) that, at a steady state, becomes

Dy = d
dt

(
1
2
ρl

∫
Ωl+Ωg

x̂ω̃z − ẑω̃x dΩ

)
. (E1)

The vorticity moment in (E1) is evaluated in a control volume of 40D × 40D × 55D
around the sphere/bubble, shown in figure 22, where the sphere/bubble is placed in the
centre of the control volume cross-section at 11D below the top control surface. The entire
computational domain is (80D)3. Because of small numerical artefacts (see figures 23a
and 24a) that we believe arise due to the adaptive grid refinement technique, the time rate
of change of the vorticity moment is computed by fitting a linear equation at a steady
state. Based on the fitted line, we compute Dy,fit from (E1) and the corresponding drag
coefficient as

CD,Dy,fit = Dy,fit
π

8
D2ρl|Vrel,y|Vrel,y

. (E2)

Figures 23(b) and 24(b) show CD,Dy,fit together with predictions from well-known
correlations. For the sphere, we use the Schiller–Naumann correlation 24(1 +
0.15Re0.687)/Re (Naumann & Schiller 1935), and for the bubble, we use Moore’s drag
correlation (Moore 1965) with the aspect ratio χ = 1.16 obtained in the simulation that is
suitable at these bubble parameters (Magnaudet & Eames 2000).

In both validation cases, the absolute differences between the CD estimated using (E2)
and the corresponding correlations are around 0.03. Because of this good agreement, we
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Figure 23. Validation case of the predicted drag force on a sphere at Re = 300. (a) Evolution of the vorticity
moment in a control volume surrounding the sphere. At a steady state, a straight line is fitted and used to
compute the corresponding drag force acting on the sphere. (b) Drag force coefficient predicted by the evolution
of the vorticity moments at a steady state and CD predicted by the Schiller–Naumann correlation.
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Figure 24. Validation case of the predicted drag force on a rising bubble with the parameters (Ga = 99, Eo =
0.14) corresponding to a 1 mm air bubble in water. (a) Evolution of the vorticity moment in a control volume
surrounding the bubble. At a steady state, a straight line is fitted and used to compute the corresponding drag
force acting on the sphere. (b) Drag force coefficient predicted by the evolution of the vorticity moments at a
steady state and CD predicted by Moore’s correlation.

believe the forces predicted by (5.1) and the evaluation of this relation in our numerical
framework are sufficiently accurate. It should also be noted again that we do not use (5.1)
to compute any quantitative values except for the estimations in the demonstration cases.
The (5.1) is instead used to qualitatively explain the characteristic vorticity dynamics of
each lift force mechanism.

Appendix F. Principle of total vorticity conservation

In the analysis of § 5 it is useful to consider the total vorticity conservation principle.
Interestingly, it can be shown that the total amount of vorticity generated by the motion
of the bubble is always zero within Ωl. Since we assume Ωl large enough to enclose all
disturbance vorticity, we will have ω̃ → 0 on Sl. Using this assumption, an identity and
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Figure 25. Bubble trajectory relative to the undisturbed liquid shear flow in the (a) xy- and (b) zy-plane for
the case (Ga = 320, Eo = 2, Sr = 0.5) affected by a wake interaction effect. The bubble shows a zigzagging
trajectory in the xy-plane until around t = 20 when a part of the previously shed bubble-induced vorticity is
advected upstream, due to the high shear flow, and interacts with the bubble.

the divergence theorem, we then get (Batchelor 1967)∫
Ωl+Ωg

ω̃i dΩ =
∫

Ωl+Ωg

∇ · (x̂iω̃) dΩ =
∫

Sl

(x̂iω̃) · n̂ dA = 0. (F1)

Thus, if we know the volume integral of vorticity in one region of Ωl, the remaining
region will contain exactly the negative of that quantity. This property of the vorticity
field is useful both in our theoretical analysis and when adopting the MRF technique in
simulation cases.

Appendix G. Wake interaction effect

At around Sr = 0.5, we observe in several simulation cases a wake interaction effect that
significantly influences the bubble motion. At such high shear rates, the liquid vertical
velocity relative to the bubble is positive only a few bubble diameters away from the
bubble and its wake. For example, at a bubble characteristic relative rise velocity of√

gD and a shear rate of Sr = |ω∞|D/
√

gD = 0.5, the liquid vertical velocity becomes
greater than the bubble rise velocity at a transverse distance only 2D away from the bubble
centre. The upward liquid shear flow can advect part of the previously shed bubble-induced
vorticity upstream, past the bubble vertical position, thereby influencing the future bubble
dynamics. This effect significantly influences the bubble trajectory and, consequently, the
time-averaged lift force. Therefore, the simulation cases influenced by this effect are not
included in the above shear rate study.

Figure 25 illustrates the wake interaction effect on the bubble trajectory in the case
(Ga = 320, Eo = 2, Sr = 0.5). The trajectory is in the reference frame of the bubble and
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Figure 26. Illustration of the wake interaction phenomenon occurring in the high shear case of (Ga =
320, Eo = 2, Sr = 0.5). The different instances (a)–(d) correspond to the times indicated in figure 25. The
contours show the bubble-induced vorticity ω̃z in the xy-plane at the bubble position ẑ = ẑB. The black arrows
represent the velocity field relative to the bubble û. Up to approximately t = 20, the previously shed ω̃z is still
downstream of the bubble, but, at t = 25 the shed vorticity is advected to the bubble vertical position and starts
to interact with the bubble dynamics. At later times, some ω̃z is always present upstream of the bubble and may
even introduce non-physical boundary effects: (a) t = 15; (b) t = 20; (c) t = 25; (d) t = 35.

is computed by integrating V rel(t) in time. In a laboratory reference frame, the high shear
flow advects the bubble at high vertical velocities as the latter moves in the x-direction
and makes it difficult to visualize the trajectory. Up to around t = 20, the bubble shows
a zigzagging trajectory in the xy-plane with a minor motion in the z-direction. However,
at around t = 25, the bubble interacts with its previously shed vorticity that, significantly
influences the bubble motion.

Instants from this simulation case are shown in figure 26 where the bubble-induced ω̃z
is represented by the contours in the xy-plane at the bubble position (ẑ = ẑB). The velocity
field relative to the bubble û is visualized with the black arrows that indicate that the liquid
velocity field is positive only a few D to the left of the bubble. In figure 26 it becomes
clear that the previously shed ω̃z is advected upstream to the bubble vertical position at
approximately t = 25 and that this instant corresponds to where the trajectory in figure 25
shows a departure from a regular zigzagging motion. Even stronger interaction effects
occur after approximately t = 60, but, after approximately t = 25, some ω̃z is always
present above the bubble position and interacts with the upstream boundary to produce
non-physical effects.

The wake interaction effect clearly makes it difficult to examine how the lift force scales
with Sr at shear rates higher than Sr ≈ 0.5 with rising velocities Fr ≈ 1. At higher Fr,
the relative liquid vertical velocity becomes positive at a larger transverse distance away
from the bubble, making the interaction less likely. The interaction should also be less
likely in cases where the bubble moves towards the direction of a positive relative liquid
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vertical velocity (in the negative x-direction for our cases). In such cases, the shed vorticity
is advected, relative to the bubble, in the positive x̂-direction and thus into the increasingly
negative liquid vertical velocity field that transports the shed vorticity away from the
bubble.
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