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Abstract

Data subsampling has become widely recognized as a tool to overcome compu-
tational and economic bottlenecks in analyzing massive datasets and measurement-
constrained experiments. However, traditional subsampling methods often suffer from
the lack of information available at the design stage. We propose an active sampling
strategy that iterates between estimation and data collection with optimal subsamples,
guided by machine learning predictions on yet unseen data. The method is illustrated
on virtual simulation-based safety assessment of advanced driver assistance systems.
Substantial performance improvements were observed compared to traditional sampling
methods.

Keywords: active learning, adaptive importance sampling, inverse probability weighting,
survey sampling, optimal design

1 Introduction

Enabled by advances of modern technology, data are currently being generated at greater
volumes than ever before. This poses major challenges for statistical methods and data
analysis procedures. Sometimes the sheer amount of data is too large to be stored, processed
and analyzed in reasonable time with available resources (Ma and Sun, 2015). In other
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cases, observing complete data may be expensive and hence affordable only for a subset of
a large initial dataset, a situation known as a measurement-constrained experiment (Wang
et al., 2017; Meng et al., 2021). In either case, analysis of complete data is prohibited by
computational, practical, economic or even ethical cost constraints. In such circumstances,
researchers often resort to subsampling.

The origin of modern data subsampling methods dates back to the early 1900’s, where
probability sampling and estimation through inverse probability weighting were introduced
as tools for inference about finite population characteristics. Pioneered by work of Neyman
(1938), Hansen and Hurwitz (1943), Horvitz and Thompson (1952) and others, this evolved
to the subfield of statistics today known as survey sampling (Tille, 2020). With the
advancement of big data, sampling methods have gained renewed attention beyond the
classical problems in finite population inference. Recent developments include regression
modeling with massive datasets (Ma et al., 2015; Wang et al., 2018; Dai et al., 2022), large
scale Bayesian inference and Markov Chain Monte Carlo methods (Magnusson et al., 2019;
Quiroz et al., 2021), and active learning (Bach, 2007; Beygelzimer et al., 2009; Ganti and
Gray, 2012; Imberg et al., 2020). Areas of application include pattern recognition and
image classification (Kossen et al., 2021; Farquhar et al., 2021), analysis of naturalistic
driving studies (Mousa et al., 2019; Imberg et al., 2022), and scenario generation for virtual
safety assessment of advanced driver assistance systems and autonomous driving systems
(de Gelder and Paardekooper, 2017; Akagi et al., 2019; Wang et al., 2021; Zhang et al.,
2021), to mention a few.

The crucial question for any subsampling method is how subsamples should be selected
for optimal performance. The dilemma of optimal design is that actual optimal design
requires prior knowledge of the phenomenon which the experiment is intended to study.
However, if such information were available, the experiment would not need to be run.
Consequently, the “optimal design” inevitably depends on assumptions that only can be
tested after data has been collected. Active learning offers a promising solution to this
problem. An active learner is a machine learning algorithm that itself chooses the data
from which it learns, typically from a large set of potential training examples. This is done
in an iterative manner by selecting a small batch of new training examples, retrieving the
corresponding data, and updating the predictions of outcomes on yet unseen data. Guided
by these predictions, new instances can be selected in an optimal manner and the process
repeated until a sufficient amount of data has been collected (Settles, 2012). Although
initially developed for prediction research, active learning procedures may be utilized to
derive machine-learning-assisted optimal sampling schemes in general subsampling problems.
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We consider the problem of estimating a simple finite population characteristic, such as
a total, mean, or ratio. This classical problem has received much attention in the survey
sampling literature (cf. Neyman, 1938; Hansen and Hurwitz, 1943; Horvitz and Thompson,
1952; Tille, 2020). However, the possibilities offered by machine learning in this context
have not been fully explored. Traditional subsampling methods often suffer from the lack of
information available at the design stage, rendering optimal sampling practically unfeasible.
To address this issue, we propose an active sampling strategy where such information is
acquired gradually during the data collection process, with optimal subsamples guided by
machine learning predictions on yet unseen data.

Outline The structure of this paper is as follows: We start by presenting a motivating
example in crash-causation-based scenario generation for virtual vehicle safety assessment
in Section 2. The mathematical framework is introduced in Section 3, where we also review
traditional methods for finite population inference through unequal probability sampling
and inverse probability weighting. The main contribution of this work is presented in
Section 4, where we introduce active sampling to increase the efficiency in estimating a finite
population characteristic, such as a total, mean, or ratio. Additional theoretical results
and proofs are provided in Appendix A. Empirical results in crash-causation-based scenario
generation for virtual vehicle safety assessment is presented in Section 5.

2 Motivating example

Traffic safety is a substantial problem worldwide (World Health Organization, 2018). Safety
systems have been developed to improve traffic safety and have shown the potential to avoid
or mitigate crashes. However, when developing both advanced driver assistance systems
(ADAS) and autonomous driving systems (ADS), there is a need to assess the impact on
safety of the systems before they are on the market. One way to do that is by running
virtual simulations comparing the outcome of simulations both with and without a specific
system (Anderson et al., 2013; Sander, 2018; Seyedi et al., 2021). Such simulations are often
called counterfactual simulations, as they assess what could have happened if the system
were on the road.

A prerequisite of such simulations is to have baseline crashes — a set of pre-crash
kinematics of crashes, describing how the involved road users move prior to the crash, onto
which the system can be (virtually) applied. One source of baseline pre-crash kinematics is
the generation of crashes by applying crash-causation models on the pre-crash kinematics
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from reconstructed real-world crashes. For example, Bärgman et al. (2022) validated such a
crash-causation model for the generation of rear-end crashes.

We consider scenario generation based on a glance-and-deceleration crash-causation
model where a driver’s off-road glance behavior and braking profile are represented by discrete
(empirical) probability distributions. The outcome of the simulations is a distribution of
impact speeds of all the crashes generated by all combinations of the eyes-off-road glace
duration and the maximum deceleration during braking. Here “all combinations” is the
problem. Complete enumeration becomes practically unfeasible in high-dimensional (many
parameters varied) or high-resolution (many levels per parameter) settings, and subsampling
inevitable. There is in scenario generation a need for efficient, flexible and data-driven
methods for sample selection.

3 Finite population sampling

We first introduce the mathematical framework and notation in Section 3.1, presented
in the context of the crash-causation-based scenario generation application outlined in
Section 2. Next, some basics of unequal probability sampling and estimation through inverse
probability weighting are reviewed in Section 3.2.

3.1 Mathematical framework and setup

Assume we are given a finite population or dataset D with N instances or elements
i = 1, . . . , N . Associated with each element i in D is a collection of variables (pi, ri,y

T
i , z

T
i ),

where pi is a prior weight or observation weight associated with element i; ri a binary
inclusion/exclusion indicator variable, taking the value 1 if element i is relevant for the
scientific question of interest and should be included in the analyses, and 0 otherwise; yi a
vector of outcomes or response variables, and zi a vector of design variables and auxiliary
variables. We use scalar notation yi to denote a single element of the response vector yi.
Vectors are assumed to be column vectors unless otherwise stated.

In the context of crash-causation-based scenario generation, the dataset D represents a
collection of N potential simulation scenarios of interest. The observation weights pi are
included to account for the probabilities of the different scenarios occurring in real life.
The response variables yi are outcomes of the simulation, including, e.g., whether a crash
occurred or not, impact speed if there was a crash, and impact speed reduction with an
advanced driver assistance system (ADAS) compared to some baseline driving scenario.
The auxiliary variables zi contain scenario information, such as simulation settings and
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parameters that are under the control of the investigator, and any additional information
that is available without running the actual simulation. Since the aim in the current
application is to evaluate the safety benefit of an ADAS, and it is assumed that the number
of crashes created by the ADAS itself is zero or very small, we are only interested in
simulations that produce a crash under some baseline driving scenarios. This is captured
by the binary relevance indicator variable ri, taking the value 1 if there is a crash in the
baseline scenario, and 0 otherwise. Inference will be restricted to the subset of simulation
scenarios for which ri = 1. The variables pi and zi are available a priori for all members
i ∈ D, while the variables ri and yi only can be observed by running the corresponding
virtual simulation.

The scope of inference in this paper is on classical survey sampling tasks, e.g., estimating
a total or functions of totals. Specifically, we will consider following characteristics of the
dataset D:

i) a total ty =
∑

i∈D piriyi,

ii) the mean among relevant instances, given by the ratio ty/tr, tr =
∑

i∈D piri,

iii) and, more generally, a population characteristic θ given by θ = h(ty) for some
differentiable function h : Rd → R and d-dimensional vector of totals ty =

∑
i∈D piriyi.

We note that the observation weights pi and relevance indicators ri may not be present or
needed in all applications. In such case, they can simply be ignored or set equal to one in
the formulas above and presentation that follows. We consider the total ty and mean ty/tr
as estimation of means and totals are standard tasks in the survey sampling and Monte
Carlo literature (Fishman, 1996; Tille, 2020), and also often encountered in the scenario
generation context (Wang et al., 2021). The main interest in our application lies in the
mean ty/tr, as this is what we use to calculate, e.g., mean impact speed reduction and crash
avoidance rate with an advanced driver assistance system compared to some baseline driving
scenario, when restricted to the relevant set of crashes. We also consider smooth functions
of totals to provide some general results. Note that i) and ii) are included in the third class
of statistics. To see this, take yi = yi and h(u) = u to obtain i), and yi = (yi, 1)T and
h(u1, u2) = u1/u2 to obtain ii). This class of statistics also includes, e.g., ratios, correlation
coefficients, and population variances.
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3.2 Unequal probability sampling and estimation

In our crash-causation based scenario generation application, running all N simulations of
interest to observe complete data (pi, ri,y

T
i , z

T
i ) for all members i ∈ D is too high dimensional

(many simulation parameters varied) or high-resolution (many levels per parameter) to
be feasible in practice. Also, even if complete enumeration were feasible, it may not be
efficient. It is not implausible to assume a good estimate can be obtained with much lower
computational demand. In other applications, observing complete data may be hampered
due to other costs, including, e.g., monetary, computational, or ethical costs. Thus, we
assume that observing complete data is costly and only affordable for a subset S ⊂ D of
size n.

We consider the case where the subset S for which complete data will be observed is
selected using unequal probability sampling. To allow for sampling with replacement, we let
Si be the random variable representing the number of times an element i ∈ D is selected by
the sampling mechanism, and denote by µi := E[Si] the corresponding mean. Hence, S is
the random set given by S = {i ∈ D : Si > 0}. Some common unequal probability sampling
designs include multinomial sampling, Poisson sampling (with or without replacement), and
adjusted Poisson sampling (Tillé, 2006).

To account for unequal probabilities of selection, estimation may be performed by sample
weighting techniques using, e.g., the Hansen-Hurwitz estimator (Hansen and Hurwitz, 1943)

t̂y =
∑
i∈S

Siwipiriyi, wi = 1/µi (1)

This is an unbiased estimator of the total ty, provided that µi > 0 for all i ∈ D. To see this,
simply note that t̂y =

∑
i∈S Siwipiriyi =

∑
i∈D Siwipiriyi, and E[Si] = µi = w−1i . Similarly,

an estimator for the mean among relevant instances is given by t̂y/t̂r with t̂r =
∑

i∈S Siwipiri,
and estimator for a characteristic θ := h(ty) by θ̂ = h(t̂y), with t̂y =

∑
i∈S Siwipiriyi. Note

that t̂y and t̂y/t̂r are special cases of the latter more general class of estimators. To see this,
take yi = yi and h(u) = u to obtain θ̂ = h(t̂y) = t̂y, and yi = (yi, 1)T and h(u1, u2) = u1/u2

to obtain θ̂ = h(t̂y) = t̂y/t̂r. When pi = ri = 1 for all i, the ratio t̂y/t̂r is coincides with the
Hájek estimator

(∑
i∈S Siwi

)−1∑
i∈S Siwiyi of the mean ty/N . In this case, the alternative

estimator t̂y/N may also be used.

4 Active sampling

Consider for the moment estimation of a total ty, and assume that ri = pi = 1 and yi > 0

for all elements i ∈ D. It then is a widely known fact that the optimal sampling scheme
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for the estimator (1) is to sample with probability proportional to yi (cf. Tillé, 2006).
In practice, however, yi are inaccessible at the design stage and the optimal sampling
scheme is therefore unknown. Inspired by active learning (Settles, 2012), we propose in
Section 4.1 an active sampling strategy that addresses this issue by iterating between
parameter estimation and data collection with optimal subsamples guided by machine
learning predictions on yet unseen data. Optimal sampling schemes for estimating simple
finite population characteristics, such as totals and functions of totals, are presented in
Section 4.2. To simplify the presentation we will restrict ourselves to multinomial sampling
designs, but note that the procedure may be easily adapted to other unequal probability
sampling designs.

4.1 Active sampling algorithm, estimation, and inference

The active sampling method is summarized in Algorithm 1. The algorithm proceeds in
K iterations k = 1, . . . , K and chooses, in each iteration, nk new instances at random
(possibly with replacement) from D. Once a new batch of instances has been selected we
observe the corresponding data (ri,y

T
i ) and update our estimates of the characteristics of

interest. The process continues until a pre-specified maximal number of iterations K is
reached, or the target characteristic is estimated with sufficient precision. Following the
notation in the previous section, we let Ski be the random variable representing the number
of times an element i ∈ D is selected in iteration k. We let Sk = (Sk1, . . . , SkN ), and denote
by µk = (µk1, . . . , µkN) = E[Sk|S1, . . . ,Sk−1] the conditional expectation of Sk given the
previous selections S1, . . . ,Sk−1. We assume that Sk|S1, . . .Sk−1 ∼ Multinomial(nk,πk),
so that µk = nkπk. We will refer to the probability vector πk = (πk1, . . . , πkN) as the
sampling scheme in iteration k. As usual, we require that πki > 0 for all k and all i ∈ D,
although technically one could allow for πki = 0 whenever ri is known to be zero.

A key component of the active sampling algorithm is the inclusion of an auxiliary
model f(ri,y

T
i |zTi ) for the joint distribution of the unobserved data (ri,y

T
i ) given auxiliary

variables zi. At this stage, any prediction model or machine learning algorithm can be used.
By gathering data in a sequential manner, we may iteratively update our predictions on
yet unseen data. Doing so, we are able to learn from past observations how to sample in
an optimal way in future iterations (Subroutine 1). Further details on optimal sampling
schemes for estimating a total or function of totals are provided in Section 4.2. We next
describe the process for inference in active sampling and the asymptotic properties of active
sampling estimators in Sections 4.1.1–4.1.3 below.
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Algorithm 1 Active sampling

Input: Sampling frame D, target characteristic θ = h(ty) (to be estimated), precision
target δ, maximal number of iterations K, batch sizes {nk}Kk=1.
Initialization: Let m0 = 0, t̂

(0)

y = 0, L0 = ∅.

1: for k = 1, 2, . . . , K do
2: Learning (if k > 1): Train prediction model f(ri,y

T
i |zTi ) on the labeled dataset

{(sji, µji, pi, ri,yTi , zTi )}i∈Lj ,j=1,...,k−1.
3: if k > 1 and Learning step was successful† then
4: Optimization: Calculate sampling scheme πk according to Subroutine 1.
5: else
6: Fallback: Set πki = pi∑

j∈D pj
for all i ∈ D.

7: end if
8: Sampling: Draw vector sk = (sk1, . . . , skN) ∼ Multinomial(nk,πk).
9: Labeling: Retrieve data (ri,y

T
i ) for selected instance(s) i ∈ Lk := {i ∈ D : ski > 0}.

10: Estimation: Let

t̂y,k =
∑
i∈Lk

skiwkipiriyi, wki = 1/µki,

mk = mk−1 + nk, t̂
(k)

y =
1

mk

(
mk−1t̂

(k−1)
y + nkt̂y,k

)
, θ̂(k) = h(t̂

(k)

y ).

11: Estimate the variance of θ̂(k) according to (3).
12: if V̂ar(θ̂(k)) < δ then
13: Termination: Stop algorithm. Continue to 16.

14: end if
15: end for
16: Output: Estimate θ̂(k) and labeled dataset {(sji, µji, pi, ri,yTi , zTi )}i∈Lj ,j=1,...,k of records

with complete data (pi, ri,y
T
i , z

T
i ).

†By a successful learning step we mean that the prediction model could be fitted and reliable predictions
obtained, as assessed by some measure of generalization error (e.g., accuracy or coefficient of determination
on hold-out data).

4.1.1 Estimating a finite population characteristic

As more data becomes available, we iteratively update our estimates of the population
characteristics of interest by similar means as in (1). Specifically, we first construct an
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Subroutine 1 Optimal sampling schemes

Input: Sampling frame D, target characteristic θ := h(ty) (to be estimated), estimate t̂
(k−1)
y

of ty, predictions r̂i, ŷi of ri and yi|ri = 1 derived from the prediction model f(ri,y
T
i |zTi ),

and estimates Σ̂i of the residual covariance matrices Σi := Cov(Y i − ŷi|ri = 1), with the
unknown values of (ri,y

T
i ) treated as random variables (Ri,Y

T
i ) distributed according to

f(ri,y
T
i |zTi ).

if ∇h(u)
∣∣
u=t̂

(k−1)
y

= 0 or undefined then
Set

πki =
pi∑
j∈D pj

for all i ∈ D.

else
Calculate sampling probabilities according to:

πki =
pi
√
vi∑

j∈D pj
√
vj

for all i ∈ D.

with vi given as in Method 1 or 2 below.†

Method 1 (Naive):

vi = r̂2i
∣∣∇h(u)T ŷi

∣∣2
u=t̂

(k−1)
y

.

Method 2 (Minimize anticipated variance):

vi = r̂i[(∇h(u)T ŷi)
2 +∇h(u)T Σ̂i∇h(u)]

∣∣
u=t̂

(k−1)
y

.

end if

Output: Sampling scheme πk = (πk1, . . . , πkN).
†See Section 4.2 for further details. Simplified formulas of sampling schemes for estimating a total ty or
mean ty/tr are presented in Corollary 1 and 2.

unbiased estimator t̂y,k of a vector of totals ty according to

t̂y,k =
∑
i∈D

Skiwkipiriyi, wki = 1/µki.

Given one such estimator from each of the preceding iterations, we construct a pooled
estimator t̂

(k)

y as

t̂
(k)

y =
1

mk

k∑
j=1

nj t̂y,j, (2)
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where mk = n1 + . . .+ nk is the total sample size after k iterations of the active sampling
algorithm. An alternative recursive formulation is provided in Algorithm 1. An estimator
of a characteristic θ defined by θ = h(t

(k)
y ) for some function h : Rd → R is then obtained

by θ̂(k) = h(t̂
(k)

y ).

4.1.2 Variance estimation

To estimate the variance of our estimator θ̂(k), we first need an estimator of the covariance
matrix Ψ(k) = Cov(t̂

(k)

y ) of t̂
(k)

y . Three such estimators are presented below. A theoretical
justification is provided by Proposition S1 and Corollary S1 in Appendix A.1.

Method 1 (Classical method): First, we may proceed in analogy to (2) and use the
pooled estimator

Ψ̂
(k)

1 = m−2k

k∑
j=1

n2
jΦ̂j,

where Φ̂j are (any) unbiased estimators of the conditional covariance matrices Φj =

Cov(t̂y,j|S1, . . . ,Sj−1). Each of the covariance matrices Φj may be estimated using standard
survey sampling techniques. For instance, under the multinomial design we may use Sen-
Yates-Grundy estimator (Sen, 1953; Yates and Grundy, 1953) for Φj, i.e.,

Φ̂j =
nj

nj − 1

∑
i∈D

Sji

(
piriyi
µji

− t̂y,j
nj

)(
piriyi
µji

− t̂y,j
nj

)T
, µji = njπji,

provided that nj ≥ 2. See, e.g., Tillé (2006, Chapter 5) for variance estimators under other
unequal probability sampling designs.

Method 2 (Martingale method): Alternatively, we may use the squared variation of
the estimates t̂y,j to estimate Ψ(k) by

Ψ̂
(k)

2 = m−2k

k∑
j=1

n2
j

(
t̂y,j − t̂

(k)

y

)(
t̂y,j − t̂

(k)

y

)T
.

This method works also when nj = 1, but generally requires the number of iterations k to
be large.
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Method 3 (Bootstrap method): Finally, variance estimation may be conducted by
non-parametric bootstrap (Efron, 1979; Davison and Hinkley, 1997). If subsampling is done
with replacement, importance weighted bootstrap should be used to account for possible
differences in the number of selections per observation. Specifically, the bootstrap sample
size should be equal to the total sample size

∑k
j=1

∑
i∈D sji, and selection probabilities

proportional to the number of selections sji. One way to achieve this with ordinary bootstrap
software is to create an extended dataset with on record for each of the sji selections, and
perform ordinary non-parametric bootstrap on the extended dataset. An estimate of the
covariance matrix of t̂

(k)

y is then obtained by

Ψ̂
(k)

3 =
1

B − 1

B∑
b=1

(
t̃
(k)

y,b − t̄
(k)
y

)(
t̂
(k)

y,b − t̄
(k)
y

)T
,

where t̄(k)y = 1
B

∑B
b=1 t̃

(k)

y,b is the mean of B bootstrap estimates t̃(k)y,b of ty.

Given an estimate Ψ̂
(k)

of the covariance matrix of t̂
(k)

y , the variance of θ̂(k) = h(t̂
(k)

y )

may be estimated using the Delta method as

V̂ar(θ̂(k)) = ∇h(u)T Ψ̂
(k)
∇h(u)

∣∣
u=t̂

(k)
y
, (3)

provided that ∇h(u)
∣∣
u=t̂

(k)
y
6= 0 (cf. Sen and Singer, 1993).

4.1.3 Interval estimation and asymptotic properties

Confidence intervals can be calculated using the classical large sample formula

θ̂(k) ± zα/2 × SEθ̂(k) (4)

where θ̂(k) is the estimate of the characteristic θ, SEθ̂(k) =

√
V̂ar(θ̂(k)) the corresponding

standard error, and zα/2 the α/2-quantile of a standard normal distribution. Under the
assumptions of Proposition S1 and Corollary S1 in Appendix A.1, such a confidence interval
has approximately 100× (1− α)% coverage of the true population characteristic θ, under
repeated subsampling from D, in large enough samples.

Using the martingale central limit theorem of Brown (1971), we show that under general
regularity conditions our active sampling estimators are consistent and asymptotically
normally distributed, for fixed N and bounded batch sizes nk < N , as the number of
iterations k tends to infinity (Proposition S1 and Corollary S1 in Appendix A.1). Our
assumptions include:
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i) standard moment conditions on the sample selection variables and selection proba-
bilities, which essentially requires the sampling probabilities to be properly bounded
away from zero,

ii) standard conditions on the total variance Var
(∑k

j=1 nj t̂y,j

)
, which is assumed to

tend to infinity, and

iii) that the sum of conditional variances
∑k

j=1 Var
(
nj t̂y,j|S1, . . . ,Sj−1

)
behaves asymp-

totically like the total variance Var
(∑k

j=1 nj t̂y,j

)
, i.e., the dependencies between the

iterations of the active sampling algorithm should be asymptotically negligible. This
ensures that the statistical properties of an active sampling estimator can be deduced
from a single execution of the algorithm.

Empirical justification for these assumptions is provided in Section 5.

4.2 Optimal sampling schemes

We now turn to the question of sample selection and optimal choice of sampling scheme.
These are crucial components in any subsampling method to obtain accurate estimates
and reduce sample size requirements or, as in our application, computational complexity.
Theoretically optimal sampling schemes for estimating functions of totals are presented in
Section 4.2.1. However, these require knowledge about the full data {(ri,yTi )}i∈D to be
evaluated, and hence are of limited practical use. In Section 4.2.2 we present practically
useful sampling schemes to minimize the expected variance of an estimator under an assisting
auxiliary model for the unknowns. For proofs we refer to Appendix A.2.

4.2.1 Theoretical optimality

To derive an optimal sampling scheme, we need to define an objective function to be
minimized. Since we consider estimation of a scalar characteristic ty, ty/tr or θ = h(ty), we
aim to minimize the variance of the corresponding active sampling estimator as a function
of the sampling schemes πk. This is, however, complicated by two facts:

i) explicit finite-sample variance formulas are generally not available for characteristics
defined by non-linear functions of totals, and

ii) active sampling introduces complex dependencies between the different iterations of
the algorithm.
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Hence, finding a globally optimal sampling strategy for a finite number of iterations may
not be feasible. We therefore resort to asymptotic arguments. First, to address i) we
consider the approximate variance AV(θ̂(k)) of our estimator θ̂(k) = h(t̂

(k)

y ), which by the
Delta method is given by

AV(θ̂(k)) = ∇h(u)TΨ(k)∇h(u)
∣∣
u=ty

,

provided that h(u)
∣∣
u=ty

6= 0, where Ψ(k) = Cov(t̂
(k)

y ) (cf. Sen and Singer, 1993). If Ψ(k)

can be expressed as a simple function of the sampling schemes πk, then so can AV(θ̂(k)). To
address ii), we note that the total covariance matrix Ψ(k) is tightly connected to the sum of
the conditional covariances Φj := Cov(t̂y,j|S1, . . . ,Sj−1), j ≤ k. Indeed, if we replace Ψ(k)

by the weighted sum m−2k
∑k

j=1 n
2
jΦj, we obtain under the assumptions of Corollary S1 in

Appendix A.1 another asymptotically valid expression for the variance of θ̂(k):

ÃV(θ̂(k)) = m−2k

k∑
j=1

n2
j∇h(u)TΦj∇h(u)

∣∣
u=ty

,

where mk = n1 + . . .+ nk is the total sample size after k iterations of the active sampling
algorithm. That is, it holds under the assumptions of Corollary S1 that the limit of
mkÃV(θ̂(k)) is equal to the asymptotic variance of

√
mk(θ̂

(k) − θ̂) with probability 1, as the
number of iterations k tends to infinity. Hence, to minimize the variance of θ̂(k) we should
minimize the approximate conditional variance ∇h(u)TΦj∇h(u)

∣∣
u=ty

of the estimator

θ̂j := h(t̂y,j) in each iteration of the active sampling algorithm. We now show how this
theoretically could be achieved under the multinomial sampling design. A general result is
provided in Proposition 1. Corresponding optimal designs for estimating a total ty or mean
ty/tr are presented in Corollary 1.

Proposition 1 Let Sj = (Sj1, . . . , SjN), j ≤ k, Sk|S1, . . . ,Sk−1 ∼ Multinomial(nk,πk)

and wki := E[Ski|S1, . . . ,Sk−1]
−1 = (nkπki)

−1. Consider a characteristic θ := h(ty) for
some function h : Rd → R and d-dimensional vector of totals ty, and assume that the
function h is differentiable in a neighborhood of ty with ∇h(u)

∣∣
u=ty

6= 0. Let

t̂y,k =
N∑
i=1

Skiwkipiriyi, and Φk = Cov(t̂y,k|S1, . . . ,Sk−1).

As a function of the sampling scheme πk = (πk1, . . . , πkN), the approximate variance
AV(θ̂k) := ∇h(u)TΦk∇h(u)

∣∣
u=ty

of the estimator θ̂k := h(t̂y,k) is minimized by

π∗k = (π∗k1, . . . , π
∗
kN), π∗ki =

pirivi∑N
j=1 pjrjvj

, (5)
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with vi =
∣∣∇h(u)Tyi

∣∣
u=ty

.

Corollary 1 Let Sk = (Sk1, . . . , SkN) and wki be defined according to Proposition 1. Let

t̂y,k =
N∑
i=1

Skiwkipiriyi, and t̂r,k =
N∑
i=1

Skiwkipiri.

Then, as a function of the sampling scheme πk = (πk1, . . . , πkN):

a) The variance of t̂y,k is minimized by (5) with vi = |yi|.

b) The approximate variance of t̂y,k/t̂r,k is minimized by (5) with vi = |yi−ty/tr|, provided
that tr > 0.

Corollary 1 a) is a standard result: for linear statistics, instances should be sampled
with probabilities proportional to ’size’, in this case piri|yi|. Generally, we conclude that
instances should be assigned probabilities proportional to ’influence’, as given by the gradient
piri
∣∣∇h(u)Tyi

∣∣
u=ty

. To see this, note that
∣∣∇h(u)Tyi

∣∣
u=ty

is large when yi is large (in
Euclidean norm), and aligned with the gradient ∇h(u) (i.e., the direction of steepest change)
at the true population parameter ty. Such instances will have a large influence on estimation,
and should according to Proposition 1 be oversampled for optimal performance.

4.2.2 Optimal auxiliary-information-assisted sampling schemes

Unfortunately, the results of Proposition 1 and Corollary 1 are not of immediate practical
use, since evaluating the theoretically optimal sampling schemes requires knowledge about
the yet unobserved variables ri and yi. Hence, we treat the unknown values of the relevance
indicator variables ri and outcomes yi as random variables (Ri,Y

T
i ), and include in our

active sampling algorithm an auxiliary model f(ri,y
T
i |zTi ) for the joint distribution of

(Ri,Y
T
i ) given auxiliary variables zi. This model is intended to capture our predictions and

uncertainties in yet unseen data. In the spirit of traditional importance sampling methods
and probability-proportional-to-size sampling, a first naive attempt towards an optimal
active sampling method would be to plug in the current estimate t̂

(k−1)
y and predictions

(r̂i, ŷ
T
i ) of (ri,y

T
i ) into the formulas of Proposition 1/Corollary 1 to calculate the sampling

scheme for the next iteration of the algorithm (Subroutine 1, Method 1). However, this treats
the predictions as the true values and ignores the uncertainty of the predictions. Indeed,
there are generally many different values of (ri,y

T
i ) compatible with existing auxiliary

information zi. To derive sampling schemes with good performance, we need to account for
this uncertainty.
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Following Isaki and Fuller (1982), we define the anticipated variance of a statistic θ̂ as

ER,Y [Var(θ̂|R = r̃,Y = ỹ)],

where the inner term denotes the (approximate) variance of θ̂ with respect to the sampling
mechanism given data {(r̃i, ỹTi )}i∈D generated according to f(ri,y

T
i |zTi ), and the outer term

denotes expectation with respect to the random variables {(Ri,Y
T
i )}i∈D. We may think of

this as the expected variance due to subsampling from a dataset D̃, averaged over all possible
datasets D̃ compatible with the auxiliary information {zi}i∈D under the model f(ri,y

T
i |zTi ).

In other words, the anticipated variance is our prediction of the actual (unknown) variance
of the statistic θ̂. We derive sampling schemes with improved performance by minimizing
the anticipated variance of our estimator under an assisting auxiliary model f(ri,y

T
i |zTi ).

A general result is provided in Proposition 2. Corresponding optimal designs for estimating
a total ty or mean ty/tr are presented in Corollary 2.

Proposition 2 Let Sk, t̂y,k, Φk, and function h : Rd → R be defined according to Propo-
sition 1. Assume that {Ri}Ni=1 is a collection of independent Bernoulli(r̂i) random vari-
ables, and {Y }Ni=1 a collection of independent random vectors with E[Y i|Ri = 1] = ŷi

and Cov(Y i|Ri = 1) = Σi. Let R = (R1, . . . , RN)T , Y = (Y 1, . . . ,Y N)T . As a func-
tion of the sampling scheme πk = (πk1, . . . , πkN), the anticipated approximate variance
E(R,Y )[∇h(u)TΦk∇h(u)

∣∣
u=ty

of the estimator θ̂k := h(t̂y,k) is minimized by

π∗k = (π∗k1, . . . , π
∗
kN), π∗ki =

pi
√
vi∑N

j=1 pj
√
vj
, (6)

with
vi = r̂i

[
(∇h(u)T ŷi)

2 +∇h(u)TΣi∇h(u)
]∣∣
u=ty

.

Corollary 2 Let Sk, t̂y,k, and t̂r,k be defined according to Corollary 1. Assume that {Ri}Ni=1

is a collection of independent Bernoulli(r̂i) random variables, and {Yi}Ni=1 a collection of
independent random variables with E(Yi|Ri = 1) = ŷi and Var(Yi|Ri = 1) = σ2

i . Then, as a
function of the sampling scheme πk = (πk1, . . . , πkN):

a) The anticipated variance of t̂y,k is minimized by (6) with vi = r̂i(ŷ
2
i + σ2

i ).

b) The anticipated approximate variance of t̂y/t̂r is minimized by (6) with
vi = r̂i [(ŷi − ty/tr)2 + σ2

i ], provided that tr > 0.

We note that the optimal sampling schemes of Proposition 2 and Corollary 2 only depend
on the first two moments of the unknowns Y i. Hence, our results are immediately applicable
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to any type of random variables, including binary and discrete as well as continuous variables.
We also note that the result of Proposition 2/Corollary 2 coincides with that of Proposition
1/Corollary 1 when (ri,y

T
i ) are predictable without error, i.e., when all r̂i = ri and σi = 0.

Compared to the naive approach of plugging in predictions to the sampling schemes of
Proposition 1/Corollary 1, the sampling schemes in Proposition 2/Corollary 2 explicitly
account for prediction uncertainty through the inclusion of residual variances σ2

i . In the
homoscedastic case, i.e., when all σi are equal, this results in a regularization of the sampling
scheme of the plug-in approach towards a density sampling scheme with probabilities
proportional to the prior observation weights pi, or towards simple random sampling if all
prior weights pi are equal. Moreover, the amount of regularization is determined by the
prediction uncertainty and hence is completely data-driven.

When implementing the sampling schemes of Proposition 2/Corollary 2 in the active
sampling algorithm, we replace the population quantities, predictions and model param-
eters by their corresponding estimates and predictions based on currently available data
(Subroutine 1, Method 2). As functions of random variables, the sampling schemes are also
subject to random variation. This may cause unstable performance due to incidentally large
sampling weights, particularly in early iterations and small samples. Care should therefore
be taken to avoid overfitting in the learning step preceding the optimization of the sampling
scheme in the active sampling algorithm. It is also important that an unbiased estimate
of the residual variance is used. Such an estimate may be obtained by evaluation of the
predictions on hold-out data, using, e.g., cross-validation. Underestimation of the residual
variance and overoptimism in the predictions may result in sampling probabilities too close
to zero, with highly variable sampling weights and sub-optimal performance as a result.

5 Application and empirical evaluation

We evaluated the empirical performance of the active sampling method on the crash-
causation-based scenario generation problem introduced in Section 2. The empirical evalua-
tion was conducted by repeated subsampling from a large dataset, denoted as the ground
truth dataset, pretending that only small subset of the instances in this dataset could be
fully observed. Section 5.1 introduces the data, model and simulation setup, together with
methods for performance evaluation. Empirical results are presented in Section 5.2.
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5.1 Data and Methods

Scenario generation framework. The data model is based on the generation of crash
scenarios through virtual simulations of a set of reconstructed rear-end crashes, to which a
crash-causation model and a driver response model is applied. The crash-causation model
consists of two components: one based on drivers not keeping their eyes on the forward
roadway, and the other based on the fact that drivers do not brake at the maximum level
(i.e., the performance limit of the vehicle and roadway) even if they are about to crash.
The simulations for this work were run with the kinematics of the lead vehicle of each
original (real) rear-end crash and using crash-causation and response models to replace the
evasive maneuver of the following vehicle. This was done by simulating the (counterfactual)
outcome if the glances off road and deceleration of the following vehicle had been different
from each original crash. Crashes occur in the simulations under certain combinations of
off-road glances and driver maximum deceleration. The longer the off-road glance duration
and the lower the deceleration, the higher the probability of a crash and the higher the
impact speed if there is a crash.

Ground truth dataset. The data used for scenario generation in this study were recon-
structed pre-crash kinematics of 44 rear-end crashes from a crash database provided by
Volvo Car Corporation. This database contains information about crashes that occurred
with Volvo vehicles in Sweden (Coelingh et al., 2007). We constructed a ground truth
dataset by running virtual simulations for all 1005 combinations of glance duration (67 levels,
0.0–6.6s) and deceleration (15 levels, 3.3–10.3 m/s2) for all 44 crashes. The simulations
were run under both manual driving (baseline scenario) and automated emergency braking
(AEB) system conditions, producing a dataset of 44220 pairs of observations.

The outputs of the simulations were the impact speed under both scenarios (baseline
and AEB). We also calculated the impact speed reduction (continuous) and crash avoidance
(binary) of the AEB system compared to the baseline scenario. The aim in our experiments
was to estimate the benefit of the AEB system, as measured by mean impact speed reduction
and crash avoidance rate compared to manual baseline driving, given that there was a crash
in the baseline scenario.

Performance evaluation. We evaluated the properties and performance of the active
sampling method by repeated subsampling from the ground truth dataset. The following
properties, performance measures and comparisons were considered:

i) Asymptotic normality and confidence interval coverage: We evaluated the
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coverage rates of large-sample normal confidence intervals (4) with the three different
methods for variance estimation described in Section 4.1: the classical method (Sen-
Yates-Grundy estimator), martingale method, and the bootstrap method. This was
done for batch sizes of 10, up to a total sample size of 300 observations.

ii) Comparison of active sampling methods: We evaluated the performance of
active sampling with the two different implementations of active sampling schemes
described in Subroutine 1: the naive approach (Method 1) where predictions are
inserted immediately into the theoretically optimal designs of Corollary 1 b), and the
anticipated-variance-minimizing scheme (Method 2) which additionally accounts for
prediction uncertainty according to Corollary 2 b).

iii) Active sampling compared to traditional methods: We evaluated the perfor-
mance of active sampling optimized for estimating the mean impact speed reduction or
crash avoidance rate of an AEB system compared to baseline driving (without AEB),
vs. simple random sampling and importance sampling. Two importance sampling
schemes were considered: a density sampling scheme with probabilities proportional
to the prior observation weights pi, and a severity sampling scheme that additionally
attempts to oversample high-severity instances.

For ii) and iii), performance was measured as the root mean squared error (RMSE) from
ground truth when estimating the mean impact speed reduction and crash avoidance rate
of the AEB system compared to baseline driving. Each sampling method was repeated 300
times for sample sizes up to n = 2000 observations, and the average performance evaluated.
The results are presented graphically as functions of the sample size, i.e., the number of
baseline-AEB simulations pairs. Further details are provided in Appendix B.

Implementation. Active sampling was implemented according to Algorithm 1, with
batch sizes of nk = 10 observations per iteration and sampling schemes calculated according
to the anticipated-variance-minimizing scheme in Corollary 2 b) (Subroutine 1, Method 2),
unless otherwise stated. The empirical evaluation was implemented using the R language
and environment for statistical computing, version 4.2.1 (R Core Team, 2022). For the
learning step of the active sampling algorithm, we used the random forest method (Breiman,
2001) as implemented in the ranger package version 0.14.1 (Wright and Ziegler, 2017), with
hyper-parameter tuning by cross-validation using the caret package version 6.0-92 (Kuhn,
2022). Bootstrap variance estimation was performed with 500 replicates and implemented
using the R boot package version 1.3-28 (Canty and Ripley, 2021). The complete R code for
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the active sampling algorithm and simulation experiments and data are available online
at https://github.com/imbhe/ActiveSampling. Further implementation details are also
provided in Appendix B.

5.2 Results of empirical evaluation

Confidence interval coverage rates. The empirical coverage rates of large sample
normal confidence intervals under active sampling with three different methods for variance
estimation are presented in Figure 1. There was a clear under-coverage in small samples, as
expected. Both the classical variance estimator and bootstrap method produced confidence
intervals that approached the nominal 95% confidence level relatively quickly as the sample
size increased. Coverage rates were somewhat lower with the martingale method, and more
iterations where needed before the nominal 95% level was reached. Estimating the crash
avoidance rate (mean of a binary variable) required more samples than estimating the mean
impact speed reduction (mean of a continuous variable) to reach the nominal 95% coverage
level.

Figure 1: Empirical coverage rates of 95% confidence intervals vs. sample size for (A) mean impact
speed reduction and (B) crash avoidance rate. The lines show the coverage rates with three different
methods for variance estimation in 300 repeated active sampling experiments.
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Comparison of active sampling schemes. Figure 2 shows the RMSEs in estimating the
mean impact speed reduction and crash avoidance rate with two different implementations
of active sampling schemes. The naive approach, where predictions are inserted immediately
into the formulas for the theoretically optimal design in Corollary 1 b), had a poor perfor-
mance. Substantial improvements were observed with the anticipated-variance-minimizing
sampling schemes of Corollary 2 b), i.e., when accounting for prediction uncertainty in the
optimization of the sampling schemes.

Figure 2: Root mean squared error (RMSE) vs. sample size with active sampling optimized on (A)
mean impact speed reduction and (B) crash avoidance rate. The lines show the performance of two
different implementations of active sampling schemes: the naive method (Subroutine 1, Method 1)
and the anticipated-variance-minimizing method (Subroutine 1, Method 2).

Active sampling vs. traditional sampling methods. The RMSE in estimation with
active sampling compared to simple random sampling and traditional importance sampling
methods is presented in Figure 3. As expected, simple random sampling had the worst
performance. The two importance sampling schemes had similar performance, with a
slight advantage of severity importance sampling for estimating the crash avoidance rate.
Active sampling optimized for a specific characteristic always had best performance on
the characteristic for which it was optimized. For sample sizes n ≥ 500, active sampling
required 7.2–47.6% less observations than importance sampling to reach the same level of
performance on the characteristic for which it was optimized. The benefit of active sampling
increased with the sample size. At n = 2000 observations, we observed a reduction in
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RMSE of 21.7–37.9% with active sampling compared to importance sampling. Moreover,
active sampling performance was on par with that of traditional methods when evaluated
on characteristics other than the one it was optimized for.

Figure 3: Root mean squared error (RMSE) vs. sample size in the estimation of (A) the mean
impact speed reduction and (B) crash avoidance rate. The lines show the performance using simple
random sampling, importance sampling, and active sampling optimized for the estimation of mean
impact speed reduction and crash avoidance rate.

6 Discussion

We have introduced an active sampling framework for optimal sampling and estimation
of finite population characteristics in measurement-constrained experiments. Inspired by
active learning, the method iterates between parameter estimation and data collection
by adaptive importance sampling with optimal subsamples guided by machine learning
predictions on yet unseen data. Active sampling overcomes the limitations of traditional
importance sampling methods in terms of prior knowledge requirements and manual input to
the construction of sampling schemes, and offers a highly flexible and completely data-driven
procedure to sample selection. We have evaluated the performance of active sampling for
safety assessment of advanced driver assistance systems in the context of crash-causation-
based scenario generation. Substantial improvements over traditional importance sampling
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methods were demonstrated, with sample size reductions of up to 50% for the same level of
performance in terms of RMSE.

We have conducted an asymptotic analysis of the properties of the active sampling
method, and proved theoretically that active sampling under mild assumptions produces
consistent and asymptotically normally distributed estimators. Our theoretical results
were also confirmed empirically in our experiments. The two major assumptions were i)
bounded second moments on the random variables involved, and ii) asymptotically negligible
dependencies between the iterations of the active sampling algorithm. The first of these may
be justified by ensuring that the sampling probabilities are properly bounded away from
zero. In our algorithm this is automatically achieved by accounting for residual uncertainty
when calculating the optimal sampling scheme. The second assumption may be justified
by designing active sampling strategies so that each individual observation has a limited
influence on the sampling schemes and selections in future iterations. This is accomplished
in our algorithm by calculating sampling schemes based on certain functions of empirical
characteristics of the data. See also Bach (2007) for a related discussion in the active
learning context. Although we were primarily concerned with the case where the batch
sizes nk are small and the number of iterations k large, we conjecture that similar results
also hold true in the case where all n1, . . . , nk tend to infinity (at same rate) with k fixed.

Three different methods for variance estimation were proposed: a classical method,
which uses a pooled estimator of the conditional variances in each iteration of the algorithm,
and the conditional variances are estimated using classical survey sampling techniques;
a martingale method, which uses the squared variation of the estimates in the different
iterations of the active sampling algorithm to estimate the total variance; and a simple
non-parametric bootstrap method. Both the classical and bootstrap method performed
well already at small samples. Indeed, these are accurate of the order O(m−1k ), where mk

is the total sample size after k iterations. In contrast, the martingale method is accurate
of the order O(k−1), and hence requires more iterations to provide reliable estimates. The
martingale method should therefore primarily be used when the batch sizes nk are small and
number of iterations k large. Notably, the classical method is not applicable for fixed-size
designs when nk = 1, in which case the martingale method is preferred. Both the classical
and martingale method may be used internally in the algorithm to monitor the precision and
determine when to stop, whereas the bootstrap method, due to its increased computational
complexity, is better suited for use after subsampling has been completed. In our experience,
all methods produce similar estimates when the assumptions are fulfilled.

Our empirical experiments evaluated the performance of two different implementations of
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active sampling, two importance sampling methods, and simple random sampling. Among
these, simple random sampling had the worst performance. This can be explained by
it’s ignorance to the prior observation weights pi. Indeed, density importance sampling
(probability-proportional-to-size sampling) is a better choice when such observation weights
are present. The naive implementation of active sampling, where predicted values are
inserted immediately into the formulas of the theoretically optimal design, also had a poor
performance. Nonetheless, similar approaches are often suggested in various subsampling
applications (c.f Chu et al., 2011; Ganti and Gray, 2012; Farquhar et al., 2021). Our
theoretical analysis suggests that this is sub-optimal, as it fails to account for prediction
uncertainty. In contrast, the anticipated-variance-minimizing active sampling scheme,
which accounts for prediction uncertainty, had substantial improvements over traditional
importance sampling.

A well-known issue with methods based on inverse probability weighting is the risk of
variance inflation due to incidentally large sampling weights. Hence, a common suggestion
in the subsampling literature is to put a lower limit on the sampling probabilities and
regularize the sampling scheme towards a more uniform scheme (c.f Chu et al., 2011; Ganti
and Gray, 2012; Ma et al., 2015). However, such adjustments are often introduced ad hoc,
with additional hyper-parameters to be specified. We note that our anticipated-variance-
minimizing active sampling scheme achieves a similar effect in a completely data-driven
manner. Hence, our results provide theoretical arguments to why such regularization may
be beneficial, reveal how it is related to prediction uncertainty, and show how it should be
implemented to achieve optimal performance. Empirical results were consistent with these
assertions.

This paper illustrated the active sampling method in an application to generation of
simulation scenarios for the assessment of automated emergency braking. Not only can
the method be applied more broadly in the traffic safety domain, such as for virtual safety
assessment of self-driving vehicles of the future, but it can be applied to a wide range of
subsampling applications. Future research on the topic may pursue more efficient methods
of partitioning the dataset into areas where the outcomes are more precisely predicted
or known (where subsampling is less useful) and those where outcomes are less precisely
predicted, as well as demonstrate practical applications further.
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7 Conclusion

We have introduced a machine-learning-assisted active sampling framework for optimal
sampling and inference for finite populations and massive datasets. Methods for variance
and interval estimation have been proposed, and their validity in the active sampling setting
was confirmed empirically. Properly accounting for prediction uncertainty was crucial for
the performance of the active sampling algorithm. Substantial performance improvements
were observed compared to traditional importance sampling methods. Active sampling is a
promising method for efficient sampling and inference in subsampling applications.

Acknowledgment

We would like to thank Volvo Car Corporation for allowing us to use their data and
simulation tool, and in particular Malin Svärd and Simon Lundell at Volvo for supporting in
the simulation setup. We further want to thank Marina Axelson-Fisk and Johan Jonasson
for valuable comments on the manuscript.

Funding

This research was supported by the European Commission through the SHAPE-IT project
under the European Union’s Horizon 2020 research and innovation programme (under the
Marie Skłodowska-Curie grant agreement 860410), and in part also by the Swedish funding
agency VINNOVA through the FFI project QUADRIS. Also Chalmers Area of Advance
Transport funded part of this research.

SUPPLEMENTARY MATERIAL

Additional theoretical material and implementation details: Additional theoretical
results and proofs (Appendix A), and additional details on the implementation of the
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A Additional theoretical results and proofs

This appendix contains additional theoretical results and proofs. An asymptotic analysis
of the active sampling estimators is presented in Appendix A.1. Proofs of the optimality
results of Proposition 1–2 and Corollary 1–2 are presented in Appendix A.2.

A.1 Central limit theorems

We provide in Proposition S1 conditions under which the active sampling estimator t̂(k)y
of a total ty is consistent and asymptotically normally distributed, and present consistent
variance estimators. A generalization to multivariate estimators and to characteristics
defined as smooth functions of totals is provided in Corollary S1. For a sequence of random
variables {X,Xn, n ≥ 1}, we will useXn

d→ X, Xn
p→ X andXn

Lr→ X to denote convergence
of Xn to X in distribution, probability, and rth mean, respectively. To show asymptotic
normality of our active sampling estimator, we use the following result of Brown (1971):

Lemma 1 (Martingale central limit theorem)
Consider a sequence {Xj}∞j=1 of random variables such that E[Xj ] = E[Xj|X1, . . . , Xj−1] = 0

and E[X2
j ] < ∞. Let σ2

j = E[X2
j |X1, . . . , Xj−1], Uk =

∑k
j=1Xj, V 2

k =
∑k

j=1 σ
2
j , and

u2k = E[U2
k ] = E[V 2

k ]. Assume that V 2
k u
−2
k

p→ 1 as k → ∞, and that the Lindeberg-Feller
condition holds:

u−2k

k∑
j=1

E[X2
j I(|Xj| > εuk)]→ 0 as k →∞ for all ε > 0. (S.1)

Then
Uk/uk

d→ N (0, 1) as k →∞.

We will also make use of the following results:

i) Dominated convergence theorem: Let {X,Xn, n ≥ 1} be a sequence of random
variables such that Xn

p→ X and E[supj≥1 |Xj|] <∞. Then Xn
L1→ X.

ii) Cramér-Wold theorem: LetX,X1,X2, . . . be random vectors in Rd. ThenXn
d→

X if and only if, for every fixed λ ∈ Rd, we have λTXn
d→ λTX.

iii) Delta method: Let {Xn} be a sequence of random vectors such that
√
n(Xn−θ0)

d→
N(0,Σ). Consider a function h : Rd → R and assume that h(u) is differentiable in a
neighborhood of θ = θ0, with ∇h(u)|θ=θ0 6= 0. Then

√
n(h(T n)− θ0)

d→ N(0, γ2), with γ2 = ∇h(θ)TΣ∇h(θ)
∣∣
θ=θ0

.
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Details may be found in any textbook on large sample methods in statistics (see, e.g., Sen
and Singer, 1993). A central limit theorem for active sampling is presented below.

Proposition S1 (Central limit theorem, nk bounded, k → ∞)
Consider a finite index set D = {1, . . . , N} with corresponding data y1, . . . , yN , and infinite
sequence {nj}∞j=1 with nj ∈ N, nj < N . Let {Sj}∞j=1 be an infinite sequence of random
vectors Sj = (Sj1, . . . , SjN) ∈ NN such that

∑N
i=1 µji = nj, where µji := E[Sji|S1, . . .Sj−1]

are assumed to be strictly positive for all j, i. Let ty =
∑

i∈D yi, t̂y,j =
∑

i∈D
Sjiyi
µji

, mk =∑k
j=1 nj, t̂

(k)
y = 1

mk

∑k
j=1 nj t̂y,j, σ

2
j = Var(t̂y,j|S1, . . . ,Sj−1), A2

k =
∑k

j=1 n
2
jσ

2
j , and b2k =

Var(
∑k

j=1 nj t̂y,j). Assume that

(A1) Sji/µji have uniformly bounded second moments,

(A2) bk →∞ as k →∞, and

(A3) A2
kb
−2
k

p→ 1 as k →∞.

Then

t̂
(k)
y − ty
bk/mk

d→ N (0, 1) as k →∞, and (S.2)

b−2k

k∑
j=1

n2
j

(
t̂y,j − t̂(k)y

)2 p→ 1 as k →∞. (S.3)

Furthermore, if σ̂2
j are unbiased estimators of the conditional variances σ2

j , i.e.,
E[σ̂2

j |S1, . . . ,Sj−1] = σ2
j , and

(A4) b−2k Var(
∑k

j=1 njσ̂
2
j ) are uniformly bounded,

then additionally we have that

b−2k

k∑
j=1

njσ̂
2
j

p→ 1 as k →∞. (S.4)

The first result (S.2) establishes asymptotic normality of the active learning estimator
t̂
(k)
y under the specified conditions. We note that bk = O(m

1/2
k ), so the convergence of t̂(k)y to

ty is at the usual parametric rate m−1/2k . The second result (S.3) proves the consistency of

the martingale variance estimator
∑k

j=1 n
2
j

(
t̂y,j − t̂(k)y

)2
, and the third (S.4) consistency of

the pooled variance estimator
∑k

j=1 njσ̂
2
j .

Since, in any sensible probability sampling design, Sji have finite second moments, the
first assumption (A1) is fulfilled if the sampling probabilities (and corresponding means
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µji) are properly bounded away from zero. The second assumption (A2) requires the
total variance Var(

∑k
j=1 nj t̂y,j) to tend to infinity with k. This may at first sight seem

to contradict the purpose of active sampling, which is to make the variance as small as
possible. Indeed, it is theoretically possible to construct a sampling strategy that produces
an estimator with zero variance, which clearly does not converge to a normal limit. In
practice, however, finding the true optimal design is not possible and a sampling strategy
with good performance generally also fulfills the assumptions (A1) and (A2).

The third assumption states that the sum of conditional variances asymptotically should
behave like the total variance. Hence, the statistical properties of the active sampling
estimator can be deduced from a single execution of the algorithm. Empirical justification
for this assumption is provided in Section 5. We note that the fourth assumption (A4),
needed for consistency of the classical variance estimator, is stronger than the second (A2).
To see this, note that (A4) requires σ̂2

j to have bounded second moments for every j. But
σ̂2
j depends on Sji/µ2

ji, which is larger than Sji/µji for all j, i such that µji ≤ 1, as is the
case for all or nearly all j, i in all realistic subsampling applications. For fixed-size designs
σ̂2
j also depend on the joint selection probabilities, which means that E[SjiSjl] need to be

properly bounded away from zero for consistent variance estimation. Note, in particular,
that this requires all nj ≥ 2 for fixed-size designs, whereas (A2) makes no such restriction.

Before providing a proof, we present below a generalization to vectors of totals and
smooth functions of totals.

Corollary S1 (Multivariate central limit theorem, nk bounded, k → ∞)
Consider a finite index set D = {1, . . . , N} with corresponding data y1, . . . ,yN ∈ Rd.
Let {nj}∞j=1, {Sj}∞j=1, µji and mk be defined as in Proposition S1. Let ty =

∑
i∈D yi,

t̂y,j =
∑

i∈D
Sjiyi
µji

, t̂
(k)

y = 1
mk

∑k
j=1 nj t̂y,j. Consider a function h : Rd → R, and assume

that h(u) is differentiable in a neighborhood of u = ty, with ∇h(u)|u=ty 6= 0. Let Φj =

Cov(t̂y,j|S1, . . . ,Sj−1), Ak =
∑k

j=1 n
2
jΦj and Bk = Cov(

∑k
j=1 nj t̂y,j). Assume that

i) Sji/µji have uniformly bounded second moments,

ii) m−1k Bk converges elementwise to some matrix Ψ, and Ψ is full rank,

iii) λTBkλ→∞ as k →∞ for every λ ∈ Rd \ 0, and

iv) AkB
−1
k

p→ Id×d (elementwise) as k →∞.
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Then

√
mk

(
t̂
(k)

y − ty
)

d→ N (0,Ψ) as k →∞, and
√
mk

(
h(t̂

(k)

y )− h(ty)
)

d→ N (0, γ2) as k →∞,

where γ2 = ∇h(u)TΨ∇h(u)|u=ty . Moreover, the asymptotic covariance matrix Ψ and
variance γ2 can be consistently estimated by

Ψ̂
(k)

=
1

m2
k

k∑
j=1

n2
j

(
t̂y,j − t̂

(k)

y

)(
t̂y,j − t̂

(k)

y

)T
,

γ̂2k = ∇h(u)T Ψ̂
(k)
∇h(u)|

u=t̂
(k)
y
.

Furthermore, if Φ̂j are unbiased estimators of the conditional covariance matrices Φj, i.e.,
E[Φ̂j|S1, . . . ,Sj−1] = Φj, and

iv) (λTBkλ)−1Var(
∑k

j=1 λ
T Φ̂jλ) are uniformly bounded for every λ ∈ Rd \ 0,

then the asymptotic covariance matrix Ψ and variance γ2 can also be consistently estimated
by

Ψ̃
(k)

=
1

m2
k

k∑
j=1

n2
jΦ̂j,

γ̃2k = ∇h(u)T Ψ̃
(k)
∇h(u)|

u=t̂
(k)
y
.

Proof of Proposition S1
Let Xj = nj(t̂y,j − ty), Uk =

∑k
j=1Xj, V 2

k =
∑k

j=1 E[X2
j |X1, . . . , Xj−1] = A2

k, and u2k =

E[U2
k ] = E[V 2

k ] = b2k. Note that E[Xj] = 0, and that Xj by (A1) have uniformly bounded
second moments, and hence that maxj≤k E[X2

j ] are uniformly bounded. Since uk →∞ as
k →∞, we therefore have that maxj≤k u

−1
k Xj

L2→ 0, which implies

max
j≤k

u−1k Xj
p→ 0. (S.5)

This in turn is equivalent to the weaker Lindeberg-Feller condition

u−2k

k∑
j=1

X2
j I(|Xj| ≥ εuk)

p→ 0 for all ε > 0, (S.6)

since P (maxj≤k u
−1
k Xj > ε) = P (

∑k
j=1 u

−2
k X2

j I(|Xj| > εuk) > ε2). But

E

[∣∣u−2k k∑
j=1

X2
j I(|Xj| ≥ εuk)

∣∣] ≤ u−2k E

[
k∑
j=1

X2
j

]
= 1 for all k. (S.7)
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By the dominated convergence theorem, (S.6) and (S.7) implies the Lindeberg-Feller condition
(S.1), which together with (A3) according to Lemma 1 gives

Uk/uk
d→ N (0, 1) as k →∞.

The first result (S.2) now follows by noting that

Uk/uk =

∑k
j=1 nj(t̂y,j − ty)

bk
=
m−1k

∑k
j=1 nj(t̂y,j − ty)
bk/mk

=
t̂
(k)
y − ty
bk/mk

.

For (S.3), we first note that t̂y,k = Op(1) and t̂(k)y = ty +Op(bk/mk). Hence

b−2k

k∑
j=1

n2
j

(
t̂y,j − t̂(k)y

)2
= b−2k

k∑
j=1

n2
j

(
t̂y,j − ty +Op(bk/mk)

)2
= b−2k

k∑
j=1

n2
j

(
t̂y,j − ty

)2
+Op(b

−1
k ).

Next,

E

∣∣∣∣b−2k k∑
j=1

n2
j

(
t̂y,j − t̂(k)y

)2 − 1

∣∣∣∣ = E

∣∣∣∣b−2k k∑
j=1

n2
j

(
t̂y,j − ty

)2
+Op(b

−1
k )− 1

∣∣∣∣
≤ E

∣∣∣∣b−2k k∑
j=1

n2
l

(
t̂y,j − ty

)2 − 1

∣∣∣∣+ E[Op(b
−1
k )].

Note now that (A3) is equivalent to limk→∞ E|A2
kb
−2
k − 1| (Brown, 1971, Lemma 1), which

together with (S.5) and the Lindeberg-Feller condition (S.1) implies that the first term
vanishes as k →∞ (Hall and Heyde, 1980, Theorem 3.5). As does the second term, since
t̂y,j have uniformly bounded second moments. Hence, (S.3) now follows since convergence
in mean implies convergence in probability.

For the last result (S.4), we note that E[
∑k

j=1 njσ̂
2
j ] = b2k, and

Var

(
b−2k

k∑
j=1

njσ̂
2
j

)
=

Var(
∑k

j=1 njσ̂
2
j )

b2k

1

b2k
→ 0 as k →∞,

since the first factor by (A4) is bounded and the second goes to zero as k → ∞. This
completes the proof. �

Proof of Corollary S1
The result follows immediately from Proposition S1 by application of the Cramér-Wold
theorem and the Delta method (see, e.g., Sen and Singer, 1993, Theorem 3.2.4 and 3.4.5) .
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A.2 Optimality results

We present in this section proofs of the optimality results of Proposition 1–2 and Corollary
1–2. First, two lemmas are presented.

Lemma 2
Let S = (S1, . . . , SN) ∼ Multinomial(n,π), π = (π1, . . . , πN), µ := E[S] = (µ1, . . . , µN).
Let

t̂y =
N∑
i=1

Siwiyi, wi := E[Si]
−1 = (nπi)

−1.

Then the covariance matrix of t̂y is given by

Cov(t̂y) =
1

n

(
N∑
i=1

yiy
T
i

πi
−

N∑
i,j=1

yiy
T
j

)
.

Lemma 3
Let π = (π1, . . . , πN) and consider the function

f(π) =
N∑
i=1

c2i
πi

for some coefficients ci > 0. Subject to the constraints
N∑
i=1

πi = 1, πi > 0,

f(π) is minimized by π∗ = (π∗1, . . . , π
∗
N) with

π∗i =
ci∑N
j=1 cj

, i = 1, . . . , N.

Proof of Lemma 2
By properties of the multinomial distribution, we have that

µi := E[Si] = nπi, Var(Si) = nπi(1− πi), Cov(Si, Sj) = −nπiπj,

for i, j = 1, . . . , N, i 6= j. Hence,

Cov(t̂y) = Cov

(
N∑
i=1

Siwiyi

)
=

 N∑
i=1

nπi(1− πi)
n2π2

i

yiy
T
i −

∑
i,j=1

i 6=j

nπiπj
n2πiπj

yiy
T
j


=

1

n

 N∑
i=1

1− πi
πi

yiy
T
i −

N∑
i,j=1

i 6=j

yiy
T
j

 =
1

n

(
N∑
i=1

yiy
T
i

πi
−

N∑
i,j=1

yiy
T
j

)
.

�
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Proof of Lemma 3
Using the method of Lagrange multipliers (Boyd and Vandenberghe, 2004, Chapter 5), we
introduce the auxiliary function

Λ(π, λ) = f(π) + λg(π), g(π) =
N∑
i=1

πi − 1 .

Critical points of the Lagrangian are found by solving the equation system

∇Λ(π, λ) = 0 ⇔

g(π) = 0

−∇πf(π) = λ∇πg(π)
.

Since ∂f(π)
∂πi

= −c2i /π2
i and ∂g(π)

∂πi
= 1, this implies that λ = c21/π

2
1 = . . . = c2N/π

2
N , and further

that |πi| ∝ |ci|. Since ci > 0, πi > 0 and
∑N

i=1 πi = 1, we obtain

π∗i =
ci∑N
j=1 cj

. (S.8)

Thus, the point (π∗, λ∗) with entries π∗i defined according to (S.8) and λ∗ = c21/π
∗2
1 is a

stationary point of Λ(π, λ). Hence, π∗ is a stationary point of f(π) under the specified
constraints. Specifically, π∗ is a local minimum. Since we consider a convex function over a
convex set, π∗ also is a global minimum. This proves the optimality of (S.8). �

Proof of Proposition 1
We want to minimize the approximate variance AV(θ̂) := ∇h(u)TΦk∇h(u)

∣∣
u=ty

of the

estimator θ̂k := h(t̂y,k), where Φk = Cov(t̂y,k|S1, . . . ,Sk−1). Since Sk|S1, . . . ,Sk−1 ∼
Multinomial(nk,πk), the approximate variance can according to Lemma 2 be written as

1

nk
∇h(u)T

(
N∑
i=1

1

πki
p2i r

2
i yiy

T
i −

N∑
i,j=1

pipjrirjyiy
T
j

)
∇h(u),

evaluated at u = ty. As a function of the sampling scheme πk, minimizing the above
expression is equivalent to minimizing

N∑
i=1

p2i r
2
i∇h(u)Tyiy

T
i h(u)

πki
=

N∑
i=1

(piri∇h(u)Tyi)
2

πki
,

evaluated at u = ty. The result now follows from Lemma 3 with ci = piri
∣∣∇h(u)Tyi

∣∣
u=ty

.
�
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Proof of Corollary 1
a) Follows immediately from Proposition 1 with scalar yi = yi and identity mapping

h(u) = u.
b) Take yi = (yi, 1)T and h : R2 → R as h(u1, u2) = u1/u2. Then ty = (ty, tr)

T , θ =

h(ty) = ty/tr, t̂y = (t̂y, t̂r)
T , and θ̂ = h(t̂y) = t̂y/t̂r. Since ∇h(u1, u2) = (1/u2,−u1/u22)T ,

we have that ∣∣∇h(u)Tyi
∣∣
u=ty

=
∣∣(1/tr,−ty/t2r) · ( yi1 )

∣∣ = t−1r |yi − ty/tr|.

By the result of in Proposition 1, we obtain as optimal sampling probabilities

π∗ki =
t−1r piri|yi − ty/tr|∑N
j=1 t

−1
r pjrj|yj − ty/tr|

=
piri|yi − ty/tr|∑N
j=1 pjrj|yj − ty/tr|

=
ci∑N
j=1 cj

,

with ci = pirivi and vi = |yi − ty/tr|. �

Proof of Proposition 2
In analogy with the proof of Proposition 1, minimizing the anticipated approximate variance
of the estimator θ̂k := h(t̂y,k) is equivalent to minimizing

ER,Y

[
N∑
i=1

(piRi∇h(u)TY i)
2

πki

]
=

N∑
i=1

p2i
πki

ERi,Y i

[
(Ri∇h(u)TY i)

2
]

evaluated at u = ty. By the law of total expectation we further have that

ERi,Y i

[
(Ri∇h(u)TY i)

2
]

= ERi

[
R2
iEY i

[(h(u)TY i)
2|Ri]

]
= r̂iEY i

[(h(u)TY i)
2|Ri = 1],

where the second equality follows since Ri ∼ Bernoulli(r̂i). Using the equality E[X2] =

E[X]2 + Var(X), we next have that

E
[
(∇h(u)TY i)

2|Ri = 1
]

= E[∇h(u)TY i|Ri = 1]2 + Var
(
∇h(u)TY i|Ri = 1

)
= (∇h(u)TE[Y i|Ri = 1])2 +∇h(u)TCov (Y i|Ri = 1)∇h(u)

= (∇h(u)T ŷi)
2 +∇h(u)TΣi∇h(u).

Combining these results, we have that

ER,Y

[∑
i∈D

(p2iRi∇h(u)TY i)
2

πki

]
=

N∑
i=1

p2i vi
πki

with vi = r̂i
[
(∇h(u)T ŷi)

2 +∇h(u)TΣi∇h(u)
]∣∣
u=ty

. The desired result now follows from
Lemma 3. �
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Proof of Corollary 2
a) Follows immediately from Proposition 2 applied to the scalar case with Y i = Yi, ŷi = ŷi,
Σi = σ2

i and identity mapping h(u) = u.
b) Take Y i = (Yi, 1)T , ŷi = (ŷi, 1)T Σi =

(
σ2
i 0
0 0

)
, and h : R2 → R as h(u1, u2) = u1/u2.

The result follows by insertion in Proposition 2, in analogy with the proof of Corollary 1 b).
�

B Implementation of sampling methods

Additional details on the implementation of the sampling methods in the empirical evaluation
are provided below.

General implementation details. All sampling methods were implemented in an iter-
ative fashion according to Algorithm 1, and differed only in the calculation of the sampling
schemes (steps 2–7 in Algorithm 1). The learning and optimization steps were only per-
formed for active sampling. All methods were implemented using multinomial sampling,
with replacement within and between iterations. Although this introduces a slight disad-
vantage for the reference methods, which could also be implemented without replacement,
the resulting loss of efficiency is negligible since the overall sampling fraction is small.

Importance sampling methods. Two different importance sampling schemes were
considered: density importance sampling and severity importance sampling. With density
importance sampling, the sampling probabilities were selected proportional to the prior
observation weights pi, since instances with large observation weights by design of the
scenario generation framework have a larger contribution to estimation. Since our aim is
safety benefit evaluation of an advanced driver assistance system compared to some baseline
driving scenario, and the potential safety benefit increases with impact severity, one may
expect that oversampling of high-severity instances will lead to further variance reduction
in the safety benefit evaluation. We therefore also included severity importance sampling,
which attempts to oversample high-severity instances by assigning sampling probabilities
proportional to pi× oi× di×mi, where pi is the prior observation weight of instance i, oi is
the corresponding off-road glance duration, di is the maximal deceleration, and mi an a
priori known maximal possible impact speed of instance i. To account for the difference
in scaling between variables, all variables (off-road glance duration, deceleration, maximal
impact speed) were transformed a common scale by mapping the values onto the interval
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[0.1, 1] before calculating the severity sampling scheme.

Initialization. Active sampling and severity sampling were initialized with a deterministic
sample of 44 instances, one per original (real) rear-end crash, at the maximum glance duration
6.6s and minimal deceleration 3.3m/s2. Hence, the maximal possible impact speed in each
scenario could be retrieved. Knowing the maximal impact speed was necessary for severity
sampling. It was also assumed to be beneficial for active sampling, as we expected the
maximal impact speed to be an important predictor of the case-specific safety benefit
response profile. To avoid selection bias, the initial sample did not contribute to estimation
and was retained in the sampling frame for selection in future iterations. It was, however,
used in the learning step of the active sampling algorithm. With regards to sample size,
the initial sample counted as 44 observations when comparing the performance of different
sampling methods.

Learning and prediction. For the learning step of the active sampling algorithm, we
used random forest regression for continuous outcomes (impact speed reduction) and random
forest classification for binary outcomes (crash/no-crash under baseline and countermeasure
scenarios) (Breiman, 2001). The random forest method was chosen for the following reasons:
i) it is fast and flexible, ii) it is capable of finding non-linear and non-monotonic patterns,
as well as interactions between variables, without the need for explicit feature construction,
and iii) measures of generalization error and prediction performance are readily available
through estimates of residual variance, prediction R-squared and accuracy on hold-out
(out-of-bag) data.

Explanatory variables were the input parameters to the simulations (off-road glance
duration and maximal deceleration), and case-specific maximal impact speed retrieved
from the initialization step described above. Random forest was fitted using 100 trees
with variance splitting rule for regression, and gini splitting rule for classification. Other
hyper-parameters (minimum node size and number of variables to split upon) were selected
with 5-fold cross validation, using a random grid search of minimum node size from 1 to
20 and number of variables to split upon from 1 to 3. All predictions were set equal if the
model could not be fitted or produced a prediction R-squared less than 0 on hold-out data,
thus resorting to density importance sampling. To reduce computation time, prediction
models were updated every 10th new observation up to a sample size of n = 100 observations,
thereafter every 25th new observation up to a sample size of n = 500 observations, thereafter
every 50th observation up to a sample size of n = 1, 000 observations, and so on.
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