
Priors leading to well-behaved Coulomb and Riesz gases versus
zeroth-order phase transitions - a potential-theoretic characterization

Downloaded from: https://research.chalmers.se, 2024-03-13 10:31 UTC

Citation for the original published paper (version of record):
Berman, R. (2021). Priors leading to well-behaved Coulomb and Riesz gases versus zeroth-order
phase transitions -
a potential-theoretic characterization. Electronic Journal of Probability, 26( 145): 1-49.
http://dx.doi.org/10.1214/21-EJP700

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Electron. J. Probab. 26 (2021), article no. 145, 1–49.
ISSN: 1083-6489 https://doi.org/10.1214/21-EJP700

Priors leading to well-behaved Coulomb and Riesz
gases versus zeroth-order phase transitions – a

potential-theoretic characterization

Robert J. Berman*

Abstract

We give a potential-theoretic characterization of measures µ0 which have the property
that the Coulomb gas, defined with respect to the prior µ0, is “well-behaved” and
similarly for more general Riesz gases. This means that the laws of the empirical mea-
sures of the corresponding random point process satisfy a Large Deviation Principle
with a rate functional which depends continuously on the temperature, in the sense of
Gamma-convergence. Equivalently, there is no zeroth-order phase transition at zero
temperature, in the mean field regime. This is shown to be the case for the Hausdorff
measure on a compact Lipschitz hypersurface, as well as Lesbesgue measure on a
bounded Lipschitz domain. We also provide constructions of priors µ0, absolutely
continuous with respect to Lebesgue measure on a smoothly bounded domain, such
that the corresponding 2d Coulomb exhibits a zeroth-order phase transition. This is
based on relations to Ullman’s criterion in the theory of orthogonal polynomials and
Bernstein-Markov inequalities.
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1 Introduction

In broad terms, the main aim of the present work is to study the interplay between
fine potential-theoretic properties of a measure µ0 in Rd (the “prior”) and properties of
the corresponding Coulomb gas in Rd, in the mean-field regime. The pair-interaction
potential of this gas (also known as the one-component plasma in the physics literature)
is the fundemental solution of the Laplacian ∆ in Rd and yields a family of random point
processes on the support of µ0 in Rd, parametrized by temperatures TN ∈]0,∞]. We will,
in particular, give a potential-theoretic characterization of measures µ0 for which the
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Priors leading to well-behaved Coulomb, Riesz gases vs zeroth-order phase transitions

corresponding Coulomb gas is “well-behaved at zero-temperature”, which is equivalent
to the absence of a zeroth-order phase transition. In fact, the main results will be
shown to hold in a more general setting involving a Riesz gas in Rd, where the role of
the Laplacian is played by the fractional Laplacian −(−∆)α/2, assuming that α ∈]0, 2].
Complex-geometric analogs of the results, where the role of the Laplacian is played
by the complex Monge-Ampère operator, are described in [9]. Our results yield new
probabilistic constructions of capacities, equilibrium measures etc, using random point
processes, in contrast to the usual probabilistic approach based on Markov processes
(and their hitting probabilities [33, 22]). More precisely, the setting of a Riesz gas with
α ∈]0, 2] corresponds precisely to the class of symmetric stable Levy processes in Rd

[20] (i.e. Brownian motion in the “Coulomb case” α = 2).
For concreteness we will introduce the main results in the Coulomb case (α = 2),

where the energy E(µ) of a compactly supported measure µ in Rd, with d ≥ 2, is defined
by

E(µ) =
1

2

∫
Rd
Wµ⊗ µ,

where W (x, y) denotes the standard Green function of the Laplacian ∆, i.e. W (x, y) is
proportional to |x− y|2−d when d ≥ 3 and to − log |x− y| when d = 2. The potential ψµ of
µ is the subharmonic function on Rd defined by

ψµ(x) := −
∫
Rd
W (x, y)µ(y)

(using the opposite sign convention compared to the standard convention in physics).
A bounded subset S of is said to be polar if there exists a potential ψµ such that
S b {ψµ = −∞}. We will be particularly interested in measures µ0 not charging
polar subsets (for example, this is the case if µ0 has finite energy or if µ0 is absolutely
continuous wrt Lebesgue measure). We will denote by P(S) the space of all probability
measures on a closed subset S ⊂ Rd, endowed with the weak topology.

1.1 Energy approximation and determining measures

The main analytical result may be formulated in terms of potential theory and ap-
proximation theory as follows. Assume given a measure µ0 on Rd and denote by S0 its
support. We will say that µ0 has the Energy Approximation Property if for any measure
µ supported on S0 there exists a sequence µj converging weakly towards µ such that

• µj is absolutely continuous with respect to µ0

• limj→∞E(µj) = E(µ)

Note that, by the lower semi-continuity of W , the second point is equivalent to

lim sup
j→∞

E(µj) ≤ E(µ) (1.1)

Theorem 1.1 below relates the Energy Approximation Property to the potential-theoretic
notion of determining measures. Given a weighted set (S, φ) consisting of a subset S of
Rd and a continuous function φ on S, a measure ν on Rd is said to be determining for
(S, φ) if for all potentials ψ on Rd

ψ ≤ φ almost everywhere wrt ν =⇒ ψ ≤ φ onS (1.2)

We will say that ν is determining for S if ν is determining for (S, 0) and strongly deter-
mining for S if ν is determining for (S, φ) for all φ ∈ C(S). Similarly we will say that
ν is (strongly) determining if it is (strongly) determining for its support. For example,
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Lebesgue measure 1Ωdx on a bounded domain Ω in Rd is strongly determining if Ω is non-
thin at all boundary points, in the classical sense (Prop 2.21). In general, if ν is strongly
determining and does not charge polar subsets then the support of ν is automatically
locally regular (see Section 2.7 for the potential-theoretic notions of regularity).

Theorem 1.1. Let µ0 be a measure on Rd which does not charge polar subsets and
assume that the support S0 of µ0 is compact and locally regular. Then µ0 has the Energy
Approximation Property iff µ0 is strongly determining.

The main virtue of the property of beeing strongly determining is that it can often be
verified using maximum (/domination) principle type arguments. For example, using [27],
we will show that the (d− 1)-dimensional Hausdorff measure on a Lipschitz hypersurface
is strongly determining (Theorem 2.22).

Theorem 1.1 appears to be new even in the simplest case when S0 is an interval in
R ⊂ R2, which is the classical setting where the notion of determining measures was
first introduced by Ullman (as discussed in Section 1.3 below). In this special case a
measure µ0 is determining iff it is strongly determining.

1.2 The zero-temperature limit of the Coulomb gas in the mean-field regime

The main motivation for Theorem 1.1 above comes from the study of the large
deviations of the Coulomb gas on a measure µ0 in Rd, where the Energy Approximation
Property has previously appeared as a technical hypothesis [26, 29, 7, 32]. To give some
background, assume given a continuous function φ on Rd and consider the corresponding
mean field N -particle Hamiltonian

H
(N)
φ (x1, ...xN ) :=

1

(N − 1)

1

2

∑
i 6=j

W (xi, xj) +

N∑
i=1

φ(xi)

describing the Coulomb energy of N -particles in the exterior potential φ (with the
divergent self-energies removed) with a mean field scaling. In physical terms this means
that each particle is subject to the average of the Coulomb potentials created by the
other particles, plus the exterior potential φ. We recall that the mean-field scaling is
often used for systems with long-range interactions, i.e. such that W (x, y) ≤ C1/|x− y|d
(which includes general Riesz gases) [3, 23, 40]. Given a measure µ0 on Rd (the “prior”)
with compact support S0 and a sequence of numbers TN ∈]0,∞[ the corresponding
(mean field) Coulomb gas at temperature TN on µ0 is defined as the probability space

(canonical ensemble)
(

(Rd)N , µ
(N)
TN

)
, where

µ
(N)
φ,TN

:=
1

ZN,φ,TN
e−T

−1
N H

(N)
φ µ⊗N0 , ZN,φ,TN :=

∫
(Rd)N

e−T
−1
N H

(N)
φ µ⊗N0 (1.3)

The normalizing constant ZN,φ,TN is called the partition function and

FN,φ,TN := −TN
N

logZN,φ,TN

is called the N -particle free energy at temperature TN . It extends continuously to TN = 0

by setting

FN,φ,0 :=
1

N
inf
SN0

H
(N)
φ ,

where S0 is the support of µ0 (using that e−H
(N)
φ is continuous; see the beginning of

the proof of Lemma 5.3). In the case when φ = 0 we will simply drop the subscripts
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φ. The mean field scaling 1/(N − 1) appearing in the definition of H(N)
φ (x1, ...xN ) could

alternatively have been absorbed by the temperature TN . Anyhow, throughout the
paper we will employ the mean field scaling above and assume that the corresponding
temperatures TN have a limit T as N →∞ :

T := lim
N→∞

TN ∈ [0,∞[.

For example, if, with the present mean field scaling, TN is taken to be proportional to
1/(N − 1), so that µ(N)

TN
is the Gibbs measure for a Coulomb gas without a mean field

scaling at a fixed positive temperature [52], then the corresponding limiting temperature
T above vanishes (compare Section 1.3). But here it will be important to allow non-
vanishing limiting temperatures T , where entropy enters the picture.

As first shown in [23, 41], in the case when T > 0 and µ0 is equal to Lebesgue
measure on a compact domain S0, the empirical measure

δN :=
1

N

N∑
i=1

δxi , (1.4)

viewed as a random measure on
(

(Rd)N , µ
(N)
TN

)
, converges in probability, as N → ∞,

towards a deterministic measure µφ,β

lim
N→∞

δN = µφ,T ,

where µφ,T is the unique minimizer of the following free energy functional Fφ,T on the
space P(S0) :

Fφ,T (µ) = Eφ(µ) + TDµ0
(µ), Eφ(µ) := E(µ) +

∫
φµ

where Dµ0 denotes the entropy of µ relative to µ0, using the sign convention making Dµ

non-negative (see formula (3.2)). In particular,

Fφ,0 := Eφ

and we denote by µ(S,φ) the equilibrium measure of a non-polar compact weighted set
(S, φ), i.e. the unique minimizer of Eφ on P(S). It should be stressed that the presence
of the entropy term in the free energy Fφ,T (µ) entails that the minimizer µT is absolutely
continuous wrt µ0 for any T > 0, while this is often not the case for the equilibrium
measure µ(S0,φ). For example, if µ0 is Lesbesgue measure on a compact domain S0 with
smooth boundary and φ = 0, then µ(S0,φ) is supported in the boundary of S0 (in the
Coulomb case).

Under appropriate regularity assumptions on µ0 it is shown in [26, 29, 7, 32] that the
convergence of δN towards µφ,T is, in fact, exponential in the sense of large deviation
theory. More precisely, the laws of the empirical measures δN satisfy a Large Deviation
Principle (LDP) at speed T−1

N N , whose rate functional Iφ,T coincides with Fφ,T , up to an
additive constant. In symbolic notation this may be expressed as

(δN )∗

(
e−T

−1
N H

(N)
φ µ⊗N0

)
∼ e−T

−1
N NFφ,T , N →∞

as measures on P(S0). We recall that, in general, the rate functional I for an LDP is a
proper lower-semicontinuous function (the precise meaning of the LDP is recalled in
Section 4).

EJP 26 (2021), paper 145.
Page 4/49

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP700
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Priors leading to well-behaved Coulomb, Riesz gases vs zeroth-order phase transitions

1.2.1 The LDP in the zero-temperature limit

When T > 0 the LDP for the Coulomb gas holds for any measure µ0 not charging polar
subsets (Theorem 4.2). A natural question is thus what further conditions on µ0 need
to be imposed in order to ensure that the LDP also holds for T = 0? As shown in
[26, 29, 7, 32], the Energy Approximation Property is a sufficient condition. However,
as will be shown below, this condition is not necessary, but rather equivalent to a “well-
behaved” LDP. The starting point is the basic observation that the Energy Approximation
Property is equivalent to a certain continuity property of the free energy functional
FT , namely that FT be continuous with respect to Gamma-convergence of functionals,
as T → 0. Recall that the notion of Gamma-convergence plays a prominent role in
variational calculus (see definition 3.1) and corresponds to the Fell topology on the space
of lower-semicontinuous functions [24]. It implies, in particular, that the minimizer
µT of FT converges towards the minimizer of F0. In the present setting the Gamma-
convergence of the functional FT is, by a duality argument, equivalent to the continuity
of

fφ(T ) := inf
µ∈M(S0)

Fφ,T (µ)

as T → 0 for all exterior potentials φ. The number fφ(T ) is usually called the free energy
at temperature T (wrt the exterior potential φ). The main result may now be formulated
as the following

Theorem 1.2. Let µ0 be a measure on Rd which does not charge polar subsets and
assume that the support S0 of µ0 is compact and locally regular. Then the following is
equivalent:

• µ0 is strongly determining

• For any given continuous function φ, the corresponding free energy fφ(T ) at
temperature T ,

fφ(T ) := inf
µ∈M(S0)

Fφ,T (µ) (1.5)

is continuous wrt T ∈ [0,∞]

• For any given potential φ the minimizer µφ,T of the functional FT,φ on P(S0) con-
verges, as T → 0, towards the equilibrium measure of (S0, φ), i.e. towards the
minimizer µ(S0,φ) of Fφ,0 :

lim
T→0

µφ,T = µ(S0,φ) (1.6)

in the weak topology on P(S0).

• The LDP for the Coulomb gas on µ0 holds for all exterior potentials φ and all
T ∈ [0,∞[ with a rate functional which is continuous wrt T ∈ [0,∞[ in the sense of
Gamma-convergence

In fact, in the present setting the LDP in the previous theorem is equivalent to the
free energy asymptotics

lim
N→∞

FN,φ,TN = fφ(T ), TN → T, (1.7)

for any potential φ and sequence TN ∈ [0,∞[ such that TN → T ∈ [0,∞[ for a function
fφ(T ) which is continuous on [0,∞[ (and a posteriori of the form (1.5)). The continuity of
fφ(T ) when T > 0 is automatic and, as discussed in Section 5, a discontinuity at T = 0

can be interpreted as a zeroth-order phase transition. Another equivalent formulation is
obtained by taking TN = T ∈]0,∞[ and demanding that the limits T → 0 and N →∞ of
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FN,φ,T commute (see Lemma 5.3). The existence of discontinuities at T = 0 should be
contrasted with the fact that

lim
T→∞

µφ,T = µ0

always holds (see Section 3.4). This means that if µ0 is strongly determining, then the
curve µT,φ ∈ P(S0) interpolates between µ0 at T = ∞ and the weighted equilibrium
measure µ(S0,φ0) at T = 0.

The previous theorem will be deduced from the following result concerning the case
when the potential φ is fixed:

Theorem 1.3. Let µ0 be a measure on Rd which does not charge polar subsets and
assume that the support S0 of µ0 is compact and locally regular. For a given continuous
function φ on S0 the following is equivalent

• µ0 is determining for (S0, φ)

• The following convergence of free energies holds:

lim
T→0

lim
N→∞

FN,φ,TN = inf
P(S0)

Eφ (1.8)

• The following weak convergence of the expectations ET,φ(δN ) of the empirical
measure δN holds:

lim
T→0

lim
N→∞

ET,φ(δN ) = µ(S0,φ) (1.9)

We recall that the inverse of the infimum of the functional E on P(K), for a given
compact set K in Rd, is usually called the (Wiener) capacity of K (see Section 6.1 for
the general weighted setting).

Coming back to the energy approximation property in Section 1.1 we will also show,
in Section 3.3, that the approximating sequence in question can be constructed quasi-
explicitly.

1.3 Relations to Bernstein-Markov measures, orthogonal polynomials and Ull-
man’s criterion

Now specialize to the two-dimensional case and identify R2 with C. Then the Gibbs
measure (1.3) may, for φ = 0, be expressed as

µ
(N)
βN

:=
1

ZN,βN

∣∣∣D(N)
∣∣∣pN µ⊗N0 , pN := 2

1

TN (N − 1)
(1.10)

where D(N)(z1, ..., zN ) denotes the Vandermonde determinant, i.e. the polynomial on CN

defined by
D(N)(z1, ..., zNk) =

∏
1≤i<j≤N

(zi − zj) = det
1≤i,j≤N

(zj−1
i )

Accordingly, the corresponding partition function ZN,TN is equal to the LpN -norm of
D(N). More generally, introducing an exterior potential φ corresponds to replacing the
LpN− norms with weighted norms, i.e replacing µ0 with e−T

−1
N φµ0. Note that for a fixed

p, the corresponding TN , tend to zero as N → ∞, i.e. a fixed p induces a vanishing
limiting temperature T (in terms of the mean field setup in the previous section). A
notion of a phase transition for the Coulomb gas with respect to the parameter p – from
a liquid to a crystalline phase, as p is increased towards a critical value – has been
discussed extensively in the physics literature, supported by numerical studies [54] (and
related to microscopic large deviation principles in [52, Section 4.6]). But this notion is
different than the zeroth-order phase transitions discussed here, where the parameter T
is decreased towards zero.
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The Coulomb gas has been studied extensively in connection to Random Matrix
Theory, in particular in the case when µ0 is Lesbegue measure on R ⊂ R2 with φ of
sufficent growth at infinity and p = 2. The corresponding Gibbs measure µ(N)

βN
then arises

as the eigenvalue distribution of a Hermitian matrix [46, 41, 31] (see also [28, 1] for the
case of general p). The asymptotics of the corresponding free energies, as TN → 0 was
established in [38, Thm 2.1] and the LDP in [4].

We recall that a measure µ0 in C is said to satisfy a Bernstein-Markov inequality with
weight φ if, for any given ε > 0 there exists a constant C such that

sup
S0

|pk|2e−kφ ≤ Ceεk
∫
C

|pk|2e−kφµ0 (1.11)

for all polynomials pk on C, where k denotes the degree of pk (see the survey [17]). For
such a measure the existence of the limit fφ(0) of the corresponding N -particle free
energies at T = 0 was established in [15]. In fact, if the Bernstein-Markov inequality
holds for all weights then the LDP holds at zero temperature, by the results in [5] (see
also [16] for a different approach and [57] for relations to random polynomials). In
view of Theorem 1.3 this means that the Coulomb gas on a measure µ0 with compact
support S0, which satisfies the weighted Bernstein-Markov inequality for (S0, φ) – but
which is not determining for (S0, φ) – exhibits a zeroth-order phase transition at T = 0. A
general procedure for constructing such measures is explained in [17], where a concrete
example of Totik on the interval is reported (see the appendix). We thus arrive at the
following corollary, exhibiting a zeroth-order phase transition:

Corollary 1.4. Let K be a compact domain in C with smooth boundary or equal to a
disjoint finite union of intervals in R. For any given continuous function φ on K there
exists a measure µ0 with support K such that µ0 is absolutely continuous wrt dx and
such that the corresponding 2d Coulomb gas satisfies a LDP for any T ∈ [0,∞[ with a
rate functional which is discontinuous at T = 0 in the sense of Gamma-convergence.
More precisely, in the case φ = 0, the function

f(T ) := − lim
N→∞

TN
N

log

∫
RN

∣∣∣D(N)
∣∣∣ 2
TNN µ0

⊗N T = lim
N→∞

TN

is well-defined on [0,∞[, continuous on ]0,∞[, but discontinuous at T = 0 (and similarly
for a general φ).

The property of being determining can, for a non-polar measure µ0, be viewed as a
potential-theoretic refinement of the Bernstein-Markov inequality, where a polynomial
pk of degree k is replaced by eT

−1ψµ for a general measure µ and positive number T−1,
playing the role of k. This was first shown in [12] in a general complex geometric setting.
In Section 4 we will extend these notions to the case of general pair interaction potentials
(the notion of Bernstein-Markov measures for Riesz interaction was introduced in [18]).

1.3.1 Orthogonal polynomials and Ullman’s criterion

We recall that the Bernstein-Markov-inequality has it roots in the theory of orthogonal
polynomials on R. In fact, for a measure µ0 on R with compact and regular support
the Bernstein-Markov inequality is equivalent to the notion of regular measures on R
introduced in [55], whose definition involves the asymptotics of the degree N orthogonal
polynomials pN associated to µ0 (see the proof of Prop 4.13). In the case when the
support of µ0 is [−1, 1] this notion goes back to Ullman. He also introduced the notion
of determining measures on [−1, 1] to get a sufficient condition for regularity, known as
Ullman’s criterion in the general setting of measures on R [55]. In view of Theorem 1.2
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Ullman’s criterion naturally fits into the probabilistic setting of the Coulomb gas, since it
is equivalent to the continuity properties discussed above. It should be pointed out that
Ullman originally used a different, but equivalent, capacity formulation of determining
measures on [−1, 1] (see Prop 6.2 for the relation to the present setting). The definition
of determining measures in the present general potential-theoretic setting on Rd mimics
the definition used in the complex-geometric setting of [12], which goes back to [43].

1.4 Towards the case of general pair interactions

Finally, let us make some remarks about the case when the Gibbs measure (1.3) is
defined by a general proper lsc function W . Then it essentially follows from [29, 7, 32]
that the corresponding LDP holds for T > 0 if and only if the corresponding free
energy functional FT is a proper lsc functional (see Theorem 4.2). However, it seems
challenging to find a general potential-theoretic characterization of measures µ0 such
that the corresponding LDP also holds at T = 0. In view of Theorem 1.2 (and its
generalization to Riesz gases 4.8) the problem of characterizing measures µ0 such that
the LDP is “well-behaved at T = 0” should be more accessible also in the general case.
It seems likely that the answer should be given by determining measures for rather
general interactions W , but we shall not pursue this here and only point out that in
the case when W (x, y) = Wα(x, y) + K(x, y), where Wα denote the Riesz kernel and
the perturbation K(x, y) is continuous on S0 the present results (concerning the case
K = 0) directly generalize. Indeed, since K(x, y) is continuous it influences neither the
energy approximation property, nor the determining property appearing in Theorem 1.1.
For example, this situation naturally appears in electrostatics in R3 with the screened
Coulomb interaction (Yukawa potential) W (x, y) = e−m|x−y|/|x− y| for a given positive
number m.

1.5 Further relations to previous results

The idea of studying the Gibbs measures corresponding to a general lsc pair inter-
action potential W , in the case T = 0, by letting T → 0 goes back to [41], which builds
on the variational approach introduced in [47] (where the case of a continuous W was
considered). In the main result of [41] it is claimed that, in general, any limit point µ
in P(Rd) of the empirical measure δN minimizes the corresponding energy functional
E. However, in the case of the Coulomb gas this is contradicted by the example in
Theorem 4.12, where µ0 has support [−1, 1] and is absolutely continuous wrt dx (see also
Example 4.4 for a simple counter-example in the weighted setting). The mistake in [41]
appears to be the claimed inequality [41, 3.12], which, in general, requires assumptions
on µ0.

The “only if” direction in Theorem 1.3 was first shown in the complex-geometric
setting of compact Kähler manifolds X in [9] and generalized to the non-compact setting
pluripotential setting of Cn in [9], using a compactification argument. See also [35]
for a far-reaching generalization of [8, Theorem 2.1] to general measures not charging
pluripolar subsets and bounded weights.

It should also be pointed out that there are particular situations where the rate of the
convergence of µT,φ towards the equilibrium measure µ(S0,φ) can be quantified. In the
setting of a compact Kähler manifold X, studied in [8], the rate of convergence of the L∞-
norms of the corresponding potentials ψµT,φ was shown to be of the order O(T ) log T−1.
In particular, the case when X is the Riemann sphere implies (by a compactification
argument, as in [9]) that such a rate holds for the Coulomb gas in R2 with µ0 = dx if φ has
strictly super logarithmic growth. More general and precise quantitative convergence
results for Coulomb gases in any dimension have very recently been established in
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[2] (see also [1, formula 18] for an explicit integral formula for µT,φ in the case of the
Coulomb gas on R with φ(x) = x2 and µ0 the Gaussian measure, so that µT,φ converges,
as T → 0, to Wigner’s semi-circle law). However, it should be stressed that in the general
setting of determining measures µ0, studied in the present paper, one can not hope for
quantitative rates, unless regularity assumptions on µ0 are imposed.

1.6 On the proofs

The core analytic result is Theorem 1.3 and its general form 3.10 (which applies to any
Riesz interaction with α ≤ 2), saying, in particular, that the measure µ0 is determining
iff the corresponding free energy f(T ) is continuous as T → 0. The proof of the “if”
direction” mimics the variational proof of a similar result in the complex geometric
setting on a compact Kähler manifold X [8, Theorem 2.1] (which applies, in particular, to
the case d = α = 2 by taking X to be the Riemann sphere). An important ingredient is the
potential-theoretic analog of the Bernstein-Markov property for determining measures
in Prop 3.6 (proved in [12] in the complex geometric setting). In the present setting
we also have to deal with the non-compactness of Rd and the non-local properties of
the fractional Laplacian −(−∆)α/2 (for α < 2). In the case when d = α = 2 the “only if”
direction could alternatively be deduced from the generalization in [35] of [8, Theorem
2.1] to arbitrary measures µ0, not charging pluripolar subsets. However, the proof
in [35] (which is not variational) appears to exploit some special local features of the
complex geometric setting, which do not seem to apply when α 6= 2. Here we instead
use a variational approach, which has the virtue of only demanding some rather general
axioms of potential theory (compare Remark 2.1).
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1.8 Organization

In Section 2 we introduce the weighted potential theory needed for the proofs of
the main analytic results. In particular, a dual representation of the energy E(µ) as a
Legendre transform is given. In Section 1.1 we reformulate the Energy-Approximation
Property in terms of Gamma-convergence of the free energy functional FT , which in
turn is a given a dual formulation using Legendre transforms. Then in Section 3.2
the proofs of the main analytic results for Riesz interactions are given, by relating
Gamma-convergence of FT to determining measures. The connections to large deviation
principles is studied in Section 4 and connections to Bernstein-Markov inequalities are
explored. The results are then reformulated in terms of phase transitions in Section 5.
In the appendix some construction of measures µ0 are provided, which illustrate the
sharpness of the main results.

1.9 General notation

We will denote by Pc(Rd) the space of all compactly supported probability measures
on Rd and by P(K) the subset consisting of measures supported on a compact subset K
of Rd. We endow the space P(K) with the weak topology. Throughout the paper we fix a
probability measure µ0 with compact support, denoted by S0. Given a compact subset K
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of Rd we will denote by C(K) the space of all continuous functions on K.
We recall that a function f on a topological space X, taking values in ]∞,∞] is lower

semi-continuous (lsc) if {f ≤ α} is closed for any α ∈]∞,∞]. We will say that f is proper
lower-semicontinuous under the further assumption that f is not identically equal to
∞ (following standard terminology in convex analysis). If X is compact and f is lsc
the latter condition equivalently means that infX f is finite. Hence, under the map
f 7→ f − infX f the space of proper lsc functions on X corresponds to the space of rate
functionals, in the sense of large deviation theory. Finally, it will be convenient to work
with inverse temperatures βN := T−1

N and β := T−1 rather than temperatures.

2 Weighted potential theory and Legendre transforms

In this section we develop the weighted potential theory needed for the proofs of the
main results. The key result is the Legendre transform representation of the energy
in Theorem 2.12. The presentation is inspired by the complex-geometric framework in
[11, 12, 13], which covers in particular the Coulomb case in R2 (see also [51, 26] for
different points of view).

2.1 Potential-theoretic preliminaries

We start by recalling some basic potential-theoretic results. We follow the classical
reference [42], but with a different sign convention for the kernels and the potentials
(ensuring that the potentials are subharmonic in the Coulomb case).

We will denote by Wα(x, y) the Riesz kernel with parameter α ∈]0, d[, i.e. the lsc
function on Rd ×Rd defined by

Wα(x, y) :=
1

|x− y|d−α
.

When d = 2 we will allow the case α = d = 2, by setting

W2(x, y) = −2 log |x− y|,

The definition ensures that when d ≥ 2 the function W2(x, y) is a (up to multiplication
by a negative constant) a Green’s kernel for the Laplacian ∆ on Rd. Accordingly, we
will refer to the case α = 2 as the “Coulomb case” and the special case α = 2 = d the
“logarithmic case”.

The energy E(µ) of a measure µ ∈ Pc(Rd) is defined by

E(µ) =
1

2

∫
Rd
Wαµ⊗ µ ∈]−∞,∞] (2.1)

Given a measure µ on Rd we will denote by ψµ its potential:

ψµ(x) := −
∫
Rd
Wα(x, y)µ(y),

Since Wα is symmetric the following symmetry property holds:∫
ψνµ =

∫
νψµ (2.2)

if µ and ν are in Pc(Rd) and of finite energy. Moreover, Wα defines a strictly positive
definite bilinear form in the following sense:

−
∫

(ψµ − ψν)(µ− ν) ≥ 0 (2.3)
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with equality iff ν = µ. This implies that the map µ 7→ ψµ is injective and we will denote
the inverse operator by ∆α, which coincides with the ordinary Laplacian when α = 2. 1

A bounded set S is said to be polar if S ⊂ {ψµ = −∞} for some measure µ (equivalently,
S has vanishing outer capacity) 2. If S is compact then S is polar iff E(µ) =∞ for any
measure µ ∈ P(S). A property is said to hold quasi-everywhere (q.e) if it holds on the
complement of a polar set.

If µj ∈ P(K) for a compact subset K and µj → µ weakly, then, for any given x ∈ Rd

lim sup
j→∞

ψµj (x) ≤ ψµ(x),

as follows directly from the lower semi-continuity of W . Moreover, for q.e. x in Rd,

lim sup
j→∞

ψµj (x) = ψµ(x) (2.4)

(see [42, Therem 3.8, page 190]). As a consequence [42, page 191, Remark 2],(
lim sup
j→∞

ψµj

)∗
= ψµ (2.5)

on all of Rd, where the limsup is defined point-wise and f∗ denotes the upper semi-
continuous regularization of a function f on Rd :

f∗(x) = sup {f(xj) : xj → x} ,

where the sup runs over all sequences xj converging to x. We will be mainly interested
in the case when α ≤ 2, since the following domination principle then applies [42, Thm
1.29]: for a given constant C

ψν ≤ ψµ + C µ− a.e =⇒ ψν ≤ ψµ + C, (2.6)

assuming that µ has finite energy.

Remark 2.1. When α ≤ 2 it is also known that the space of potentials is preserved under
the max operation [42, Thm 1.31] (the case α = 2 follows directly from subharmonicity).
But for our purposes it will be enough to use the domination principle. This should be
useful in order to extend Theorem 3.11 to more general kernels W (x, y) appearing in
axiomatic potential theory, where the domination principle (aka the second maximum
principle) is often is taken as an axiom [42, Page 364]. For example, the domination
principle holds when W (x, y) is the potential kernel of a Markov process satisfying
Hunt’s hypothesis (H) [30] (then −ψµ is called the excessive function associated to µ).
But we shall not go further into this here.

In order to simplify the notation we we will omit the dependence on α of the potential-
theoretic objects associated to the Riesz kernel Wα(x, y), such as the energy E(µ),
potentials ψµ and the corresponding inverse operator ∆ (which coincides with the
Laplacian when α = 2). As α will be fixed this should not cause any confusion.

1In general, ∆α is a fractional Laplacian ∆α := −(−∆)
α
2 in the sense of functional calculus, which in the

case α ∈]0, 2] corresponds precisely to the generator of a symmetric stable Levy process [19, 20].
2This terminology is standard, but different from the one in [42], where the terminology polar is used for

the sets which are precisely equal to some {ψµ = −∞} (such sets are called completely polar in modern
terminology).
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2.2 Function spaces

We will use the notation

Lc(Rd) :=
{
ψ : ψ = ψµ + C, µ ∈ Pc(Rd), C ∈ R

}
.

We endow the space Lc(Rd) with the L1
loc-topology induced from the inclusion Lc(Rd) b

L1
loc(R

d). Denote by Ec(Rd) the subspace of Lc(Rd) satisfying E(∆ψ) < ∞. Given a
compact subset K of Rd we will write LK(Rd) and EK(Rd) for the subspaces of Lc(Rd)
and Ec(Rd), respectively, obtained by demanding that ∆ψ be a probability measure
supported in K. The definitions are made so that, for any compact S, we have a bijection
(whose inverse is ∆) :

µ 7→ ψµ P(S)←→ LS(Rd)/R (2.7)

Proposition 2.2. (Compactness) Let S be a compact subset of Rd and fix a closed
ball B containing S. Then the subspace of LS(Rd) consisting of all ψ which are “mean
normalized”, i.e. ∫

B

ψdx = 0,

is compact wrt the L1
loc-topology. Moreover, given a compact subset K there exists a

constant C such that

sup
K
ψ ≤

∫
B
ψdx∫
B
dx

+ C (2.8)

on LS(Rd).

Proof. Step 1: Compactness for “mean-normalized functions”
The compactness is a consequence of the following general properties of the kernel

−Wα : it is symmetric, usc, continuous on the complement of the diagonal, in L1
loc and

the corresponding integral operator yields a bijection, as in formula (2.7). To see this
take any µ ∈ P(S) and first observe that∫

B

ψµdx =

∫
fµ

for the continuous function f := ψν with ν := 1Bdx/
∫
B
dx (using the symmetry prop-

erty (2.2)). Now decompose any mean-normalized ψ as

ψ =

(
ψ +

∫
fµ

)
−
∫
fµ

Since ψ is normalized the bijection (2.7) shows that the first term equals ψµ, where
µ := ∆ψ. Let now ψj be a sequence in LS(Rd) and set µj := ∆ψj . Since S is compact the
space P(S) is also compact and hence there exists µ ∈ P(S) such that µj → µ in P(S),
after perhaps passing to a subsequence. All that remains is thus to verify that ψµj → ψµ
in L1

loc. To this end first note that, since −Wα is usc, we have

lim sup
j→∞

ψµj ≤ ψ

Moreover, by symmetry, ∫
B

ψµjdx =

∫
fµj →

∫
fµ :=

∫
B

ψdx

since f is continuous. But then it follows from general integration theory that ψµj → ψ

in L1(B, dx). Finally, the L1
loc convergence on the complement of S follows directly from

the fact that Wα is continuous on the complement of the diagonal.
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Step 2: the upper bound on supK ψ

By the previous step it will be enough to prove that the functional ψ 7→ supK ψ is usc
on LS(Rd). To this end first observe that, if µj → µ in P(S) and xj → x then

lim supψµj (xj) ≤ ψµ(x),

using that the kernel −Wα is usc (see [42, Thm 1.3]). As consequence, if ψj → ψ∞ in
LS(Rd) then the previous inequality still holds if ψµj and ψµ are replaced by ψj and ψ∞,
respectively (using the decomposition argument in the previous step). Now, taking xj so
that ψj(xj) = supK ψj concludes the proof of Step 2.

2.3 Energy functionals on P(S) and the equilibrium measure of a weighted set
(S, φ)

If µ has compact support and φ is a continuous function on Rd we set

Eφ(µ) := −1

2

∫
ψµµ+

∫
φµ ∈]−∞,∞] (2.9)

The definition is made so that E0(µ) := E(µ) is the classical energy of µ (formula (2.1)).

Proposition 2.3. Let S be a non-polar subset. Then the restriction of E to P(S) is lsc
and strictly convex. Hence, so is Eφ for any given continuous function φ.

Proof. This follows from (and is equivalent to) the positivity (2.3).

Thus, if S is a non-polar compact subset, then Eφ admits a unique minimizer µ(S,φ)

on P(S), which is called the equilibrium measure of the weighted set (S, φ).
Given a non-polar compact weighted set (S, φ) it will also be convenient to consider a

normalized version of the functional Eφ on P(S) defined by

Eωφ := Eφ − inf
P(S)

Eφ, (2.10)

which is invariant under φ 7→ φ+ C for any constant C.

Remark 2.4. The notation is inspired by the corresponding complex-geometric setup,
using the notation in [5, 9], applied to the special case when d = α = 2. In this case,
when φ is expressed as the restriction to S of a function with logarithmic growth in
C, the symbol ωφ denotes the signed measure ωφ := ∆φ (extended by zero from C to
the Riemann sphere) and Eωφ is the corresponding pluricomplex energy. Since the
normalized energy, defined by formula (2.10), is invariant under φ 7→ φ+ C it depends,
indeed, only on ∆φ.

Lemma 2.5. Given a weighted non-polar compact subset (S, φ) the potential ψµ ∈ Lc(Rd)
of the equilibrium measure µ := µ(S,φ) has the following property: there exists a constant
C such that

(i)ψµ ≤ φ+ C q.e. onS

(ii)ψµ ≥ φ+ C onSµ,

where Sµ denotes the support of µ.

Proof. This goes back to Frostman and is proved in [26, Theorem 1.2] when S = Rn and
in [51] in the logarithmic case. The proof in the general case is essentially the same and
follows from rather general variational considerations. Indeed, one first observes that
uµ := −(ψµ − φ) is a sub-gradient for the functional Eφ(µ). Hence, if µ minimizes Eφ on
P(S), then 〈uµ, ν − µ〉 ≥ 0 for any ν ∈ P(S) of finite energy. Applying this inequality to
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ν = µ(1 + f) for any f ∈ L∞(µ) such that
∫
fµ = 0 and ‖f‖L∞(µ) < 1 gives 〈uµ, fµ〉 ≥ 0.

Replacing f with −f yields the reversed inequality, showing that 〈uµ, fµ〉 = 0 for any f
such that

∫
fµ = 0. But this implies that uµ = −C µ-a.e. for some constant C. Since, u is

lsc it follows that uµ ≤ −C on Sµ. As a consequence, 〈uµ, ν〉 ≥ −C for any ν ∈ P(S) of
finite energy, which implies uµ ≥ −C q.e. on S (using that uµ is lsc and that any subset
of positive capacity has a compact subset of positive capacity).

To a compact weighted set (S, φ) we now attach the following function in LS(Rd) :

ψ(S,φ) := ψµ(S,φ)
− C (2.11)

where C is the constant appearing in the previous lemma.

2.4 The projection operator PS

In this section we assume that α ≤ 2 (so that the domination principle (2.6) applies).
Now assume given a weighted set (S, φ), i.e. a subset S of Rd and a continuous

function φ ∈ C(S). Consider the function

(ΠSφ)(x) := sup
Lc(Rd)

{ψ(x) : ψ ≤ φ on S}

Its upper semi-continuous regularization will be denoted by

PSφ := (ΠSφ)∗ (2.12)

Proposition 2.6. Let (S, φ) be a weighted subset and assume that S is compact and
non-polar. Then

ψ(S,φ) = PSφ (2.13)

In particular, ∆(PSφ) is the unique minimizer of the functional Eφ on P(S). Moreover, as
a consequence of (2.13),

PSφ ∈ ES(Rd)

and the operator PS satisfies the following “orthogonality relation”∫
(φ− PSφ) ∆(PSφ) = 0. (2.14)

More generally, if S is bounded and equal to the union of increasing compact subsets,
then PSφ ∈ ES(Rd) for any given continuous function φ on Rd.

Proof. Combining Lemma 2.5 with the domination principle (2.6) gives ΠSφ ≤ ψ(S,φ)

and hence PSφ ≤ ψ(S,φ). Indeed, let ψ be a candidate for the sup defining ΠSφ. By
Lemma (2.19) ψ ≤ φ ≤ ψ(S,φ) on the support of ∆(ψ(S,φ)). Hence, the domination
principle implies that ψ ≤ ψ(S,φ) everywhere. Moreover, since, by Lemma 2.5, ψ(S,φ) ≤ φ
on S −N where N is polar we also have ψ(S,φ) ≤ PS−Nφ. The proof is thus concluded
by invoking the fact that PT∪Nφ = PTφ for any bounded Borel set T and polar subset N
(applied to T := S −N). To see this first note that, trivially, PT∪N ≤ PT . To prove the
converse fix ψN ∈ Lc(Rd) such that ψN = −∞ on N and ψN ≤ φ on T . The existence
of ψN follows form the fact that, by definition, any polar subset N is contained in the
−∞-locus of some potential ψN . Using the compactness of S we can then arrange that
ψN ∈ Lc(Rd) and ψN ≤ φ on S and hence also ψN ≤ φ on T . Thus, for any ψ ∈ Lc(Rd)
such that ψ ≤ 0 on T we get ψε := (1 − ε)ψ + εψN ≤ φ on T ∪ N . Hence, ψε ≤ ΠT∪Nφ.
Letting ε→ 0 gives ΠTφ ≤ ΠT∪Nφ on the complement of the polar subset {ψN = −∞}
and hence PTφ ≤ PT∪Nφ everywhere, as desired (using that if ψµ ≤ ψν + C q.e. for a
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measure ν of finite energy and a constant C, then ψµ ≤ ψν + C everywhere, as a special
case of the domination principle, since ν does not charge polar subsets).

Finally, if S it the union of increasing compact subsets Ki then PSφ ≤ ψi := PKiφ for
any i. By the previous step ψi is a decreasing sequence in ES(Rd) and ψi ≤ φ on Ki −Ni,
where Ni is polar. Hence, by Prop 2.2, ψi converges in L1

loc to ψ∞ ∈ ES(Rd), where
ψ∞ ≤ φ on S −N , where N is the union of the polar sets Ni and hence polar (since the
outer capacity is sub-additive). This means that PSφ ≤ ψ∞ and ψ∞ ≤ PS−Nφ. Since, as
explained in the proof of the previous step, PS−Nφ = PSφ this concludes the proof.

Lemma 2.7. Let S be a compact subset. The operator PS defines a (non-linear) increas-
ing concave operator from C(S) onto LS(Rd). Moreover, for any ψ ∈ Lc(Rd)

PSψ ≥ ψ

with equality if ψ ∈ LS(Rd). Hence, PS is a projection operator, i.e. P 2
S = PS .

Proof. It follows directly from the definitions that φ0 ≤ φ1 implies that ΠSφ0 ≤ ΠSφ1 and
hence also PSφ0 ≤ PSφ1, i.e. PS is increasing. Concavity of ΠS follows directly from
the definition as a sup of linear functionals (defined by evaluation) and this implies the
concavity of PS , as well. Next, if ψ ∈ Lc(Rd) then ΠSψ ≥ ψ (since ψ is a candidate for the
sup defining ΠSψ). Since ψ∗ = ψ it follows that PSψ ≥ ψ. The fact that PSψ ∈ LS(Rd)

was proved in the previous proposition. Conversely, if ψ ∈ LS(Rd) then it follows, directly
from the domination principle, that ΠSψ ≤ ψ and hence also PSψ ≤ ψ ≤ PSψ, which
proves the projection property in question.

2.5 The primitive functional E on Lc( Rd) and its projection F to C(S).

The operator ∆ can be naturally identified with a one-form on the convex space
Lc(Rd) ∩ C(Rd) :

〈∆ψ, v〉 :=

∫
∆ψv.

According to the next proposition this one-form admits a primitive that we shall denote
by E , i.e. a functional on Lc(Rd) ∩ C(Rd) whose differential is the operator ∆ :

(dE)(ψ) = ∆ψ

Since Lc(Rd) ∩ C(Rd) is convex the primitive E is uniquely determined up to an overall
constant, which may be fixed by imposing the normalization condition

E(ψ0) = 0

for a fixed reference element ψ0 ∈ Lc(Rd) ∩ C(Rd). We will sometimes use a subscript
Eψ0

to indicate the dependence on the choice of ψ0. Integrating along an affine line
in Lc(Rd) ∩ C(Rd) suggests the following explicit formula, that we shall take as the
definition of Eψ0

on the whole space Lc(Rd) :

Eψ0(ψ) :=
1

2

∫
(ψ − ψ0) (∆ψ + ∆ψ0) ∈ [−∞,∞[

Moreover, it will be convenient to allow the reference ψ0 to be in Ec(Rd).

Proposition 2.8. The functional Eψ0
on Lc(Rd) has the following properties

(1) Eψ0
(ψ) > −∞ iff ψ ∈ Ec(Rd). Moreover, ∆ψj → ∆ψ in P(S) and E(∆ψj)→ E(∆ψj)

for S compact iff ψj → ψ in L1
loc and Eψ0

(ψj)→ Eψ0
(ψ)

(2) Eψ0
is usc on Lc(Rd)
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(3) Given ψ1, ψ2 ∈ Ec(Rd) we have

dEψ0
(ψ1 + t(ψ2 − ψ1))

dt |t=0
=

∫
∆ψ1(ψ2 − ψ1) (2.15)

(4) Eψ0
is concave on Lc(Rd)

(5) Eψ0 is strictly increasing on Ec(Rd) : if ψ ≤ Ψ, then Eψ0(ψ) ≤ Eψ0(Ψ) with equality
iff ψ = Ψ.

(6) The following cocycle property holds: for any triple ψi ∈ Ec(Rd) the difference

Eψ0
(ψ2)− Eψ0

(ψ1)

is independent of ψ0.

(7) For any c ∈ R we have Eψ0(ψ + c) = Eψ0(ψ) + c

Proof. To prove item 1 we may, by the cocycle property 6 proved below, assume that
∆ψ0 = ρdx for a continuous function ρ with compact support. Now decompose

Eψ0
(ψ)− 1

2

∫
ψ∆ψ = −1

2

∫
ψ0∆ψ +

1

2

∫
ψ∆ψ0 + C0

Since ψ0 is bounded on the support of ∆ψ the first term in the rhs above is finite and so
is the second one since ψ ∈ L1

loc. The same argument proves the convergence statement.
Item 2 also follows from the previous decomposition, using that W is usc, just as in the
proof of Prop 2.2. As for the formula in item 3 it follows directly from the symmetry (2.2).
Similarly, the concavity of Eψ0

follows from the fact that 〈∆u, u〉 ≥ 0 if u = ψ2 − ψ1 for
ψi ∈ Ec(Rd) (by the positivity (2.3)). That Eψ0

is increasing follows directly from item 3,
since ∆ψ ≥ 0 for any ψ ∈ Lc(Rd) and strictly increasing follows from the domination
principle when α ≤ 2. In the general case it follows from the strict concavity of Eψ0

,
which in turn follows from the strict positivity in (2.3)). The cocycle property in item 6

follows directly from expressing Eψ0
(ψ2)−Eψ0

(ψ1) as an integral on [0, 1] of the derivative
dEψ0

(ψ1 + t(ψ2 − ψ1))/dt and noting that, by item 3, the derivative is independent of ψ0.
Finally, item 7 also follows directly from item 3.

Remark 2.9. If ψ0 is normalized so that ψ0 = ψ∆ψ0
, then it follows directly from the

symmetry (2.2) that −Eψ0
(ψµ) = E(µ) + C0. However, it will be important to consider

the functional E defined on all of Ec(Rd).

Next, assume that α ≤ 2 (so that the domination principle (2.6) applies). Given a
weighted compact and non-polar set (S, φ), consider the following functional defined on
C(S) :

−F(S,φ)(u) := Eψ0
◦ PS(φ− u)− Eψ0

(PS(φ))

Equivalently, this means, by the cocycle property in Prop 2.8, that, if choose the particular
canonical reference weight

ψ0 := PS(φ), (2.16)

(canonically attached to the weighted set (S, φ)), then

F(S,φ)(u) = −Eψ0
◦ PS(φ− u). (2.17)

This choice of reference ψ0 ensures the normalization F(S,φ)(0) = 0.
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Proposition 2.10. The functional F(S,φ) is convex and Gateaux differentiable on C(S)

and its differential at u is represented by the measure ∆ (PS(φ− u)), i.e.

dF(S,φ)(u+ tv)

dt |t=0
=

∫
v∆ (PS(φ− u))

for any v ∈ C(S).

Proof. This can be shown directly using the orthogonality relation (2.14) (as in the
complex geometric setting in [11], which covers the logarithmic case d = α = 2).
Alternatively, by Theorem 2.12 below F(S,φ) is the Legendre-Fenchel transform of the
strictly convex functional Eωφ . Hence, by basic convex duality theory F(S,φ) is Gateaux
differentiable and the differential at u is the minimizer of Eωφ−u , i.e. µφ−u, which is equal
to ∆PS(φ− u), by Prop 2.6.

2.6 Energy and Legendre transforms

In this section we assume that α ≤ 2 or (so that the domination principle (2.6) applies)
and show that the functional F(S,φ) can be viewed as a Legendre-Fenchel transform of
Eωφ .

Lemma 2.11. Assume that, on S, φ = ψν , for a probability measure ν on S (which
implies that the canonical reference weight ψ0 := PSφ coincides with ψν). Then, for
any µ ∈ PS(Rd) such that E(µ) <∞, the corresponding normalized energy functional is
given by

Eωφ(µ) = Eψ0
(ψµ)−

∫
(ψµ − ψ0)µ. (2.18)

Proof. First rewrite

Eψ0(ψ) =
1

2

∫
(ψ − ψ0)∆(ψ − ψ0) +

∫
(ψ − ψ0)∆ψ0

Next, note that, in general, if µ and ν have finite energy, then there exists a constant C1,
depending on ν, such that

1

2

∫
(ψµ − ψν)∆(ψµ − ψν) =

1

2

∫
ψµ∆ψµ −

∫
ψµ∆ψν + C1 =: −Eφ(µ) + C1

using the symmetry (2.2) in the first equality. This shows that formula (2.18) holds up
to an over all constant C2. But the rhs in the formula vanishes for ψ = ψν and so does
Eωφ(ν), i.e. the minimum of Eωφ(µ) is realized for µ = ν, as follows from “completing
the square”. Hence, C2 = 0, as desired.

Before stating the next theorem we recall the general definition of the Legendre-
Fenchel transform. Let f be a function on a topological vector space V . The Legendre-
Fenchel transform f̂ of f is defined as following convex lower semi-continuous function
f̂ on the topological dual V ∗

f̂(w) := sup
v∈V
〈v, w〉 − f(v) (2.19)

in terms of the canonical pairing between V and V ∗. In the present setting we will
take V = C(S) and V ∗ =M(S), the space of all continuous functions and the space of
all signed Borel measures, respectively, on a compact topological space S. Then the
Legendre-Fenchel transform is involutive [25]. Given a compact subset S of Rd we will
denote by χP(S) the lsc functional on the space of all signed measuresM(S) on S b Rd

which is equal to 0 on P(S) and equal to ∞ on the complement of P(S) inM(S). The
definition is made so that the functional χP(S) + E(S,ωφ) onM(S) is equal to E(S,ωφ) if
µ ∈ P(S) and otherwise equal to∞.
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Theorem 2.12. Let S be a compact subset of Rd and φ a continuous function on S.
Consider the functional χP(S) + Eωφ on the spaceM(S) of all signed measures on S. Its
Legendre-Fenchel transform is given by

̂χP(S) + Eωφ = F(S,φ), (2.20)

where F(S,φ) is the functional defined in formula (2.17). Conversely,

χP(S) + Eωφ = F̂(S,φ) (2.21)

Moreover, for any µ ∈ P(S) such that E(µ) <∞

Eωφ(µ) = EPSφ(ψµ)−
∫

(ψµ − φ)µ (2.22)

Proof. In order to prove (2.20) and (2.21) it is, since the Legendre-Fenchel transform is
involutive onM(S), enough to prove (2.20), or equivalently that, for any given u ∈ C(S),

inf
P(S)

(
Eωφ(µ) + 〈u, µ〉

)
= EPSφ(PS(φ+ u)). (2.23)

Setting Φ = φ+ u and using that the inf above is attained at µ = ∆(PSΦ) (by Prop 2.6)
gives

inf
P(S)

(Eφ(µ) + 〈u, µ〉) = Eφ(∆(PSΦ)) + 〈Φ− φ,∆(PSΦ)〉 .

Rewriting the first term in the rhs as

Eφ(∆(PSΦ)) = EPφ(∆(PSΦ)) + 〈(φ− PSφ),∆(PSΦ)〉 ,

yields

inf
P(S)

(
Eωφ(µ) + 〈u, µ〉

)
= (EPSφ(∆(PSΦ))− Eφ((∆(PSφ))) + 〈Φ− PSφ,∆(PSΦ)〉 .

Using the orthogonality relation in Prop 2.6 reveals that Eφ((∆(PSφ)) = EPφ((∆(PSφ)).
Hence, by the previous lemma the first term in the rhs of the previous equation may be
expressed as

EPSφ(∆(PSΦ)) = EPSφ(Φ)− 〈(Φ− PSφ),∆(PSΦ)〉
Since the second term in the latter equation cancels the second term in former equation
we thus get

inf
P(S)

(
Eωφ(µ) + 〈u, µ〉

)
= EPSφ(Φ),

which coincides the right hand side in formula (2.23).
To prove the final statement we proceed essentially as above. First observe that, by

definition,
Eφ(µ) = EPSφ(µ) + 〈φ− PSφ, µ〉 .

Hence, applying the previous lemma to the weight PSφ, shows that there exists a
constant C (only depending on φ) such that

Eωφ(µ) = EPSφ(ψµ)− 〈ψµ − PSφ, µ〉+ 〈φ− PSφ, µ〉+ C =

= EPSφ(ψµ)− 〈ψµ − φ, µ〉+ C.

Now, evaluating the previous equality for µ = ∆(PSφ) and using that ψµ−PSφ is constant,
by Prop 2.6 (so that we can replace ψµ with PSφ in the rhs of the previous equation,
using item 7 in Prop 2.8) gives

0 = 0− 〈PSφ− φ,∆(PSφ)〉+ C.

Finally, by the orthogonality relation in Prop 2.6, it follows that C = 0, which concludes
the proof of the theorem.
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2.7 Regularity

In this section we assume that α ≤ 2. A weighted set (S, φ) will be said to be regular
if PSφ ≤ φ and a set S is said to be regular if (S, 0) is regular. A compact set K is said
to be locally regular if it is regular at any point x ∈ K, i.e. if (PK∩U0)(x) ≤ 0 for any
open ball U centered at x. In general, PSφ ≤ φ always holds in the interior of S (see the
beginning of the proof of Lemma 2.15).

Lemma 2.13. A non-polar weighted compact set (S, φ) is regular iff supS(PSφ− φ) = 0

iff PSφ = ΠSφ iff PSφ is continuous.

Proof. The first equivalence follows from the extremal definition of PSφ, combined with
Lemma 2.5 and Prop 2.6. To prove the second equivalence we note that if (S, φ) is
regular, then PSφ is a candidate for the sup defining ΠSφ and hence PSφ ≤ ΠSφ. Since
the reverse inequality always holds we conclude that PSφ = ΠSφ. Finally, let us show
(S, φ) is regular iff PSφ is continuous. First assume that (S, φ) is regular. By the previous
step PSφ = ΠSφ. Now, PSφ is, by construction, usc. Hence, ΠSφ is continuous iff it is lsc.
Accordingly, to prove that ΠSφ is continuous it is enough to show the following claim:
the sup defining ΠSφ can be taken over all continuous ψ ∈ Lc(Rd) satisfying ψ ≤ φ. To
this end first note that there exists a sequence ψj ∈ Lc(Rd) ∩ C(Rd) such that ψj → PSφ

in L1
loc and such that ψj(x) → PSφ(x) for any x (as follows from [42, Thm 1.11 or Thm

3.7]). Moreover, ψj may be taken to in LK(Rd) for some compact set K containing
S. Now, since (S, φ) is regular Prop 3.6 gives that the functional ψ 7→ supS(ψ − φ) is
continuous on LK(Rd). Hence, replacing ψj with ψ̃j := ψj − supS(ψj − φ) and using
that supS(PSφ − φ) = 0 we may as well assume that ψj ≤ φ. But then the point-wise
convergence of ψj towards PSφ proves the claim. Hence, PSφ is continuous. Conversely,
if PSφ is continuous, then PSφ ≤ φ q.e on S implies that PSφ ≤ φ everywhere on S, which
means that (S, φ) is regular.

Lemma 2.14. Let K be a non-polar compact set K. Then (K,φ) is regular for any
φ ∈ C(K) iff K is locally regular.

Proof. This is shown as in the complex setting [48, Prop 6.1]. First assume that K is
locally regular. Since φ is continuous we have that φ ≤ φ(x) + δ(ε) on an open ball Bε(x)

of radius ε centered at x, where δ(ε)→ 0 as ε→ 0. Hence,

PKφ ≤ PK∩Bε(x)φ ≤ PK∩Bε(x)(φ(x) + δ(ε)) ≤ PK∩Bε(x)0 + φ(x) + δ(ε).

Letting ε → 0 thus gives (PKφ)(x) ≤ φ(x), showing that (K,φ) is regular. Conversely,
assume that (K,φ) is regular for all φ ∈ C(K). Take a point x ∈ X and an open ball
B centered at x. Define a function φ on K by setting φ = 0 on K ∩ B and φ = PK∩B0

on K − B. The function φ is clearly usc and hence there exists a sequence φj ∈ C(K)

decreasing to φ. Now, if ψ is candidate for the sup defining ΠK∩B0, then ψ ≤ 0 on
K ∩ B and hence ψ ≤ ΠK∩B0 everywhere. As a consequence, ψ ≤ φ on K, which, in
turn, implies ψ ≤ PKφj ≤ φj for any j, using in the last equality that (K,φj) is assumed
regular. Hence, taking the sup over all such ψ and using that φj is continuous on K

gives PK∩B0 ≤ φj . Finally, letting j → ∞ we conclude that PK∩B0 ≤ 0 on K ∩ B, as
desired.

2.7.1 Compact domains

Now consider the case when K is a compact domain, i.e. K is the closure of an
open bounded set Ω. Following standard classical terminology Ω is said to be thin at
x0 ∈ ∂K := K−Ω if there exists some potential ψµ such that lim supx→x0

ψµ(x) < ψµ(x0),
assuming x ∈ Ω (see the definition and discussion in [42, page 307]).
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Lemma 2.15. Let K be a compact domain, i.e. K is the closure of an open bounded set
Ω. If Ω is non-thin at all boundary points, then (K,φ) is regular for any continuous φ.

Proof. Set ψ := PKφ. Then it follows from the continuity of φ that ψ ≤ φ in Ω. Indeed,
by definition ψ is the upper semi-continuous regularization (ΠKφ)∗ of the function ΠKφ,
which satisfies ΠKφ ≤ φ on K. Thus, given x ∈ Ω and using that any ball Bε(x) centered
at x of sufficiently small radius ε is contained on Ω, we deduce that

ψ(x) := lim
ε→0

sup
Bε(x)

(ΠKφ) ≤ lim
ε→0

sup
Bε(x)

φ = φ(x),

since φ is continuous. Finally, given x0 ∈ K − Ω, the assumption of non-thinness implies
that ψ(x0) ≤ lim supx→x0

ψ(x) ≤ φ(x0) since x ∈ Ω and φ is continuous.

The notion of thinness of a set E at a point x0 can equivalently be formulated in terms
of Wiener’s capacity criterion (see [42, Thm 5.2] and [42, Thm 5.10]), which, in turn, is
equivalent to the following capacity criterion ([42, formula 5.1.7]): for a given number
q ∈]0, 1[,

∞∑
m=1

Cα(E(m))

qm(d−α)
<∞, E(m) := E ∩

{
x ∈ Rd : |x− x0| < qm

}
, (2.24)

where Cα denotes the capacity corresponding to α (recalled in Section 6.1 in the ap-
pendix). Here we have assumed that we are not in the logarithmic case d = α = 2, where
a similar capicity criterion applies (see [42, Thm 5.6]).

Example 2.16. In the three-dimensional Coulomb case, d = 3 and α = 2, algebraic
cusps are non-thin at the vertex, while Lebesgue cusps are thin at the vertex [42, page
287]. These cusp as defined for a given m > 0, by the surfaces of revolution in R3 where
θ ≤ rm and θ ≤ e−m/r respectively (using planar polar coordinates). See also [37] for
more general results in the Coulomb case.

For general α ∈]0, 2] the capacity criterion above yields the following

Proposition 2.17. Let K be a compact domain in Rd satisfying the interior cone
condition, i.e. for any point x0 ∈ ∂K there exists a cone contained in K with a vertex at
x0. Then K is locally regular.

Proof. By the previous lemma it is equivalent to show that (PKφ)(x) ≤ φ(x) for any
φ ∈ C(K) and x ∈ K. Given x0 ∈ ∂K denote by Cx0

a cone in K with vertex at x0. Note
that it is enough to verify that interior of a cone Cx0

is non-thin at the vertex. Indeed,
since φ is continuous PKφ ≤ 0 in the interior of K and hence in the interior of Cx0

. Taking
a sequence of points xi in the interior of Cx0

converging towards x0 and exploiting that
Cx0

is non-thin at x0 it thus follows that PSφ(x0) ≤ lim supx→x0
PSφ(x) ≤ φ(x0), using in

the last inequality that φ is continuous. Finally, to verify that the interior of a compact
cone Cx0

is non-thin at x0 first observe that, since Wα is translationally invariant, we
may as well assume that x0 is the origin. But then E := Cx0

has the scaling property
that E(m) = qm · E(1). It thus follows from the scaling properties of the kernel Wα

that Cα(E(m)) = qm(d−α)Cα(E(1)) and hence the capacity criterion (2.24) is trivially
satisfied (for notational simplicity we have assued that we are not in the logarithmic
case d = 2 = α, where essentially the same argument applies).

2.8 Determining measures

The definition of (strongly) determining measures was given in Section 1.1. It may be
equivalently formulated as follows. A measure ν on Rd is said to be determining for a
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weighted set (S, φ) if for all ψ ∈ Lc(Rd)

sup
S
eψ−φ =

∥∥eψ−φ∥∥
L∞(S,ν)

A measure ν is said to be determining for S if ν is determining for (S, 0) and strongly
determining if ν is determining for (S, φ) for all φ ∈ C(S). Similarly we will say that ν is
(strongly) determining if it is (strongly determining) for its support.

Proposition 2.18. If µ0 does not charge polar subsets, has compact support S0 and is
(strongly) determining, then S0 is (locally) regular.

Proof. Since ψφ := PS0
φ ≤ φ q.e. and µ0 does not charge polar subsets it follows that

ψφ ≤ φ a.e. wrt µ0. By assumption this means that ψφ ≤ φ on S0, i.e. (S0, φ) is regular,
as desired.

Any compact weighted regular compact subset carries determining measures:

Proposition 2.19. Let (K,φ) be a regular weighted compact set. Then the correspond-
ing equilibrium measure µ(K,φ) is determining for (K,φ). As a consequence, if µ0 has
the property that µ(K,φ) is absolutely continuous with respect to µ0, then µ0 is also
determining for (K,φ).

Proof. Assume that ψ ≤ φ a.e. wrt µ(K,φ). Recall that, by Prop 2.6, µ(K,φ) = ∆(PKφ)

and φ = PKφ a.e. wrt to ∆(PKφ). Hence, by the domination principle (2.6), ψ ≤
PKφ everywhere. Finally, since (K,φ) is assumed regular it thus follows that ψ ≤ φ

everywhere, as desired.
This follows directly from the domination principle (2.6).

2.8.1 Compact domains

We will next consider the special case when S0 is a compact domain (i.e. S0 is the closure
of an open bounded set), using the following lemma:

Lemma 2.20. Lebesgue measure dx is strongly determining for any open subset U ⊂ Rd.
In other words, the measure 1Udx is strongly determining.

Proof. Fix a smooth compactly supported function ρ such that ρdx ∈ P(Rn) and set
ρδ := δnρ(x/δ). Now, if ψµ ≤ φ a.e. on U , then, for any given compact subset K of U ,
there exists a sequence εj → 0 such that ψj := ψµ ∗ ρj−1 ≤ φ+ εj on K. But ψj = ψµ∗ρj−1

and hence, by (2.5),
ψ(x) ≤ lim sup

j→∞
(φ(x) + εj) = φ(x)

for any x ∈ K and hence for any x ∈ U .

Note that in the Coulomb case, α = 2, the previous lemma follows directly from the
submean property of subharmonic functions.

Proposition 2.21. Let S0 be a compact domain, i.e. S0 = Ω̄, where Ω is an open
bounded set. If Ω is non-thin at all boundary points, i.e. at all points in X − Ω, then
µ0 := 1Ωdx is strongly determining for S0. In particular, if S0 satisfies the interior cone
condition (appearing in Prop 2.17), then 1Ωdx is strongly determining.

Proof. Assume that ψµ ≤ φ a.e. wrt 1Ωdx. Then, by the previous lemma, ψµ ≤ φ on Ω.
Now take x0 ∈ S0 − Ω. By the non-thinness assumption ψµ(x0) ≤ lim supx→x0

ψµ(x) for
any sequence of points x ∈ Ω converging towards x0. Since φ is continuous we deduce
that ψµ(x0) ≤ φ(x0), showing that µ0 := 1Ωdx is strongly determining.
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In particular, 1Ωdx is strongly determining if Ω is a bounded Lipschitz domain. More-
over, as shown next, the Hausdorff measure on the boundary ∂Ω of a bounded Lipschitz
domain is strongly determining for ∂Ω, in the Coulomb case.

2.8.2 Lipschitz hypersurfaces

Theorem 2.22. Consider the Coulomb case α = 2. The (d − 1)-dimensional Haus-
dorff measure µ0 on a Lipschitz hypersurface K in Rd without boundary is strongly
determining.

Proof. Denote by T be the closure of a bounded tubular neighborhood of K and decom-
pose it into two closed domains T± intersecting along K :

T = T−
⋃
T+.

By assumption, the domains T± may be taken to be compact Lipschitz domains. Given a
potential ψ in Rd we fix a constant C such that ψ ≤ C on T . Denote by f± the continuous
function on ∂T± which is equal to a given continuous function φ on K and equal to C on
∂T . We denote by h± the harmonic extension of f± to T±. The function h± is in C(T±),
as follows from the fact that T± satisfies the interior cone condition (see 2.17). Now, by
assumption, ψ ≤ f± almost everywhere with respect to the Hausdorff measure σ± on
∂T±. But then it follows from [27] that

ψ ≤ h±, in the interior ofT±. (2.25)

Accepting, this for the moment and denoting by h the continuous function on T which is
equal to h± on T± we get ψ ≤ h on T . Hence, since ψ is subharmonic, for any x ∈ K we
have

ψ(x) ≤ 1

|Bδ(x)|

∫
Bδ(x)

hdx

Letting δ → 0 and using that h is continuous and equal to φ(x) at x we conclude that
ψ(x) ≤ φ(x), as desired.

Finally, we note that the inequality (2.25) is a standard consequence of the result in
[27], saying, in particular, that for a Lipschitz domain D the harmonic measure νx on ∂D
is absolutely continuous wrt the (d− 1)-dimensional Hausdorff measure σ on ∂D, for any
x ∈ ∂D. Indeed, by the standard maximum principle for subharmonic functions

ψ(x) ≤
∫
νxψ (2.26)

if x is in the interior of D (this is immediate in the case when ψ is continuous in a
neighborhood of D and then general case then follows writing ψ as a decreasing limit
of such functions). Hence, applying (2.26) to D = T± and using that ψ ≤ f± almost
everywhere with respect σ± gives

ψ(x) ≤
∫
νxf± = h±,

proving (2.25).

Remark 2.23. The method of proof can be adapted to many other situations. Indeed, it
only requires the existence of a neighborhood T of K such that the harmonic measures
on the corresponding boundaries of T± are absolutely continuous wrt the corresponding
Hausdorff measures.
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3 Determining measures, Energy approximation and Gamma-
convergence

Given a probability measure µ0 with compact support S0 and a continuous function φ
on Rd the corresponding free energy functional Fφ,β at inverse temperature β ∈]0,∞] is
defined by the following functional on Pc(Rd) :

Fφ,β(µ) = Eφ(µ) +
1

β
Dµ0(µ), Eφ(µ) := E(µ) +

∫
φµ (3.1)

where Dµ0
denotes the entropy of µ relative to µ0 (also known as the Kullback–Leibler

Divergence), i.e.

Dµ0
(µ) :=

∫
Rd

log
µ

µ0
µ, (3.2)

when µ is absolutely continuous wrt to µ0 and otherwise Dµ0(µ) := ∞. We define
Fφ,∞ := Eφ. Note that

Fφ,β ≥ Eφ,

since Dµ0
≥ 0. We also recall that the functional Dµ0

is lower semi-continuous (lsc) on
P(K), for any given compact subset K [25].

Similarly, when replacing the energy Eφ with its normalized version Eωφ (2.10) we
will write

Fωφ,β := Eωφ(µ) +
1

β
Dµ0

(µ) = Fφ,β − inf
P(S0)

Eφ,

where S0 denotes the support of µ0. When φ = 0 we will simply use the notation
Fβ := Fφ,β = F0,β .

3.1 The Energy Approximation property vs Gamma-convergence of free ener-
gies

We recall the definition of Gamma-convergence, introduced by De Georgi (see the
book [21] for background on Gamma-convergence):

Definition 3.1. A family of functions Fβ on a topological spaceM is said to Gamma-
converge to a function F onM, as β →∞, if

µβ → µ inM =⇒ lim infβ→∞ Fβ(µβ) ≥ F (µ)

∀µ ∃µβ → µ inM : limβ→∞ Fβ(µβ) = F (µ)
(3.3)

A sequence (family) µβ as in the last point above is called a recovery sequence (family)
for µ. The limiting functional F∞ is automatically lower semi-continuous onM.

We first make the following simple observation:

Lemma 3.2. A measure µ0 satisfies the Energy Approximation Property (section 1.1) iff
the free energy Fβ Gamma-converges towards the energy E on P(K).

Proof. First suppose that the Gamma-convergence holds. Given µ ∈ E(µ) such that
E(µ) <∞ we take a recovery family µβ , i.e.

E(µ) ≥ lim sup
β→∞

Fβ(µβ).

Since Fβ ≥ E this directly implies the inequality (1.1) and hence the Energy Approxima-
tion Property. To prove the converse first observe that, since E and Dµ0

are lsc on P(K)

it is enough to show that for any E(µ) < ∞ there exists a recovery family, which, in
turn, is equivalent to finding a family µβ such that (i)µβ → µ in P(K), (ii)E(µβ)→ E(µ),
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and β−1Dµ0
(µβ)→ 0. Moreover, the latter condition may be replaced by the condition

that (iii)Dµ0
(µβ) < ∞. Indeed, by relabeling the family µβ we can then arrange that

Dµ0
(µβ) ≤ β1/2, say. Now, assuming that the energy approximation property holds, there

exists a family µβ satisfying the conditions (i) and (ii) and such that µβ = ρβµ0 for some
ρβ ∈ L1(µ0). For any positive integer j we set

µβ,j := max(ρβ , j)µ0/

∫
max(ρβ , j)µ0 ∈ P(K),

which satisfies Dµ0
(µβ,j) < ∞. Moreover, by the monotone convergence theorem,

E(µβ,j) → E(µβ) and µβ,j → µβ, as j → ∞. Hence, we can conclude using a standard
diagonal argument.

Gamma-convergence is stable under addition by continuous functionals, as follows
directly from the definition. We will make use of the following criterion for Gamma-
convergence on P(K), formulated in terms of the Legendre-Fenchel transform (Defini-
tion (2.19)):

Proposition 3.3. Let Fβ be a family of functions on the space P(K) of all probability
measures on a compact space K and extend Fβ by infinity to all ofM(K). Assume that

lim
β→∞

F̂β(φ) = f(φ)

for any φ ∈ C(X) and that f defines a Gateaux differentiable function on C(K). Then
Fβ Gamma-converges to f̂ onM(K) (the converse holds without any differentiability
assumption).

See [6] for the proof of the previous proposition. Unraveling definitions reveals that,
in the present setting, where Fβ is the free energy functional we have

lim
β→∞

F̂β(φ) = Ê(φ)

iff

lim
β→∞

inf
P(S0)

Fφ,β = inf
P(S0)

Eφ

Thus in order to establish the Energy Approximation property, or equivalently, the
Gamma-convergence of Fβ towards E, it is equivalent to establish the asymptotics above
for the infima of Fφ,β . for all continuous weights φ.

Remark 3.4. Lemma 3.2 still holds if the entropy Dµ0(µ) is replaced by any lsc functional
D̃ on P(K) with the property that D̃(µ) < ∞ implies that µ is absolutely continuous
with respect to µ0 and such that D̃ is finite on L∞(K)µ0 (using the same proof). But
in the proof of Theorem 3.10 we will (implicitly) exploit that the Legendre-Fenchel
transform of β−1Dµ0

has good monotonicity and convergence properties with respect to
β. Indeed, as is well-known, the Legendre-Fenchel transform of β−1Dµ0

(extended by
∞ to the spaceM(S0) of all signed measures on S0) is the functional on C(S0) defined
by u 7→ β−1 log

∫
eβuµ0, which increases to supX u as β → ∞. But the actual proof of

Theorem 3.10 does not explicitly invoke the Legendre-Fenchel transform, since we will
need to allow u to be non-continuous, namely of the form ψ − φ, where ψ is a potential.

3.2 Determining measures vs Gamma-convergence of the free energies

In this section we will assume that α ≤ 2 (so that the domination principle (2.6)
applies).
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Lemma 3.5. Assume given µ0 in P(Rd) not charging polar subsets and of compact
support S0. Then, for any φ ∈ C(Rd) and β ∈]0,∞[, the corresponding free energy
functional Fφ,β on P(S0) admits a unique minimizer µφ,β . Moreover, µφ,β = ∆ψφ,β , where
ψφ,β is the unique solution in ES0

(Rd) of the following equation:

∆ψ = eβ(ψ−φ)µ0 (3.4)

and we have

inf
M(S0)

Fωφ,β = sup
Ec(Rd)

Gφ,β = sup
ES0

(Rd)

Gφ,β = Gφ,β(ψφ,β) (3.5)

where Gφ,β is the following functional on LS(Rd), taking values in [−∞,∞[:

Gφ,β(ψ) := Eψ0
(ψ)− Iβ(ψ), ψ0 := PS0

(φ) (3.6)

where

Iβ(ψ) := β−1 log

∫
eβ(ψ−φ)µ0 (3.7)

(where we have suppressed the dependence on φ in the notation Iβ).

Proof. Step 1: supEc(Rd) Gφ,β = supES0
(Rd) Gφ,β = Gφ,β(ψφ,β)

To simplify the notation we will write Eψ0
= E . First observe that Iβ(ψ) > −∞

on Lc(Rd). Indeed, if Iβ(ψ) = −∞ then µ0 charges the polar set {ψ = −∞}, which
contradicts the assumption on µ0. Now fix any compact set S containing S0 and consider
the functional Gφ,β on LS(Rd). We note that Gβ is usc. Indeed, by Prop 2.8 E is usc
and so is −Iβ, by Fatou’s lemma. Moreover, Gφ,β(ψ + c) = Gφ,β(ψ) and hence it follows
from the compactness in Prop 2.2 that Gβ admits a maximizer ψβ. Since Iβ(ψ) > −∞
we have ψβ ∈ ES(Rd). All that remains is to verify that ψβ satisfies the equation (3.4)
(after perhaps shifting ψβ by a constant). To this end fix a continuous bounded function
u, u ∈ Cb(Rd), and set

g(t) := E(PS(ψβ + tu))− Iβ(ψβ + tu).

The maximum of the function g is attained at t = 0. Indeed, for any ψ ∈ ES(Rd) + C(S0)

we have that Iβ(PSψ) ≤ Iβ(ψ), using that PSψ ≤ ψ q.e. on S and hence a.e. with respect
to µ0 (since µ0 does not charge polar subsets). As a consequence,

E(PS(ψ))− Iβ(ψ) ≤ E (PS(ψ))− Iβ (PS(ψ)) := Gβ(PSψ)

In particular, since PSψ ∈ ES(Rd),

sup
ψ∈ES(Rd)+C(S0)

(E(PS(ψ))− Iβ(ψ)) ≤ sup
ψ∈ES(Rd)

Gφ,β = Gφ,β(ψφ,β).

Thus, restricting ψ in the lhs above to be in ψβ + Ru shows that the maximum of the
function g is, indeed, attained at t = 0. Moreover, by Prop 2.10 g(t) is differentiable
and hence g′(0) = 0 shows, using that PSψ = ψ, that the equation (3.4) holds when
integrated against any u ∈ Cb(Rd). Since a probability measure is uniquely determined
by its action on Cb(Rd) this conclude the proof of Step 1.

Step 2: infM(S0) Fωφ,β = supES0
(Rd) Gφ,β, where the infimum is realized precisely at

∆ψφ,β
Since Eωφ is convex and Dµ0

is strictly convex on the subset {Dµ0
<∞} ⊂ P(S0) (by

Jensen’s inequality) the functional Fωφ,β has at most one minimizer. By the previous
step it will thus be enough to show that µφ,β := ∆ψφ,β minimizes Fωφ,β . But this follows
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directly from the fact that−(ψµ−φ) is a subgradient for Eφ and log(µ/µ0) is a subgradient
for Dµ0

(by convexity). Finally, evaluating Fωφ,β at µφ,β and using formula (2.22) gives

Fωφ,β(µφ,β) = EPSφ(ψφ,β)−
∫

(ψφ,β − φ)µ+
1

β

∫
log eβ(ψφ,β−φ) = EPSφ(ψφ,β).

Finally, since eβ(ψφ,β−φ)(= ∆ψφ,β) is a probability measure we have that Iβ(ψβ,φ) = 0 and
hence EPSφ(ψφ,β) = Gφ,β(ψφ,β), which concludes the proof of Step 2.

Step 3: The solution ψφ,β of equation (3.4) is uniquely determined.
By the previous step ∆(ψφ,β) is the unique minimizer of Fωφ,β on P(S0). Hence,

ψφ,β is uniquely determined up to an additive constant. But, since, as explained in the
previous step, Iβ(ψβ,φ) = 0 the constant in question vanishes.

We next establish an approximate reversed Hölder type inequality for measures µ0

not charging polar subsets. The result mimics the logarithmic case, which is covered by
the complex-geometric setting in [12, Thm 1.14] and shows that µ0 is determining iff µ0

satisfies a potential-theoretic analog of the Bernstein-Markov inequality for polynomials:

Proposition 3.6. Assume that µ0 has compact support S0 and does not charge polar
subsets. Then the following is equivalent for a given continuous function φ :

• µ0 is determining for (S0, φ)

• For all ε > 0 there exist a constant C such that

sup
S0

eψ−φ ≤ C1/peε
∥∥eψ−φ∥∥

Lp(S0,µ0)
(3.8)

for any ψ ∈ LK(Rd) and p > 0.

As a consequence, if K is compact and (K,φ) is regular then the functional

LK(ψ) := sup
K

(ψ − φ)

is continuous on LS(Rd) for any given compact set S.

Proof. Given the general properties recalled in Section 2.1 and the compactness result
in Prop 2.2 the proof follows, more or less verbatim, from the proof of the corresponding
result in [12, Thm 1.14]. For completeness we provide the argument here.

Step 1: The functional LK is usc on LK(Rn) for any compact set K.
This is shown exactly as in the case φ = 0 appearing in the proof of Step 2 in Prop 2.2.
Step 2: If µ0 does not charge polar sets, then the functional Ip (formula (3.7)) is

continuous on LK(Rn) for any p > 0.
If ψj is a sequence of functions in LK(Rn) converging in L1

loc towards ψ, then, by (2.8)
and (2.4)

(i) sup
K
ψj ≤ C, lim supψj = ψ µ0 − a.e

since µ0 does not charge polar sets. The continuity of the functional Ip now follows from
a Hilbert space argument using convex combinations of fj := eψj−φ, by repeating the
argument in the proof of [12, Thm 1.14] word by word.

Step 3:In general, Ip is increasing in p and

lim
p→∞

Ip(ψ) = L∞(ψ) := log
∥∥eψ−φ∥∥

L∞(S,µ0)

Indeed, this follows from Hölder’s inequality and standard integration theory.
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Now, if µ0 does not charge polar sets, then, combining Step 2 and Step 3, reveals
that the functional L∞ is lsc. If µ0 is moreover determining then L∞ = LS0

and hence
L∞ is also usc continuous by Step 1 and hence continuous. To conclude the proof of the
inequality (3.8) it will be enough to show that fp := Ip −L∞ converges uniformly to 0 on
LS0

(Rd). Since fp(ψ + c) = fp(ψ) it is enough to prove this on the subspace of all mean-
normalized ψ. But since the latter space if compact (Prop 2.2) the uniform convergence
in question follows from Step 3, using Dini’s lemma. Conversely, if the inequality (3.8)
holds, then letting p → ∞ gives LS0

≤ L∞ on LS0
(Rd), i.e. µ0 is determining (since

trivially L∞ ≤ LS0
).

Finally, the last statement in the proposition is obtained by taking µ0 to be the
equilibrium measure of (K,φ) and using Prop 2.19.

We note that for any measurable function u on a measure space (S, µ0)

sup
µ0

u := log ‖eu‖L∞(S,µ0) ,

is called the essential sup of u on (S, µ0). Given a measure µ0 we now define the following
function on Rd, taking values in ]0,∞] :

(Πµ0
φ)(x) := sup

LS0
(Rd)

{ψ(x) : sup
µ0

(ψ − φ) ≤ 0}, (3.9)

where S0 denotes the support of µ0. Its upper semi-continuous regularization is denoted
by

Pµ0
φ := (Πµ0

φ)∗

This definition should be compared with definition of PSφ, in formula (2.12). However,
in general, Pµ0φ can be different from PS0φ, for the support S0 of µ0 (unless µ0 is
determining).

Remark 3.7. In the logarithmic case d = α = 2 the function Pµ0φ coincides with the
minimal carrier Green function [55] when φ = 0. For a general φ it coincides with the
quasi-plurisubharmonic envelope on Kähler manifolds X introduced in [35] (specialized
to the case when X is the Riemann sphere).

Lemma 3.8. Let µ0 be a measure on Rd which does not charge polar subsets and with
compact support S0 and φ a continuous function on Rd. Then

Pµ0
φ ∈ ES0

(Rd)

and
sup
µ0

(Pµ0φ− φ) = 0

Proof. Step1: Πµψ is locally bounded from above
Given a large ball B it is enough to show the existence of a constant C such that

δ(ψ) := sup
B

(ψ − φ)− sup
µ

(ψ − φ) ≤ C.

By Step 1 in the proof of Prop 3.6 the first functional in the lhs above is usc on LS0(Rd)

for any compact set B. Moreover, as explained in the proof of Prop 3.6 the second
functional is lsc for any measure µ0 not charging polar subsets. This means that the
functional δ(ψ) is usc on LS0(Rd) and satisfies δ(ψ + c) = δ(ψ) for any c ∈ R. By the
compactness of the subspace of LS0

(Rd) consisting of mean-normalized functions this
yields the existence of a constant C as above.

Step 2: Pµ0
φ ∈ ES0

(Rd) and supµ0
(Pµ0

φ− φ) = 0
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First we recall “Choquet’s lemma”: let {uα}α∈A be a family of real valued functions
on a metric separable space X (that we shall take to be Rd). Suppose furthermore that
this family is locally bounded from above. Then there exists a countable subset B of A
such that

(sup{uβ}β∈B)∗ = (sup{uα}α∈A)∗,

where sup{uβ} denotes the function on Rd defined as the point-wise sup. Thus, by
Choquet’s lemma, there exists a countable family of functions ψi, which are candidates
for the sup defining Pµφ, satisfying

(sup{ψi})∗ = (Pµφ).

Recall that, in general, a Borel subset S ⊂ Rd is called a µ0-carrier of a measure µ0

on Rd if µ(S) = µ(Rd), i.e. if µ0(Rd − S) = 0. Since supµ0
(Pµ0

ψi − ψi) = 0 we have
that ψi ≤ φ on a µ0-carrier Si. Denote by S the intersection of all Si. Then S is also a
µ0-carrier. Take a subset Kσ b S which is a union of increasing compact subsets of S
such that µ0(Kσ) = µ0(S) (the existence of Kσ follows from the fact that a Borel measure
µ0 is, in particular, interior regular). Since ψi ≤ φ on Kσ we have ψi ≤ PKσφ. Moreover,
by Prop 2.6, PKσφ ∈ LS0(Rd) and PKσφ ≤ φ q.e. on the µ0-carrier Kσ. Hence, Pµφ ≤
PKσφ ≤ Pµφ, using in the last inequality that PKσφ ≤ φ µ0-almost everywhere, since µ0

does not charge polar sets. This shows that Pµφ ∈ ES0(Rd) and supµ0
(Pµ0φ− φ) ≤ 0. But

then the extremal definition of Πµ0 forces supµ0
(Pµ0φ− φ) = 0.

We shall also need the following

Lemma 3.9. Suppose that K is compact and (K,φ) is regular. Then

inf
P(K)

Eωφ = sup
ψ∈Lc(Rd)

GK = sup
ψ∈LK(Rd)

GK , (3.10)

where
GK(ψ) := E(ψ)− sup

K
(ψ − φ). (3.11)

Moreover, PKφ is the unique maximizer of the functional GK subject to the normalization
supK(ψ − φ) = 0. Similarly, if µ0 has compact support and does not charge polar subsets,
then Pµ0

φ is the unique maximizer of the functional

G∞(ψ) := E(ψ)− sup
µ0

(ψ − φ), (3.12)

subject to the normalization supµ0
(ψ − φ) = 0.

Proof. By Theorem 2.12 the lhs in formula (3.10) is given by E(PKφ) which in turn
is given by GK(PKφ), by the regularity assumption. Moreover, if ψ ∈ Lc(Rd) and
supK(ψ − φ) = 0, then ψ ≤ PKφ (by the very definition of PKφ) and hence GK(ψ) ≤
GK(PKφ), since E is increasing (Prop 2.8). Moreover, the uniqueness in question follows
from the fact that E is strictly increasing. The corresponding results for G∞(ψ) are shown
in a similar way, now using that supµ0

(Pµ0φ− φ) = 0, by the previous lemma.

We are now ready for the proof of the core analytic result of the present paper:

Theorem 3.10. Let µ0 be a measure on Rd which does not charge polar subsets and
assume that µ0 has compact support S0. Given a continuous function φ on Rd the
following is equivalent:

(1) µ0 is determining for (S0, φ)
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(2) (S0, φ) is regular and
lim
β→∞

inf
P(S0)

Fφ,β = inf
P(S0)

Eφ (3.13)

(3) (S0, φ) is regular and the minimizers µφ,β of Fφ,β converge weakly towards the
minimizer µ(S0,φ) of Eφ as β →∞ (and then convergence in energy automatically
holds)

(4) (S0, φ) is regular and the solution ψβ,φ of the equation (3.4) converges towards
PS0φ in energy, as β →∞.

Proof. First note that since Fφ,β coincides with Fωφ,β up to an additive constant, which
is independent of β, it is equivalent to prove the theorem with Fφ,β and Eφ replaced by
Fωφ,β and Eωφ , respectively.

Step 1: 1 implies 2 and 3 and 4.
By Lemma 3.5

inf
M(S0)

Fωφ,β = sup
ES0

(Rd)

Gφ,β

and hence, by the previous lemma, the convergence (3.13) may be reformulated as

lim
β→∞

sup
LS0

(Rd)

Gβ = sup
ψ∈LS0

(Rd)

GS0
(3.14)

Now, if µ0 is determining for (S, φ0), then, by Prop 3.6, for any ε > 0 there exists a
constant C such that

sup
S0

(ψ − φ)− C/β − ε ≤ Iβ(ψ) ≤ sup
S0

(ψ − φ) + C/β (3.15)

Since the functional E is usc this immediately implies the convergence in item 2. More-
over, by compactness (Prop 2.2) we may, after perhaps passing to a subsequence,
assume that the maximizer ψβ,φ of Gφ,β converges towards a maximizer of GS0 . Hence,
by the previous lemma, ψβ,φ converges towards PS0φ, which combined with (3.15) gives
E(ψβ,φ) → E(PS0

φ). This implies (Prop 2.8) that Eωφ(µβ,φ) → Eωφ(∆PS0
φ) = Eω(µ(S0,φ)

and hence 2, 3 and 4 follow.
Step 2: 2 implies 1

First note that, since trivially, Iβ ≤ L∞ ≤ LS0
we have that

lim inf
β→∞

sup
LS0

(Rd)

Gβ ≥ sup
ψ∈LS0

(Rd)

G∞ ≥ sup
ψ∈LS0

(Rd)

GS0 (3.16)

Combined with (3.14) this means that if item 2 holds, then the inequalities above must
be equalities and hence

sup
LS0

(Rd)

G∞ = sup
ψ∈LS0

(Rd)

GS0
(3.17)

But this implies that Pµ0φ = PS0φ. Indeed, by definition, we have Pµ0φ ≥ PS0φ and since
LS0(PS0φ) = 0 = L∞(Pµ0φ) the equality (3.17) forces E(Pµ0φ) ≥ E(PS0φ). By the strict
monotonicity of E this means that Pµ0φ = PS0φ. Since, by definition, Pµ0φ and PS0φ are
defined as the upper semi-continuous regularizations of Πµ0φ and ΠS0φ, respectively, it
thus follows that

Πµ0
φ ≤ (Πµ0

φ)∗ = (ΠS0
φ)∗ ≤ φ

using that (S0, φ) is assumed regular in the last equality. Hence, µ0 is determining for
(S0, φ).

Step 3: The weak convergence in item 3 implies convergence in energy and items 4

and 2
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Assume that µφ,β converges towards µ(S0,φ). By compactness (Prop 2.2) this means
that there exist constants Cβ such that

ψβ,φ + Cβ → PS0
φ

in L1
loc. Since Lβ,φ(ψβ,φ) = 0 it follows that

lim
β→∞

Cβ = lim
β→∞

Lβ,φ(PS0
φ) = L∞,φ(PS0

φ) = LS0,φ(PS0
φ) = 0

using in the next to last equality that PS0
φ is continuous (by Lemma 2.13), since (S0, φ) is

assumed regular. Hence, ψβ,φ converges towards PS0
φ in L1

loc and the lower bound (3.16)
gives

lim inf
β→∞

E(ψβ,φ) ≥ E(PS0φ).

Since E is usc this shows that, in fact,

E(ψβ,φ)→ E(PS0
φ). (3.18)

Hence, item 4 holds. Now, by Lemma 3.5,

β−1Dµ0
(µβ,φ) =

∫
(ψβ,φ − φ)µβ,φ →

∫
(PS0

φ− φ)∆(PS0
φ) = 0

using (3.18) in the convergence step and the orthogonality relation (2.14) in the last
equality. All in all this means the weak convergence in 3 implies the convergence in
energy of µβ,φ, as well as the convergence of free energies in item 2.

Finally, combining the previous theorem with Prop 3.3 (and the subsequent discus-
sion) and Lemma 3.2 we arrive at the following result, which contains, in particular,
Theorem 1.1 and Theorem 1.2 stated in the introduction, except the LDP statement
proved in Section 4.1.

Theorem 3.11. Let µ0 be a measure on Rd which does not charge polar subsets and
assume that the support S0 of µ0 is compact. Then the following is equivalent:

(1) The measure µ0 is strongly determining

(2) S0 is locally regular and infP(S0) Fφ,β → infP(S0)Eφ, as β → ∞, for any given
φ ∈ C(S0).

(3) S0 is locally regular and the functional Fβ converges towards E, as β →∞, in the
sense of Gamma-convergence.

(4) S0 is locally regular and the measure µ0 has the Energy Approximation Property.

(5) S0 is locally regular and for any given φ ∈ C(S0) the measures µφ,β converge weakly
towards µ(S0,φ), as β →∞ (and then convergence in energy automatically holds)

3.3 Quasi-explicit approximations using finite energy weights φ

In this section we provide a constructive procedure for obtaining the approximation
in Theorem 1.1. To this end we assume, as before, that α ≤ 2 and consider generalized
weights

φ ∈ C(S) + ES(Rd)− ES(Rd).

(for the construction in question it is enough to work with C(S) + ES(Rd), but since it
requires not extra effort we will consider the more general setting). First recall that by
basic Hilbert space duality theory we have the following
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Lemma 3.12. Let S be a compact subspace of Rd. Then a function φ is in ES(Rd) iff
| 〈φ, µ〉 | < ∞ for all measures µ ∈ P(S) satisfying E(µ) < ∞. Moreover, if φ ∈ ES(Rd),
then the functional 〈φ, ·〉 is continuous wrt the weak topology on any sublevel set {E ≤ C}
in P(S).

Now, given a generalized weight φ ∈ C(S) + ES(Rd) − ES(Rd) we define the corre-
sponding weighted energy by

Eφ(µ) := E(µ) + 〈φ, µ〉

if E(µ) <∞ and otherwise Eφ(µ) :=∞.

Lemma 3.13. Let S be a non-polar subset. Then the restriction of Eφ to P(S) is lsc and
strictly convex.

Proof. This is shown using Hilbert space theory exactly as in the proof of [10, Thm 3.21]
(which concerns the case when d = α = 2).

In particular, if S is a non-polar compact set, then Eφ admits a unique minimizer on
P(X) that we shall call denote, as before, by µ(S,φ). Combining the previous two lemmas
yields the following generalization of the convergence in item 5 of Theorem 3.11 to
generalized weights φ :

Proposition 3.14. Let µ0 be a measure in Rd with compact support S0 such that µ0

does not charge polar sets and µ0 is determining and assume that

φ ∈ C(S0) + ES0(Rd)− ES0(Rd).

Then the corresponding free energies Fβ,φ converge, as β → ∞, to Eφ in the sense of
Gamma-convergence. As a consequence, the minimizer µβ,φ of Fβ,φ converges in energy
towards the weighted equilibrium measure µ(S0,φ) of S0.

Proof. Since Dµ0 ≥ 0 the lower bound in the Gamma-convergence follows directly from
the lower semi-continuity of Eφ in the previous lemma. The reconstruction property then
follows from the reconstruction property in the case when φ = 0 using the continuity
statement in Lemma 3.12. That is to say that any reconstruction sequence for E(µ) is
also a reconstruction sequence for Eφ(µ).

We thus arrive at the following constructive version of the approximation in Theo-
rem 1.1:

Theorem 3.15. Let µ0 be a measure in Rd with compact support S0 such that µ0 does
not charge polar sets and µ0 is determining. Given µ ∈ P(S0) such that E(µ) <∞, let µβ
be the minimizer of the free energy functional Fβ,ψµ on P(S0), i.e. Fβ,ψµ := Eψ +β−1Dµ0

.
Then µβ converges in energy towards µ, as β →∞.

Proof. By definition µ = ∆ψµ and µ minimizes Eψµ on P(S0). Hence, the convergence
follows directly from the convergence in the previous proposition.

This is a constructive approximation in the sense that there are quasi-explicit ways
of approximating the minimizer µβ,ψ of Fβ,ψ, for a given ψ ∈ ES0

(Rd). For example,
when ψ ∈ ES0

(Rd) is assumed bounded on S0 it follows from Cor 4.9 below that the
measure µN,β defined as the expectations E(δN ) of the empirical measure of the Riesz
gas associated to the finite measure e−βψµ0, converges in energy towards µβ :

µN,β := E(δN ) =

∫
(Rd)N−1 e

−βH(x,x2,...xN )
(
e−βψµ0

)⊗N−1∫
(Rd)N

e−βH(x1,...xN ) (e−βψµ0)
⊗N e−βψ(x)µ0,
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where H denotes the Hamiltonian of the Riesz gas. In the general case we can simply
replace ψ with max{ψ,−R} for a given parameter R > 0 and obtain E(µβ) from the
double limit where first N →∞ and then R→∞. By a diagonal argument this yields a
sequence of measures µN,RN , absolutely continuous with respect to µ0 and converging
in energy towards a given measure µ ∈ P(S0) of finite energy. This is a quasi-explicit
approximation in the sense that µN,β is given by a quotient of two integrals, whose
integrands are explicitly given.

3.4 The limit β → 0

Before turning to large deviations we note that in the opposite (infinite temperature)
limit β → 0 the minimizers µβ always converge towards the reference measure µ0.

Proposition 3.16. Let µ0 be a measure on Rd which does not charge polar subsets and
of compact support S0 and assume that φ ∈ C(S0). Then βFβ,φ → Dµ0 as β → 0 in the
sense of Gamma-convergence on P(S0). In particular, the minimizer µβ of Fβ converges
weakly towards µ0.

Proof. First observe that, since Dµ0
≤ βFβ := Dµ0

+βEφ and Dµ0
is lsc, the lower bound

in the definition of Gamma-convergence is satisfied. All that remains is thus to show that
for any µ ∈ P(S0) such that Dµ0

(µ) <∞ there exists a recovery family µβ. In the case
when E(µ) < ∞ we can trivially take µβ = µ. Next, note that there exists a sequence
νj ∈ P(S0) such that E(νj) < ∞ and Dµ0

(νj) → Dµ0
(µ0) in P(S0), as j → ∞. Indeed

applying Lemma 3.5 to φ = 0 and a fixed β, say β = 1, shows that there exists a measure
ν of finite energy which is absolutely continuous wrt µ0 :

ν = ρµ0, ρ ∈ L1(µ0)

Hence, the truncated sequence νj := max(ρ, j)/
∫
νj has the required properties. Using

a truncation argument again and the monotone convergence theorem then shows that
any µ such that Dµ0

(µ) < ∞ has the property that there exists a sequence µj ∈ P(S0)

such that E(µj) <∞ and Dµ0
(µj)→ Dµ0

(µ). But then the recovery property for any µ
follows by a simple diagonal argument.

4 Large deviations

We start with the following general setup. Let X be a compact topological space and
W a symmetric proper lsc function on X ×X called the pair interaction potential. Given
a probability measure µ0 with support X the corresponding Gibbs measures at inverse
temperature βN ∈]0,∞[ are defined as the following sequence of symmetric probability
measures on XN :

µ
(N)
βN

:=
1

ZN,βN
e−βNH

(N)

µ⊗N0 ,

where

H(N)(x1, ...xN ) :=
1

(N − 1)

1

2

∑
i6=j

W (xi, xj) (4.1)

and the normalization constant ZN,βN is assumed to be non-zero (it is automatically
finite, since W is lsc and X is compact). We also assume that the following limit exists:

β := lim
N→∞

βN ∈]0,∞]

Setting

E(µ) :=
1

2

∫
X2

Wµ⊗2,
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the corresponding free energy functional Fβ on P(X) is defined as in formula (3.1) (with
φ = 0). The empirical measure δN (formula (1.4)) defines a P(X)-valued random variable

on (XN , µ
(N)
βN

). By definition, its law is the probability measure

ΓN := (δN )∗µ
(N)
βN

(4.2)

on P(X).
We recall the general definition of a Large Deviation Principle (LDP) for a sequence

of measures [25], which is modeled on the classical Laplace steepest descent principle
for integrals:

Definition 4.1. Let Y be a compact Polish space, i.e. a compact complete separable
metric space.

(i) A function I : Y →]−∞,∞] is a rate function if it is lower semi-continuous and
infY I = 0

(ii) A sequence ΓN of measures on Y satisfies a large deviation principle with speed
rN and rate function I if

lim sup
N→∞

1

rN
log ΓN (F) ≤ − inf

µ∈F
I(µ)

for any closed subset F of Y and

lim inf
N→∞

1

rN
log ΓN (G) ≥ − inf

µ∈G
I(µ)

for any open subset G of Y .

Fixing a metric on Y The LDP may also be equivalently expressed in terms of
ΓN (Bε(µ)), where Bε(µ) denotes the closed ball of radius ε centered at µ ∈ Y . For
example, if ΓN is the law of the empirical measure δN of a random point process, then
the LDP is equivalent [25, Theorems 4.1.11, 4.1.18 ] to

lim
ε→0

lim inf
N→∞

1

rN
logP

(
1

N

N∑
i=1

δxi ∈ Bε(µ)

)
= lim
ε→0

lim sup
N→∞

1

rN
logP

(
1

N

N∑
i=1

δxi ∈ Bε(µ)

)
= −I(µ)

for some functional I(µ) (which, as a consequence, thus has to be lower semi-continuous).
Given W and µ0 and a sequence βN as above we will say that the corresponding LDP

holds at inverse temperature β if the Gibbs measures µ(N)
βN

are well-defined and the laws

ΓN of the corresponding empirical measures on XN satisfy a LDP.

Theorem 4.2. Assume given a proper lsc pair interaction potential W and a measure
µ0 with compact support X.

• When β ∈]0,∞[ the corresponding LDP holds with speed βN iff the functional Fβ is
proper lsc on P(S0) iff there exists a measure of finite energy, which is absolutely
continuous wrt µ0. Then the rate functional is given by Fβ − infP(X) Fβ .

• When β =∞ the corresponding LDP holds with speed NβN if Fβ is proper lsc for
all β ∈]0,∞] and Gamma-continuous as β →∞. The rate functional is then given
by E − infP(X)E.

Proof. This result is essentially contained in [29, 7, 32]. But for completeness we provide
some details. First observe that since X is compact Fβ is proper lsc iff infP(S0) Fβ <∞.
Since E is bounded from below on P(S0), the latter condition immediately implies
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the existence of a measure µ of finite energy and which is absolutely continuous wrt
µ0. Conversely, if such a measure µ exists then writing µ = ρµ0 and setting ν :=

max{1, ρ}µ0/C, where C ensures that ν ∈ P(K) gives Fβ(ν) <∞. Indeed, Dµ0
(ν) <∞

and E(ν) <∞, using that W is bounded from below on S0 × S0.
Next, if infP(S0) Fβ <∞ then the LDP for β <∞ essentially follows from the results

in [29, 7, 32] (the converse is trivial since the rate functional of an LDP is proper lsc).
For completeness let us recall the argument given in [7], which builds on the variational
approach introduced in [47] (see also [40, 23] for similar results). Fix a continuous
functional Φ on P(S0) and set H(N)

Φ := H(N) +Nδ∗NΦ, Fβ,Φ := Fβ + Φ and

F (N)
βN

[Φ] := − 1

NβN
log

∫
e−βNH

(N)
Φ µ⊗N0

Using Bryc’s criterion for a LDP it is, as explained in [7], enough to prove that

lim
N→∞

F (N)
βN

[Φ] = inf
P(S0)

Fβ,Φ (4.3)

Note if Fβ is proper lsc, then so is Fβ,Φ. The starting point of the proof of the asymp-
totics (4.3) is Gibbs variational principle (which follows from Jensen’s inequality):

F (N)
βN

[Φ] = N−1 inf
µN

(∫
XN

H
(N)
Φ µN +Dµ⊗N0

(µN )

)
(4.4)

It implies, using that W is lsc (to handle the energy term) and the sub-additivity of the
entropy (see [7]), the lower bound

inf
P(S0)

Fβ,Φ ≤ lim inf
N→∞

F (N)
βN

[Φ] (4.5)

As for the corresponding upper bound

lim sup
N→∞

F (N)
βN

[Φ] ≤ inf
P(S0)

Fβ,Φ (4.6)

it is shown by taking µN = µ⊗N in the rhs of formula (4.4), where µ realizes the infimum
of the proper lsc functional Fβ,Φ using that

N−1

∫
XN

H(N)µ⊗N + β−1N−1Dµ⊗N0
(µ⊗N ) = E(µ) + β−1Dµ(µ),

if E(µ) <∞ (by the Fubini-Tonelli theorem) together with the basic fact (δN )(µ⊗N )→ δµ
weakly on P(X) to handle the term depending on Φ.

Next consider the case when β =∞. As pointed out above, in order to establish the
LDP in question, it is enough to show that the limit (4.3) also holds for β =∞. To this
end first observe that the corresponding lower bound is easier since the entropy term
can be dropped. Moreover, to prove the corresponding upper bound fix β > 0 and note
that, by Hölder’s inequality,

F (N)
βN

[Φ] ≤ F (N)
β [Φ]

for N sufficiently large. Hence, the upper bound (4.6) for β = ∞ is obtained by first
letting N →∞, then using the corresponding upper bound for β <∞ and finally letting
β →∞ and using the assumed Gamma-convergence of Fβ towards F∞.

Example 4.3. Even if W is assumed bounded, the LDP may hold at β = ∞ with a
rate functional which is different than E − inf E. A simple such example is obtained by
taking X = [0, 1], µ0 = dx and W (x, y) := V (x) + V (y) where V is the proper lsc function

EJP 26 (2021), paper 145.
Page 34/49

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP700
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Priors leading to well-behaved Coulomb, Riesz gases vs zeroth-order phase transitions

defined by V (x) = 0 for x 6= 0 and V (0) = −1, say. Since V = 0 a.e. wrt dx we have that

µ
(N)
β = dx⊗N . But if the LDP would hold with a rate functional E − inf E, then

lim
N→∞

− 1

NβN
logZN = inf

P([0,1])
E = inf

P([0,1])

∫
[0,1]

V µ = inf
[0,1]

V = −1,

which contradicts ZN =
∫

[0,1]
dx = 1. This example also illustrates that the expectations

of the empirical measure δN (which here equals dx) may, in general, not converge to a
minimizer of E (which here equals δ0). Also note that in this example, the measure δ0
does not have the Energy Approximation property (since E(δ0) = −1, while E(µ) = 0 if
µ = ρdx). Similarly, Fβ Gamma-converges to the constant functional 0. Moreover, in this
setting the measure dx is not determining, since setting ψ := ψδ0 − 1 gives ψ = −V and
hence ψ = 0 a.e. dx, while ψ(0) > 0. Moreover, the Bernstein-Markov inequality fails in
this example (with φ = 0), as is seen by taking µ = δ0.

Modifying the previous example we also have the following example involving the
Coulomb gas in the plane C subject to an exterior potential φ, showing that the corre-
sponding LDP does not always hold at β =∞ if φ is lsc, but not continuous.

Example 4.4. Set W (z, w) := − log |z−w|2 +φ(z) +φ(w) for a given function φ in C and

denote by H(N)
φ and Eφ the corresponding N -particle Hamiltonian and energy functional,

respectively. Consider the corresponding Gibbs measure at βN = N , say, with µ0 given
by Lebesgue measure on a given compact subset X in C. Fix a continuous function φ0

on X and t ≥ 0 and set φ := φ0(z)− tχS1(z) in C, where χ = 1 on the unit-circle S1 and
χ = 0 on the complement of S1. Assume to get a contradiction that

lim inf
N→∞

N−2 logZN [φ] ≥ − inf
P(X)

Eφ, ZN [φ] :=
1

ZN,βN

∫
e−βNH

(N)

µ⊗N0 (4.7)

Now, since the measure ν defined by the uniform measure on S1 is a candidate for the
inf of Eφ, the rhs in formula (4.7) is bounded from below by −E0(ν)− φ0(r) + t and E0(ν)

is finite. But φt = φ0 a.e. wrt µ0 and hence ZN [φ] = ZN [φ0], which implies that the
lhs in formula (4.7) is uniformly bounded from above by a finite constant C0. Taking
t sufficiently large thus gives the desired contradiction. Finally, note that the same
example applies in the non-compact case where X = C if φ0(z) ≥ (1 + ε) log(|1 + |z|2)−C
for some ε > 0 and C > 0.

As we will show in Section 4.2 the Gamma-continuity assumption on Fβ is not
necessary for the existence of a LDP at β =∞ with rate functional Fβ − inf Fβ. On the
other hand, by the previous example it it is not enough to assume that F∞ is proper lsc.
In the case of the 2d Coulomb gas, this will be illustrated using the well-known notion of
Bernstein-Markov inequalities. This notion can be extended to a general pair interaction
potential W as follows (the case of the Riesz gas was introduced in [18]).

Definition 4.5. Given φ ∈ C(X) we will say that a measure µ0 satisfies the weighted
Bernstein-Markov inequality (wrt the pair interaction W ) if for any ε > 0 there exists a
constant C > 0 such that for any p > 0

sup
X
eψµ−φ ≤ C1/peε

∥∥eψµ−φ∥∥
Lp(S0,µ0)

(4.8)

for all discrete measures µ of the form µ = N−1
∑N
i=1 δxi , for some xi ∈ X. We say that

µ0 satisfies the strong Bernstein-Markov property if it satisfies the weighted Bernstein-
Markov inequality for all φ ∈ C(X).
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The following result shows, in particular, that the Bernstein-Markov inequality is a
sufficient condition for the LDP to hold at zero-temperature if E is proper lsc and strictly
convex (see [5, 16] for the logarithmic case and complex case and [18] for the case of
the Riesz gas).

Theorem 4.6. Assume that E is proper lsc on P(X).

• If µ0 has support X and satisfies the Bernstein-Markov inequality, then

− lim
N→∞

1

NβN
logZN = inf

P(X)
E (4.9)

and the following concentration property holds: any limit point Γ in P(P(X)) of the
law ΓN of the empirical measure δN is supported in arg infP(X)E. In particular, if
E admits a unique minimizer µ, then δN converges in law towards µ.

• If µ0 has the strong Bernstein-Markov property and E is strictly convex on P(X),
then the LDP holds at a speed βNN and with rate functional E − infP(X)E.

Proof. Set Φ(µ) = 〈µ, φ〉 for a given φ ∈ C(X) and assume that µ0 satisfies the weighted
Bernstein-Markov-inequality for the weight φ. Then,

lim sup
N→∞

F (N)
βN

[Φ] ≤ inf
P(X)

(E + Φ) (4.10)

To see this, first observe that the function ψ on X obtained by freezing all but one
of arguments in H(N)(x1, x2, ..., xN ) is of the form ψµ for µ a discrete measure of the
form appearing in the definition of the Bernstein-Markov-inequality. Hence, using the
weighted Bernstein-Markov-inequality N times gives

lim sup
N→∞

F (N)
βN

[Φ] ≤ lim sup
N→∞

N−1 inf
XN

H
(N)
Φ

The bound (4.10) now follows from the following fact, which holds for any Φ ∈ C(P(X)) :

lim
N→∞

N−1 inf
XN

H
(N)
Φ = inf

P(X)
(E + Φ) (4.11)

This is essentially well-known and classical (a proof is provided below). Now, combining
the upper bound (4.10) with the corresponding lower bound (4.5) (which always holds)
gives

lim
N→∞

F (N)
βN

[Φ] = inf
P(X)

(E + Φ) (4.12)

for all linear and continuous Φ. In particular, specializing to Φ = 0 proves (4.9). To prove
the concentration property in the first point we note that the lower bound (4.5) can be
refined to give ∫

P(X)

EΓ ≤ lim inf
N→∞

F (N)
βN

[0]

Combining this inequality with (4.12) (for Φ = 0) and using that E is lsc gives the
concentration property in question.

Finally, if the Bernstein-Markov-property holds for all φ, then the asymptotics (4.12)
hold for all linear bounded functionals Φ. Hence, if E is strictly convex the LDP in
question follows from the Gärtner-Ellis theorem (see [6, Lemma 4.7] for a convenient
reformulation of the Gärtner-Ellis theorem).

Proof of the asymptotics (4.11):
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We follow the argument in the proof of Theorem 4.2. By (4.5) it is enough to prove
the corresponding upper bound. To this end fix β > 0 and note that, since, infXN H

(N)
Φ is

trivially bounded from above by F (N)
β [Φ] the upper bound (4.6) gives, for a fixed µ0 on X,

lim sup
N→∞

N−1 inf
XN

H
(N)
Φ ≤ inf

P(X)

(
EΦ + β−1Dµ0

)
Thus, the upper bound in question is obtained by taking µ0 as the minimizer of EΦ (using
that Dµ0

(µ0) = 0). We note that this proof of (4.11) is closely related to the proof of
the result in [7, Cor 1.6], saying that N−1H(N), identified with a functional on P(X),
Gamma-converges towards E (which implies (4.11) and is, in fact, equivalent to (4.11)
for all Φ).

Remark 4.7. The proof of the first point is similar to the proof of the corresponding
result in [41], which is claimed without any assumptions on µ0 (see the discussion in
Section 1.4). The main difference is that the Bernstein-Markov-property of µ0 is used
here to justify the upper bound in [41, Lemma 4], which does not hold for a general
µ0 (by Example 4.3) and which corresponds to (4.10) here. See also [18, Section 4] for
another approach based on the Bernstein-Markov-property.

4.1 The case of the Riesz gas

Let us now specialize to the case of the Riesz gas, i.e. the case when the pair interac-
tion potential W (x, y) is taken as the Riesz kernel Wα (section 2). The following result
contains, in particular, the LDP for the Coulomb gas (α = 2) appearing in Theorem 1.2
in the introduction.

Theorem 4.8. Assume that α ∈]0, d[. Given a measure µ0 with compact support S0, not
charging polar subsets, the following holds for the corresponding Riesz gas:

• For any β ∈]0,∞[, the LDP holds with speed βN and rate functional Fβ− infP(X) Fβ .

• If α ≤ 2, then the LDP holds for β ∈]0,∞] at a speed βNN with a rate functional
which is continuous wrt Gamma-convergence iff µ0 is strongly determining.

Proof. Combining Theorems 3.11, 4.2 we just have to verify that if µ0 does not charge
polar subsets, then the assumption in the first point of Theorem 4.2 is satisfied. But this
follows from Lemma 3.5, by taking µ = µβ .

Corollary 4.9. Assume that α ∈]0, d[ and let µ0 be as in the previous theorem and denote
by µN,β the expectation of the empirical measure of the corresponding Riesz gas. In
other words, µN,β is the push-forward to Rd of the Gibbs measure defining the Riesz gas.
Then µN,β converges in energy towards the minimizer µβ of the free energy functional
Fβ .

Proof. The weak convergence of µN,β towards µβ follows directly form the LDP in the
previous theorem. To prove that E(µN,β) → E(µβ) it is, by basic integration theory,
enough to show that there exists a constant Cβ such that

µN,β ≤ Cβµ0 (4.13)

To prove this inequality first observe that

µN,β
µ0
≤
{

sup
S0

eβψ : ψ ∈ LS0
(R) :

∫
eβψµ0 = 1

}
using that H(x, x2, ...xN ) is in LS0

(R) for any fixed (x2, ..., xN ) and integrating over SN−1
0 .

By Prop 3.6 thus shows that, for any given ε > 0 there exists a constant Cε such that
µN,β ≤ Cεeεβµ0 which, in particular, implies the inequality (4.13).
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Remark 4.10. It follows from the LDP above, when α ≤ 2 (and its proof), that the
functional F(S,φ) defined by formula (2.17) can be expressed in terms of the moment
generating function of the corresponding empirical measure:

F(S0,φ)(u) = lim
N→∞

1

βNN
logE

(
eNβN

∑N
i=1 u(xi)

)
(4.14)

In the complex-geometric setting in [5] (which covers in particular the case when
d = α = 2) the proof of the corresponding LDP goes the other way around: first the
analog of (4.14) is established and then the LDP is deduced from the Gärtner-Ellis
theorem.

According to Theorem 4.6 the Bernstein-Markov-property of a measure µ0 is a
sufficient criterion for the LDP to hold at β =∞. However, in general, the corresponding
rate functional is not Gamma-continuous up to β = ∞, even if µ0 is assumed to be
absolutely continuous wrt dx. This will be exemplified in the following section.

4.2 The 2d Coulomb gas and orthogonal polynomials on the real line

Now consider the “logarithmic case” α = 2 = d, i.e. the Coulomb gas on a measure
µ0 in R2 that we shall identify with C. In this section we assume that the support S0 of
µ0 is contained in R ⊂ C.

Lemma 4.11. Assume that µ0 has compact support S0 contained in R. Then it has the
Bernstein-Markov inequality iff it satisfies the weighted Bernstein-Markov inequality
for all weights φ (i.e. iff it has the strong Bernstein-Markov property). Similarly, µ0 is
determining iff it is strongly determining.

Proof. This is well-known, but for completeness we recall the argument. First assume
that the Bernstein-Markov inequality holds in the non-weighted case, φ = 0. Now take
a general continuous function φ on R. In a neighborhood of S0 we can express −φ
as the uniform limit of log(|qk|2) for some polynomials qk on C of degree k (using the
Stone-Weierstrass theorem). The Bernstein-Markov inequality wrt φ then follows from
the non-weighted one by replacing pk in formula (1.11) with pkqk. Similarly, if µ0 is
determining for (S0, 0), then it is also determining for (S0, φ), as shown by replacing ψ in
formula (1.2) with ψ + k−1 log(|qk|2).

Combining Theorem 4.6 with Proposition 4.13 below now gives the following charac-
terization of measures µ0 on R such that the corresponding LDP holds at T = 0 :

Theorem 4.12. Let µ0 be a measure whose support is a compact regular subset S0 of
R and such that µ0 does not charge polar subsets. Then the LDP for the corresponding
Coulomb gas at T = 0 holds with rate functional E − inf E iff µ0 satisfies the Bernstein-
Markov-inequality. As a consequence, it is not enough to assume that E is proper lsc
(i.e. that S0 is non-polar) for the LDP to hold at T = 0. More precisely, there exists a
measure µ0 with support [−1, 1], which is absolutely continuous wrt dx and such that the
corresponding expectations E(δNk) do not converge towards the equilibrium measure of
[−1, 1] when βN = N − 1 and N →∞.

Proof. To prove the “only if” direction we set βN = N − 1 (and hence β =∞) and note
that pN = 2 in formula (1.10). This means that the corresponding Coulomb gas in C
defines a determinantal point process with correlation kernel Kk(z, w), where Kk is the
integral kernel of the orthogonal projection from L2(C, µ0) onto the space Pk(C) of all
polynomials pk(z) on C of degree at most k := N − 1 :

Kk(z, w) =

k∑
j=0

pj(z)pj(w), (4.15)
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for an orthonormal base pj in Pk(C) (known as the Christoffel-Darboux kernel in the
literature on orthogonal polynomials and the Bergman kernel in the complex analysis
literature). In fact, this is the case for any measure µ0 on C not charging polar subsets
(see, for example, [9]). Accordingly, it follows from general properties of determinantal
point processes that

E(δNk) =
1

k + 1
Kk(x, x)µ0 (4.16)

Now, if the LDP holds at T = 0 with rate functional E, then it follows, in particular, that
E(δNk) converges towards the equilibrium measure µS0

. But combining formula (4.16)
with Prop 4.13 below then implies that µ0 satisfies the Bernstein-Markov-inequality. For
the last statement it is enough to construct a measure µ0 on R not charging polar subsets
and not satisfying the BM-inequality. The existence of such a measure is without doubt
well-known to experts, but for completeness a concrete such measure is constructed in
the appendix.

The following proposition, used in the proof of the previous theorem, is an unpublished
result of Totik (thanks to Norman Levenberg for pointing this out).

Proposition 4.13. Let µ0 be a measure whose support is a compact regular subset S0 of
R and such that µ0 does not charge polar subsets. Denote byKk the corresponding kernel
defined by formula (4.15). If 1

k+1Kk(x, x)µ0 converges weakly towards the equilibrium
measure µS0

, then µ0 satisfies the Bernstein-Markov inequality.

Proof. Let us explain how to deduce this from the results in [17] concerning measures µ0

with compact support S0 ⊂ R. We denote by pk the sequence of orthonormal polynomials
in L2(µ0) associated to µ0 of degree k, by γk the positive non-vanishing leading coefficient
of pk, i.e. pk = γkx

k +O(xk−1) and by νk the empirical measure on the zeroes of pk. The
proposition then follows directly from combining the following three results proved in
[55, Thm 3.2.3], [53, Thm 13.1] and [55, Cor 2.2.3], respectively:

(1) If S0 is regular, then µ0 satisfies the BM-inequality iff µ0 is regular in the sense of
Saff-Totik i.e.

lim
m→∞

m−1 log γm = inf
S0

E

(the lower bound holds for any µ0)

(2) 1
k+1Kk(x, x)µ0 converges weakly towards µ ∈ P(S) iff νk converges weakly towards
µ ∈ P(S)

(3) If S0 has non-zero capacity (i.e infS0
E is finite) and νk converges weakly towards

the equilibrium measure µS0
, then either µ0 is regular or there exists a polar Borel

subset C ⊂ S0 such that µ(C) = µ0(S0).

The proof of the previous proposition relies on special properties of orthonormal
polynomials on subsets of real line, not shared by general orthonormal polynomials on
subsets of C. Accordingly, the equivalence in Theorem 4.12 is widely open in the general
logarithmic setting in C (as well as in higher dimensions). This being said, Theorem 1.2
can be viewed as a general variant of Theorem 4.12 where the property of being
Bernstein-Markov property is replaced by the stronger property of being determining
(and then the conclusion is also stronger). By Prop 3.6 this amounts to demanding that
the Bernstein-Markov inequality (4.8) holds for all potentials ψµ.
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4.3 Proof of Cor 1.4

By Theorem 1.2 we just have to provide a measure µ0 with support K ⊂ C, which is
absolutely continuous wrt Lebesgue measure (and, hence does not charge polar subsets)
with the BM-property, but which is not determining. When K = [−1, 1] such an example
has been constructed by Totik (reported in [17]) and as indicated in [17], the general
case is similar (for completeness a proof is provided in the appendix).

5 Relations to the Ehrenfest classification of phase transitions

5.1 The general setting

Let us start by recalling the classical Ehrenfest classification of phase transitions in a
general statistical mechanical setting, where the Hamiltonian H(N) in formula (4.1) is
replaced by a general measurable (not necessarily symmetric) function on (XN , µ⊗N0 ).
The corresponding free energy at temperature TN is defined by

FN,TN = −TN
N

log

∫
XN

e
− 1
TN

H(N)

µ⊗N0 ,

assuming that it is finite. By definition, there is a phase transition of order m at
temperature T ∈]0,∞] if, for any sequence TN → T the limit

f(T ) := lim
N→∞

FN,TN (5.1)

exists and the derivatives of order j = 1, ...,m exist at T , but not the derivative of order
m + 1. It should be stressed that the notion of a phase transitions is often used in a
broader sense (as discussed in the case of the Coulomb case in [54]), but here we shall
be concerned only with the Ehrenfest classification.

We recall that phase transitions have been studied extensively in the setting of spin
models, such as the Ising and Potts models on graphs, where the space X is finite. For
example, on the complete graph with N nodes the (ferromagnetic) Potts model is defined
by the Hamiltonian H(N) of the form (4.1) with pair-interaction W (x, y) = −x · y and
space X = {1, 2, ..q} for a given integer q ≥ 2, endowed with the counting measure µ0.
The case q = 2 is the Ising model on the complete graph (known as the Curie-Weiss model
for magnetism). As is well-known, there is a critical critical temperature Tc ∈]0,∞[ such
that f(T ) is smooth for T > Tc and a phase transition occurs at T = Tc, which is of order
two when q = 2 and order one when q ≥ 3 [58]. Moreover, according to the “mean-field
philosophy” this implies phase transitions for the Ising and Potts model on Zd, when d is
sufficiently large [14].

However, by the following basic lemma, there are no zeroth-order phase transitions
when T > 0, i.e. no points where f is discontinuous:

Lemma 5.1. If the limit (5.1) exists for any T ∈]0,∞[, then f is concave and increasing
on ]0,∞[ and, in particular, continuous.

Proof. If the limits exists then we can take TN = T for all T and observe that T 7→ FN,T
is concave and increasing (as follows, for example, from Gibbs variational principle (4.4)).
Since these properties are preserved by point-wise convergence the lemma follows.

Moreover, the following lemma explains why zeroth-order phase transitions do not
appear, even at T = 0, in the spin models discussed above.

Lemma 5.2. For a Hamiltonian of the form (4.1), with lower semi-continuous pair
interaction potential W , there is no zeroth-order phase transition under the following
condition:

lim
T→0

inf
P(X)

(E + TDµ0
) = inf

P(X)
E
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In particular, this is the case if the pair interaction potential W is continuous.

Proof. By (4.5) (for Φ = 0)

inf
P(X)

E ≤ f(0).

Since f(0) ≤ f(T ) letting T → 0 it follows from the assumption that f is continuous
at T = 0, as desired. To prove the last statement note that, since D is lsc we have, in
general, that

lim
T→0

inf
P(X)

(E + TDµ0
) = lim

T→0
(E(µT ) + TDµ0

(µT )) ≤ lim inf
T→0

E(µT )

But if E is continuous, then it follows from the compactness of P(X) that the rhs above
is equal to the infimum of E.

Finally, we make the following observation (which applies in particular to Riesz
interactions when µ0 satisfies a Bernstein-Markov inequality):

Lemma 5.3. Assume that e−H
(N)

is continuous on XN and that there exists a sequence
εN in R, tending to zero, such that

FN,TN ≤ inf
XN

1

N
H(N) + εN

Then there is a zeroth-order phase transition at T = 0 iff

lim
T→0

lim
N→∞

FN,T 6= lim
N→∞

lim
T→0

FN,T (5.2)

Proof. By the continuity assumption limT→0 FN,T = infXN
1
NH

(N). Indeed, in general,
the Lp(µ0)-norms of a bounded function f on a compact set K converge, as p → ∞,
to the essential sup ‖f‖L∞(K,µ0) (compare Step 3 in the proof of Prop 3.6). In the

present case f = e−H
(N)

is continuous and hence the essential sup coincides with
the ordinary sup. Moreover, if the inequality in the lemma holds then necessarily
f(0) = limN→∞ infXN

1
NH

(N). Hence, the rhs in (5.2) is equal to f(0), while the lhs is
equal to limT→0 f(T ).

While there is an abundance of first and second order phase transitions in the
physics and mathematics literature, zeroth-order phase transition appear to be of a
rather pathological nature. Still, there has been some speculations on zeroth-order
phase transitions in the physics literature in the context of superfluidity (see [45]) and
black holes [36]. To the best of the authors knowledge there are, however, no previous
examples of zeroth-order phase transitions in the rigorous sense described above.

5.2 Phase transitions for the 2d Coulomb gas

Now consider the setting of the Coulomb gas in R2 with a given exterior continuous
potential φ and fix a measure µ0 on R2 which has the Bernstein-Markov property. Then
the corresponding free energy fφ(T ) exists for all T ∈ [0,∞[ (by Theorem 4.6). Any
measure µ0 as in Corollary 1.4 provides an example of such a measure, for which the
corresponding Coulomb gas has a zeroth-order phase transition.

We recall that phase transitions are also frequently studied as the strength of φ is
varied (in the standard case of spin systems φ(x) := −x). This means that φ is replaced
by

φh := φ0 + hφ
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for a given parameter h ∈ R and continuous functions φ0 and φ. We then set

f(T, h) := fφh(T )

for (T, h) ∈ [0,∞[×R. Set T = 0 and consider the function h 7→ f(T, h). By Prop 2.10
there is no zeroth or first order phase transitions. A third order phase transition was
discovered by Gross-Witten in the context of lattice gauge theories and unitary random
matrices [34] (and used in [39] to study the expected length of the longest increasing
subsequence in a random permutation). This phase transition concerns the case when
µ0 is the invariant measure on the unit-circle S1 in C, φ0 = 0 and φ(z) is half the real
part of z, i.e. equal to cos θ on S1 (the phase transition appears at h = 2). See [44] or a
general discussion about third-order phase transitions for 2d Coulomb gases. Here we
give simple examples of second order phase transitions on the unit-disc.

Proposition 5.4. Consider the Coulomb gas in R2 and let µ0 be normalized Lebesgue
measure on the closed unit-disc K and φ a non-constant radial subharmonic function φ
on a neighborhood of K. Set φh = hφ. Then the corresponding function h 7→ f(0, h) is
differentiable at h = 0, but not two times differentiable.

Proof. In order to use standard complex analytic normalizations it will be convenient to
use a normalization where ∆ := 1

4π (∂2
x + ∂2

y). These normalizations ensure that ∆ log |z|2
is the uniform probability measure on S1. First observe that without loss of generality
we may, by replacing φ by Aφ+B assume that

∫
∆φ ≤ 1 on K and φ = 0 on ∂K. By the

maximum principle it then follows that φ ≤ 0 in K. Set ψh := log |z|2 when |z| ≥ 1. For
|z| ≤ 1 we set ψh = hφ when h ≥ 0 and ψh = 0 if h < 0 and make the following

Claim:ψh = PK(hφ).

First observe that ψh(z) is subharmonic. Indeed, writing ψh(z) = Φ(x) for x := log |z|2
the subharmonicity of ψh is equivalent to the convexity of Φ, which in turn follows from
noting that Φ(x) = x when x ≥ 0 and when x ≤ 0 we have ∂2

xΦ ≥ 0 and

∂xΦ(0) =

∫ 0

−∞
∂2
xΦ =

∫
K

∆φ ≤ 1

Moreover, this implies that, when h ≥ 0,

∆ψh = (1− ch)δ∂K + h∆φ, c =

∫
K

∆φ(= 1− ∂xΦ(0))

where δ∂K denotes the uniform measure on the unit-circle ∂K. Moreover, when h < 0,

∆ψh = δ∂K

Hence, ψh ≤ hφ on K and ψh = hφ almost everywhere with respect to ∆ψh. The claim
above thus follows from the domination principle. Now, by Prop 2.10 we have that

df(0, h)

dh
=

∫
K

φ∆ψh =

∫
|z|<1

φ∆ψh,

using that φ = 0 on the boundary of the unit-disc K. By the previous discussion this
means that df(0,h)

dh vanishes identically when h < 0 and is equal to h times the non-

zero number
∫
|z|<1

φ∆φ when h ≥ 0. Hence, df(0,h)
dh is not differentiable at h = 0, as

desired.
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Remark 5.5. The second order phase transition above can be contributed to the fact
that the support of the weighted equilibrium measure µh changes drastically at h = 0 :

for h > 0 it contains a disc inside K, which disappears when h ≤ 0.

In particular, if φ = |z|2, say, and if µ0 is taken as the measure whose support is
the unit-disc, provided by Corollary 1.4, then the corresponding Coulomb gas exhibits
a rather peculiar phase diagram in the (T, h)-plane. Indeed, for any fixed h there is a
zeroth-order phase transition as T → 0+ and moreover, when T = 0 there is a second
order phase transition as h → 0. Let us also remark that, comparing with standard
physics terminology, the measure

µh,T := lim
N→∞

E(δN )

(which minimizes the corresponding free energy functional) plays the role of an order
parameter for the phase transitions (which usually appears as a physical observable). By
Theorem 3.10, a zeroth-order phase transition at T = 0 is equivalent to the discontinuity
of T 7→ µT,0, viewed as a curve in P(S0). Equivalently, this means that there exists some
(smooth) exterior potential φ such that the corresponding free energy f(T, h) satisfies

lim
T→0+

∂f(T, 0)

∂h
6= ∂f(0, 0)

∂h

6 Appendix

6.1 Capacities and determining measures

We start by recalling the notion of (non-weighted) capacity, mainly following [42].
Given a parameter α ∈]0, d[ the corresponding capacity of a compact set K ⊂ Rd is
defined by

Cα(K) := 1/ inf
µ∈P(K)

E(µ),

where E is the energy of µ. The inner capacity of a general bounded set S ⊂ Rd is
defined by

Cα(S)∗ = sup
K⊂S

Cα(K)

where the sup ranges over all compact subsets K of S. Similarly, the outer capacity is
defined by

Cα(S)∗ := inf
S⊂U
Cα(U),

where the sup ranges over all bounded open sets U containing S. A bounded subset S is
said to be polar if Cα(S)∗ = 0. This equivalently means that there exists a potential ψ
such that S b {ψ = −∞}. A subset S is said to be capacitable if Cα(S)∗ = Cα(S)∗. Any
bounded Borel set S is capacitable. The set functional Cα is invariant under translations
and satisfies Choquet’s capacity axioms on Borel sets:

• (monotonicity) If E ⊂ F then Cα(E) ≤ Cα(F ).

• (inner continuity) If Si is a sequence of sets increasing to S and S =
⋃
i Si, then

Cα(Si)→ Cα(S)

• (outer continuity). If Ki is a sequence of compact sets decreasing to the compact
set K, then Cα(Ki)→ Cα(K)

Moreover, Cα is sub-additive: given a sequence of compact subset Kj

Cα(
⋃
j

Kj) ≤
∑
j

Cα(Kj), (6.1)
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assuming in the case d = α = 2 that the diameter of K is at most one [49, Thm 5.1.4 a]
(then Cα is usually called the Wiener capacity).

Example 6.1. The capacity of a ball Br of radius r centered at x ∈ Rd is given by
Cα(Br(x)) = A(d, α)rd−α for an explicit constant A(d, α) [42], unless α = d = 2, in which
case Cα(Br(x)) = −1/ log r. In particular, Cα(Br(x)) decreases to 0(= Cα({x}) as r → 0

(which is consistent, as it must with outer continuity).

Similarly, we define the weighted capacity Cα(K,φ) of a compact weighted set (K,φ)

by replacing the energy E(µ) with its weighted analog Eφ(µ). Inner and outer weighted
capacities are then defined just as before. It follows from the previous case φ = 0 that
S 7→ Cα(S, φ) satisfies Choquet’s axioms on bounded Borel sets, for any given continuous
function φ on Rd.

Next recall that if µ is supported on a compact set K, then a Borel subset C of K is
said to be a µ-carrier if µ(C) = µ(K).

Proposition 6.2. Assume that α ≤ 2. Then µ is determining for a regular compact
weighted set (K,φ) iff for any µ-carrier C of K which is the union of increasing compact
subsets of K,

Cα(C, φ) = Cα(K,φ) (6.2)

Proof. Assume first that µ is determining and let C be a µ-carrier C, which is the
union of increasing compact subsets of Ki of K. Since µ is assumed determining we
have PCφ = PKφ and by the outer continuity of C we have Cα(Kj , φ) → Cα(C, φ). But,
by Prop 2.6 and its proof) PKiφ decreases to PCφ. As a consequence, Cα(Kj , φ)−1 :=

E(∆(PKiφ))→ E(∆(PCφ)) = E(∆(PKφ)) =: Cα(K,φ)−1. Hence, (6.2) holds. Conversely,
assume that (6.2) holds for any carrier C as above. By Lemma 3.8 (and its proof) there
exists such a carrier C with the property that PCφ = Pµφ. Hence, by the previous
argument E(∆(Pµφ)) is equal to the infimum of Eφ on P(K). This means, by uniqueness
of minimizers, that ∆(Pµφ) = ∆(PKφ) and hence there exists a constant c such that
PCφ + c = PKφ. But, then it follows from Lemma 3.8 that c = supµ(PKφ − φ) and
since PKφ is continuous (by Lemma 2.13) this means that c = supK(PKφ − φ) = 0.
Hence, Pµφ = PKφ, which implies that µ is determining for (K,φ) (just as in the proof of
Theorem 3.10).

Remark 6.3. The capacity criterion above goes back to Ullman in the case when d = α = 2

and φ = 0 (see [56, Thm 2]) and is usually called Ullman’s criterion in the theory of
orthogonal polynomials on the real line [55].

6.2 Explicit construction of the measures in Corollary 1.4 and Theorem 4.12

Following Totik’s example forK = [−1, 1] (reported in [17]) and the general discussion
in [17], the idea of the construction is to start with a sufficiently dense set of points
on K and then replacing them by balls of sufficiently small radius, ensuring that the
corresponding measure µ0 is carried by a measure which has small capacity. Since it
requires no more effort we will consider the general setting in Rd and the Riesz gas with
α ≤ 2, using the general notion of Bernstein-Markov inequalities (definition 4.5).

Lemma 6.4. Let K be a compact domain in Rd and fix α ≤ 2. For any φ ∈ C(K), there
exists a measure µ0 with support K such that µ0 is absolutely continuous wrt dx and
satisfies the strong Bernstein-Markov property, but µ0 is not determining for (K,φ).

Proof. We will use the following sufficient criterion for a measure µ whose support K
is assumed locally regular to have the strong Bernstein-Markov-property: there exists
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r0, a, C > 0 such that for any z ∈ K and r ∈ [0, r0]

µ(BR(z)) ≥ Cra (6.3)

(see [17] for the case d = α = 2 and [18] for the case of a general α). This will be
contrasted with the capacity criterion in Prop 6.2. Fix a positive integer k and consider
the “grid” K ∩ (Zk−1)d. We let Λk be the finite set contained in the interior of K obtained
by removing from K ∩ (Zk−1)d all points with distance less than k−1 to ∂K and denote
by νk the empirical measure on Λk. Next take a sequence λk with polynomial decay such
that

∑∞
k=1 λk <∞, say λk = k−2, and set

ν =

∞∑
k=1

λkνk (6.4)

Then, for k sufficiently large the mass criterion (6.3) is satisfied. Indeed, if k−1 ≤ 10r

say, then (6.3) holds for µk with with a = d and a constant C independent of k. Hence,

ν(BR(z)) ≥
∑

k−1≤10r

λkνk ≥ Crd
∑

k−1≤10r

λk ≥ C ′rd+1, (6.5)

showing that ν satisfies the mass criterion (6.3). Next, we will modify the construction
to get a measure µ not charging polar subsets. To this end fix a sequence εk of positive
numbers such that εk < k−1 and define µk as the measure obtained by replacing each
Dirac mass at a point x in the definition of νk by the normalized Lebesgue measure on a
ball or radius εk, centered at x. Equivalently, this means that

µk :=

∫
|s|≤εk

(Ts)∗νkds,

where Ts denote the translation map x 7→ x+ s for a given s ∈ Rd. We then define µ as in
the decomposition in (6.4). By translation invariance the same estimate (6.5) holds for
µ and hence µ satisfies the strong Bernstein-Markov-inequality, according to the mass
criterion (6.3). Moreover, since µk is absolutely continuous wrt Lebesgue measure so is
µ. Hence, µ does not charge polar subsets and clearly has support K. Finally, we note
that if εk is sufficiently small, then the capacity criterion (6.2) is not satisfied and hence
µ is not determining for (K,φ). Indeed, by construction, the set

C :=
⋃
k

Bεk(Λk)

is a carrier for µ, where Bεk(Λk) denotes an εk-neighborhood of Λk, i.e a disjoint union
of Mk balls in K of radius εk, where Mk ∼ kd. After a harmless scaling we may as well
assume that the diameter of K is equal to one. Then, as recalled in the previous section,
Cα is sub-additive and invariant under translations. Hence,

Cα(C) ≤
∑
k

MkCα(Bεk) ≤
∑
k

CkdCα(Bεk)

where Bεk the closed ball of radius εk centered at 0. Since ε 7→ Cα(Bε) strictly decreases
to 0 as ε→ 0 (see Example 6.1) this means that, given a continuous function φ on Rd and
a positive number δ > 0 we can take εk sufficiently small to ensure that Cα(C, φ) < δ. In
particular, taking δ = Cα(K,φ) the capacity criterion (6.2) is violated and hence ν is not
determining for (K,φ).

A similar construction yields the following
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Lemma 6.5. There exists a measure µ0 with support [0, 1] such that µ0 is absolutely
continuous wrt dx, but which does not satisfy the Bernstein-Markov-inequality.

Proof. We recall the following necessary condition for a measure µ0 on [0, 1] to satisfy
the Bernstein-Markov-inequality [55, Thm 4.2.8]: for any η > 0

lim
r→∞

Cα
({
x ∈ [0, 1] : µ(Br(x)) ≥ e−ηr

−1
})

= Cα([0, 1]) (6.6)

Denote by k an integer of the form k = 2m for some positive integer m. We will show
that the necessary condition above is not satisfied for a measure of the form

µ =
∑
k

λkµk

as defined in the previous construction, if εk and λk are both taken sufficiently small.
More precisely, we will show that this happens if λk = e−ε

−2
k and εk satisfies

kCα(B2εk) < Cα([0, 1])/2,

say. To see this fix r > 0 and first note that for any x ∈ [0, 1] ∑
k: εk≤r

λkµk

 (Br(x)) ≤ Ce−r
−2/2 (6.7)

Next, consider the set Ak defined as an εk-neighborhood of the support Bεk(Λk) of µk
(which contains the support of µj for j ≤ k), i.e. Ak = B2εk(Λk). The definition is made so
that, if r < εk then the r-neighborhood of ([0, 1]−Ak) does not intersect Bεk(Λk). Hence,

x ∈ ([0, 1]−Ak) =⇒

( ∑
k: εk>r

λkµk

)
(Br(x)) = 0,

which, combined with (6.7), means that the inequality in condition (6.6) fails when
x ∈ [0, 1] − Ak. But if εk is sufficiently small, then we get, by the sub-additive of the
capacity (just as in the previous construction) that

Cα (Ak) < Cα([0, 1])/2

say, for all k. Hence the capacity condition (6.2) is violated, showing that µ does not
satisfy the Bernstein-Markov-inequality.
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