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Sketch of support vector regression (SVR). Data point inside (•) and outside (�)
the tube (gray area). The gray dashed line is the hyperplane (regression plane)
predicted by svrLINEAR.
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Abstract

Machine Learning (ML) is used for developing wall functions for Large
Eddy Simulations (LES). I use Improved Delayed Detached Eddy Simula-
tions (IDDES) in fully-developed channel flow at a frictional Reynolds num-
ber of 5 200 to create the database. This database is used as a training set
for the ML method (support vector regression). The input (i.e. the influence
parameters) is y+. The ML method is trained to predict U+.

The support vector regression methods in Python are used. The trained
ML model is saved to disk and it is subsequently uploaded into the Python
CFD code pyCALC-LES [1]. IDDES is carried out on coarse – and semi-
course – near-wall meshes and the wall-shear stress (using the local y+ and
ū) is predicted using the developed ML model. The test cases are channel
flow at Reτ = 16 000 and flat-plate boundary layer.

This work is a follow-up of that presented in [2].
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Figure 1: Sketch of support vector regression. Data point inside (•) and outside
(�) the tube (gray area). The gray dashed line is the predicted solution which is
called the hyperplane which may be linear (svrLINEAR) or non-linear (svr).
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Figure 2: Sketch of vector regression. A large C enlarges the area of the tube (blue
area).

1 Introduction

Machine Learning (ML) is a method where known data are used for teaching the
algorithm to classify a set of data. The data may be photographs where the ML
algorithm should recognize, for example, traffic lights or traffic signs [3]. Another
example may be ECG signals where the ML algorithm should recognize certain
unhealthy conditions of the heart [4]. A third example is detecting fraud for credit
card payments [5]. ML methods such as Support Vector Machines (SVM) and
neural networks are often used for solving this type of problems.

The examples above are classification problems using supervised learning (i.e.
learning to recognise a traffic light, an unhealthy heart, learn what a customers
usual credit card payment looks like). However, in the present work input and
output are numerical values. In this case, ML in the form of regression methods
should be used [4]; I will use support vector regression (SVR) methods available
in Python.

In SVR a regression multi-dimensional “surface” is created which has as many
dimensions as number of influence parameters (in the present work I use one in-
fluence parameter). Let’s make a simple example. In Fig. 1 there is one influence
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parameter, x, and one parameter to predict, y. Another two main input parameters
are given to the SVR methods. The first is ε which determines the width of the tube
around the hyperplane 1. Points that lie inside this tube are considered as correct
predictions and are not penalized by the algorithm. The support vectors are the
points that lie outside the tube. The second parameter given to SVR models is the
C value. It controls the “slack” (ξ ), see Fig. 1, which is the distance to points
outside the tube. If C is increased the size of the tube is increased so that some or
all of the data points are located inside the tube.

There are not many studies in the literature on ML for improving wall func-
tions. In [6] they use a time-averaged high-fidelity IDDES simulation to train a
neural network for improving the predicted modeled turbulent kinetic used in wall
functions (RANS). In Ref. [7] they use neural network to improve the predicted
wall pressure to be used in fluid-structure interactions. Their target is the wall
pressure spectrum and the input parameters are the pressure power spectra above
the wall. In Ref [8] they use neural network to predict the wall pressure spectra.
Their input data are boundary-layer thicknesses (physical, displacement and mo-
mentum), streamwise pressure gradient and wall shear stress which are taken from
experiments and high-fidelity DNS/LES in the literature. In [9] they use an overly
complicated neural network to create a pre-multiplication factor of the velocity-
based wall model (VWM) and a log-law based wall model (LLWM). Then they
introduce a reward factor, rn, at each time step n.

2 Numerical method and turbulence model

The finite volume code pyCALC-LES [1] is used. It is written in Python and is
fully vectorized (i.e. no for loops). The solution procedure is based on fractional
step. Second-order central differencing is used in space for the momentum equa-
tions and Crank-Nicolson is used in time. For k and ε, the hybrid central/upwind
scheme is used together with first-order fully-implicit time discretization.

All discretized equation (i.e. the sparse-matrix system) are solved on the GPU
using the Algebraic MultiGrid library pyAMGx [10] based on AMGX.

2.1 The momentum equations

The equations read

∂v̄i
∂xi

= 0

∂v̄i
∂t

+
∂

∂xj
(v̄iv̄j) = − ∂p̄

∂xi
+

∂

∂xj

[
(ν + νsgs)

∂v̄i
∂xj

]
1A hyperplane is a plane whose number of dimension is the same the number of influence param-

eters. For example, a two-dimensional hyperplane has two influence parameters.
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2.2 The underlying RANS turbulence model

The AKN low-Reynolds number for IDDES (see Section 2.3) reads [11]

∂k

∂t
+
∂ūjk

∂xj
=

∂

∂xj

[(
ν +

νt
σk

)
∂k

∂xj

]
+ Pk − ψε

∂ε

∂t
+
∂ūjε

∂xj
=

∂

∂xj

[(
ν +

νt
σε

)
∂ε

∂xj

]
+ Cε1Pk

ε

k
− Cε2f2

ε2

k

Cε1 = 1.5, Cε2 = 1.9, Cµ = 0.09

νt = Cµfµ
k2

ε
, σk = 1.4, σε = 1.4 (1)

where the damping functions are defined as

f2 =

[
1− exp

(
− y

∗

3.1

)]2
{

1− 0.3 exp

[
−
(
Rt
6.5

)2
]}

fµ =

[
1− exp

(
−y
∗

14

)]2
{

1 +
5

R
3/4
t

exp

[
−
(
Rt
200

)2
]}

2.3 The IDDES model

The Improved Delayed Detached Eddy Simulation method is used [12] used when
creating the database as well as when using wall functions – based on ML or using
Reichardt’s law. The coefficient ψ in Eq. 1 is computed as

ψ =
lu
Lhyb

, lu =
k3/2

ε
(2)

where Lhyb is the usual IDDES length scale [12]. For convenience, the procedure
how to obtain the IDDES length scale is summarized below.

Lhyb = fd(1 + fe)lu + (1− fd)lc, lc = CDES∆ (3)

where the ∆ length scale is defined as

∆ = min {max [Cwdw, Cwhmax, hwn] , hmax}

and Cw = 0.15, dw is the distance to the closest wall and hwn is the grid step in
the wall normal direction. The blending functions fd and fe read

fd = max {(1− fdt) , fB} (4)

fe = max {(fe1 − 1) , 0}fe2 (5)

where the functions fdt and fB entering Eq. 4 are given by

fdt = 1− tanh
[
(8rdt)

3
]

(6)
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Figure 3: IDDES database.

fB = min
{

2 exp
(
−9α2

)
, 1
}

(7)

with

α = 0.25− dw/hmax .

The functions fe1 and fe2 in Eq. 5 read

fe1 =

{
2 exp

(
−11.09α2

)
if α ≥ 0

2 exp
(
−9α2

)
if α < 0

and

fe2 = 1−max {ft, fl}

where the functions ft and fl are given by

ft = tanh
[(
c2
t rdt

)3]
fl = tanh

[(
c2
l rdl
)10
]
.

The constants ct and cl given the same values as in the k − ω SST model, i.e.
ct = 1.87 and cl = 5 [12]. The quantities rdt (also entering Eq. 6) and rdl, are
defined as follows

rdt =
νt

κ2d2
w max {|s̄|, 10−10}

rdl =
ν

κ2d2
w max {|s̄|, 10−10}

3 Creating the database

To create a database which can be used for training the SVR I will carry out simu-
lations using IDDES (see Section 2) of fully-developed channel flow. The size of
the channel is xmax = 3.2 (streamwise, x or x1), ymax = 2 (wall normal, y or x2)
and zmax = 1.6 (spanwise, z or x3). The mesh has 96× 96× 96 and the Reynolds
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(a) Velocity. (b) Streamwise fluctuations

(c) Wall-normal fluctuations. (d) Spanwise fluctuations.

Figure 4: Mean flow and resolved turbulence. : IDDES; •: DNS data [13].
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〈∆y+〉
Location 1 12
Location 2 31
Location 3 49
Location 4 66
Location 5 76
Location 6 88
Location 7 135
Location 8 155
Location 9 207

Table 1: IDDES database for wall functions. ∆y is defined in Fig. 3. The locations
of the second and the third cell is obtained from Fig. 3.

number is 5 200 based on the friction velocity, 〈uτ 〉 (〈·〉 denotes average in time, x1

and x3), and the half-channel width, δ. DNS was used in [2] on a much finer mesh
and a lower Reynolds number. The accuracy of IDDES is consider to be sufficient.

Figure 4 presents comparison of the predicted velocity field and RSM fluctua-
tions with DNS and – as can be seen – the agreement is reasonable.

The instantaneous velocity, ū, is stored at nine locations in the database along
with the friction velocity at the same (x, z) position. It may be noted that in [2] ū
was integrated over 2∆y (giving Ū ) where 2∆y was relevant for the wall-normal
cell size when using wall functions. At the end of [2], it has been found that the
correlation between Ū and the friction velocity is very low and hence integrating
in y is not a good procedure. The grid in the wall-parallel plane is finer than
in a typical wall-function mesh. Hence, in the present study the instantaneous ū
velocities and the friction velocities are integrated over ∆X and ∆Z where ∆X
and ∆Z correspond to typical cell size in a wall-function mesh, i.e.

Ū(x, y, z) =
1

∆X∆Z

∫ x+0.5∆X,z+0.5∆Z

x−0.5∆X,z−0.5∆Z
ū(x′, y, z′)dx′dz′

ūτ (x, z) =
1

∆X∆Z

∫ x+0.5∆X,z+0.5∆Z

x−0.5∆X,z−0.5∆Z
uτ (x′z′)dx′dz′ (8)

∆X and ∆Z are set to 0.1 and 0.05, respectively. The nine locations of the first
cell are given in Table 1. The locations of the second and third cells are shown in
Fig. 3. The Ū velocity at the second and the third cells are stored in order to be
able to compute the first and the second velocity derivative which could be used as
additional input (i.e. influence) parameters. They are not used in the present work.
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4 Standard wall functions

The ML wall functions will be compared to wall functions based on Reichardt’s
law

ūP
uτ
≡ U+ =

1

κ
ln(1−0.4y+)+7.8

[
1− exp

(
−y+/11

)
− (y+/11) exp

(
−y+/3

)]
(9)

The friction velocity is then obtained by solving the implicit equation

uτ − ūP
(
ln(1− 0.4y+)/κ+

7.8
[
1− exp

(
−y+/11

)
− (y+/11) exp

(
−y+/3

)])−1
= 0 (10)

using the Newton-Raphson method scipy.optimize.newton in Python. ūP
and y+ denote the non-dimensional wall-parallel velocity and wall distance, re-
spectively, at the first, second or third wall-adjacent cells.

5 Wall functions based on ML methods

As indicated in the introduction, I will use SVR (Support Vector Regression). Two
different packages are used, svr and svrLINEAR, both available in Python. The
former method is non-linear and the latter is linear. The ML method consists of a
learning part and a testing part. In the learning part, the ML method is trained and
in the testing part it is tested.

First, I need to determine which input variable (influence parameters) that
should be used. In standard wall functions such as Eq. 9, the input parameters
are wall-parallel velocity, v̄P and the non-dimensional wall distance, y+ (which
includes the friction velocity, uτ ); the output is the friction velocity. Hence, the
friction is both input and output. In a ML method, it may be a bad idea to let a
parameter be part of both the input and output parameters. Hence, in [2] I choose
the local Reynolds number

Re =
Ū∆y

ν
, (11)

and the non-dimensional velocity gradient as input parameters. The friction veloc-
ity was taken as output, i.e.

uτ = f

(
Re, 〈y+〉, ∂Ū

∂y

)
(12)

Figure 5 presents the resulting scatter plots. The three different markers and
two different colors represent different 〈y+〉, i.e. different locations. It turns out
that this choice of influence parameters and out parameter is not a good one since
for certain combinations of 〈y+〉 and Re multiply values of the output parameter,
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(a) Testing (prediction). (b) Target data (IDDES datan).

Figure 5: 2D scatter plot of the friction velocity (Eq. 12) using Re (Eq. 11) and
the time-averaged y+ (Eq. 13) as influence parameter and uτ as output parameter.
N: Location 1; N: Location 2; N: Location 3; H: Location 4; H: Location 5; H:
Location 6 (see Table 1).

uτ may be obtained. As a remedy, a third input variable was added, name;y the
averaged non-dimensional wall distance, i.e.

〈y+〉 =
〈uτ 〉∆y

ν
(13)

This ML wall function gave fairly good results in fully-developed channel flow [2]
but in the present work it was found that it fails in flat-plate boundary layers (not
shown).

Hence, I decided to pick a different set of influence and output parameters.
Let’s take guidance of the Reichard’s law (Eq. 9) and the log-law and the linear
law

ū

uτ
≡ U+ =

1

κ
ln(Ey+), U+ = y+

All three are written on the form

ū

uτ
= f

(
y+
)
≡ f

(uτy
ν

)
I choose to use the same output and input in the ML wall functions, i.e.

y+ : influence parameter

U+ : output parameter

The potential drawback is that uτ appears both in the influence and output pa-
rameter which could necessitate an iterative procedure (as when solving Eq. 9)
predicting U+ a couple of times with updated y+. In the results section it is found
that that is not needed.

Next, I will train the ML method using the IDDES data created in Section 3. I
use 300 independent samples at each of the nine locations, see Table 1 and Fig. 3.
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(a) svrLINEAR. (b) svr.

Figure 6: Scatter plot of predicted (testing) U+ using C = 10 and ε = 0.001.

U+. I pick 80% of the data randomly and define that as the training set. The
remaining 20% is then used for testing, i.e. predicting.

Figure 6 presents scatter plots of predicted friction velocities using svr and
svrLINEAR for all testing data (in total 540 data points, i.e. 20% of 300 in-
dependent samples at nine locations, see Table 1 and Fig 3). It is seen that for
svrLINEAR uτ varies linearly (which is expected since svrLINEAR is linear)
whereas svr closely follows the target data. Hence, svr is chosen. The slack
parameter, C, and ε (see Section 1) are set to 10 and 0.001, respectively. The error,
e, between the predicted U+ (testing samples) using svr and the IDDES database

e =
std

(
U+
pred − U

+
IDDES

)
mean (Upred)

(14)

is approximately 9%.

5.1 Python code

Here I present some of the Python commands. First, I scale the input data

scaler_yplus=StandardScaler()
yplus_in=scaler_yplus.fit_transform(yplus_in)

Then I put the input and output data on generic form

y=uplus_out # output
X=np.zeros((n_svr,1)) #input
X[:,0]=yplus_in[:,0]

Next I pick a model

C=10
eps=0.001
model = SVR(epsilon = eps, C = C)
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I train the model

svr = model.fit(X, y.flatten())

Now comes the testing part. I scale my test data

# Use MinMax scaling
yplus_in_test=yplus_in_test.reshape(-1, 1)
yplus_in_test=scaler_yplus.transform(yplus_in_test)

# test
X_test=np.zeros((n_test,1))
X_test[:,0]=yplus_in_test[:,0]

Then I predict U+

y_svr = model.predict(X_test)

Now I want to find how accurate my predictions are. I compare with IDDES data

# find difference
uplus_rms=np.std(y_svr-uplus_out_test)/\
np.mean(uplus_out_test.flatten())
print(’rms_error’,uplus_rms)

Finally I store the model on disk.

# save the model to disk
filename = ’model-svr-C-10-eps-0.001.bin’
dump(model, filename)
dump(scaler_yplus,’model-svr-C-10-eps-0.001-yplus.bin’)
np.savetxt(’min-max-svr-C-10-eps-0.001.txt’, \
[yplus_max, yplus_min])

When I do the IDDES simulations with pyCALC-LES I load the model.

if itstep == 0 and iter == 0:
# load model

folder=’˜noback/pycalc-les/channel-5200-IDDES-96-86-96-ML/’

filename=str(folder)+’model-svr-C-10-eps-0.001.bin’
model = load(filename)
scaler_yplus = load(str(folder)+’model-svr-C-10-eps-0.001-yplus.bin’)
yplus_max,yplus_min=
np.loadtxt(str(folder)+’min-max-svr-C-10-eps-0.001.txt’)

# initialize
ustar_south=np.ones((ni,nk))
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When I predictU+, I do as in the testing phase above at both wall. For example,
at the south wall

u2d_wall=abs(u3d[:,0,:]) # first cell
#u2d_wall=abs(u3d[:,1,:]) # 2nd cell
#u2d_wall=abs(u3d[:,2,:]) # 3rd cell

# wall distance
dy_wall=dist3d[0,0,0] # first cell
#dy_wall=dist3d[0,1,0] # 2nd cell
#dy_wall=dist3d[0,2,0] # 3rd cell

yplus=ustar_south*dy_wall/viscos

#flatten
yplus=yplus.flatten()

# count values larger/smaller than max/min
yplus_min_number= (yplus < yplus_min).sum()
yplus_max_number= (yplus > yplus_max).sum()

print(’south: yplus_min_number’,yplus_min_number)
print(’south: yplus_max_number’,yplus_max_number)

# set limits
yplus=np.minimum(yplus,yplus_max)
yplus=np.maximum(yplus,yplus_min)

#size
N=len(yplus)

# re-scale
yplus=yplus.reshape(-1, 1)
yplus=scaler_yplus.transform(yplus)

# predict
X=np.zeros((N,1))
X[:,0]=yplus[:,0]

# compute uplus
y_svr = model.predict(X)

uplus=np.reshape(y_svr,(ni,nk))
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(a) Ny = 66, stretching 11%. (b) Ny = 68, stretching 14.7%.

Figure 7: Channel flow. svr. Reτ = 16 000. Velocity. •: Reichardt’s law, Eq. 9.

(a) Ny = 66, stretching 11%. (b) Ny = 68, stretching 14.7%.

Figure 8: Channel flow. Reichardt’s wall function. Reτ = 16 000. Velocity.
•: Reichardt’s law, Eq. 9.

# compute ustar
ustar=np.divide(u2d_wall,uplus)
ustar_south=ustar

I compute U+ using ū and y+ at the first wall-adjacent cells. In code lines colored
red and blue I indicate how to use the second and third wall-adjacent cells, respec-
tively. Furthermore, when I created the ML model, I stored min and max of y+

and I use them to make sure that y+ does not go outside the limits of the training
process.

6 Results

Here I evaluate svr and Reichardt’s wall function in fully-developed channel flow
and a flat-plate boundary layer. The Python code pyCALC-LES is used for all
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(a) Low-Re number IDDES grid. (b) Wall function grid. New grid strategy.

Figure 9: Different grids. : grid lines.

(a) Ny = 78. (b) Ny = 92.

Figure 10: Channel flow. Reτ = 16 000. Velocity. svr. •: Reichardt’s law, Eq. 9.

(a) Ny = 78. (b) Ny = 92.

Figure 11: Channel flow. Reτ = 16 000. Velocity. Reichardt’s wall function.
•: Reichardt’s law, Eq. 9.
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(a) Ny = 78. (b) Ny = 92.

Figure 12: Channel flow. svr. Reτ = 16 000. Streamwise fluctuations. :
resolved plus modelled; : modeled. •: DNS data [13] at Reτ = 5 200.

simulations together with the IDDES model, see Section 2.3.

6.1 Channel flow

The Reynolds number is Reτ = 16 000 based on the friction velocity and channel
half width. The extent of the domain in the x and z direction is 3.2 and 1.6,
respectively, covered by 32 cells in each direction.

First, I use a typical wall-function mesh (Ny = 66, stretching 11%) placing the
wall-adjacent cells at y+ = 34. The velocity profiles are shown in Figs. 7a and 8a
and the agreement with Reichardt’s law is excellent. However, when the stretching
is increased to 14.7% the agreement deteriorates, see Figs. 7b and 8b. The reason
for the poor agreement is probably that the cells further away from the wall (2nd,
3rd . . . cell) are too coarse.

6.2 New grid strategy

Since the grid seems to be too coarse away from the figure in Figs. 7b and 8b a new
grid strategy is proposed. Figure 9 presents two distributions of grid lines in the
wall-normal direction. A low-Reynolds grid used in RANS and IDDES in Fig. 9a
with stretching of 15%. Figure. 9b present the new grid in which a number of the
near-wall cells are merged into one large wall-adjacent cell where the cell center
should be located at 10 ≤ y+ ≤ 100. This strategy was used in [14] for channel
flow and impinging jets (RANS). The new grid strategy is used in all simulations
presented below.

Figures 10a and 11a present the velocity profiles using svr and Reichardt’s
wall function where the wall-adjacent cells are located at y+ = 35 and the agree-
ment is good (slightly better with svr). The agreement is also good when the
wall-adjacent cells are located at y+ = 10, see Figs. 10b and 11b (again, slightly
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(a) Skin friction. Dashed lines: ±6%.
•: 2 · ((1/0.384) ln(Reθ) + 4.127)−2

(b) Velocity at Reθ = 4 000. y+ = 16.
Markers: DNS [15]

Figure 13: Boundary layer flow. svr. Ny = 85

(a) Skin friction. Dashed lines: ±6%.
•: 2 · ((1/0.384) ln(Reθ) + 4.127)−2

(b) Velocity at Reθ = 4 000. y+ = 16.
Markers: DNS [15]

Figure 14: Boundary layer flow. Reichardt’s wall function. Ny = 85

better with svr).
The streamwise fluctuations are shown in Fig. 12 for the two grids. The agree-

ment with DNS data is good for y & 0.2; the modeled fluctuations are negligible
for y & 0.2.

6.3 Flat-plate boundary layer

Now I will simulate a flat–plate boundary layer. The inlet Reynolds number based
on the momentum thickness is Reθ = 2 550. The data presented below are aver-
aged in z direction and time.

The mean inlet profiles are taken from a 2D RANS solution at Reθ = 2 550.
Synthetic fluctuations [16, 17] are superimposed to the RANS velocity profile. The
mesh has 550 × 64 cells in streamwise (x) and spanwise (z) directions. It has 82
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(a) Skin friction. Dashed lines: ±6%.
•: 2 · ((1/0.384) ln(Reθ) + 4.127)−2

(b) Velocity at Reθ = 4 000. y+ = 24.
Markers: DNS [15]

Figure 15: Boundary layer flow. svr. Ny = 82

(a) Skin friction. Dashed lines: ±6%.
•: 2 · ((1/0.384) ln(Reθ) + 4.127)−2

(b) Velocity at Reθ = 4 000. y+ = 24.
Markers: DNS [15]

Figure 16: Boundary layer flow. Reichardt’s wall function. Ny = 82

(a) Skin friction. Dashed lines: ±6%.
•: 2 · ((1/0.384) ln(Reθ) + 4.127)−2

(b) Velocity at Reθ = 4 000. y+ = 24.
Markers: DNS [15]

Figure 17: Boundary layer flow. svr. Ny = 82, Nk = 32, ∆xin = 2∆xin,base
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(a) Skin friction. Dashed lines: ±6%.
•: 2 · ((1/0.384) ln(Reθ) + 4.127)−2

(b) Velocity at Reθ = 4 000. y+ = 24.
Markers: DNS [15]

Figure 18: Boundary layer flow. Reichardt’s wall function. Ny = 82, Nk = 32,
∆xin = 2∆xin,base

(a) Skin friction. Dashed lines: ±6%.
•: 2 · ((1/0.384) ln(Reθ) + 4.127)−2

(b) Velocity at Reθ = 4 000. y+ = 24.
Markers: DNS [15]

Figure 19: Boundary layer flow. svr. Ny = 82. uτ is computed using the wall-
adjacent cells.
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(a) Streamwise. (b) Wall-normal.

Figure 20: Boundary layer flow. svr. Ny = 82. : total fluctuations; :
modeled fluctuations; Markers: DNS [15].

(a) Streamwise. (b) Wall-normal.

Figure 21: Boundary layer flow. svr. Ny = 82, Nk = 32, ∆xin = 2∆xin,base
: total fluctuations; : modeled fluctuations; Markers: DNS [15].
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or 85 cells in the wall-normal direction (y). The domain size is 8.5 × 4.6 × 3.2.
The grid is stretched by 10% when ∆y < 0.05 and when y > 2; ∆ymax = 0.1.
In the streamwise direction ∆xin = 0.086 and a 0.1% stretching is used. The inlet
boundary-layer thickness is δin ' 0.8.

In the k equation, I add a commutation term including ∂fk/∂x at the plane
adjacent to the inlet [18] (Model 3). The commutation term, C reads

C = Uinktot
∂fk
∂x

which is discretized as

C = Uinktot,0
fk,0 − fk,in

∆x

where subscript 0 denotes the cells adjacent to the inlet, fk,in = 1 (RANS) and
ktot = kres + k where kres is computed as a running average. fk,0 is computed
using the equivalence criterion, Eq. 16 in [19]. The purpose of the commutation
term, C, is to reduce k near the inlet k from RANS (i.e. inlet) values to IDDES
values.

Figures 13, 14, 15 and 16 present skin friction and velocity profiles using svr
and Reichardt’s wall function for two different resolutions in the wall-normal di-
rection, namely the wall-adjacent cells at y+ = 16 (Fig. 13 and 14) and y+ = 24
(Figs. 15 and 16). The agreement is fairly good for both models and both grids
(slightly better with svr).

Figures 17 (svr) and 18 (Reichardt’s wall function) show skin friction and
velocity profiles using 50% fewer cells in x and z direction. The agreement is
good with both models (again, slightly better with svr)

In the channel flow the wall-adjacent cells were used when computing uτ (i.e.
ūP and y+ were taken at the first cell). In this flow, I use the third wall-adjacent
cells (as proposed in [20, 21]), both for svr (see blue Python coding lines at p. 14)
and Reichardt’s wall function. Using the third cell in the channel flow gives negli-
gible difference compared to the first cells (not shown). When I use the first cells
in the boundary layer flow the agreement with experiment gets worse, see Figs. 19.
Using Reichardt’s wall function (not shown) gives virtually identical results.

Finally, the total and modeled fluctuations are presented in Figs. 20 (baseline
grid) and 21 (coarse grid). As can be seen, the agreement is satisfying but near the
wall the streamwise fluctuations are somewhat over-predicted and the wall-normal
are slightly under-predicted for both grid. The modeled fluctuation are negligible
for y+ & 150.

7 Conclusions

A Machine Learning (ML) method (svr) is proposed for wall functions. IDDES
is used for creating the training data. The IDDES is also used when doing the
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(a) : 〈ū〉, IDDES; H: svr: •: ID-
DES, test data. 9% normalized error.

(b) Nearest neighbor using Python’s
scipy.spatial.KDTree •: ID-
DES, nearest neighbour.; H: IDDES
training samples. 0.7% normalized er-
ror.

wall-function simulations, Good results are obtained for channel flow and flat-plate
boundary for the Machine-Learning-Based wall functions, slightly better than wall
functions based on Reichardt’s law. In the channel-flow simulation the results are
insensitive to the location of Ū and y+ used for computing the wall-shear stress.
For the flat-plate boundary layer, much better results are obtained by placing using
Ū and y+ at the third wall-adjacent cell.

Instantaneous IDDES data have been used for training svr (green markers
in Fig. 22a) but the predicted svr data (red markers in Fig. 22a; this is called
the hyper surface, see Fig. 1) follow the time-averaged IDDES data (blue line in
Fig. 22a)). If I’m interested in predicting the instantaneous uτ , I could find try
to find nearest neighbour using Python’s scipy.spatial.KDTree (shown by
• in Fig. 22b). The error between the svr predicted data and the IDDES data is
then reduced from 9% (svr, Fig. 22a) to 0.7%, Fig. 22b). I’d call this model a
data-driven wall function.

An alternative could be to train the ML using time-averaged data rather than
instantaneous. In this case many time-averaged 〈ū〉 (and 〈p̄〉) profiles can be used
for training, both in attached and separated flows. Maybe svm (Support Vector
Machines) and/or Neural Network could be used for finding the most appropriate
profile. Then svr could be used for finding regression lines (or surfaces) in the
selected profile.
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