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Abstract—The aim of this paper is to evaluate the effect of
the load forecasting errors to the operation costs of a grid-
connected microgrid. To this end, a microgrid energy scheduling
optimization model was tested with deterministic and stochastic
formulations under two solution approaches i.e., day-ahead and
rolling horizon optimization. In total, twelve simulation test
cases were designed receiving as input the forecasts provided
by one of the three implemented machine learning models:
linear regression, artificial neural network with backpropagation,
and long short-term memory. Simulation results of the weekly
operation of a real residential building (HSB Living Lab) showed
no significant differences among the costs of the test cases
for a daily mean absolute percentage forecast error of about
12%. These results suggest that operators of similar microgrid
systems could use simplifying approaches, such as day-ahead de-
terministic optimization, and forecasts of similar, non-negligible
accuracy without substantially affecting the microgrid’s total cost
as compared to the ideal case of perfect forecast. Improving the
accuracy would mainly reduce the microgrid’s peak power cost
as shown by its 20.2% increase in comparison to the ideal case.

Index Terms—Battery, energy management, load forecasting,
machine learning, microgrid, stochastic optimization.

I. INTRODUCTION

The combined integration of renewable energy sources
(RESs) and battery energy storages (BESs) in residential build-
ings creates controllable clusters of resources and electricity
customers, which have been defined as grid-connected building
microgrids (MGs) [1], [2]. The MG operator utilizes the con-
trollable resources to achieve an MG energy scheduling i.e.,
an amount of energy exchange with the upstream connected
grid at each time step, that will satisfy its operational targets.

The MG energy scheduling (also known as management
or dispatch) has extensively been studied as an optimization
problem in recent research [3]–[5]. As the literature review in
[5] shows, it has often been formulated either as deterministic
optimization (DO) or stochastic optimization (SO) problem;
the latter in order to address uncertainties without enforc-
ing conservative costly solutions, as is the case with robust
optimization. Typically, MG resources are dispatched hourly
within a look-ahead time horizon of 24 hours. However, the
need to mitigate the effects of intermittent RES generation has
motivated researchers to study intra-hour dispatch schemes.
Since the problem uses a look-ahead horizon and requires
forecasts of the uncertain input values (e.g., load demand) at
each dispatch time step, it is obvious that there is a need for
both short-term and high-resolution forecasts.

This work has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 864048.

Machine learning (ML) models such as neural networks
(NNs) have successfully been employed to provide electric
load forecasts in the last 30 years [6]. However, there has been
a lack of studies that seek to satisfy the two-fold requirement,
as only a few publications (e.g., [7]–[10]) have developed
forecast models with a resolution of a few minutes.

The main contributions of this paper are:
• A scenario-based SO model for market-based energy dis-

patch of a grid-connected MG. The model combines look-
ahead uncertainty with deterministic control to improve
scalability and computational efficiency and is used to
perform optimal dispatch under two solution approaches
i.e., day-ahead (DA) and rolling horizon (RH), in which
it is compared with its deterministic counterpart.

• The implementation of three load forecasting ML models,
which gave input to both the DO and the SO models,
based on real-world building demand data. Contrary to
most studies, the load forecasting is both short-term
and high-resolution. The forecast accuracies of the ML
models were compared and the effect of their error was
evaluated with standard stochastic assessment metrics.

• A detailed representation of the load uncertainty used in
the SO problem including dependencies of the forecast
error on time of prediction, time of occurrence of pre-
dicted value, and predicted time ahead.

II. MG ENERGY DISPATCH PROBLEM FORMULATION

This section presents the formulation of the SO model that
is used to solve the energy dispatch problem of an MG with
photovoltaics (PVs) and a BES. The outcome of the solution
is a set of BES power set-points such that the MG customers
maximize their economic benefits, while their power demand
is supplied by the MG resources and/or the external grid.
A. Scenario-based SO Model

The objective of this model is to minimize the expected
MG cost fSO of the scheduling period over a number of
scenarios with different load demand profiles. These scenarios
represent the uncertainty due to the load forecasting errors.
The MG cost consists of the expected cost of energy import
cim, the expected revenue of energy export rex, which is
subtracted, the expected peak power cost rp due to the charge
of peak imported power from the main grid, and the BES
degradation cost. In order to reduce the size of the SO problem
and avoid scalability or solution tractability issues, which are
common in SO, the BES control decisions are deterministic
i.e., independent of the scenario. The MG import/export power
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Fig. 1: Power flows of the MG.

from/to the grid at time step t and scenario w, which are
denoted by the positive variables pimt,w/pext,w, are the stochastic
decision variables of the optimization problem. Their values
depend on the values of BES charging/discharing power rates
pcht /pdist (deterministic, positive variables), PV power output
PPV
t (deterministic input parameter) and electric load PL

t,w

(stochastic input parameter). The PV power output is deter-
ministic i.e., a perfect PV generation forecast is assumed, to
focus on evaluating the effect of the load forecasting errors on
the MG costs.

1) Objective Function: The objective function is given by:

minfSO = cim − rex + cp + cB , (1)

where

cim =
∑
t∈H

∑
w∈W

Πw(Λt + Ci)p
im
t,w∆t, (2)

rex =
∑
t∈H

∑
w∈W

Πw(Λt + Ce)p
ex
t,w∆t. (3)

The set of time disretization steps i.e., the scheduling
horizon, and their duration are respectively shown by H and
∆t in (2)–(3), while Πw is the probability of occurrence of
scenario w ∈ W . Eq. (2)–(3) analytically present the values
of cim and rex, where Λt is the electricity wholesale market
price, Ci is the grid charge for energy transmission, and Ce is
the reimbursement fee paid by the grid operator as an incentive
to reduce network losses. The cost rp must satisfy

rp ≥ Cpp

∑
w∈W

Πwp
im
t,w, ∀t ∈ H, (4)

so that it is linked to the expected maximum average (over
∆t) pimt,w of the dispatch horizon. The power-based grid tariff
(scaled according to the chosen horizon) is denoted by Cpp.

2) Power Balance: As can be seen in Fig. 1, the PV and
BES systems are connected to the upstream AC grid via a
converter (here assumed to be lossless) with bi-directional
operation. Thus, both the PV and the BES power output can
be exported to the AC grid, whereas the BES can be charged
through both the AC grid and the PV system as expressed in:

PPV
t +pdist −pcht = pext,w−pimt,w +PL

t,w,∀t ∈ H,∀w ∈ W. (5)

3) BES Model: The model also incorporates the constraints
related to the BES operation, which linearly link the BES’s
state-of-energy (SoE), denoted by the variable soet, and
the cycle-based BES degradation (capacity loss) to the BES
throughput. The model was presented in detail in [11].
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Fig. 2: Illustrative diagram of the MG energy scheduling
solved in the DA and RH approaches.

4) Solution Approaches: The SO model and its determin-
istic counterpart can be solved either DA or using the RH
approach, as can be seen in Fig. 2. The load forecast profiles
and the distributions of forecast errors are updated after the
time horizon is shifted either by a scheduling period in DA
optimization or by ∆t in RH optimization and are used as
input to the optimization model. In DA optimization, the
control decisions for the whole scheduling horizon are applied,
whereas in RH optimization, it is only the next step control
decisions that are implemented after each simulation; the rest
of the BES operation set-points are discarded or they can be
used in case of unexpected failures to update them.

B. Uncertainty Representation & Modeling of Forecast Errors

To represent the uncertainty associated with load demand in
the SO problem, the forecast errors were assumed to follow
Gaussian distributions. This is a common practice employed
by many studies e.g., [3], [12]. For a more detailed character-
ization of the uncertainty in this paper, different probability
distributions were used for each time step of the dispatch
period. The parameters of the Gaussian distributions depended
on the time when forecast results were acquired, the time when
the predicted load values occur, and the predicted time step
ahead, while they were obtained from testing the forecasting
models with historical data and implementing curve fittings.

These distributions were used to generate scenarios with the
Monte Carlo (MC) method i.e., random sampling of the input
data, which were the load forecast values with the added noise
to represent forecast error. The available forecast profile was
treated as the base scenario and an error was generated by a
Gaussian random number generator for each time step. The
values of the base scenario were then adjusted according to
these errors creating one future scenario of electricity load.
This process was repeated to obtain multiple scenarios (see
Fig. 3) and after applying a scenario reduction technique, a re-
duced set of scenarios was created with a different probability
of occurrence assigned at each scenario. Scenario reduction
contributes to reducing the size of the SO problem without
substantially compromising the accuracy of the results.

III. LOAD FORECASTING USING ML MODELS

The ML models used and tested for the load forecasting
were: 1) a linear regression (LR) [6], [13]–[15] model, 2) an
artificial NN (ANN) [16] with backpropagation, and a long



Fig. 3: Scenarios of electric load (given as ratio of the peak
load). The base forecast is shown by the dark color line and
one standard deviation is shown by the light-shaded areas.

short-term memory (LSTM) model [8], [9], [17], which is a
type of artificial recurrent NN. For the development of these
models only time-series historical data of electric load were
used. This was decided after performing correlation analyses
with weather data. The autocorrelation analysis of the load
time-series was carried out to decide the input to the models,
which was chosen to be the past 24 h load data so that there
is a good compromise between quality and computation time.

The historical electric load data with a 15-minute time
resolution were taken from the residential HSB Living Lab
(HSB LL) building, which contains 29 apartments housing
40 residents and is located in Gothenburg, Sweden [18]. To
optimize the performance of the ML models a training set of
qualitative sequential data was created by pre-processing the
load data to deal with issues such as missing measurements,
measurement errors, and daylight saving time adjustments.

IV. SIMULATION RESULTS AND DISCUSSIONS

The performance of the energy scheduling model was
validated using the HSB LL building MG as the test system
in the following simulation test cases:

1) Stochastic optimization solved day-ahead (SO-DA)
2) Stochastic optimization solved in RH (SO-RH)
3) Deterministic optimization solved day-ahead (DO-DA)
4) Deterministic optimization solved in RH (DO-RH)
In DA energy dispatch, an additional constraint is added

to avoid having an empty BES at the end of the scheduling
period. Typically, the SoE at the end is set to be equal [19] or
very close [20] to the initial SoE. In this paper, the SoE at the
beginning and end of the scheduling period was set to be 0.5
i.e., 50%. In DO, the index w is removed from the variables
and parameters of the problem formulation and all expected
values are replaced by their deterministic counterparts.

The MG consists of PV systems with a 13 kWp total
capacity, a 7.2 kWh BES with 1.2 energy to power ratio, and
a building with 32 kW peak load. For detailed information
on the BES’s parameters and the simulations’ input data see
[11]. The energy dispatch and the forecasts had the same time
horizon of 24 h and the same resolution i.e., ∆t = 15 minutes.
The simulations were performed for a week in December, 2018
using the historical load profile as the base scenario for SO and

TABLE I: MAPEs for the ML Models and the Base Line
Model over the First Four Quarters and on All Prediction Tests.

Model 15 min 30 min 45 min 60 min
Linear Regression 7.79% 9.63% 10.25% 10.60%

Artificial Neural Network 8.10% 9.77% 10.25% 10.06%
Long Short-term memory 8.93% 9.98% 10.45% 10.73%

Base Line 8.28% 11.14% 12.43% 12.26%

as the realized scenario for DO. In the studied week, there was
minimal PV production to effectively eliminate the impact of
the approximation due to the perfect PV forecast assumption
and enhance the accuracy of the results. Future studies can
consider using ML models for short-term and high-resolution
PV forecasting; note, however, that the ML techniques and
the training data would be quite different compared to load
forecasting, as short-term PV forecast is all the more based
on sky imagery mechanisms [21].

A. Performance of ML Models

The performance of the ML models was evaluated using
the mean absolute percentage error (MAPE), which is shown
in Table I for the first four quarters. These MAPEs were
derived by computing the MAPE over all of prediction tests
(a prediction test was run for each time step amounting to
a total of 365x96 tests for each ML model). The models
were also compared with a base line model, i.e., a naive
and empirical approach which assumes that the coming four
quarters maintain the load value of the current quarter.

As shown in Table I, the base line model performed equally
well, or even better, than the ML models in the 1st quarter.
However, it rapidly lost precision as expected, and already
performed worse than the ML models in the 2nd quarter.
The LR model, which had the lowest MAPE in the first two
quarters, was outperformed by the ANN in the 4th quarter.

The LR model also had slightly worse performance than
the other two ML models considering their average MAPE
for the 24 h time horizon of the forecast calculated over
all prediction tests, as can be seen in Table II. The average
MAPE of this study was compared with the MAPE of other
studies with similar applications of these ML models at the
highest resolution that was found in literature. The comparison
showed that the MAPE of the ANN model could be lower than
some of the other studies that implemented an ANN. Works
that applied LSTM for high-resolution forecasting were found
to have lower average MAPE than this paper, which could
probably be attributed to the different use of the buildings.

To corroborate the common assumption that the probability
distribution of the load forecast error takes a Gaussian form
the errors for each prediction test of the ML models were
recorded and presented as a histogram in Fig. 4. As can be
seen, the results verified that the probability distribution of the
error can be well approximated by a Gaussian distribution. As
for the dependencies of these errors on the factors described
in Section II-B, these can be visualized in Fig. 5. The big
deviation of MAPE recorded for the first 1,5 hour and for the
hours between 00:00 and 06:00 demonstrates the need to have
different probability distribution at each time step.



TABLE II: Mean MAPE over 24 h Time Horizon.

Model MAPE Resolution Application Reference
LR 12.05% 15 min HSB LL This paper
LR 3.52-4.34% 1 h Indonesian [13]

Province
LR 1.00-2.63% 1 h Poland’s electric [14]

power system
LR 5.20-6.10% 1 h 782 households [15]

ANN 11.91% 15 min HSB LL This paper
ANN 15.32% 1 h Building complex [22]
ANN 7.19% 1 h Campus building [16]
ANN 14.50% 1 h 69 households [17]

LSTM 8.58% 1 h 69 households [17]
LSTM 5.35% 15 min School building [8]
LSTM 6.45-14.01% 10 min Building [9]
LSTM 11.97% 15 min HSB LL This paper

Fig. 4: Histogram of percentage error for all prediction tests.
The solid line is a Gaussian distribution fitted to the data.
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Fig. 5: Color chart of MAPE in relationship with time of
prediction (y-axis) and time of the load value occurrence (x-
axis). The slanted lines through the chart show the time ahead.

B. Effect of Forecast Errors

The costs related to MG energy dispatch can be seen in
Table III, where all three ML models were used to give input
to each test case. As can be seen from the total cost f , similar
results were achieved with DO and SO and the same was
observed comparing DA and RH solution approaches. These
were perhaps counter-intuitive outcomes, as judging from the
non-negligible forecast errors (see Fig. 6), one would expect
worse performance from DO and DA schemes. Still, all the
solutions based on forecasts did not deviate more than 1%
from the solution in the ideal case of DO assuming perfect
forecast. Based on this, it can be concluded that the generated
forecasts for that week were sufficiently good to be used in
DO. Note that the DO might not perform as well as SO,
however, if different realized scenarios are considered.

TABLE III: Cost [$] of MG Energy Dispatch for a Week.
f cim − rex cp cB

SO-DA (LR) 145.58 134.17 11.24 0.17
SO-DA (ANN) 145.51 134.17 11.24 0.10
SO-DA (LSTM) 145.50 134.18 11.23 0.09
SO-RH (LR) 145.39 133.95 11.24 0.20
SO-RH (ANN) 145.41 133.90 11.24 0.27
SO-RH (LSTM) 145.30 133.88 11.24 0.18
DO-DA (LR) 145.47 134.18 11.24 0.05
DO-DA (ANN) 145.51 134.18 11.24 0.09
DO-DA (LSTM) 145.44 134.18 11.23 0.03
DO-RH (LR) 145.40 133.96 11.24 0.20
DO-RH (ANN) 145.47 133.96 11.24 0.27
DO-RH (LSTM) 145.35 133.96 11.24 0.15
DO-DA (perfect forecast) 144.62 134.13 9.78 0.71
DO-RH (perfect forecast) 143.84 133.52 9.86 0.46
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Fig. 6: The load forecasts obtained by the ML models.
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Fig. 7: The average error of the peak load’s predicted value
(left y-axis) and time of occurrence (right y-axis) over the
simulated week for each ML model.

The higher cost of the test cases that used forecasts in
comparison to the ideal case was mainly due to cp, which
accounted for about 8% of the total cost f and was increased
up to 20.2%. This can be explained by the difficulty of the
ML models to accurately predict the value or the time of
occurrence of the daily peak load (see Fig. 7) and by the low
potential for energy arbitrage, which, combined with the low
PV output, led to minimal variations in the energy costs.

The value of SO and the effect of the forecast error
can also be assessed by two stochastic metrics which use
DO as a comparison benchmark [23]: the expected value of
perfect information (EVPI) and the expected cost of ignoring
uncertainty (ECIU). Defining fDO,PI

w as the cost obtained by
DO assuming perfect forecast i.e., perfect knowledge of the
load profile of scenario w, the value of the EVPI is obtained
by subtracting by fSO the expected cost computed as the
weighted sum of the costs fDO,PI

w over all scenarios:

EV PI = fSO −Πω

∑
w∈W

fDO,PI
w . (6)



TABLE IV: SO Metrics
ML model EVPI ECIU
LR 3.13% 0.29%
ANN 3.19% 0.32%
LSTM 5.69% 0.30%

The ECIU value is obtained by the weighted sum of the
difference between the cost of the SO solution and the cost of
the DO solution for each scenario fDO

w , where the forecast is
naively treated as perfect information ignoring uncertainties:

ECIU = Πω

∑
w∈W

(fDO
w − fSO), (7)

Assuming that only one of these scenarios is realized, the
deterministic cost will be higher than the expected cost over
some of the scenarios. An example of these metrics for the
DA energy scheduling is given in Table IV.

The EVPI and ECIU are given in % of the total cost of DO-
DA with perfect forecast and have been calculated for all ML
models assuming that the base scenario was realized for the
calculation of ECIU. The almost similar costs of SO and DO
in DA or RH solution approaches (see Table III) indicated that
there was very little cost of ignoring uncertainty i.e., the value
of SO was trivial. This was validated, as ECIU in Table IV was
less than 1%. Although all ML models had a similar ECIU,
LSTM had a higher EVPI, which implies that it could not
handle uncertainties as well as the LR and the ANN models.

Regardless of the low ECIU, SO was favored for the
15-minute energy dispatch of this study thanks to the fast
execution time of the scenario generation and solution of the
SO problem. This time was approximately 15 sec in total
for simulations performed on a PC with 4.2 GHz Intel(R)
Core(TM) i7-7700K CPU and 64 GB of RAM. However, it
should be noted that the SO problem could become compu-
tationally heavy if a higher number of scenarios, a higher
resolution, or a more complex optimization model (e.g., due
to more MG resources) are considered.

V. CONCLUSIONS

This paper presents an optimization model to solve the
energy dispatch problem of a building MG using short-term
and high-resolution load forecast based on three ML models:
LR, ANN, and LSTM. The main conclusion that can be drawn
from the simulation studies, which compared DO and scenario-
based SO problem formulations solved in RH or DA, is
that, even without high computational requirements or extreme
forecasting precision, a near-optimal dispatch can be achieved
with an MG total cost no higher than 1% of the optimal cost
i.e., if the up to 12% daily MAPE of the forecasts could be
eliminated. It was also shown that more accurate forecasts
could mostly contribute to reducing the peak power cost,
which was 20.2% higher than the optimal. All ML models
resulted in almost equal MG operation costs, however, a higher
EVPI was calculated for LSTM showing that this model was
less effective in handling uncertainties. Using simpler forecast
models such as LR and simplifying approaches such as DO or
DA dispatch did not increase the associated costs, which was
a promising result, as these simplifications could be used in

joint operation and planning studies to simultaneously enable
faster and sufficiently accurate solutions.
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