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Abstract
Machine learning has achieved impressive feats in numerous domains, largely driven by
the emergence of deep neural networks. Due to the high complexity of these models, clas-
sical bounds on the generalization error—that is, the difference between training and test
performance—fail to explain this success. This discrepancy between theory and prac-
tice motivates the search for new generalization guarantees, which must rely on other
properties than function complexity. Information-theoretic bounds, which are intimately
related to probably approximately correct (PAC)-Bayesian analysis, naturally incorpo-
rate a dependence on the relevant data distributions and learning algorithms. Hence,
they are a promising candidate for studying generalization in deep neural networks.

In this thesis, we derive and evaluate several such information-theoretic generalization
bounds. First, we derive both average and high-probability bounds in a unified way,
obtaining new results and recovering several bounds from the literature. We also develop
new bounds by using tools from binary hypothesis testing. We extend these results to
the conditional mutual information (CMI) framework, leading to results that depend on
quantities such as the conditional information density and maximal leakage.

While the aforementioned bounds achieve a so-called slow rate with respect to the
number of training samples, we extend our techniques to obtain bounds with a fast rate.
Furthermore, we show that the CMI framework can be viewed as a way of automatically
obtaining data-dependent priors, an important technique for obtaining numerically tight
PAC-Bayesian bounds. A numerical evaluation of these bounds demonstrate that they
are nonvacuous for deep neural networks, but diverge as training progresses.

To obtain numerically tighter results, we strengthen our bounds through the use of the
samplewise evaluated CMI, which depends on the information captured by the losses of
the neural network rather than its weights. Furthermore, we make use of convex com-
parator functions, such as the binary relative entropy, to obtain tighter characterizations
for low training losses. Numerically, we find that these bounds are nearly tight for several
deep neural network settings, and remain stable throughout training. We demonstrate
the expressiveness of the evaluated CMI framework by using it to rederive nearly optimal
guarantees for multiclass classification, known from classical learning theory.

Finally, we study the expressiveness of the evaluated CMI framework for meta learning,
where data from several related tasks is used to improve performance on new tasks from
the same task environment. Through the use of a one-step derivation and the evaluated
CMI, we obtain new information-theoretic generalization bounds for meta learning that
improve upon previous results. Under certain assumptions on the function classes used by
the learning algorithm, we obtain convergence rates that match known classical results.
By extending our analysis to oracle algorithms and considering a notion of task diversity,
we obtain excess risk bounds for empirical risk minimizers.

Keywords: Machine learning, statistical learning, generalization, information theory,
PAC-Bayes, neural networks, meta learning.

i



ii



List of Publications
This thesis is based on the following publications:

[A] F. Hellström, G. Durisi, “Generalization Bounds via Information Density and
Conditional Information Density,” published in IEEE Journal on Selected Areas of
Information Theory, Nov. 2020.

[B.1] F. Hellström, G. Durisi, “Fast-Rate Loss Bounds via Conditional Information
Measures with Applications to Neural Networks,” presented at IEEE International
Symposium for Information Theory, July 2021.

[B.2] F. Hellström, G. Durisi, “Data-Dependent PAC-Bayesian Bounds in the Random-
Subset Setting with Applications to Neural Networks,” International Conference
on Machine Learning: Workshop on Information-Theoretic Methods for Rigorous,
Responsible, and Reliable Machine Learning, July 2021.

[C] F. Hellström, G. Durisi, “A New Family of Generalization Bounds Using Sam-
plewise Evaluated CMI,” presented at Conference on Neural Information Process-
ing Systems, Nov. 2022.

[D] F. Hellström, G. Durisi, “Evaluated CMI Bounds for Meta Learning: Tightness
and Expressiveness,” presented at Conference on Neural Information Processing
Systems, Nov. 2022.

Publications by the author not included in the thesis:

[E] R. Catena, F. Hellström, “New Constraints on Inelastic Dark Matter from
IceCube,” Journal of Cosmology and Astroparticle Physics, Oct. 2018.

[F] F. Hellström, G. Durisi, “Generalization Error Bounds via mth Central Mo-
ments of the Information Density,” IEEE International Symposium on Information
Theory, June 2020.

iii



iv



Acknowledgements
I would like to express my deep gratitude to my supervisor, Prof. Giuseppe Durisi, for
being a reliable provider of guidance, support, and collaboration throughout my PhD
education. Your valuable insights and attention to detail have contributed greatly to my
research journey, the work in this thesis, and my own academic development. If it were
not for you, this work would not have been possible. To Fredrik Kahl, Cristopher Zach,
and Benjamin Guedj: thank you for all the helpful discussions that have provided me
with a wider perspective. Moreover, I want to thank Rui Castro and Tim van Erven for
everything during my visit to the Netherlands.

I appreciate my current and former office mates, the Communication Systems group,
and WASP for improving this journey. Thanks to Peter Grünwald, Yevgeny Seldin, and
Mikael Skoglund for serving as committee, and to Gergely Neu for being opponent.

Sincerely: thank you to my family∗ for your continual encouragement throughout.
Having you by my side has provided a constant source of motivation. Your belief in me,
invaluable support, and love has my profound gratitude.
Thank you.

Fredrik Hellström
Göteborg, December 2022

v



Financial Support
This work was supported by Wallenberg Artificial Intelligence, Autonomous Systems and
Software Program (WASP) and Chalmers AI Research Center (CHAIR).

vi



Acronyms

CMI: conditional mutual information

CNN: convolutional neural network

DNN: deep neural network

e-CMI: evaluated conditional mutual information

f-CMI: functional conditional mutual information

FCNN: fully connected neural network

GD: gradient descent

GPU: graphics processing unit

i.i.d.: independent and identically distributed

IM: information measure

KL: Kullback-Leibler

ML: machine learning

NN: neural network

PAC: probably approximately correct

ReLU: rectified linear unit

SGD: stochastic gradient descent

SGLD: stochastic gradient Langevin dynamics

VC: Vapnik-Chervonenkis

vii



viii



Contents

Abstract i

List of Papers iii

Acknowledgements v

Acronyms vii

I Overview 1

1 Background 3
1.1 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Statistical Learning 7
2.1 The Learning Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Classical Generalization Guarantees . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Different Flavors of Generalization . . . . . . . . . . . . . . . . . . 9
2.2.2 VC Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Rademacher Complexity . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Information Measures and Concentration Inequalities 15
3.1 Information Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Change of Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Absolute Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 The Radon-Nikodym Theorem . . . . . . . . . . . . . . . . . . . . 20

ix



3.2.3 The Donsker-Varadhan Variational Formula . . . . . . . . . . . . . 21
3.3 Concentration Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Sub-Gaussian Random Variables . . . . . . . . . . . . . . . . . . . 22
3.3.2 Bounded Random Variables . . . . . . . . . . . . . . . . . . . . . . 22
3.3.3 Binary Random Variables . . . . . . . . . . . . . . . . . . . . . . . 23

4 Information-Theoretic Generalization Guarantees 25
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Average Generalization Bounds . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 PAC-Bayesian Generalization Bounds . . . . . . . . . . . . . . . . . . . . 29
4.4 Single-Draw Generalization Bounds . . . . . . . . . . . . . . . . . . . . . . 31
4.5 The CMI framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Applications and Extensions 37
5.1 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Meta Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Summary 43
6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Bibliography 49

II Research Contributions 55

A Generalization Bounds via Information Density and Conditional Information
Density A1
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A3
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A7
3 Generalization Bounds for the Standard Setting . . . . . . . . . . . . . . . A10

3.1 Average Generalization Error Bounds . . . . . . . . . . . . . . . . A12
3.2 PAC-Bayesian Generalization Error Bounds . . . . . . . . . . . . . A13
3.3 Single-Draw Generalization Error Bounds . . . . . . . . . . . . . . A15

4 Generalization Bounds for the CMI setting . . . . . . . . . . . . . . . . . A20
4.1 Average Generalization Error Bounds . . . . . . . . . . . . . . . . A24
4.2 PAC-Bayesian Generalization Error Bounds . . . . . . . . . . . . . A26
4.3 Single-Draw Generalization Error Bounds . . . . . . . . . . . . . . A27

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A34
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A35

x



B Fast-Rate Loss Bounds with Data-Dependent Priors via Conditional Infor-
mation Measures with Applications to Neural Networks B1
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B3
2 Fast-Rate Bounds for the CMI framework . . . . . . . . . . . . . . . . . . B6
3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B11
4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B16
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B17
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B18
I Experiment Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B19

C A New Family of Generalization Bounds Using Samplewise Evaluated CMI C1
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C3
2 Average Generalization Bounds . . . . . . . . . . . . . . . . . . . . . . . . C6

2.1 Main Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C6
2.2 Extending (f)-CMI Bounds to e-CMI . . . . . . . . . . . . . . . . C7
2.3 Binary KL Bound with Samplewise e-CMI . . . . . . . . . . . . . . C9

3 High-Probability Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . C11
4 Expressiveness of the e-CMI Framework . . . . . . . . . . . . . . . . . . . C12
5 Comparing the Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C13
6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C14
7 Discussion and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . C16
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C16
Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C21
I Deferred Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C21

I.1 Proofs for Section 2 . . . . . . . . . . . . . . . . . . . . . . . . . . C21
I.2 Proofs for Section 3 . . . . . . . . . . . . . . . . . . . . . . . . . . C26
I.3 Proofs for Section 4 . . . . . . . . . . . . . . . . . . . . . . . . . . C28

II Additional Theoretical Results . . . . . . . . . . . . . . . . . . . . . . . . C30
II.1 Binary KL Bound with Samplewise Mutual Information . . . . . . C30
II.2 Affine Transformations of the Arguments in the Binary KL Bound C32
II.3 Single-draw bound . . . . . . . . . . . . . . . . . . . . . . . . . . . C34
II.4 Comparison to previous bounds . . . . . . . . . . . . . . . . . . . . C35

III Additional Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . C36
IV Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C38

IV.1 Binarized MNIST . . . . . . . . . . . . . . . . . . . . . . . . . . . C39
IV.2 CIFAR10 and SGD . . . . . . . . . . . . . . . . . . . . . . . . . . . C39

D Evaluated CMI Bounds for Meta Learning: Tightness and Expressiveness D1
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D3
2 Problem Setup and Notation . . . . . . . . . . . . . . . . . . . . . . . . . D6
3 Generalization Bounds for Meta Learning with e-CMI . . . . . . . . . . . D9

3.1 Average Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . D10

xi



3.2 High-probability Bounds . . . . . . . . . . . . . . . . . . . . . . . . D12
4 Expressiveness of the Bounds . . . . . . . . . . . . . . . . . . . . . . . . . D13

4.1 Minimax Generalization Bounds . . . . . . . . . . . . . . . . . . . D14
4.2 Excess Risk Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . D15

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D16
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D17
Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D21
I Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D21

I.1 Useful Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D21
I.2 Proofs for Section 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . D24
I.3 Proofs for Section 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . D31
I.4 Proofs for Section 4 . . . . . . . . . . . . . . . . . . . . . . . . . . D37

II Bound for the Excess Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . D45

xii



Part I

Overview

1





CHAPTER 1

Background

A fundamental building block of human learning is our ability to accurately general-
ize knowledge from past experiences to new situations. For instance, when we observe
adverse health effects following the consumption of a poisonous mushroom, we do not
necessarily think that this is an isolated incident connected to this individual mushroom:
we grow suspicious of the entire species. If we lacked the ability to identify relevant
factors in one scenario and recognize them in a similar event, every moment of our lives
would appear brand new, wholly separated from our history. For human infants, it suf-
fices to be presented with only a handful examples from a category—sometimes as few as
three—before learning the general concept [1]. Without this ability to generalize, it would
be hard to imagine any possibility of efficient action in an ever-changing environment.

In recent years, machine learning (ML) methods have found enormous success in a
variety of areas, such as medical diagnosis, chess, and protein structure prediction [2–4].
The basic idea underpinning modern ML is to create a computer program that can
perform some objective, defined on the basis of a large data set referred to as the training
data. The program is often referred to as a hypothesis, and the process of selecting it is
called a learning algorithm. How well the hypothesis performs its objective, given some
data, is measured by a loss function, where a lower value implies better performance.
The true goal of ML is to choose a learning algorithm such that the loss function of
the hypothesis is small not only for the training data, but for new, unseen data—like
humans, the hypothesis should be able to generalize.

The study of generalization within ML is the main goal of statistical learning theory.
Several classical results in this field have successfully established conditions under which
generalization can be guaranteed. These results typically rely on the hypothesis class,
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Part I

from which the hypothesis is chosen, not being too complex [5]. A celebrated complexity
measure is the Vapnik-Chervonenkis (VC) dimension, named after two pioneers within
the field. The fact that complexity is tied to generalization can be intuitively motivated
by Occam’s razor: in the same way that the simplicity of an explanation can be predictive
of its veracity, the simplicity of an ML hypothesis that performs well on the training data
should be indicative of how similar its performance on new data will be. In contrast, a
learning algorithm that utilizes a sufficiently complex hypothesis class can memorize a
training set, without actually learning any generalizable pattern. This is related to the
phenomenon known as overfitting—the hypothesis fits the training data too well. In such
a scenario, achieving good performance on training data does not necessarily imply that
something of value has been extracted from the data.

Intriguingly, when it comes to modern ML, this classical theoretical machinery is of
little explanatory value. Many of the success stories of recent years make use of deep
neural networks (DNNs), which are often able to generalize despite boasting enormous
complexity. While the performance achieved in practice speaks for itself, theory has yet
to catch up. A common criticism against DNNs is that they are used as a black box:
we simply feed training data into the learning algorithm and use the results that emerge
from the procedure, without any detailed understanding of how and why it works. This
can hinder the adoption of ML solutions in safety-critical applications, such as health
care or self-driving cars, where more rigorous performance guarantees are desired.

The need for new performance guarantees that are applicable even for DNNs has
spurred a flurry of research activity. The lesson that is learned from the failure of the
classical theory is that relying on model complexity alone is not enough. For this reason,
new bounds are data- or algorithm-dependent. The basic insight underlying this approach
is that, while generalization may fail for a worst-case data distribution or poor learning
algorithm, it may work excellently for natural data distributions and practically relevant
learning algorithms. This data-dependence is necessary for bounds to apply to DNNs.
Consider, as an example, a classification setting, where each datum consists of an example
and an associated label. Then, typical DNNs can accurately classify a training set both
in the setting where the examples are paired with their true labels and the setting where
the labels are determined randomly [6]. In the true-label setting, the DNN performs
well on unseen data, while this is obviously impossible in the random-label setting—
randomized labels mean that there is nothing to learn from the data! Since the only
thing that separates these settings is the data distribution, this is a necessary ingredient
of any bound that hopes to explain this phenomenon.

One drawback of deep neural networks is the heavy computational burden that they
incur. For some of the largest models currently used, hundreds of thousands of graphics
processing unit (GPU) hours are needed [7]. This is further aggravated by the practice of
hyperparameter search, where different values for parameters of the learning algorithm,
such as learning rate and network architecture, are evaluated to find the most suitable
ones for the task at hand. One approach to automate this procedure and make it more
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Chapter 1

efficient is meta learning. In meta learning, a meta learner has access to data from
several different, but related, tasks. This can, for example, be different instances of image
classification tasks. The objective of the meta learner is to find good hyperparameters for
a base learner, which is applied to each task. The aim, then, is to find hyperparameters
that generalize in the sense that they also yield good performance on new related tasks
that were not used for training.

In this thesis, we take some steps toward explaining generalization for randomized
learning algorithms, and in particular, we present new results for DNNs and meta
learning. In Contribution A, we present a framework that can recover several of the
information-theoretic bounds available in the literature, while also allowing us to derive
new bounds. This framework is based on exponential inequalities, from which gener-
alization bounds follow from simple manipulations. We combine this framework with
the conditional mutual information (CMI) setting introduced by Steinke and Zakynthi-
nou [8], where we can derive even tighter bounds. Additionally, we derive bounds using
results from hypothesis testing and an approach based on Hölder’s inequality, inspired
by [9]. In Contribution B, we strengthen the previously obtained bounds for the CMI
setting even further, improving their dependence on the size of the training data set.
We also show how they naturally lead to data-dependent priors, which has recently been
shown to be vital to obtain numerically accurate bounds. We demonstrate how to eval-
uate the bounds both from Contribution A and Contribution B in the setting of DNNs,
and show that for some simple neural network setups, the obtained results predict the
true generalization fairly accurately, and are in line with the best previously reported
results. However, they diverge as training progresses. In Contribution C, we obtain new
bounds for the average generalization error in the CMI framework that are tighter in
several ways. First, the bounds are explicit in the disintegrated, samplewise, evaluated
CMI, leading to a tighter characterization than the ordinary CMI. Second, we allow for
arbitrary convex comparator functions, whereas previous bounds used the (weighted)
absolute difference. We demonstrate that this leads to a numerically accurate charac-
terization of the generalization error for some neural network settings, which remains
stable throughout training. We also analytically study a multiclass classification setting,
where we show that our bounds are expressive enough to recover essentially optimal min-
imax bounds. Finally, in Contribution D, we extend our analysis to meta learning. By
combining the CMI framework with a one-step approach, where previous studies used a
two-step approach, we obtain several novel bounds that are tighter than previous work.
By specializing our results to a representation learning setting, we show that our bounds
recover the convergence rates of classical results for meta learning, demonstrating their
expressiveness.
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Part I

1.1 Thesis Structure
This thesis is comprised of two parts. Part I contains an introduction to the field, and
serves the purpose of putting the sequel into context. Part II comprises the research
contributions upon which this thesis is based.

Part I is organized as follows. In Chapter 1, we first give an informal overview of
the field in order to contextualize the specific problems that we discuss in this thesis,
before introducing necessary notation. Then, in Chapter 2, we present the paradigm
of statistical learning theory and review some of the classical generalization guarantees.
In Chapter 3, we define the main information measures that appear in this thesis and
discuss some of their properties, before presenting some concentration inequalities that
are used in the remainder of the thesis. Next, in Chapter 4, we survey information-
theoretic generalization guarantees from the literature, beginning with average bounds
before proceeding with probably approximately correct (PAC)-Bayesian and single-draw
bounds, concluding with the CMI framework. In Chapter 5, we give a brief description
of neural networks and meta learning, along with some generalization guarantees for
these settings. In Chapter 6, we conclude the first part of the thesis by detailing the
contributions given in Part II and discussing possible future directions to investigate.

1.2 Notation
Unless otherwise stated, the probability distribution of a random variable X is denoted
by PX . We indicate the fact that the random variable X is distributed according to PX

by writing X ∼ PX . For two random variables X and Y , their joint distribution is
denoted by PXY and the product of their marginal distributions is denoted by PXPY .
For a probability measure PX , we denote the probability operator under it as PX [ · ]. For
a function f(X), we denote its expectation over X ∼ PX as EX∼PX

[f(X)]. When there
is no risk of confusion, we write EPX

[f(X)] or simply E[f(X)]. The indicator function
of an event E is denoted by 1{E}.

6



CHAPTER 2

Statistical Learning

In this chapter, we begin by more formally introducing the learning setting that we
consider throughout most of this thesis. We then discuss various flavors of generalization
guarantees, before presenting classical generalization bounds that are based on the VC
dimension and the Rademacher complexity. In Chapter 4, these classical results will be
contrasted with more recently obtained information-theoretic guarantees.

2.1 The Learning Setting
We start by discussing the general ingredients that are common to most of the learning
settings considered in this thesis, before giving some specific examples. Assume that
there is an unknown data distribution PZ on some instance space Z, and that from this
distribution, we have obtained a data set Z = (Z1, Z2, . . . , Zn), consisting of n samples
drawn independenetly from PZ . We will refer to Z as the training set. Based on this
training set, we want to choose a hypothesis W from a hypothesis space W. This is done
by using a learning algorithm, characterized by a conditional distribution PW |Z on W
given Z. To measure how good a particular choice W is, we use a loss function ℓ : W ×
Z → R+. The averaged loss of a given w ∈ W for a specific training set z = (z1, . . . , zn)
is given by Lz = 1

n

∑n
i=1 ℓ(w, zi), and is referred to as the training loss. The expected

loss on a new sample, the population loss, is given by LPZ
(w) = EPZ

[ℓ(w, Z)]. The
generalization error is the difference between these, gen(w, z) = LPZ

(w) − Lz(w). This
generic learning setting is illustrated in Figure 2.1.

A commonly considered learning algorithm is that of empirical risk minimization,

7



Part I

Training data
Z =(Z1, ..., Zn)

Hypothesis
W

Data distribution PZ

Learning algorithm
PW |Z

Training loss
LZ(W )

Population loss
LPZ

(W )

Figure 2.1: A schematic illustration of the learning setup considered in this thesis.

in which the support of PW |Z is limited to arg minw∈W LZ(W ). Since there may be
imperfections such as noise in the training data, one may not want to perform exact
empirical risk minimization, but rather an approximate variant. For example, one may
add a regularizer, which limits the model selection, or add noise to the output of the
training algorithm.

We now give some specific examples that fit into the general learning setup.
Estimating the mean of a Gaussian distribution: In this setting, the data Z ∈ R

are samples drawn independently from some Gaussian distribution N (µ, σ). Here, the
hypothesis space is W = R, and the goal is to find a w that approximates µ. A possible
choice for the loss function is ℓ(w, z) = (w − z)2. A reasonable learning algorithm in this
setting is to use the sample mean: for a training set z, set w = 1

n

∑n
i=1 zi. Notice that

this is an example of an empirical risk minimizer. The average generalization error of
this learning algorithm can be exactly computed as

EPWZ
[gen(W, Z)] = EPZPZ

( 1
n

n∑
i=1

Zi − Z

)2
 = 2σ2

n
. (2.1)

Regression: In regression, the data are decomposed as Z = (X, Y ) where X ∈ X is
an example from some space X and Y ∈ Y is a label from a continuous space Y. As
an example, X = R3 can be the coordinate of a point in space, while Y = R+ is the
temperature in Kelvin. The goal is to learn a function W : X → Y that predicts the
temperature at each point in space. For regression, a typical loss function is the squared
loss given by ℓ(w, z) = 1

2 (w(X) − Y )2. A possible learning algorithm for this setting is
to use a linear predictor given by the least-squares solution.

Classification: In classification, the data are again decomposed as Z = (X, Y ), where
X ∈ X is an example from some space X , but now Y ∈ Y is a label from a discrete set Y.
In the well-studied setting of binary classification, |Y| = 2. As an example, X = [0, 1]3P

can be the normalized RGB values of images with P pixels depicting either cats or dogs,
while Y = {0, 1}, where 0 corresponds to cats and 1 to dogs. The goal is to learn a
function w : X → Y that classifies pictures as either cats or dogs. A typical choice for
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the loss function is the classification error, given by ℓ(w, z) = 1{w(X) ̸= Y }. A learning
algorithm that has found great success for image recognition tasks, such as classifying
cats and dogs, is to train a convolutional neural network (CNN) using some variant of
stochastic gradient descent (SGD) [10].

While the learning setting described in this section is quite general, it does not cover
all possible settings of interest. An alternative setting that we consider in this thesis is
meta learning, where a meta learner has access to data from several tasks, drawn from
the same task distribution, and its goal is to select a hyperparameter that improves the
performance of a base learner on new tasks from the task distribution. We introduce
this setting in more detail in Section 5.2. Beyond this, the assumption that the training
data Z1, Z2, . . . , Zn are independent and identically distributed can be lifted [11]. Other
settings include online learning, where the data arrives sequentially and the aim is to
achieve a small total loss on the observed samples [5, Chapter 21]; active learning, where
the learner has access to unlabeled data samples and chooses which labels to request [12];
and unsupervised learning, where unlabeled data is used [13].

2.2 Classical Generalization Guarantees
As previously mentioned, the goal of learning is to find a hypothesis W that achieves a
small population loss LPZ

(W ). This is complicated by the fact that we only have access
to an estimate of the population loss, the training loss LZn(W ), which is based on n

independent samples drawn from PZ . In this section, we present some classical results
which guarantee that, under some conditions, the training loss is a good proxy for the
population loss.

2.2.1 Different Flavors of Generalization
Due to the stochastic nature of learning algorithms that we consider, results relating
to generalization do not come in a single form. We now present the different flavors of
generalization guarantees that we discuss throughout this thesis.

PAC learnability: We begin by presenting the probably approximately correct (PAC)
framework for studying learning, since this is the setting of the classical results that we
will discuss. A hypothesis class W is PAC learnable if, for every distribution PZ , there
exists a learning algorithm PW |Z such that, for every ϵ, δ ∈ (0, 1), there exists an m(ϵ, δ)
such that if n ≥ m(ϵ, δ),

LPZ
(W ) ≤ inf

w∈W
LPZ

(w) + ϵ (2.2)

with probability at least 1 − δ over PZ . Here, m(ϵ, δ) is referred to as the sample com-
plexity. We now see the motivation for the name: the hypothesis W that we choose will
probably (with probability at least 1−δ) be approximately (with a margin of ϵ) correct (in
the sense of obtaining the smallest population loss achievable in the hypothesis class). If
we assume that our learning problem is realizable, there is a hypothesis in the class that

9
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has zero population loss, so that infw∈W LPZ
(w) = 0. Note that the PAC formulation of

generalization is focused on properties of the hypothesis class W itself.
Average bounds: In the average setting, the quantity of interest is the expected value

of the population loss averaged over both the training sample and the randomness of
the algorithm, i.e., EPWZ

[LPZ
(W )]. In some settings, this quantity is relatively easy to

analyze, but a drawback is that average guarantees may not give much relevant infor-
mation in practice. Typically, one has a single instance of a training set, and wants to
know whether or not one can achieve generalization based on this particular instance.
Bounds on the average loss do not necessarily imply good guarantees on the tail of the
loss distribution with respect to the data. Still, bounds on the average population loss
can provide insight into how and when learning algorithms are expected to work.

PAC-Bayesian bounds: The PAC-Bayesian setting was introduced by McAllester [14]
in an effort to derive PAC-style bounds for Bayesian-flavored estimators. In this setting,
we assume that the algorithm PW |Z is used to select a new W for each time that the
hypothesis is used. Therefore, the quantity of interest is EPW |Z

[LPZ
(W )]. Since this is

a random variable in Z, we note that any bound on it will have to hold only with some
probability 1 − δ over PZ . An attractive feature of the PAC-Bayesian setting is that it
can incorporate correlation between and uncertainty about hypotheses, since we do not
consider a single, fixed W [15].

Single-draw bounds: In the single-draw setting, we instead consider a single training
set Z and a single hypothesis W drawn from our algorithm PW |Z , which we will use for
all future predictions. The quantity of interest is therefore simply LPZ

(W ), and bounds
on this random variable will hold with some probability 1 − δ over PWZ . This setting
describes many real-world applications of machine learning. For instance, the standard
procedure when using neural networks is to optimize the weights using a stochastic
algorithm, and then use the fixed weights that one obtains for future applications.

Data-dependent or data-independent: When it comes to the two tail bounds, i.e.,
the PAC-Bayesian and single-draw settings, results can be either data-dependent, when
bounds on the population loss depend on the particular instance of the training set Z,
or data-independent, when they do not depend on the specific instance. The benefit of
data-dependent bounds is that they can be used as regularizers: adjusting the algorithm
to make the bound small may lead to improved generalization. Furthermore, data-
independent bounds can often be obtained as weakened versions of data-dependent ones.
Data-independent bounds, however, can be used to compute the sample complexity, i.e.,
the number of samples needed to guarantee a given precision with a given probability. Of
course, the ability to make statements about generalization guarantees without referring
to a specific training set can also be useful.

Test loss or population loss: So far, we have discussed guarantees related to the pop-
ulation loss LPZ

(W ). However, in some circumstances it is more convenient to obtain
bounds on a test loss LZ̄(W ), i.e., the loss evaluated on a sample Z̄ that is independent
of W . When empirically evaluating learning algorithms, the true data distribution PZ

10
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is typically unknown, so in practice one usually has to resort to using a test loss as an
estimate. For many settings of interest, any bound on the test loss can be converted into
a bound on the population loss through the use of concentration inequalities.

2.2.2 VC Dimension
The Vapnik-Chervonenkis (VC) dimension, named after two pioneers of statistical learn-
ing, is a geometric property of the hypothesis class W that can be used to characterize
when generalization can be guaranteed. It applies to the setting of binary classification,
where the data Z consist of examples X and labels Y ∈ {0, 1} and W is a set of func-
tions from X to {0, 1}, as described in the previous section.1 While our discussion in
this section is restricted to the binary classification setting, analogous quantities have
been studied in other settings, such as the fat-shattering dimension for regression and
the Natarajan dimension for multi-class classification [5, Sec. 6.7]. In a sense, the VC
dimension characterizes how many functions there are in W. If the VC dimension is
infinite, any function from X n to {0, 1}n can be expressed by a member of W for all
values of n. However, if it is small, the number of expressible functions are limited in
some sense. Below, we give the formal definition of the VC dimension. In so doing, we
will also introduce the closely related growth function and the concept of shattering.

Definition 2.1 (Shattering, growth function, and VC dimension). A hypothesis class W
is said to shatter a set Xn ∈ X n if

|{w(X1), . . . , w(Xn) : w ∈ W}| = 2n. (2.3)

Let τW(n) denote the growth function defined as

τW(n) = max
Xn∈X n

|{w(X1), w(X2), . . . , w(Xn) : w ∈ W}| . (2.4)

The VC dimension d of W is the largest integer such that τW(d) = 2d. If there is no
such integer, we say that d = ∞. Thus, if d is finite, W shatters some set of size d but
no set of size d + 1.

The relation between finite VC dimension and generalization can now be intuited. If
we find a function w from a space with VC dimension d that achieves a small loss on a
training set Zn with n ≫ d, we know that we must have identified some structure in the
data: it is not possible that we simply memorized the given samples. In contrast, if the
VC dimension is infinite, we can not be certain that the function we found does anything
more than encode the training samples. This intuition is formalized in the following
theorem [5, Thm. 6.8].

1Alternatively, W can be a parameter space, the members of which characterize parametric functions
from X to {0, 1}. For simplicity of notation, we will consider W to be the function space.
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Theorem 2.1 (Generalization guarantee from VC dimension). Let W be of finite VC
dimension d. Then, for every distribution PZ , there exists a learning algorithm PW |Z
and constant C such that, for every ϵ, δ ∈ (0, 1), we have that with probability at least 1−δ

over PZ ,
LPZ

(W ) ≤ inf
w∈W

LPZ
(w) + ϵ (2.5)

provided that

n ≥ C
d + log 1

δ

ϵ2 . (2.6)

Furthermore, W is PAC learnable, with sample complexity bounded above and below as

C ′ d + log 1
δ

ϵ2 ≤ m(ϵ, δ) ≤ C
d + log 1

δ

ϵ2 (2.7)

for some constants C, C ′.

In the realizable setting, where there is a hypothesis w∗ ∈ W that achieves zero pop-
ulation loss, i.e. LPZ

(w∗) = 0, bounds on the sample complexity with a more beneficial
dependence on the approximation error ϵ can be obtained. These bounds can be inverted
to obtain high-probability bounds on the population loss, which have an n-dependence
of Õ(1/n), where the Õ(·) notation indicates that we are ignoring logarithmic factors.
In comparison, the corresponding population loss bound that can be obtained from The-
orem 2.1 has a Õ(1/

√
n) dependence. The rate Õ(1/n) is typically referred to as a fast

rate, while Õ(1/
√

n) is a slow rate. Below, we present the VC dimension-based sample
complexity for the realizable setting, which can be used to obtain fast-rate population
loss bounds.

Theorem 2.2 (Fast-rate generalization guarantee from VC dimension). Let W be of
finite VC dimension d. Assume that there is a hypothesis w∗ ∈ W such that LPZ

(w∗) = 0.
Then, W is PAC learnable, with sample complexity bounded above and below as

C ′ d + log 1
δ

ϵ
≤ m(ϵ, δ) ≤ C

d log(1/ϵ) + log 1
δ

ϵ
(2.8)

for some constants C, C ′.

For further discussion about fast-rate bounds and the conditions under which they can
be obtained, see [16,17].

Due to the existence of both upper and lower bounds on the sample complexity of W
in terms of d, the VC dimension completely characterizes learnability in the PAC sense.
This is a remarkable feature of the VC-based generalization guarantee, but as previously
discussed, it is not enough to explain the successes of modern machine learning algo-
rithms. This indicates that standard PAC learnability may not be the pertinent concept
to study when it comes to modern machine learning.
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2.2.3 Rademacher Complexity
Another classical metric that can be used for guaranteeing generalization is the Rademacher
complexity. Notably, the Rademacher complexity of a hypothesis class W is defined
with respect to a given data set. Given the arguments for the necessity of incorporat-
ing some kind of data-dependence into our generalization guarantees, this seems like a
promising approach to obtain tight generalization bounds. We now give the definition of
Rademacher complexity. Unless otherwise specified, all of the material in this section is
based on [5, Chap. 26].

Definition 2.2 (Rademacher complexity). Let Z ∈ Zn be a set of data samples and
let ℓ : W ×Z → R+ be a loss function. Let σi for i = 1, . . . , n be independent Rademacher
random variables, so that Pσi

[σi = −1] = Pσi
[σi = +1] = 1/2. Then, the Rademacher

complexity of the function class W with respect to Z and ℓ(·, ·) is given by

RadZ(W) = 1
n
EPσ1...σn

[
sup

w∈W

n∑
i=1

σiℓ(w, Zi)
]

. (2.9)

One way to understand the Rademacher complexity is to think of randomly splitting
the data set Z into a training set and a test set. What the Rademacher complexity
measures, in a worst-case sense over the hypothesis class, is how big the discrepancy
between the loss on the training set and the loss on the test set will be on average,
if we are equally likely to assign each data point to either the training set or the test
set. With this interpretation, it is easy to see how the Rademacher complexity is tied
to generalization: it is almost a generalization measure by definition. In the following
theorem, the connection is made more specific.

Theorem 2.3 (Generalization guarantee from Rademacher complexity). Assume that,
for all z ∈ Z and all w ∈ W, |ℓ(w, z)| ≤ c. With probability at least 1 − δ over PZ , for
all w ∈ W,

LPZ
(w) − LZ(w) ≤ 2RadZ(W) + c

√
2 log(2/δ)

n
. (2.10)

A similar bound holds when the sample-dependent Rademacher complexity is replaced
by its expectation under PZ .

As discussed in [5, Part IV], the Rademacher complexity can be used to derive gen-
eralization bounds for relevant hypothesis classes, such as support vector machines, and
can also be used to provide tighter bounds for classes with finite VC dimension. It has
also been used to study generalization in neural networks found by gradient descent [18],
albeit without providing nonvacuous guarantees. One issue with the Rademacher com-
plexity is that, while being data-dependent, it is still a worst-case measure over the
hypothesis class. This leads to generalization estimates for modern machine learning
algorithms that are overly pessimistic.
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CHAPTER 3

Information Measures and Concentration Inequalities

In this section, we will introduce the tools that will be used to derive the information-
theoretic generalization bounds in Part I of this thesis. Specifically, we will introduce
some common information measures in Section 3.1, discuss change of measure techniques
in Section 3.2, and present concentration inequalities in 3.3.

3.1 Information Measures
Formally, given a measurable space X and the associated family M1(X ) of probability
measures on X , an information measure is a mapping IM : M1(X ) × M1(X ) → R.
Typically, for all P ∈ M1(X ), we have IM(P, P ) = 0. Thus, an information measure is
some way to quantify the discrepancy between two probability measures. Often, these
information measures are not metrics, as they may not satisfy symmetry, the triangle
inequality, or even non-negativity. Throughout information theory and machine learning,
such quantities are exceedingly useful and abundant. In the context of information-
theoretic generalization bounds, we find that they can provide upper bounds on the loss
of learning algorithms. In this section, we will introduce some information measures
along with their properties that will be useful in later sections. For a more detailed
review, the reader is referred to, for example, [19, 20], upon which much of the material
in this section is based.

A basic building block of many information measures is some kind of likelihood ratio.
For two probability mass functions P and Q on a common space X , their likelihood
ratio at a point x ∈ X is defined as P (x)/Q(x). Similarly, if p and q are probability
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densities, the likelihood ratio is p(x)/q(x). For generic measures P and Q, this concept
is captured by Radon-Nikodym derivative, denoted by dP/ dQ. For the cases of discrete
or continuous random variables, it reduces to the aforementioned likelihood ratios. The
precise meaning of this object is captured by the Radon-Nikodym theorem, a change of
measure that relates probabilities of events under P with their probabilities under Q. We
will present this result in Theorem 3.3. The Radon-Nikodym derivative exists whenever P

is absolutely continuous with respect to Q, denoted by P ≪ Q. This means that for any
measurable set E such that Q(E) = 0, we also have P (E) = 0. In other words, the support
of P is contained in the support of Q.

For the special case where P = PXY and Q = PXPY are the joint distribution and
product of marginal distributions of two random variables X and Y , the logarithm of
the Radon-Nikodym derivative is referred to as the information density.

Definition 3.1 (Information density). The information density between two random
variables X and Y with joint distribution PXY and marginal distributions PX and PY is
given by

ı(X, Y ) = log dPXY

dPXPY
. (3.1)

The conditional information density between X and Y given Z is

ı(X, Y |Z) = log dPXYZ

dPX|ZPY |ZPZ
. (3.2)

One very commonly used information measure is the Kullback-Leibler (KL) divergence,
sometimes referred to as the relative entropy. We provide its definition below.

Definition 3.2 (The KL divergence). Consider two probability distributions P and Q

defined on a common measurable space such that P is absolutely continuous with respect
to Q, denoted by P ≪ Q. The KL divergence between P and Q is given by

D(P || Q) = EP

[
log dP

dQ

]
. (3.3)

If P is not absolutely continuous with respect to Q, the Radon-Nikodym derivative is
undefined and we have D(P || Q) = ∞.

Given a distribution PX on X and two conditional distributions PY |X and QY |X on Y

given X, the conditional KL divergence between PY |X and QY |X given PX is defined as

D(PY |X || QY |X | PX) = EPX

[
D(PY |X || QY |X)

]
. (3.4)

The KL divergence satisfies a useful property called the chain rule.

Theorem 3.1 (The chain rule of KL divergence). Given the distributions PXY = PXPY |X
and QXY = QXQY |X , we have

D(PXY || QXY ) = D(PY |X || QY |X | PX) + D(PX || QX). (3.5)
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When P is a joint distribution and Q is a product of marginals for two random vari-
ables, the KL divergence between P and Q is referred to as the mutual information
between the random variables.

Definition 3.3 (Mutual information). The mutual information between two random
variables X and Y with joint distribution PXY and marginal distributions PX and PY is
given by

I(X; Y ) = D(PXY || PXPY ) = EPXY
[ı(X, Y )] . (3.6)

The conditional mutual information between two random variables X and Y given Z

is given by

I(X; Y |Z) = D(PXY |Z || PX|ZPY |Z | PZ) = EPXYZ
[ı(X, Y |Z)] . (3.7)

We now see the motivation behind the name information density—its average is the
mutual information (with an analogous correspondence for the conditional information
density). The mutual information is one of the most fundamental quantities in infor-
mation theory, and famously characterizes the capacity of any communication channel.
Recently, it has garnered interest in the statistical learning community as a measure of
generalization. This correspondence comes about by viewing the randomized learning
algorithm as a channel—mathematically, both are just conditional probability laws.

The mutual information inherits the chain rule from KL divergence, so that I(X, Y ; Z) =
I(X; Z) + I(Y ; Z|X) = I(Y ; Z) + I(X; Z|Y ).

The KL divergence is a special case of a wider class of information measures called f -
divergences, which share many of the desirable properties of the KL divergence.

Definition 3.4 (f -divergence). Let P and Q be two probability distributions on a com-
mon measurable space X such that P ≪ Q. Let f : [0, ∞) → R be a convex and lower
semi-continuous function with f(1) = 0. Then, the f -divergence between P and Q is
defined as

Df (P || Q) = EQ

[
f

(
dP

dQ

)]
. (3.8)

With f(x) = x log x, we recover the KL divergence. Other notable examples include the
total variation TV (P, Q) = EQ

[∣∣∣dP
dQ − 1

∣∣∣] /2, obtained by setting f(x) = |x − 1| /2, and

the χ2-divergence χ2(P || Q) = EQ

[
( dP

dQ − 1)2
]
, obtained by setting f(x) = (1−

√
x)2. We

now review some of the useful properties of f -divergences. For proofs, see [19, Thm. 6.1,
6.2].

Theorem 3.2 (Properties of f -divergences). For any f -divergence, the following prop-
erties hold.

1. Non-negativity: Df (P || Q) ≥ 0, and equality holds if and only if P = Q.
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2. Data-processing: Let PX and QX be two distributions on X , and let PY and QY

be the corresponding distributions on Y induced by a kernel PY |X , that is, PY (y) =∫
X dPX(x)PY |X=x and QY (y) =

∫
X dQX(x)PY |X=x. Then,

Df (PX || QX) ≤ Df (PY || QY ). (3.9)

3. Conditioning increases divergence: Let PX be a distribution on X , and let PY

and QY be the distributions induced on Y by two kernels PY |X and QY |X respec-
tively, that is PY (y) =

∫
X dPX(x)PY |X=x and QY (y) =

∫
X dPX(x)QY |X=x. The

conditional f -divergence is defined as

Df (PY |X || QY |X | PX) ≡ EPX

[
Df (PY |X || QY |X)

]
(3.10)

and it satisfies the inequality

Df (PY || QY ) ≤ Df (PY |X || QY |X | PX). (3.11)

Notably, unlike the KL divergence, general f -divergences do not satisfy the chain rule.
Another special instance of f -divergences are the Rényi divergences, also known as α-

divergences [21].

Definition 3.5 (Rényi divergence). Let α ∈ (0, 1) ∪ (1, ∞). Then, the Rényi divergence
of order α between P and Q is defined as

Dα(P || Q) = 1
α − 1 logEQ

[(
dP

dQ

)α]
. (3.12)

For α = 1, motivated by continuity, the Rényi divergence of order 1 is defined as the KL
divergence:

D1(P || Q) = D(P || Q). (3.13)

The conditional Rényi divergence of order α between PY |X and QY |X given PX is

Dα(PY |X || QY |X | PX) = Dα(PY |XPX || QY |XPX). (3.14)

When P = PXY and Q = PXPY are the joint distribution of two random variables and
the product of their marginals respectively and α → ∞, the Rényi divergence reduces to
the maximal leakage [22].

Definition 3.6 (Maximal leakage). The maximal leakage from X to Y is defined as

L(X → Y ) = logEPY

[
ess sup

PX

dPXY

dPXPY

]
. (3.15)

Here, the essential supremum of a measurable function f(·) of a random variable X

distributed as PX is defined as

ess sup
PX

f(X) = inf
a∈R

[
PX

(
{X : f(X) > a}

)
= 0
]
. (3.16)
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The conditional maximal leakage from X to Y given Z is defined as

L(X → Y |Z) = log ess sup
PZ

EPX|Z

[
ess sup

PY |Z

dPXYZ

dPX|ZPY |ZPZ

]
. (3.17)

While the maximal leakage is obtained as the infinite limit of the Rényi divergence,
the same does not hold for the conditional maximal leakage. Instead, the conditional
maximal leakage is the infinite limit of the conditional α-mutual information [23].

Definition 3.7 (α-mutual information). For α ∈ (0, 1) ∪ (1, ∞), the α-mutual informa-
tion between X and Y is given by

Iα(X; Y ) = 1
α − 1 logEα

PX

[
E1/α

PY

[
exp
(

dPXY

dPXPY

)α]]
. (3.18)

The conditional α-mutual information between X and Y given Z is

Iα(X; Y |Z) = 1
α − 1 logEPZ

[
Eα

PX|Z

[
E1/α

PY |Z

[(
dPXYZ

dPX|ZPY |ZPZ

)α]]]
. (3.19)

It should be noted that the version of the conditional α-mutual information that we
give here is not the only possible definition, and many others have been considered [24,25].
Our main reasons for focusing on this particular definition is its role in generalization
bounds and its connection to the conditional maximal leakage.

When α > 1, the function xα is convex. A consequence of this, via Jensen’s inequality,
is that, for α > 1, the (conditional) α-mutual information is a lower bound to the
corresponding (conditional) Rényi divergence, so that we have

Iα(X; Y ) ≤ Dα(PY |X || PY | PX) (3.20)
Iα(X; Y |Z) ≤ Dα(PXY || PXPY ). (3.21)

For α < 1, the inequalities are reversed, while the two information measures coincide at
the (conditional) mutual information for α → 1.

3.2 Change of Measure
While the quantity of interest in statistical learning is the high-error event under the
joint distribution of the hypothesis and the data, this can be difficult to control directly.
Instead, there may be other, auxiliary distributions that allow for direct control of the
high-error event—for instance, when one considers the hypothesis and the data to be
drawn independently from each other, there are many situations where the concentration
inequalities that we introduce in Section 3.3 readily apply. The technique of relating an
event under one distribution to its corresponding value under another distribution is
referred to as change of measure. To properly account for the fact that we are no longer
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working with the original distribution of interest, we need to have some handle on the
discrepancy between the two distributions. As it turns out, the information measures
that we described in the previous section often take this role.

In this section, we introduce two key instances of the change of measure technique.
After defining absolute continuity, we introduce the Radon-Nikodym theorem, which is
the backbone of many change of measure techniques. Then, we present the celebrated
Donsker-Varadhan variational formula, which can be used to express averages under
different distributions as a function of the KL divergence between the distributions.

3.2.1 Absolute Continuity
For any change of measure technique to be sensible, we need some conditions on the
measures involved. As an example, consider a random variable X that follows a standard
Gaussian distribution, where we are interested in the expectation of a function f(X).
Now, assume we wanted to achieve this by drawing samples from a Bernoulli distribution.
Of course, this is doomed to fail from the beginning for almost any f . While the true
distribution is supported on the real line, our auxiliary Bernoulli distribution is limited
to {0, 1}. Since we have no chance of drawing samples on parts of the space where
the Gaussian distribution has a non-zero density, we can only get a good indication
from our samples if f is identically zero everywhere except {0, 1}. If we instead were to
use another distribution supported on all real numbers as our auxiliary distribution—
say, another Gaussian or the t-distribution—we could draw samples from our auxiliary
distribution and compute the expectation of f on this basis. For this procedure to give
an accurate result, we would need to scale the samples by the probability ratio between
the true distribution and our auxiliary one. This is related to importance sampling in
statistics, and gives some intuition about the information measures that appear in the
results of this section. The intuition described here is formally captured by the concept
of absolute continuity, defined as follows.

Definition 3.8 (Absolute continuity). A measure P is absolutely continuous with respect
to a measure Q if, for any measurable set E such that Q(E) = 0, we also have P (E) = 0.
This is denoted P ≪ Q.

Throughout this section, this property will be crucial for virtually every result. The
importance of the absolute continuity property is that it guarantees the existence of the
Radon-Nikodym derivative.

3.2.2 The Radon-Nikodym Theorem
Perhaps the most direct way to compare an event under two different distributions is to
use the Radon-Nikodym theorem, sometimes simply referred to as “change of measure.”
Provided that an absolute continuity requirement holds, it exactly relates the measure
of an event under two distributions [26, Thm. 6.9(b)].
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Theorem 3.3 (Radon-Nikodym theorem). Let P and Q be probability distributions on
a common space such that P ≪ Q. Then, there exists a function dP/ dQ such that, for
any measurable event E,

P (E) =
∫

E

dP

dQ
dQ. (3.22)

The function dP/ dQ is referred to as the Radon-Nikodym derivative of P with respect
to Q.

For discrete random variables, a valid choice for dP/ dQ is simply the ratio between
the probability mass functions of the two distributions. Similarly, for continuous random
variables, we can choose the ratio between the probability densities. If the absolute
continuity criterion P ≪ Q does not hold, we say that dP/ dQ = ∞.

As aforementioned, when the distributions P and Q are chosen as the joint distri-
bution PXY and the product of marginals PXPY , the logarithm of the Radon-Nikodym
derivative is referred to as the information density:

ı(X, Y ) = log dPXY

dPXPY
. (3.23)

This can be used for the following change of measure: assume that we have f(X, Y ) = 0
whenever ı(X, Y ) = −∞. Note that, if we assume that PXPY ≪ PXY , we always
have ı(X, Y ) > −∞ so that the condition is satisfied for any function f . Then, [19,
Prop. 17.1]

EPXY
[f(X, Y )] = EPXPY

[
e−ı(X,Y )f(X, Y )

]
. (3.24)

Of course, the same type of result holds if we replace the product of marginals PXPY

with an auxiliary distribution QXY , provided that the suitable absolute continuity re-
quirements hold.

3.2.3 The Donsker-Varadhan Variational Formula
The celebrated Donsker-Varadhan variational formula for the KL divergence has its ori-
gins in the work of [27]. It has a rich history both in the fields of information theory
and machine learning, and is a core tool of many influential concepts. It has been re-
peatedly rediscovered in many contexts, including the PAC-Bayesian literature, being
referred to as the shift of measure lemma [28] and the compression lemma [29]. We state
this important result below.

Theorem 3.4 (Donsker-Varadhan variational formula). Let P and Q be two probability
distributions on a common measurable space X such that P ≪ Q. Let F denote the set
of functions f : X → R such that EQ

[
ef(X)] < ∞,

D(P || Q) = sup
f∈F

EP [f(X)] − logEQ

[
ef(X)

]
. (3.25)
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Theorem 3.4 relates the expectation of f(X) under P to the moment-generating func-
tion of f(X) under Q, in terms of the KL divergence between the two distributions. This
is abundantly useful throughout information theory and machine learning.

3.3 Concentration Inequalities
While the change of measure techniques discussed in Section 3.2 are useful for going
from a hard probability distribution to an easier auxiliary one, this is of little use if we
cannot control the expressions with the auxiliary distribution. In this section, we present
methods for controlling expected values and tail probabilities for various categories of
random variables. For a more detailed review of this vast topic, we refer the reader to, for
example, [30–32], where many of the proofs of the results presented here can be found.

3.3.1 Sub-Gaussian Random Variables
A commonly studied category are sub-Gaussian random variables. A random variable is
said to be sub-Gaussian with parameter σ, or σ-sub-Gaussian, if its tail is dominated by
that of a Gaussian random variable with variance σ2. Below, we give several equivalent
characterizations of sub-Gaussian random variables [32, Thm. 2.6].

Definition 3.9 (Sub-Gaussian random variable). A random variable X is called σ-sub-
Gaussian if

P (X − E[X] > ε) ≤ e− η2

2σ2 . (3.26)

An equivalent condition is that, for all λ ∈ R,

E
[
eλ(X−E[X])

]
≤ e

λ2σ2
2 . (3.27)

A third equivalent characterization is that, for all λ ∈ [0, 1),

E
[
eλ(X−E[X])2/2σ2

]
≤ 1√

1 − λ
. (3.28)

A useful property of sub-Gaussian random variables is that the sub-Gaussianity pa-
rameter σ behaves like a variance under averaging: if we let S denote the average of n

samples of X, then S is σ/
√

n-sub-Gaussian.

Proposition 3.1 (Averaging sub-Gaussian random variables). Let X be a σ-sub-Gaussian
random variable and let S = 1

n

∑n
i=1 Xi be the average of n independent instances of X.

Then, S is σ/
√

n-sub-Gaussian.

3.3.2 Bounded Random Variables
We now turn to the more restricted case of bounded random variables. Throughout
this section, we will without loss of generality assume that the range of the random
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variable is [0, 1]—results for generic intervals can be obtained by shifting and scaling as
appropriate.

We begin by observing that any bounded random variable is sub-Gaussian [32, Sec. 2.1.2].

Proposition 3.2 (Bounded random variables are sub-Gaussian). Let X be a random
variable whose range is restricted to [0, 1]. Then, X is 1/2-sub-Gaussian.

By more directly exploiting the boundedness of the random variable, tighter charac-
terizations of its concentration can be obtained. In the following, we will use the KL
divergence between two Bernoulli random variables to obtain a concentration inequality
that leads to significantly tighter bounds on the average of X when the observed sample
mean is small.

Definition 3.10 (Binary KL divergence). Let p, q ∈ [0, 1]. Then d(q || p) denotes the KL
divergence between two Bernoulli random variables with parameters q and p respectively,
that is,

d(q || p) = D(Bern(q) || Bern(p)) (3.29)

= q log q

p
+ (1 − q) log 1 − q

1 − p
. (3.30)

A “relaxed” version of the binary KL divergence can be expressed as

dγ(q || p) = γq − log(1 − p + peγ), (3.31)

where one can show that d(q || p) = supγ dγ(q || p).
The binary KL divergence between a sample mean and its expectation can be shown

to display a useful concentration behavior. The following result is due to [33].

Theorem 3.5 (KL concentration). Let X be a random variable with range [0, 1] and
mean µ. Let S denote the mean of n independent draws of X. For n ≥ 8,

E
[
end(S || µ)

]
≤ 2

√
n. (3.32)

An even tighter concentration result can be derived by considering the aforementioned
relaxed binary KL divergence. This turns out to be particularly useful in the derivation
of average generalization bounds. The following result is due to [34].

Theorem 3.6 (Parametric KL concentration). Let X be a random variable with range [0, 1]
and mean µ. Let S denote the mean of n independent draws of X. For any fixed γ,

E
[
endγ (S || µ)

]
≤ 1. (3.33)

3.3.3 Binary Random Variables
While we previously considered any bounded random variables within [0, 1], we now re-
strict our attention to binary random variables, which can only take two values within
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this range. For such random variables, a fast concentration result on the weighted differ-
ence between the random variable and its complement can be derived. While this may
seem quite esoteric at first glance, it can be used to derive fast-rate generalization bounds
with sharp constants for interpolating learning algorithms. The following is due to [8].

Theorem 3.7 (Concentration of complementary random variables). Let X be a random
variable satisfying P (X = a) = P (X = b) = 1/2 where a, b ∈ [0, 1]. Let X̄ = a + b − X

denote its complement in the set {a, b}. Finally, let λ, γ > 0 be constants such that
λ(1 − γ) + (eλ − 1 − λ)(1 + γ2) ≤ 0. Then,

E
[
eλ(X−γX̄)

]
≤ 1. (3.34)

In the following chapter, as well as the appended research contributions in Part II, we
will put the tools discussed in this chapter to use to derive generalization guarantees.
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Information-Theoretic Generalization Guarantees

In this chapter, we overview some of the information-theoretic generalization guarantees
that are available in the literature. We start by motivating the need for new generalization
guarantees, beyond the classical results discussed in Chapter 2, and discuss why the
information-theoretic approach is a promising way forward. We then describe some of
the main results that are available in the literature, beginning with average generalization
bounds, before proceeding to tail bounds of the PAC-Bayesian and single-draw varieties.
We conclude by presenting the CMI framework, where the training data is randomly
selected from a larger set of data samples. This framework plays an important role in
the appended papers.

4.1 Motivation
The celebrated fundamental theorem of statistical learning [5] shows that the VC dimen-
sion completely characterizes PAC learnability. However, this result has a uniform flavor:
the guarantees hold for all hypotheses in the class, and for all possible data distributions.

In [6], two experiments are performed with deep neural networks for image classification
tasks. In the first, the networks are trained on training sets with true labels. In this
setting, the networks achieve zero training loss and a low test loss, meaning that they
generalize. In the second experiment, the labels of the training set are randomized. Now,
there is nothing to be learned from the training set, as the information carried by the
correctly labelled pairs has been erased. Still, the networks are able to achieve zero
training loss, but in this setting, their test loss is no better than random guessing—
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they do not generalize. This experiment illustrates that, to explain generalization in
modern machine learning algorithms, uniform results are not sufficient. Deep neural
networks, which achieve the state-of-the-art results in a myriad of applications, operate
and generalize in a regime that cannot be explained by their VC dimension. Indeed,
networks whose VC dimension is estimated to be in the millions can generalize based on
a few thousand training examples.

This motivates the need for new generalization guarantees. Unlike the classical results,
we do not want to restrict ourselves to properties of the hypothesis class, and we want to
be less uniform in some sense. In particular, we want to incorporate the data distribution
and the learning algorithm into our bounds. The information-theoretic bounds that
we present in this section do exactly this: if the algorithm or data distribution are
altered, the generalization performance that is guaranteed by the bound will also change.
Unlike the classical generalization guarantees, these information-theoretic results can
thus distinguish between the settings with true and random labels that are studied in [6],
providing hope that we can explain the discrepancy in generalization. The intuition
behind this approach is as follows. If a learner achieves good performance on training
data, but captures all of the information contained therein, it may simply have memorized
the specific training samples, without identifying any generally useful structure. Thus, it
may be unable to generalize. In contrast, if a learner performs well on training data, while
extracting a low amount of information from it, it must have captured some fundamental
relation in the data rather than just memorizing it. Hence, it will generalize to new data.

4.2 Average Generalization Bounds
We begin by looking at information-theoretic bounds on the average generalization error.
Initial work on explicitly tying generalization guarantees to the mutual information, a
core quantity within information theory, was performed by Russo and Zou [35]. Although
the main focus of their investigation is on adaptive data analysis, the statements can be
adapted to the learning setting, but only for finite data domains. Xu and Raginsky [36]
extended this to uncountable domains, and highlighted the connection to learning. We
present the main result from Xu and Raginsky [36, Thm. 1] below.

Theorem 4.1 (Average bound in terms of mutual information). Assume that ℓ(w, Z)
is σ-sub-Gaussian under PZ for all w ∈ W and that PWZ ≪ PWPZ . Then,

EPWZ
[LPZ

(W )] ≤ EPWZ
[LZ(W )] +

√
2σ2I(W ; Z)

n
. (4.1)

Proof. We begin by applying the Donsker-Varadhan variational representation (3.25)
with PWZ , Q = PWPZ and f(X) = λ(LPZ

(W ) − LZ(W )), to see that for all λ,

EPWZ
[LPZ

(W ) − LZ(W )] ≤
D(PWZ || PWPZ) + logEPWPZ

[
eλ(LPZ

(W )−LZ(W ))]
λ

. (4.2)
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This allows us to change measure from PWZ to PWPZ . Next, we need to use a concen-
tration inequality to obtain a bound that decays with n. Note that for a fixed w, LZ(w)
is the average of n independent σ-sub-Gaussian random variables. Therefore, by Propo-
sition 3.1, LZ(w) is σ/

√
n-sub-Gaussian. Therefore, by (3.27),

logEPWPZ

[
eλ(LPZ

(W )−LZ(W ))
]

≤ λ2σ2

2n
. (4.3)

The desired result follows after combining (4.2)-(4.3) and optimizing over λ.

Many of the later results in this chapter follow by similar proofs, but with the change of
measure step and concentration inequality substituted for suitable alternatives. For the
tail bounds, a step involving Markov’s inequality is also required, and in some cases there
are additional technical subtleties. In the remainder of this chapter, we will only give
brief descriptions of the tools used for each proof. For many of the bounds we present,
detailed derivations are provided in Part II.

The big advantage of generalization guarantees based on information measures like the
mutual information when compared to, for instance, the one based on the VC dimension,
is that it takes into account the learning algorithm. As an extreme case, consider a
learning algorithm that picks the hypothesis W independently of the training data Z.
Then, the mutual information I(W ; Z) will be 0, and we are guaranteed to generalize in
expectation even if the hypothesis is selected from a class with infinite VC dimension.
Of course, this specific learner is not very interesting. A discussion of more relevant
scenarios where the mutual information can be bounded, such as noisy empirical risk
minimization, use of stable algorithms, and compression schemes can be found in [36].

As discussed in [36], an analogy can be drawn between learning and communication
by identifying the learning algorithm PW |Z with a channel. In communication applica-
tions of information theory, the mutual information between the input and output, when
supremized over input distributions, is the channel capacity. The channel capacity is the
maximum rate at which information can be reliably transmitted over a communication
channel [19, Chap. 19]. Thus, Theorem 4.1 shows that the capacity of a learning algo-
rithm provides an upper bound on generalization error, in a worst-case sense with respect
to the data distribution. However, this view eliminates the data-dependence inherent in
Theorem 4.1, and thus leads to a less tight characterization.

A drawback of bounds expressed in terms of the mutual information is that they can
often be unbounded. For instance, if W is a deterministic function of Z and both are
separately continuous random variables, the mutual information will be infinite, even if
generalization can be guaranteed through, for instance, the VC dimension bound. This
issue was alleviated by Bu and Veeravalli [37], who used the methods of Xu and Raginsky
to derive a generalization guarantee in terms of the samplewise mutual informatia, that
is, I(W ; Zi) for i = 1, . . . , n. Since W is typically undetermined given any individual
Zi, even when it is a deterministic function of the whole training set Z, this leads to a
finite bound in situations where the original mutual information-based bound fails. We
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present this result below.

Theorem 4.2 (Average bound in terms of samplewise mutual information). Assume
that ℓ(w, Z) is σ-sub-Gaussian under PZ for all w and that PW |Z ≪ PW . Then,

EPWZ
[LPZ

(W )] ≤ EPWZ
[LZ(W )] + 1

n

n∑
i=1

√
2σ2I(W ; Zi). (4.4)

This result relies on the decomposition

EPWZ
[LPZ

(W )] − EPWZ
[LZ(W )] = 1

n

n∑
i=1

EPWPZ
[ℓ(W, Z)] − EPWZi

[ℓ(W, Zi)] . (4.5)

Applying the same arguments as were used to prove Theorem 4.1 to each term in this
composition, we obtain the desired result. By using Jensen’s inequality, the chain rule
of mutual information, and the independence of the Zi, we see that the samplewise
mutual information guarantee is always tighter than the original mutual information
result [37, Prop. 1].

One point to note is that the decomposition above can be seen as weighting all training
samples with a uniform distribution. However, this may not always be the best approach.
For instance, for sequential algorithms like stochastic gradient descent, the training sam-
ples that are processed first may have an outsized influence on the selected hypothesis,
even if the training loss is similar for all samples. Using a non-uniform weighting of the
training samples yields the following result.

Proposition 4.1 (Average bound in terms of weighted samplewise mutual information).
Assume that ℓ(w, Z) is σ-sub-Gaussian under PZ for all w and that PW |Z ≪ PW . Let I be
distributed according PI , where PI is an arbitrary probability mass function on {1, . . . , n}.
Then,

EPWZ
[LPZ

(W )] ≤ EPI

[
EPWZi

[ℓ(W, Zi)]
]

+ EPI

[√
2σ2I(W ; ZI)

]
. (4.6)

The bound above can be applied to, for instance, a generalized notion of compression
schemes. A compression scheme of size k is a learning algorithm where the output
based on the full training set, consisting of n > k samples, is always identical to the
output based on some size-k subset of the training set [5, Chapter 30]. Thus, for these
algorithms, only k samples affect the output. The main insight behind generalization
bounds for compression schemes is that the remaining n − k samples do not affect the
selected hypothesis, and thus serve as an independent test set. However, the requirement
that these n − k samples are completely independent from the selected hypothesis may
be too strict. Using Proposition 4.1, we can instead consider learning algorithms that
depend freely on k input samples, but where the remaining n − k samples have bounded
samplewise mutual information with the output.

An alternative approach to get information-theoretic bounds that are always finite is
to use the CMI framework, which we present at the end of this chapter.
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4.3 PAC-Bayesian Generalization Bounds
The genesis of information-theoretic approaches to generalization guarantees can be
found within the PAC-Bayesian literature. While the initial ideas can be glimpsed in [38],
the PAC-Bayesian approach is usually said to have started with McAllester [14], who
worked on developing PAC-style bounds for classifiers of a Bayesian flavor. These bounds
typically rely on a divergence, such as the KL divergence, between a posterior PW |Z , i.e.,
the output distribution from the learning algorithm, and some prior QW , which has to be
independent of Z. Philosophically, this prior reflects some belief about which hypotheses
are seen as reasonable before any data is seen. While the usage of the terms prior and
posterior do not exactly match their original meanings in a Bayesian sense, we will use
them for historical reasons. Since the advent of the PAC-Bayesian approach, research
output in the field has been torrential. Despite the name, the approach applies not only
to Bayesian classifiers, but to a large class of learning algorithms, both deterministic and
randomized. Furthermore, the results are often amenable to numerical evaluation, and
can also provide new insights into algorithm design by way of regularization methods.
The PAC-Bayesian framework also allows for several extensions, where results can be
adapted to new settings or strengthened for certain learning problems [15,34,39,40].

Below, we give a somewhat more modern version of the basic PAC-Bayesian bound [14]
for sub-Gaussian losses.

Theorem 4.3 (PAC-Bayesian bound for sub-Gaussian losses). Assume that ℓ(w, Z) is σ-
sub-Gaussian under PZ for all w ∈ W and let QW be some distribution on W that
satisfies PW |Z ≪ QW . Then, with probability at least 1 − δ under PZ ,

EPW |Z
[LPZ

(W )] ≤ EPW |Z
[LZ(W )] +

√
2σ2

n − 1

(
D(PW |Z || QW ) + log

√
2n

δ

)
. (4.7)

The proof of this result is similar to that of Theorem 4.1, but includes an extra Markov
step and relies on (3.28) rather than (3.27). The reason for this difference is that the
optimization over λ would not be possible due to the probabilistic nature of the bound.
This is presented in more detail in Contribution A in Part II.

As observed by Bassily et al. [41], the PAC-Bayesian bound in (4.7) can be con-
verted into a bound in terms of mutual information, by selecting the prior QW to be
the marginal PW and using Markov’s inequality. The price to pay for this conversion is
a highly undesirable linear dependence on 1/δ. Of course, the same conversion can be
performed in the rest of the PAC-Bayesian bounds that we present.

Theorem 4.4 (PAC-Bayesian bound in terms of mutual information). Assume that ℓ(w, Z)
is σ-sub-Gaussian under PZ for all w ∈ W and that PW |Z ≪ PW . Then,

EPW |Z
[LPZ

(W )] ≤ EPW |Z
[LZ(W )] +

√
2σ2

n

(
2I(W ; Z)

δ
+ log 2

δ

)
. (4.8)
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Note that the improved dependence on n in Theorem 4.4 compared to Theorem 4.3
can be achieved since the right-hand side is no longer data-dependent. This allows us to
use (3.27) in the derivation instead of (3.28).

We note that the dependence on n in (4.7) is1 √D(PW |Z || QW )/n. We will refer to
this as a slow rate. For classification settings, it is typical to use the accuracy as the
loss function. For the bound in (4.7) to be interesting, the square-root term must be
smaller than one. It is therefore in our interest to rid ourselves of the square root, since
this would yield a tighter bound. This is done in the following result [34], but at the
cost of worse multiplicative constants. We will refer to it as a fast-rate bound. However,
we note that in order for the bound to achieve a fast-rate in the most commonly used
sense [16,17], the KL divergence D(PW |Z || QW ) must grow at most polylogarithmically
in n. For these fast-rate results, we require the loss function to be bounded.

Theorem 4.5 (Fast-rate PAC-Bayesian bound). Assume that the loss is bounded to [0, 1].
For all λ ∈ (0, 1), the following holds with probability at least 1 − δ under PZ :

EPW |Z
[LPZ

(W )] ≤ 1
λ

[
EPW |Z

[LZ(W )] +
D(PW |Z || QW ) + log 1

δ

2(1 − λ)n

]
. (4.9)

The derivation of this bound relies on the concentration inequality in Theorem 3.6,
which gives a result in terms of the relaxed binary KL divergence from Definition 3.10.
When suitably weakened, this gives the fast-rate bound above.

By considering the binary KL divergence between the training and population loss,
one can obtain a bound whose rate interpolates between the fast and slow rate, depend-
ing on the value of the training loss. This bound was initially developed by Langford
and Seeger [42], and later strengthened by Maurer [33]. It is sometimes referred to as
Seeger’s bound or the Maurer-Langford-Seeger bound [43, 44]. It is derived on the basis
of Theorem 3.5.

Theorem 4.6 (Binary KL PAC-Bayesian bound). Assume that the loss is bounded
to [0, 1]. With probability at least 1 − δ under PZ ,

d(LZ(W ) || LPZ
(W )) ≤

D(PW |Z || QW ) + log 2
√

n
δ

2n
. (4.10)

If the training loss is assumed to be zero, a fast-rate bound can be obtained based on
the above by a straight-forward calculation. In general, Pinsker’s inequality can be used
to obtain an explicit slow-rate bound. However, for any loss value, the bound can be
efficiently numerically inverted to find the maximum value for the population loss that
satisfies the bound, given values of n, δ, the training loss, and the KL divergence. Hence,
the bound in Theorem 4.6 interpolates between the fast and slow rates.

1The dependence of PW |Z on n is implicit, since the learning algorithm has a fixed definition only for a
given sample size, and in principle, it is allowed to have different behaviors for different sample sizes.
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4.4 Single-Draw Generalization Bounds
In [36, Thm. 3], a single-draw generalization bound in terms of mutual information is
also derived, through the use of the monitor technique. Bassily et al. [41] also derive such
a single-draw bound, but obtain better constants.

Theorem 4.7 (Single-draw bound in terms of mutual information). Assume that ℓ(w, Z)
is σ-sub-Gaussian under PZ for all w ∈ W and that PW |Z ≪ PW . Then, with probability
at least 1 − δ under PWZ ,

LPZ
(W ) ≤ LZ(W ) +

√
2σ2

n

(
I(W ; Z) + Hb(δ)

δ

)
. (4.11)

Proof. For a pair of probability distributions PX and QX on a common space X and a
measurable event E ⊂ X , let p = P [E] and q = Q[E] denote the probability of the event
under the respective distributions. Let Hb(p) denote the entropy of a Bernoulli random
variable with parameter p. Then, the data processing inequality for the KL divergence
implies that

D(P || Q) ≥ d(p || q) ≥ −Hb(p) + p log 1
q

. (4.12)

Here, d(p || q) denotes the KL divergence between two Bernoulli distributions with pa-
rameters p and q respectively, while Hb(p) = −p log(p) − (1 − p) log(1 − p) is the entropy
of a Bernoulli random variable with parameter p. We now set P = PWZ , Q = PWPZ

and take E to be the high-error event

E = {(w, z) : LPZ
(w) − Lz(w) > ϵ}. (4.13)

The σ-sub-Gaussianity of the loss function implies that [32, Eq. (2.9)]

PZn [E > ϵ] ≤ exp
(
−nϵ2/(2σ2)

)
. (4.14)

From this, it follows that

log 1
q

≥ n
ϵ2

2σ2 (4.15)

which, substituted into (4.12), gives us

ϵ ≤

√
2σ2

n

(
I(W ; Zn) + Hb(p)

p

)
. (4.16)

Since the right-hand side of (4.16) is monotonically decreasing in p, we conclude that the
condition

ϵ ≥

√
2σ2

n

(
I(W ; Zn) + Hb(δ)

δ

)
(4.17)

implies that p ≤ δ.
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As previously mentioned, the tail bounds in terms of mutual information display an
undesirable linear dependence on the inverse confidence parameter 1/δ. Esposito et al. [9]
sought to rectify this by introducing new single-draw bounds in terms of a large family
of alternative information-theoretic quantities. Below, we present their bound given in
terms of the α-mutual information Iα(W ; Z).

Theorem 4.8 (Single-draw bound in terms of α-mutual information). Assume that ℓ(w, Z)
is σ-sub-Gaussian under PZ for all w ∈ W and that PW |Z ≪ PW . Then, for all α > 1,
with probability at least 1 − δ under PWZ ,

LPZ
(W ) ≤ LZ(W ) +

√
2σ2

n

[
Iα(W ; Z) + α

α − 1 log 1
δ

]
. (4.18)

Here, Iα(W ; Zn) is the α-mutual information

Iα(W ; Zn) = α

α − 1 logEPZn

[
E1/α

PW

[(
dPWZn

dPWPZn

)α]]
. (4.19)

The proof of this result relies on repeated uses of Hölder’s inequality, combined with a
use of Hoeffding’s inequality. A similar proof technique can be found in Theorem 7 and
Corollary 9 in Paper A.

For a fixed α, we see that the bound achieves a much more beneficial log 1/δ depen-
dence on the inverse confidence parameter. Bounds with this logarithmic dependence
on 1/δ are sometimes called high-probability bounds.2 In particular, if α → ∞, the
constant disappears and the α-mutual information becomes the maximal leakage from
Definition 3.6. However, in the limit of α → 1, where the α-mutual information becomes
the normal mutual information, we see that the δ-dependent term blows up, rendering
the bound completely vacuous. We thus see that there is some kind of trade-off between
the value of α and the contribution of the δ-dependent term. In Contribution A, we
explore this trade-off further, laying bare a connection between the moment of the in-
formation measure under consideration and the effect that δ has on the tightness of the
bound.

4.5 The CMI framework
As previously mentioned, an alternative method to obtain information-theoretic bounds
that are guaranteed to be finite is to use the CMI framework. The intuitive motivation
behind this approach is that we want to normalize the information carried by each sam-
ple to 1 bit. It was introduced by Steinke and Zakynthinou [8]. In the CMI framework,
we have 2n training samples Z̃ = (Z̃1, . . . , Z̃2n), referred to as a supersample. From

2This terminological distinction between tail bounds with a logarithmic dependence on 1/δ and bounds
with a polynomial dependence on 1/δ is not universal. In some works, all tail bounds are referred to
as high-probability bounds.

32



Chapter 4

Data
distribution

PZ

Supersample
Z̃

Randomized
membership

S Training data
Z(S)

Test data
Z(S̄)

Hypothesis
W

Training loss
LZ(S)(W )

Test loss
LZ(S̄)(W )

Generalization error
LZ(S̄)(W ) − LZ(S)(W )

Figure 4.1: Schematic illustration of the CMI framework.

this, the training set is randomly formed as follows: let S = (S1, . . . , Sn) be a random
vector, where each entry is distributed according to a Bernoulli distribution with param-
eter 1/2. Then, the ith element of the training set Z(S) = (Z1(S1), . . . , Zn(Sn)) is given
by Zi(Si) = Z̃i+Sin. In other words, the ith element of the training set can be one of the
two elements Z̃i or Z̃i+n from Z̃, and the selection between these two is determined by
Si. The hypothesis W is then chosen based on Z(S), and is conditionally independent
of Z̃ and S given Z(S). We let S̄ = (1 − S1, . . . , 1 − Sn) denote the modulo-2 comple-
ment of S. Note that Z(S̄) is independent of W , and hence is a test set. The loss on
this set, LZ(S̄)(W ), is an unbiased estimate of the population loss under PWZ̃S , the joint
distribution of W , Z̃, and S. This setup is illustrated in Figure 4.1.

For this setup, under the additional assumption of a bounded loss function, Steinke
and Zakynthinou derived an average bound on the generalization error that is similar
to that of Xu and Raginsky [36, Thm. 1], but given in terms of the conditional mutual
information I(W ; S|Z̃). We present this result below.

Theorem 4.9 (Slow-rate bound in terms of CMI). Assume that ℓ(w, z) ∈ [0, 1] for
all w ∈ W and z ∈ Z. Then,

EPWZ̃S
[LPZ

(W )] ≤ EPWZ̃S

[
LZ(S)(W )

]
+

√
2I(W ; S|Z̃)

n
. (4.20)

The proof of this result again relies on the Donsker-Varadhan variational representation
of KL divergence. An alternative proof can be found in Corollary 5 in Paper A.

Intuitively, the result in Theorem 4.9 improves upon Theorem 4.1, for the special case of
a bounded loss function, because the information of each sample is normalized to 1 bit—
indeed, the CMI can be upper-bounded as I(W ; S|Z̃) ≤ H(S) = n log 2. By the chain
rule of mutual information, combined with the Markov property (Z̃, S) − Z(S) − W and
that Z(S) is a deterministic function of (Z̃, S), we also have I(W ; Z(S)) = I(W ; Z̃) +
I(W ; S|Z̃). Thus, a direct comparison between Theorem 4.9 and Theorem 4.1 reveals
that the former is tighter provided that I(W ; Z̃) > 3I(W ; S|Z̃).

33



Part I

As previously mentioned, information-theoretic generalization guarantees can have
slow rates, where the dependence on n is

√
IM/n, where IM is shorthand for some

information measure, or fast rates, where the dependence is IM/n. In [8, Cor. 5(3)],
Steinke and Zakynthinou also derive a bound with such a fast rate, at the expense of
less beneficial multiplicative constants. In particular, the training loss is multiplied by a
factor greater than one.

Theorem 4.10 (Fast-rate bound in terms of CMI). Assume that ℓ(w, z) ∈ [0, 1] for
all w ∈ W and z ∈ Z. Then,

EPWZ̃S
[LPZ

(W )] ≤ 2EPWZ̃S

[
LZ(S)(W )

]
+ 3I(W ; S|Z̃)

n
. (4.21)

To achieve a fast rate, Theorem 3.7 is used, where the boundedness of the loss function
is used more directly than in the derivation of the slow-rate bound in Theorem 4.9. For
learning algorithms that achieve zero training loss, a fast-rate bound with sharp constants
is also derived in [8].

Similar to the samplewise extension of the average mutual information bound per-
formed by Bu and Veeravalli [37], Haghifam et al. [45, Thm. 3.4] extended the CMI
result to a samplewise CMI bound, using the same decomposition as in Theorem 4.2.
They also use the disintegration ideas introduced in [46] to pull the expectation over PZ̃

outside of the square root, which tightens the resulting bound.

Theorem 4.11 (Slow-rate bound in terms of samplewise CMI). Assume that ℓ(w, z) ∈
[0, 1] for all w ∈ W and z ∈ Z. Then,

EPWZ̃S
[LPZ

(W )] ≤ EPWZ̃S

[
LZ(S)(W )

]
+ 1

n

n∑
i=1

EPZ̃

[√
2D(PWSi|Z̃ || PW |Z̃PSi

)
]

. (4.22)

Again, Jensen’s inequality, the chain rule of mutual information, and the independence
between the Si implies that this bound is stronger than the CMI bound in Theorem 4.9.

Finally, a tighter characterization can be obtained by considering the evaluated CMI.
In the evaluated CMI, the hypothesis is replaced with the losses that the hypothesis
induces on the supersample [8]. We denote these losses by λ, so that for i = 1, . . . , n

and j = 0, 1, we have λi,j = ℓ(W, Z̃i+jn). The derivation of bounds in terms of the
evaluated CMI rely on the observation that the hypothesis enters the proof only through
the losses it induces. While this idea can be used in all of the aforementioned CMI
bounds, we present it below only for the slow-rate bound.

Theorem 4.12 (Slow-rate bound in terms of evaluated CMI). Assume that ℓ(w, z) ∈
[0, 1] for all w ∈ W and z ∈ Z. Then,

EPWZ̃S
[LPZ

(W )] ≤ EPWZ̃S

[
LZ(S)(W )

]
+

√
2I(λ; S|Z̃)

n
. (4.23)
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Similar results can also be derived on the basis of the predictions that the hypothesis
induces on the supersample [47]. The expressiveness of the CMI and evaluated CMI has
been studied in terms of the VC dimension and related quantities in [48], which proves
several positive results for the ability of the framework to capture classical generalization
guarantees.
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Applications and Extensions

In the previous chapter, we covered several information-theoretic generalization bounds.
These results were stated for the generic learning setting introduced in Section 2.1, and
we provided no explicit characterization of the information measures that appeared in
the bounds. However, the usefulness of the bounds depend on the behavior of the infor-
mation measure. For instance, consider the bound in Theorem 4.9, which depends on
the quotient I(W ; S|Z̃)/n. The conditional mutual information in the numerator has
an implicit dependence on n, and in the worst case, it may grow linearly with n. If this
is the case, the bound is non-decreasing as the sample size grows, and will typically be
vacuous. Hence, evaluating the information terms for specific learning algorithms, some-
times referred to as the information complexity of an algorithm, is of high importance.
Furthermore, the generic setup from Section 2.1 does not cover all settings of interest,
as previously discussed.

In this thesis, we numerically evaluate our information-theoretic generalization bounds
for neural networks. We also consider meta learning, which is an extension that goes
beyond the learning setup from Section 2.1. In this chapter, we provide a brief overview
of generalization results for neural networks and meta learning, both in terms of classical
generalization bounds and their information-theoretic counterpart.

5.1 Neural Networks
Neural networks are parametric models that can represent highly complex functions
through the composition of several simple operations. A very simple neural network of
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depth d consists of an activation function f and a set of matrices W1, . . . , Wd. The output
of the network for an input x is given by N(x) = Wdf(Wd−1f(Wd−2 . . . f(W1x) . . . )),
where the activation function is applied elementwise and the size of all matrices are such
that the output is well-defined. The values of the matrices are updated by performing
gradient descent on the training loss. This basic structure has been extended in several
ways, such as with convolutional neural networks [49] and transformers [50]. In general,
the number of parameters of a neural network are much greater than the number of
training samples, and the resulting hypothesis class is highly complex.

As mentioned in the previous chapter, one motivation for studying new types of gen-
eralization guarantees, beyond the classical ones, is that the performance of modern ma-
chine learning algorithms, such as deep neural networks, cannot be explained by bounds
that rely on the complexity of the model class, such as those based on the VC dimension.
New bounds need to exploit properties of the data distribution and learning algorithm,
which makes information-theoretic approaches a good candidate. In this section, we sur-
vey some success stories where information-theoretic generalization guarantees have been
applied to neural networks.

In [39], Dziugaite and Roy considered a stochastic neural network, the weights of
which are drawn from a Gaussian distribution for each new prediction that the network
makes. The mean and variance of this distribution were found by optimizing a PAC-
Bayesian bound similar to the one in Theorem 4.3 using stochastic gradient descent.
We thus note that, in this setup, the generalization bound is directly optimized as part
of the neural network training procedure. The mean of the prior is chosen to be the
random initialization of the neural network, and is independent of any data. This lead
to nonvacuous bounds for overparameterized neural networks trained on a binary version
of the MNIST data set, where the digits 0 to 4 were combined into one class and 5 to 9
into another.

By exploiting the compressibility of neural networks, Zhou et al. [40] derived a PAC-
Bayesian bound that applies to deterministic, pruned networks. To obtain such a net-
work, one first trains a large neural network, before removing parameters that do not
affect performance too much. Through this process, one ends up with a similarly well-
performing network, the size of which is significantly smaller than the original network
size. An impressive aspect of [40] is that a nonvacuous generalization guarantee is ob-
tained even for ImageNet, a relatively challenging setup. However, the bounds obtained
are far from tight, even for the simpler MNIST data set, and do not apply to networks
trained through a standard procedure.

Negrea et al. [46] applied their disintegrated, samplewise mutual information bound
to noisy iterative optimizers, and in particular, provided numerically nonvacuous results
for neural networks trained through stochastic gradient Langevin dynamics. This results
in bounds on the average generalization error.

In [51], Dziugaite et al. improved upon their previous results by employing a strategy
that allows them to construct the prior in a data-dependent fashion. Specifically, they
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evaluate the PAC-Bayesian bound in Theorem 4.5 using only part of the training data,
while still using the full set of training data for choosing the posterior. Leaving part of
the training data out when evaluating the bound allows for the prior to be chosen on
the basis of the held-out data. This procedure yields relatively accurate bounds when
applied to stochastic networks using normal stochastic gradient descent, and an even
tighter characterization when the networks are trained by optimizing the bound directly.

Recently, Harutyunyan et al. [47] used the CMI framework to obtain generalization
bounds for neural networks. Specifically, they used a variant of the samplewise, disin-
tegrated bound in Theorem 4.11, where the CMI is replaced with the so-called f -CMI,
i.e., the CMI based on the predictions that the hypothesis induces on the supersample.
In order to estimate the f -CMI, they sample a subset of the available training data to
form a supersample, and then sample half of this supersample to form the training set.
This procedure is repeated several times. This yields an average generalization bound,
unlike the PAC-Bayesian bounds previously mentioned in this section. Notably, the re-
sulting bound is for the deterministic network found by stochastic gradient descent, and
no noise needs to be added. A benefit of the f -CMI bound is that the bound remains
stable throughout training. This is in contrast to weight-based bounds, which tend to
diverge as training progresses.

Thus, the information-theoretic approach has proven to be a promising direction for
the study of generalization in modern machine learning algorithms. However, there is
still much work to be done. First, there are several symmetries and sources of noise
inherent to neural networks and their training. Systematically exploiting this may be
a path toward improving the bounds. Furthermore, the results obtained so far do not
provide many guidelines regarding network design. A long term goal of the study of
generalization would be to be able to predict a priori what design choices lead to a
better performing network. As things currently stand, a lot of resources are spent on
performing grid searches over hyperparameters to find well-generalizing networks, and
many design choices are purely heuristic. A well-developed theory that satisfactorily
explains generalization in neural networks should be able to provide more rigorously
motivated choices for these parameters, and enable us to find well-performing networks
without spending huge computational resources.

5.2 Meta Learning
In the standard supervised learning setup, each task is viewed in isolation, and the
selected hypothesis depends only on data from this task. In practice, however, tasks are
often related. For instance, a classification task where the goal is to identify cats or dogs
is similar to a task where the goal is to identify tigers or wolves. In meta learning, the
objective is to use data from related tasks to improve performance on a new, related
task [52]. The term is sometimes used interchangeably with transfer learning, although
meta learning often refers to learning hyperparameters whereas transfer learning is often
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Figure 5.1: Schematic illustration of the general meta-learning setting.

about fine-tuning the parameters themselves. When applying neural networks to image
classification tasks, such as those described above, there are several factors that can be
learned from related tasks that can improve performance on a specific classification task.
This includes the architecture, initialization, optimizer, learning rate, and the parameters
of some matrices.

Formally, one considers a task space with an associated task distribution. For each
task, there is an associated in-task data distribution. The meta-training set is assumed
to be formed by first sampling n̂ tasks according to the task distribution, and then
drawing n samples within each task from the in-task data distributions. Within each
task, a base learner selects a hypothesis on the basis of the in-task training data and a
hyperparameter. The meta-learning algorithm has access to the entire meta-training set,
and its objective is to select a suitable hyperparameter. The meta-training loss is the
loss on the meta-training set. The goal is to have a small meta-population loss, i.e., a
small population loss on new tasks. To compute this, a new task is drawn according to
the task distribution, and a training set is drawn according to the corresponding in-task
data distribution. The meta-population loss, then, is the expected loss on a new sample
drawn from the in-task data distribution. This is illustrated in Figure 5.1.

A specific instance of meta learning that is well-studied is representation learning. In
this setting, the goal of the meta learner is to select a representation h from a function
class H, while the base learner for task i selects a task-specific function fi from the
function class F . The representation is shared among the tasks, and the hypothesis for
task i is the composition fi ◦ h. This is similar to how neural networks are sometimes
first fully trained on a set of tasks, and then the final layer is fine-tuned on a target task.

As indicated by the discussion above, one intuitively expects to obtain some benefit
from using data from related tasks. This benefit was first theoretically demonstrated
by [52], where the notion of task environment was also formally introduced. For the
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Figure 5.2: Schematic illustration of the CMI framework for meta learning.

representation learning setting above, [53, Thm. 5] derived a generalization bound that
scales as

√
C(H)/n̂+

√
C(F)/n, where C(·) denotes a complexity measure of the function

class and we ignore logarithmic terms. This illustrates a potential benefit over conven-
tional, single-task learning, where the techniques described in the previous chapter would
yield a bound that scales as

√
C(F × H)/n, since both h and fi need to be learned based

only on the n samples from task i. However, as n → ∞, the bound in [53, Thm. 5] still
does not approach zero. This was rectified in [54], who derived a bound with a scaling
of
√

C(H)/(nn̂) + C(F)/n. This captures the intuitive notion that each sample provides
information about the representation h.

A main focus of [54] is to obtain excess risk bounds for a specified target task, that
is, a bound on the difference between the population loss achieved by an empirical risk
minimizer and the smallest possible population loss for a specific task. To achieve this,
they use an assumption of task diversity, which essentially states that, for any represen-
tation h, the excess risk of the empirical risk minimizer averaged over the training tasks
is not too far from the greatest possible excess risk of the empirical risk minimizer for
any task in the environment. While [54] discuss this assumption in terms of the training
tasks being sufficiently diverse, it can also be seen as the task environment being suffi-
ciently similar, since no task is allowed to deviate significantly from the other tasks in
the environment.

Information-theoretic bounds have also been applied to meta learning. Typically, the
derivations of these bounds are based on a two-step approach, where one defines an aux-
iliary loss. This auxiliary loss can either be the population loss on the training tasks or
the training loss on unobserved tasks. Using this auxiliary loss, a generalization bound is
applied twice: first to bound the difference between the meta-training loss and the auxil-
iary loss, then to bound the difference between the auxiliary loss and the meta-population
loss. Then, one of these steps is purely at the environment level, and one is purely at
the task level, where the order depends on the choice of auxiliary loss. Composing these
bounds gives a bound on the meta-population loss in terms of the meta-training loss, as
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desired. In [55], this is done on the basis of the bounds in Theorem 4.1 and Theorem 4.2,
and the resulting bounds are applied for several meta-learning settings. PAC-Bayesian
bounds have also extensively been used, for instance in [56,57]. In [58], the bound in The-
orem 4.1 is combined with a one-step approach, where the auxiliary loss is not needed.
This yields a tighter bound, where the task level and environment level are considered
jointly. Finally, in [59], the bound in Theorem 4.9 is combined with a two-step approach
to derive generalization bounds for meta learning. In order to achieve this, the CMI
framework is extended to meta learning by considering a meta-supersample, which con-
tains supersample for 2n̂ tasks. As for the standard CMI framework, half of these are
selected for inclusion in the meta-training set, on the basis of a Bernoulli vector. Then,
within each task, the standard CMI framework is used. This is illustrated in Figure 5.2.
Through the chain rule for mutual information and the data-processing inequality, these
bounds can be shown to be tighter than bounds based on the mutual information. How-
ever, due to the two-step derivation, the bounds in [59] have a suboptimal dependence
on the number of samples.
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Summary

In this chapter, the contributions provided in Part II are summarized. We conclude Part I
of this thesis by discussing limitations of our results and explore possible directions for
future investigations emanating from the work contained in this thesis.

6.1 Contributions
In this thesis, we derive and analyze information-theoretic generalization bounds. In
particular, we:

• extend existing bounds to new settings,

• derive novel bounds that are tighter than existing results,

• demonstrate that some of our bounds are numerically accurate for neural networks,
and

• show that our bounds are expressive enough to recover some classical results.

Below, we provide a more detailed summary of each of the appended contributions.

Contribution A: “Generalization Bounds via Information Density and Conditional
Information Density”

In this paper, we develop a framework for deriving generalization bounds of various types
through the use of exponential inequalities. Not only can this approach be used to derive

43



Part I

novel generalization bounds, but it also provides a unified way to recover several of the
known results in the literature, both average bounds and tail bounds (PAC-Bayesian
and single-draw). Notably, we obtain a new data-dependent single-draw bound in terms
of the information density ı(W, Z) between the training data Z and the hypothesis W ,
which can be weakened to obtain many data-independent bounds. Our results illustrate
a trade-off between the magnitude of the high moments of the information measures
appearing in the bounds and the confidence levels that can be achieved. We then extend
our exponential-inequality approach to the CMI framework introduced by Steinke and
Zakynthinou [8], and as a result, we extend their bounds on the average generalization
error to the PAC-Bayesian and single-draw settings. This exemplifies how our framework
can be used to implement new ideas in bounds of all flavors at once. For this setting, we
derive a new data-dependent single-draw bound in terms of the conditional information
density ı(W, S|Z̃) between the hypothesis W and the random vector S determining the
training set selection, given the supersample Z̃. When suitably weakened, this leads to
a new result in terms of the conditional maximal leakage L(S → W |Z), which can be
tighter than the corresponding bound based on the maximal leakage in [9, Cor. 9].

In addition to this, we present an approach to derive generalization bounds based
on a change of measure argument that is used in the binary hypothesis testing liter-
ature. This yields a data-independent single-draw bound in terms of the tail of the
information density ı(W, Z). This bound can be shown to imply essentially equiva-
lent versions of the data-independent single-draw bounds that we derived through the
exponential-inequality approach. We also extend this approach to the CMI framework,
deriving a data-independent single-draw bound in terms of the conditional information
density ı(W, S|Z̃). Finally, we extend the Hölder-based approach used by Esposito et
al. [9] to the CMI setting, and derive a bound in terms of the conditional α-mutual
information, from which results in terms of the conditional Rényi divergence and the
conditional maximal leakage follow. We note that the dependence on the training set
size n in all bounds presented in this paper is of the form

√
IM/n, where IM denotes

some information measure. Due to the presence of the square root, these results are
slow-rate bounds.

Contribution B: “Nonvacuous Loss Bounds with Fast Rates for Neural Networks via
Conditional Information Measures”

Building on the work of Steinke and Zakynthinou [8], we obtain fast-rate bounds on the
test loss of a randomized learning algorithm in the CMI framework, i.e., bounds with
an IM/n-dependence on n where IM is a conditional information measure. Again, we
obtain these results through the use of an exponential inequality. The cost of this rate
improvement as compared to the bounds in Contribution A is that the multiplicative
constants that appear in the bounds are larger, and in particular, the training loss is
multiplied by a constant greater than one. This deterioration in multiplicative factors
means that, in order for the new fast-rate bounds to be better than the previously
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obtained slow-rate ones, the training loss and information measure have to be sufficiently
small. The same manipulations that were performed in Contribution A to obtain bounds
in terms of information-theoretic quantities, such as conditional mutual information and
conditional maximal leakage, can also be performed for these fast-rate bounds.

A particular focus of this contribution is how to apply the bounds from the CMI
setting in the context of neural networks. We show that the CMI setting naturally
enables data-dependent priors, which is an important technique for obtaining numerically
tight PAC-Bayesian bounds. Following the approach taken in [39, 51], we model the
learning algorithm PW |Z̃S as a Gaussian distribution centered around the output weights
of stochastic gradient descent, and use a data-dependent prior that aims to approximate
the true marginal PW |Z̃ . With this, both the PAC-Bayesian and single-draw bounds, with
either slow or fast rates, can be computed. We see that the resulting bounds essentially
coincide with the tightest bounds that were previously obtained for the setups that we
consider [51], but unlike previous results, our bounds also apply to the single-draw setting.

Contribution C: “A New Family of Generalization Bounds Using Samplewise
Evaluated CMI”

In deriving the bounds in the previous contributions, the training loss and test loss
were compared only through their (weighted) absolute difference. In Contribution C,
we extend this to allow for arbitrary convex comparator functions, which can lead to
significantly tighter bounds. While similar results have previously been derived in the
PAC-Bayesian literature, we extend this to the CMI framework, obtaining average gen-
eralization bounds in terms of the disintegrated, samplewise, evaluated CMI, that is, the
CMI evaluated in terms of the loss of the chosen hypothesis, rather than its parameters.
In particular, through a novel concentration result for non-identically distributed random
variables, we derive a bound where the convex comparator is the binary KL divergence.
Additionally, we use our framework to recover and generalize several results from the
literature. Again, through the lens of exponential inequalities, we extend these results
to obtain PAC-Bayesian and single-draw bounds in terms of pointwise versions of the
evaluated CMI.

In order to study the expressiveness of our framework, we consider multiclass classifi-
cation with a hypothesis class of finite Natarajan dimension. For this setting, we show
that the (pointwise) evaluated CMI that appears in our results can be bounded as a
function of the Natarajan dimension. Combining this with our generalization bounds,
we recover essentially optimal bounds from the literature. Furthermore, we numerically
evaluate our bounds for several neural network settings. We find that our bounds are
numerically accurate and improve on previous results, including for randomized labels,
and remain stable throughout training. We perform experiments where we vary several
hyperparameters, and find that our bounds are robust to these changes and induce the
same ordering on the hyperparameter values as the true test error.
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Contribution D: “Evaluated CMI Bounds for Meta Learning: Tightness and
Expressiveness”

In Contribution D, we extend our techniques to meta learning. In meta learning, the
meta-training set consists of several training sets from a number of training tasks, drawn
from a common task distribution. Within each task, a base learning algorithm is used
to select a hypothesis based on the in-task training set, as well as a hyperparameter.
The objective of meta learning is to use a meta-learning algorithm to select the hyper-
parameter on the basis of the meta-training set. The goal is to have a small meta-test
loss, i.e., a small average loss on test data for a new task from the task distribution. The
meta-learner has access to the meta-training loss, which is the average loss on the train-
ing data for all training tasks. Most previous analyses of meta-learning use a two-step
derivation, where the meta-training loss is first compared to an auxiliary loss, which is
then compared to the meta-test loss. In contrast, we use a one-step derivation, where the
meta-training loss and meta-test loss are compared directly. We show that the resulting
bounds are tighter than comparable results from the literature. Furthermore, we extend
the aforementioned techniques from the standard setting to meta learning, allowing us
to obtain bounds in terms of the disintegrated, samplewise, evaluated CMI.

In order to examine the expressiveness of our bounds, we specialize our bounds to a
representation learning setting that is well-studied in the literature. We find that our
bounds allow us to recover the rates of classical bounds for this setting. As it turns out,
the one-step derivation is a crucial ingredient to obtain these rates. By extending our
analysis to oracle algorithms and empirical risk minimizers, we also essentially recover
the rates of the excess risk bounds found in [54].

6.2 Future Work
As mentioned in the previous chapter, one remaining goal in the study of information-
theoretic generalization guarantees is the ability to guide the design of modern machine
learning algorithms. In their current form, the bounds discussed in this thesis do not
fully exploit the structure of, for instance, neural networks, instead just treating the
parameters as a generic vector that could potentially describe anything. It should, how-
ever, be noted that such structure can potentially be utilized by suitably selecting the
prior distribution. While there is a strength in the aforementioned generality, further
specializing the bounds to more concrete setups is needed to gain new insights. One
potential improvement is to incorporate the symmetries that are present in most neural
network architectures. One such symmetry is the homogeneity of the ReLU activation
function, whereby for a > 0, we have ReLU(a · x) = a · ReLU(x). Another example
is permutation symmetry, where different units within layers can be swapped without
affecting the functional form of the neural network. Properly utilizing these symmetries
may improve the quantitative results that can be obtained, and potentially provide new

46



Chapter 6

insights. However, as discussed in [39], the non-isotropic random initialization that is
typically used when training neural networks breaks many of the symmetries that are
present, and it is unclear to what extent gains can be made by exploiting the remainder.

There are also several promising ways to improve the bounds themselves by using dif-
ferent tools than the ones presented in this thesis. For instance, instead of using the
Donsker-Varadhan variational representation, [60] use tools from convex analysis to per-
form an alternative change of measure. In the resulting bounds, the mutual information
is replaced by an arbitrary strongly convex function of the joint distribution. Combining
this approach with the ideas discussed in this thesis may lead to tighter bounds. Fur-
thermore, a variant of the CMI framework was recently presented by [61, 62]. In this
variant, instead of choosing the n samples on the basis of a supersample with twice the
size, the n samples are instead selected on the basis of a supersample of size n + 1. This
may similarly be combined with the ideas in this thesis, in particular in relation to meta
learning, to obtain improved results.

Finally, although this thesis addresses the expressiveness of information-theoretic gen-
eralization bounds to some extent, there are still questions remaining. While algorithmic
stability, the VC dimension, and related complexity measures are studied in [47,48], the
relationship between information-theoretic bounds and Rademacher complexity, for in-
stance, has not been established. Expanding the study of the information complexity
of relevant algorithms would increase the applicability of information-theoretic general-
ization bounds, potentially giving rise to principled guidelines for practical algorithmic
improvements.
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