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Abstract
Superconducting circuits is a promising platform for quantum comput-

ing. Quantum information is usually stored in discrete two-level qubits
e.g. in transmon qubits. These qubits are interconnected and placed
in grids to form logical qubits, and many logical qubits together form a
quantum computer.

In this thesis, we consider encoding quantum information in a res-
onator instead of the two-level qubit. Resonators can host bosonic modes
that have, in principle, an infinite number of quantum levels in which
we redundantly can encode a discrete qubit. This makes bosonic qubits
hardware efficient, since we can perform error correction directly on a
single hardware component, namely the resonator. However, we will still
need to use an ancilla two-level qubit to universally control the bosonic
qubit. This thesis can be interpreted as an instruction guide on creating
a bosonic microwave qubit and it contains the following chapters.

We first introduce the cryogenic setup and the state-of-the-art room-
temperature hardware that generates the microwave pulses we need to
perform all the experiments in this thesis. We discuss the latest genera-
tion of the room-temperature measurement- and control-system we used
for both bosonic and discrete variable qubit systems.

We then introduce the hardware components that are needed to form
a bosonic qubit, namely a superconducting transmon qubit and a 3D
superconducting cavity. We explore the fluctuations of their coherence
properties, and we try to understand the sources of noise that limit those
properties.

Next, we create arbitrary bosonic states and gates by using interleaved
sequences of displacements and optimized selective number-dependent
arbitrary phase gates. We characterize a bosonic gate, the X-gate on
the binomially encoded qubit, by coherent state process tomography.



We then characterize the selective photon addition gate. We imple-
ment this gate by a comb of off-resonant drives that simultaneously ex-
cite the qubit and add a photon to the cavity depending on its state.
Supplemented by an unconditional qubit reset, this gate is suitable for
single photon error correction.

Keywords: circuit QED, superconducting circuits, 3D cavity, bosonic
codes, qubit, continuous variable, GKP-state, cubic phase state.
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CHAPTER 1

Introduction

The first quantum revolution is based on the discrete nature of physical
quantities, such as energy states in atoms. The devices that led to the
20th-century technological revolution, use the discreet nature of physics,
but they use the collective behavior of many quantum particles together.
Most notably, devices that transformed our society are the transistor,
the laser, and the atomic clock. They enabled, among other things,
computers, the internet, and the global positioning system (GPS). It is
fair to say that today’s life is hard to imagine without these necessities.

The second quantum revolution is here. We call it a revolution because
we expect that the technologies and devices developed will significantly
transform our society. The technological leap we made enables us to
control individual quantum degrees of freedom instead of the collective
ones. Examples of single quantum degrees of freedom we can control are
the spins of electrons, the polarization of photons, the excitation states
of atoms, etc. The second quantum revolution promises quantum limited
sensing, communication with security guaranteed by the laws of physics,
efficient simulation of quantum systems using the well-controlled quan-
tum systems, and computations that are beyond the reach of classical
computers - quantum computation. Quantum computers are systems
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1. Introduction

comprised of interconnected qubits, the basic building block of a quan-
tum computer. Qubits can be realized in many different systems e.g. in
trapped ions [1], single photons [2] at optical/telecom frequencies, spins
of electrons in solid-state devices [3, 4], rare-earth ions in solid-state
crystals [5], superconducting circuits [6], etc. One of the most promising
platforms is superconducting circuits or circuit quantum electrodynam-
ics (cQED) [7, 8]. Multiple working systems with over 50 qubits have
been demonstrated [9, 10, 11]. Whichever physical system we choose
to encode our quantum information in, it is going to be susceptible to
different sources of errors. For quantum computers to perform advanced
and useful computations [12, 13] we need to track and correct these
errors, by performing so-called quantum error correction [14, 15, 16].
We need to redundantly encode one logical qubit into multiple physical
qubits. Each qubit has to have its physical error rate below a certain
threshold for that specific error-correcting protocol. The further below
this threshold the error rate is, the lower the number of physical qubits
we will need to form the logical qubit. This is important as it reduces
the number of hardware components and the complexity of the system.

Mainstream architectures are built on discrete variable qubits arranged
in some lattice. In this thesis, we will describe so-called bosonic qubits [17,
18, 19] that reside in harmonic oscillators (resonators). Such qubits take
advantage of the many available quantum levels to redundantly encode a
binary qubit. However, universal control of a bosonic qubit requires the
presence of nonlinearity. We accomplish this requirement by coupling
the bosonic mode to an ancilla transmon qubit. If the resonator is a 3D
cavity [20, 21, 22], as is the case for many research groups pursuing this
path, the physical lifetime of the bosonic qubit is about 10 times higher
than that of planar two-level qubits. The first layer of quantum error
protection can be encoded in one resonator instead of many two-level
systems, making it hardware efficient. We can pick a particular qubit
encoding, for example Scrödinger cat states [23, 24, 25], Binomial en-
coding [26, 27, 28] or Gottesman-Kitaev-Preskill (GKP) [29, 30, 31, 32]
encoding. Applying an error correction protocol we can then extend the
lifetime of the physical mode. Furthermore, for bosonic systems, there
is one dominating source of error, namely the single-photon loss that
should be corrected. Adding this additional layer of error protection

2



1.1. Outline of the thesis

plus the longer lifetimes means we need fewer bosonic qubits to form a
logical qubit.

Currently, the limiting factor for the bosonic qubits seems to be the
ancilla qubit. It is typically the component with the worst coherence,
but it is necessary as it introduces the nonlinearity needed to control the
harmonic mode. Furthermore, demonstrating larger connected bosonic
systems remains a practical challenge.

Succinctly, the reason why you would consider building a bosonic mi-
crowave qubit, as the title of this thesis indicates, is that it is a small
system, that is reproducible, robust, and interesting from both engineer-
ing and scientific perspectives. The system Hamiltonian is as simple as
they come, but the interesting and useful physics comes from the many
ways we can drive the system [33].

1.1 Outline of the thesis

This thesis provides an overview and the background for the work pre-
sented in the appended papers. It can be interpreted as an instruction
guide on creating a bosonic microwave qubit. The guide starts with
building hardware components and ends with a suggestion on the im-
plementation of a single photon quantum error correction layer. Each
chapter first lists the theory needed to understand the results of the
papers summarized in that chapter.

Chapter 2 introduces the cryogenic setup and the state-of-the-art
room-temperature hardware that generates the microwave pulses that
we need to perform all of the experiments in this thesis. Paper VII
describes the latest generation of room-temperature measurement and
control system we used, applied to a discrete variable two-qubit system.

Chapter 3 and papers I-III deal with the hardware components that
are needed, namely a superconducting transmon qubit and a 3D super-
conducting cavity. This chapter deals with coherence properties and it
is trying to establish the sources of noise that limit those properties.
Paper III provides a blueprint for reproducibly fabricating high-quality
aluminum 3D stub-geometry cavities. Cavities have quality factors close
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1. Introduction

to 100 million after etching and annealing.

Chapter 4 and papers IV-V deal with initialization, control, and char-
acterization of the bosonic states in the resonator. In paper IV, we create
arbitrary bosonic states using an interleaved sequence of displacement
and optimized SNAP gates. In paper V, we use the same sequence of
gates to implement a bosonic X-gate on a binomially encoded qubit and
use coherent state process tomography to characterize it.

Chapter 5 and paper VI introduce the off-resonant driving of the
qubit-cavity system. In particular, we implement a two-excitation tran-
sition that selectively adds a photon to the cavity mode and excites
the qubit depending on the state of the cavity. We name this gate se-
lective number-dependent arbitrary phase photon addition (SNAPPA).
In paper VI, we show how to calibrate the comb of off-resonant drives
used to implement the SNAPPA gate. We envision that by encoding a
logical qubit in a superposition of a four-component cat state and ap-
plying SNAPPA gate followed by an unconditional qubit reset, we can
successfully protect the logical qubit from the single-photon loss.

4



CHAPTER 2

Experimental setup

2.1 Cryogenic setup

All our experiments are performed in a dilution refrigerator. The sam-
ples are mounted to the mixing chamber and cooled down to below
10 mK. The signals from the room-temperature equipment are attenu-
ated at each temperature stage to suppress noise from the electronics
and room-temperature noise. They are then directed through a set of
circulators or isolators that isolate the noise coming from the output
chain and separate the input and output signals in the case of reflection
measurements. After interacting with the sample, the signals are passed
through superconducting coaxial cables, in order to minimize the losses,
to either a traveling wave parametric amplifier (TWPA)1, when available,
or straight to a high electron mobility transistor (HEMT) amplifier. Sig-
nals are further amplified at room temperature and then digitized. The
room-temperature electronics is described in Sec. 2.3.

Wiring diagrams are similar for all experiments, up to how many input
and output lines they use and whether the measurements are performed
in reflection or in a notch configuration. As an example, a wiring diagram

1We acknowledge IARPA and Lincoln Labs for providing the TWPA used in our experiments
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2. Experimental setup

from papers IV and V is given in Fig. 2.1. In paper VI the only difference
is the absence of the TWPA amplifier.

The cavity drive port (drive line in Fig. 2.1) is under-coupled to enable
the best lifetime of the cavity, while the readout resonator drive port
(drive line reflection in Fig. 2.1) is over-coupled to enable fast readout
of the qubit state. The same line is used to send pulses to the qubit.

It is important to use filtering and shielding to prevent infrared (IR)
photons from reaching the superconducting parts of our devices. They
have energies larger than the superconducting gap and would therefore
create quasiparticles and resistive loss. Furthermore, it is important to
minimize the magnetic field fluctuations. This is why all our samples are
placed in a light-tight copper shield that is surrounded by a mu-metal
shield. An additional mu-metal shield is placed at room temperature.
The mixing chamber can is coated by superconducting tin to further
improve magnetic shielding. Homemade ecosorb filters were mounted
on the input lines for the measurements in papers I and II to prevent
IR photons from reaching the samples via the input line. It would have
been good to have these filters for all the other experiments too.

2.2 Sample fabrication

All the chips were fabricated in Chalmers Myfab cleanroom. In papers I,
II and VII the superconducting circuits are coplanar. They are made
out of aluminum patterned on the silicon substrate. In papers IV-VI
the circuits are instead stripline (i.e. no ground plain on the chip). The
superconductor is still aluminum, but the substrate is either silicon or
sapphire. I designed the stripline chips, but did not fabricate any of
the chips myself. They were fabricated by A. Bengtsson and J. Burnett
in papers I, II and VII, D. Niepce in paper II, A. Osman and D. Pérez
Lozano in paper IV and M. Kervinen in papers V and VI. The fabrication
recipe for aluminum on silicon chips can be found in the Ph.D. thesis
by M. Scigliuzzo [34]. The fabrication recipe for NbN nanowires used in
paper II can be found in the Ph.D. thesis by D. Niepce [35].
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2.2. Sample fabrication

Figure 2.1: Example of the wiring diagram in the dilution refrigerator. The device
being measured is represented as a circuit model. This is the wiring diagram used in
papers IV and V. In paper VI the only difference is the absence of the TWPA amplifier.
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2. Experimental setup

2.3 Room temperature electronics

There are two main types of measurements we perform.

i) The continuous wave or spectroscopic measurements are measure-
ments where we send a long tone of defined frequency and then sweep
this frequency. We are interested in the frequency response of, for exam-
ple, a 3D cavity (papers II and III) or a readout resonator (all the other
appended papers). We can find the resonance frequencies and quality
factors of these modes, and it is usually the first measurement we do
when we start measuring a device. We usually perform this measure-
ment using a vector network analyzer (VNA), and after we are done, we
have to rewire our cables to prepare for the time domain measurements.

ii) Time domain measurements allow us to perform all the experiments
described in papers I and III-VII. All these experiments can be summed
up in the following way: first, we shape the pulses that have a carrier fre-
quency of a few hundred MHz, and then we schedule when these pulses
should be output and on which channels. We upconvert the pulses to
the appropriate frequencies (usually between 4-8 GHz), and send them
through the cryostat. Some of the pulses, namely the ones sent to the
readout resonator, get reflected from the sample, amplified, downcon-
verted to a few hundred MHz, and then digitized. The digitized signal is
usually processed by further down-converting it to DC and integrating
it, so the outcome of one such measurement is usually a complex num-
ber representing the quadratures or the amplitude and the phase of the
readout pulse. Based on this one complex number, we can distinguish
whether the qubit is in the ground state or the excited state and this is
the backbone of our qubit measurement procedure.

Most devices that perform time domain measurements can only pro-
duce pulses with a frequency of a few hundred MHz. These pulses are
then up- and down-converted with analog mixers and separate local os-
cillator (LO) sources. This presents several problems. Analog mixers
are not ideal, they suffer from LO leakage and non-perfect image rejec-
tion and they require calibration by using yet another instrument, e.g.
a spectrum analyzer. Separate LO sources are hard to sync with the in-

8



2.3. Room temperature electronics

Figure 2.2: Room temperature measurement equipment. (a) The setup used in pa-
pers I-V. (b) Presto substitutes all of the instruments in (a) and performs digital up-
and down-conversion. It was used in papers VI-VII.

struments producing the pulses, meaning experiments such as two-qubit
gates are tricky to perform. We helped develop an instrument called
Presto (paper VII) that solves a lot of the beforementioned problems
and has some added benefits. The details of the architecture of the in-
strument and a use case, where two coupled qubits were characterized,
is given in paper VII. I used this instrument in paper VI and its prede-
cessor (called Vivace) for measurements in papers IV and V. Here, I will
go through the features I find the most useful.

Presto can do both continuous wave and pulsed measurements, so once
the cables are connected, there is no need to re-arrange them.

The most convenient feature of Presto is that it does digital up- and
down-conversion. This means perfect mixing, without any LO leakage
and output is only one sideband and no mixer calibrations. This saves
time and is very important when driving multiple off-resonant transitions
(paper VI). All the off-resonant pulses induce Stark shifts to both the
qubit and the cavity and having extra tones due to mixer imperfections
could further complicate the calibration of these pulses (see paper VI and
Cha. 5 for more details). Digital up- and down-conversion also means
that digital local oscillators that are created on the same chip are always
synchronized. This is important when performing a two-qubit gate such
as an iSWAP (see paper VII).

It is possible to do a real-time template matching with low latency
(see paper VII). I used template matching for signal down-conversion
and integration. This enables us to collect single-shot measurement data
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2. Experimental setup

without transferring GBs of data to the PC. For me, this was useful when
tuning the readout pulses. Low latency will be crucial for implementing
an active qubit reset which is one option to supplement SNAPPA gates
to do quantum error correction (the outlook of paper VI). In paper VII
we performed an active reset of the qubit to cool-down the qubit from
the initial excited state population of 5.8% down to 0.7%. Template
matching and the low latency of Presto are key features that enable
this.

Finally, it is possible to output long sequences of pulses and to sweep
multiple parameters of those pulses with just one call of the instrument.
This was useful for acquiring Wigner tomography, where each pixel in
the image was measured sequentially starting from the bottom left cor-
ner of the image, and ending in the top right corner. Then, the whole
picture was measured as many times as we wanted to average, and the
averaging was done interleaved, all in one call to the instrument. In
paper VII we use this property to perform single-qubit-gate-interleaved
benchmarking.

10



CHAPTER 3

Resonators and transmon qubits

Quantum information is fragile. Our goal is to keep the quantum states
"alive", i.e. stay coherent, for as long as possible. We encode the quan-
tum information in a physical system such as a transmon qubit or a 3D
superconducting resonator, but there are always unwanted interactions
with the environment that cause the loss of "quantumness" i.e. deco-
herence. "Quantumness" is measured by coherence properties. We can
represent the state of any quantum system with a density matrix ρ(t).
Diagonal elements of the density matrix represent populations of the ba-
sis states, and off-diagonal elements represent coherences between these
states. There are two main decoherence channels. The loss of population
is described by the relaxation time T1 or equivalently by a quality factor
Q. The loss of off-diagonal elements is described by dephasing time Tφ.
The total decoherence time T2 is 1/T2 = 1/(2T1) + 1/Tφ.

In this chapter, we discuss how we can measure coherence parameters,
how we can discern what limits them, and what we can do to extend
the lifetime of quantum information. We revisit the main results from
Papers I-III.
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3. Resonators and transmon qubits

3.1 Quality factor

The figure of merit we use to compare resonators is the internal quality
factor. The total or loaded quality factor describes how many oscillations
it takes before the energy stored in the resonator is dissipated [36]:

Ql = 2π
Etotal

Elost per cycle
. (3.1)

The inverse of the loaded quality factor is the sum of the inverse of the
internal and the external quality factor:

1
Ql

= 1
Qint

+ 1
Qext

. (3.2)

The external quality factor is something we can easily design by, for
example, choosing the length of the coupling pin in 3D cavities or de-
signing the distance between the resonator and the transmission line in
coplanar circuits. Depending on the use of the resonator, we are inter-
ested in different limits. If we are interested in measuring the internal
quality factor, it is best to be as close to critically coupled as possible
i.e. Qext = Qint. This way, the resonator’s frequency response in both
amplitude and phase is substantial, which results in a more confident
fit, especially at low powers. However, if we instead want to use the
resonator as a long-lived storage mode, we want our system to be under-
coupled i.e. Qext ≫ Qint. In this regime, the lifetime of the photon
inside the resonator will be limited by the internal quality factor and
the rate at which it leaks out into the transmission line will be negligi-
ble. If we want to readout the state of the qubit dispersively coupled to a
resonator, we want the resonator to be over-coupled Qext ≪ Qint. In this
case, we want to collect as much information about the state of the res-
onator, as fast as possible, so the rate of the photons leaking out should
be large. There is, of course, a limit on how small Qext can be without
compromising the lifetime of the coupled qubit. This is determined by
the Purcell effect [37].

We measure the quality factor by performing a simple reflection mea-
surement using a vector network analyzer (VNA). We fit the complex

12



3.2. Sources of decoherence

response to a so-called circle-fit [38]:

S11 = aeiαe−i2πfτ

 2Ql/Qexte
iϕ

1 + 2iQl(f/fr − 1) − 1
 , (3.3)

here S11 is the reflection coefficient, Ql and Qext are the loaded and exter-
nal quality factors, respectively. The internal quality factor is extracted
from 1/Qint = 1/Ql − 1/Qc. fr is the resonance frequency. ϕ accounts
for the impedance mismatch between the resonator and the transmission
line. There are also measurement setup parameters a, α, and τ , where
a is the background offset accounting for net attenuation of the signal
sent from the VNA, α is a global phase offset and τ is an electrical delay
in our lines.

When measuring qubits it is much more common to measure relax-
ation time T1. Relaxation time is frequency dependent, so if we are
interested in comparing qubits at different frequencies we can convert it
into a quality factor:

Q = 2πfqT1, (3.4)
where fq is the qubit frequency.

3.2 Sources of decoherence

The internal quality factor is determined by a combination of loss chan-
nels Qi:

1
Qint

=
∑
i

1
Qi

. (3.5)

From the equation, we can see that it is typically limited by the dom-
inant source of loss. To further distinguish the geometry participation
from material properties we can rewrite Eq. 3.5 by using participation
ratios [39]:

1
Qint

=
∑
i

1
pi tan δi

, (3.6)

here tan δi is the material loss tangent and pi is the participation ratio
that depends only on the geometric distribution of mode fields.

pi = Energy stored in volume(i)
Total energy

. (3.7)
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3. Resonators and transmon qubits

Examples of sources of decoherence include coupling to a bath of two-
level systems, quasiparticles, seam losses, radiation losses, etc. To distin-
guish between the different contributions, we can examine the functional
dependence of resonant frequency and quality factor with temperature,
power, and geometry parameters.

3.2.1 Two-level system (TLS) loss

Two-level systems (TLSs) are unwanted defects that are often found on
surfaces, interfaces, or in the bulk of amorphous dielectrics. Supercon-
ducting resonators couple to the ensemble of dipoles in a narrow spectral
range close to the resonant frequency. In low-temperature, low-power
regime, two-level systems are in their ground state and can absorb mi-
crowave photons [40] and limit the quality factor. These TLSs can be
saturated either by increasing microwave power or by increasing the tem-
perature [41]. The standard TLS model captures both temperature and
power dependence of the internal quality factor [42, 43, 44]:

1/QTLS = FδTLS tanh
(

hfr

2kT

)
(1 + n/nc)−β, (3.8)

where n is the average number of photons, nc is the critical photon
number needed to saturate a TLS and β is a phenomenological constant.
F or pdiel is the participation ratio and δTLS is the loss-tangent. The first
parameter we extract from the fit is the product of the participation ratio
of the electric field (F ) and the two-level system loss tangent (δTLS).

Participation ratios have been derived in [21], and for the dielectric
loss it is:

pdiel =
∫
diel ϵ|E⃗|2dV∫
tot ϵ|E⃗|2dV

. (3.9)

If the surface oxide is thin we can approximate:

pdiel ≈ tox
∫
surf |E⃗vol|2dS

ϵr,ox
∫
tot |E⃗vol|2dV

, (3.10)

3.2.2 Quasiparticle loss

Resistive loss in superconductors at non-zero frequencies stems from
quasiparticles. The source of equilibrium quasiparticles is finite temper-
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3.2. Sources of decoherence

ature. The concentration of quasiparticles is highly temperature depen-
dent. The resonance frequency shift and quality factor degradation due
to temperature dependent quasiparticle concentration is described by the
Mattes-Bardeen equations [45, 46]. Often, the concentration of quasipar-
ticles cannot be explained by equilibrium concentration. Sources of non-
equilibrium quasiparticles are photons that have higher energy than the
superconducting gap (e.g. infra-red photons) or ionizing radiation [47,
48] that hit the superconductor and cause Cooper-pair breaking.

The participation ratio of the resistive loss is given by

pres = λ
∫
surf |H⃗|2dS∫

tot |H⃗|2dV
, (3.11)

here λ is the skin depth that represents the exponential decay of the
magnetic field into the conductor. The quality factor due to resistive
(quasiparticle) losses is given by

Qres = ωµ0λ

R□

∫
tot |H⃗|2dV

λ
∫
surf |H⃗|2dS

, (3.12)

where ω is the angular resonance frequency, µ0 is the permeability of
vacuum, R□ is the quasiparticle induced temperature dependent sheet
resistance and H⃗ is the magnetic field strength.

3.2.3 Seam loss

Seam loss is present whenever we have a current flowing over two pieces
of metal that do not have perfect contact which is typical in 3D cavities.
The quality factor associated with this loss mechanism can be expressed
as [21]:

Qseam = g
ωµ0

∫
tot |H⃗|2dV∫

contour |H⃗|||2dl
, (3.13)

where g = G/L is the constant conductance per unit length along the
seam. We can conclude that it is a good idea to make low-loss seams
(for example welding two pieces together) or to place seams where the
magnetic field is low, to maximize this quality factor.
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3. Resonators and transmon qubits

3.2.4 Radiation loss

Radiation loss is associated with the energy of the mode being radiated
into free space, precisely what antennas are made for. This is a fairly
uncommon setup in our experiments as we almost always have a package
around our chip, or in the case of 3D cavities, we have closed pieces. Ra-
diation loss is highly geometry dependent and in general, does not have
a simple analytical expression. We don’t want to expose our quantum
modes to holes through which they can radiate out because those same
holes would expose them to infrared radiation that could increase the
quasiparticle loss.

3.3 Geometry

The main reason to store a bosonic mode in a 3D cavity rather than
in a planar circuit is that it is easier to get better quality factors and
equivalently longer lifetimes. In aluminum 3D cavities, it is "usual" to
get lifetimes of around 1 ms [20], with some niobium cavities reaching
2 s [22]. For planar circuits it is "usual" to get around 100 µs [49, 50].

There are several factors to consider when choosing the shape of a 3D
cavity. One should make sure all seams are in areas of low magnetic
field. This includes the seams we will create when inserting the qubit
chip(s). Rectangular cavities for example were shown to be limited by
seam loss [21]. Next, the distribution of the fields should be considered.
Modes that have the maximums of their fields in the vacuum will in gen-
eral have higher quality factors. Coupled with bigger mode volumes, this
is what makes cylindrical and accelerator-shaped cavities have quality
factors exceeding 109 [51, 22]. Big mode volume also makes it so that the
coupling to a qubit in these geometries is challenging, and to our knowl-
edge, it has not been realized to date without seriously compromising
the quality factor of the cavity.

This leaves us with a stub geometry cavity [20]. It can be thought
of as a λ/4 resonator formed by a stub at the bottom of the cavity
connected with a cylindrical wave-guide on top (Fig. 3.1(a)). The cut-off
frequency of the cylindrical wave-guide is below the resonance frequency
of the fundamental mode, so both the electric and the magnetic fields
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3.4. Analyzing fluctuations of parameters in time

Figure 3.1: (a) Wire frame sketch of the stub geometry cavity. The radius of the
mode volume is 5 mm and the height is 50 mm. (b) In color scale amplitude of electric
(left) and magnetic (right) field in a stub geometry 3D cavity. The vector directions are
indicated by arrows. The fields were simulated using an eigenmode solver in COMSOL.
(c) Line cuts of electric (blue) and magnetic (magenta) field magnitudes along the y-
axis depicted as black dashed line in (a). Both electric and magnetic fields decay
exponentially towards the top of the cavity where the seam is placed.

get exponentially suppressed in the wave-guide (Fig. 3.1(c)). The field
distribution is depicted in Fig. 3.1(b). Both the electric and magnetic
fields are concentrated around the stub. A good feature of this geometry
is that the seam loss can be made arbitrarily small by extending the
cylindrical part of the cavity. Also, the mode volume is small, so coupling
to the qubit with coupling strength of g = 100 MHz is easily achievable.
The downside is that the maxima of the fields occurs at the surface of
the metal. This will make the participation ratios for both dielectric and
quasiparticle losses higher compared to the modes whose maxima are in
vacuum.

3.4 Analyzing fluctuations of parameters in time

We can learn a lot from analyzing the fluctuations of different parameters
in time. By using frequency and time domain analysis we can recognize
the features of different sources of noise. In paper I we analyze the
fluctuations of relaxation times of two qubits over several months, and
in paper II we carefully follow the resonant frequencies of three different
kinds of resonators. We analyze the fluctuations of parameters both in
the time domain and in the frequency domain.
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3. Resonators and transmon qubits

3.4.1 Frequency domain analysis: Power spectral density

Any physical signal can be decomposed into several discrete frequen-
cies according to Fourier analysis. Power spectral density (PSD) is cal-
culated by taking the Fourier transform of the signal’s autocorrelation
function [52, 35]:

Sy = 2
∫ ∞

0
⟨y(t)y(t + τ)⟩e−iωτdτ , (3.14)

There are several limitations to using PSD to analyze noise fluctua-
tions. Averaging the signal does not always improve the signal-to-noise
ratio, discrete sampling of the signal means aliasing and spectral leak-
age, and frequency drifts are not captured. Therefore, we use the Allan
variance, described in the following chapter, in conjunction with PSD
when analyzing our data.

Most noise sources can be modeled as a sum of noise processes with
a spectral density of the form Sy(f) ∝ fα. These processes are known
as power-law noise. A TLSs power spectrum, on the other hand, is
described by a Lorentzian function:

Sy(f) = 4A2τ0

1 + (2πfτ0)2 , (3.15)

with characteristic switching time τ0 and amplitude A.

3.4.2 Time domain analysis: Allan variance

Allan variance, also known as two-sample variance, is a measure of fre-
quency stability and is given by [53]:

σ2
y(τ = nτs) = 1

2(M − 1)
M−1∑
i=1

(ȳi+1 − ȳi)2 (3.16)

Here, ȳi is the i-th mean fractional frequency of a total number M over
the measurement interval nτs, where τs is the sampling interval. The
fractional frequency is a measure of the deviation of the signal from
the reference ȳi = (fi − fr)/fr, where fi is the i-th measured frequency
and fr is the reference frequency. Overlapping Allan variance [54] is an
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3.5. Qubit decoherence statistics (Results summary)

improvement on the Allan variance. It uses all the possible combinations
of the data set:

σ2
y(τ = mτs) = 1

2m2(M − 2m + 1)
M−2m+1∑

j=1

j+m−1∑
i=j

(ȳi+1 − ȳi)
2

(3.17)

A Lorentzian noise process has the following form in the Allan devia-
tion [55]:

σ2
y(τ) = Aτ0

τ

(
4e−τ/τ0 − e−2τ/τ0 + 2 τ

τ0
− 3

)1/2
(3.18)

with the same two parameters as in the PSD, i.e. the characteristic
switching time τ0 and the amplitude A.

3.5 Qubit decoherence statistics (Results summary)

In paper I we study the decoherence parameters of two fixed frequency
transmon qubits over several days and several cooldowns gathering sig-
nificant statistics. Transmon qubits are placed in two separate sample
boxes and their relaxation time T1 and Ramsey decay time T ∗

2 are mea-
sured repeatedly. These parameters fluctuate and their statistics are cap-
tured well by fitting a Gaussian distribution. Average relaxation times
and their standard deviation over about 65 hours are ⟨T1A⟩ = 44 µs,
σA = 8 µs for qubit A and ⟨T1B⟩ = 72 µs, σB = 13 µs for qubit B
(Fig. 3.2(a) and (b)). We found that the fluctuations are not correlated,
meaning that local sources of noise are dominating.

When repeatedly measuring T1 of qubit A, 3% of the time we observe
jumps in relaxation time between two discreet values (Fig. 3.2(d)). We
observe these jumps because we do not interleave the averaging of each
trace. In 5% of the traces, we see revivals instead of a simple exponential
decay (Fig. 3.2(e)). We interpret this as a single TLS frequency fluctuat-
ing and 5% of the time resonantly exchanging energy with the transmon
qubit. From the oscillations, we can extract the coupling rate with the
TLS to be g = 4.8 kHz.

From the statistical analysis of T1 times (using Allan deviation and
spectral density) we conclude that a few Lorentzians and a white noise
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3. Resonators and transmon qubits

Figure 3.2: Adapted from paper I. (a) Repeated simultaneous measurements of the
relaxation time of two qubits, qubit A in black and qubit B in green. 2000 consecutive
measurements that lasted approximately 65 hours are presented. (b) Histograms of
the relaxation times in (a) fitted to Gaussian distributions. (c) Raw data of relaxation
times of qubit A. (d) In about 3% of data traces the relaxation time changes within a
single trace. (e) In approximately 5% of all traces, the decay is not purely exponential.
The appearance of revivals is due to the resonant exchange of energy with a single
TLS.

floor fit well the data sets we collected over many hours and several
cooldowns. The switching rates are found to be between 71 µHz and
1.9 mHz. These switching rates are in a good agreement with the switch-
ing rates found in other TLS studies [44, 56, 57], and are six orders
of magnitude smaller than the rates associated with quasiparticle re-
combination in aluminum (1 kHz) [58], or tunneling in transmons (0.1-
30 kHz) [59].

Our results point to TLSs being a limiting factor in the temporal
stability of transmon qubit coherence parameters.
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3.6. Resonator resonance frequency fluctuations (Results summary)

(a)

(b)

(c)

(d)

Figure 3.3: Adapted from paper II. All the data is measured on a 3D microwave cavity
at a temperature of T = 10 mK. (a) Histograms of repeated frequency measurements
at different powers. (b) The full width at half maximum (FWHM) of the frequency
histogram peaks in (a) vs. average photon number fitted to functional form F0+F1/⟨n⟩β

with β = 0.63. Example of (c) Welch power spectral density and (d) overlapping Allan
deviation measured for ⟨n⟩ = 715 photons. Both data in (c) and (d) are fitted to a
Lorentzian model using common fitting parameters.

3.6 Resonator resonance frequency fluctuations (Re-
sults summary)

In paper II we carefully measure the fluctuations of the resonance fre-
quency of three different resonators: A NbN nanowire, a coplanar alu-
minum resonator, and a 3D aluminum stub geometry cavity. We do this
using a Pound frequency-locked loop (P-FLL). The theory behind the
P-FLL measurement and the measurement setup are explained in the
Ph.D. thesis by David Niepce [35]. I will focus on the results of the
measurement and in particular, the results of the 3D cavity.

The 3D cavity that we measure has an internal quality factor of 11
million at low power. At each power, we measure 106 data points at
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3. Resonators and transmon qubits

100 samples/s. Histograms for each power are presented in Fig. 3.3(a).
We observe a symmetric peak at each power and the width of the
peak decreases with increasing power. The full width at half maximum
(FWHM) is fitted to the functional form F0 + F1/⟨n⟩β with β = 0.63
(Fig. 3.3(b)). The quality factor of a resonator limited by TLS noise
also scales with average photon number as (1 + ⟨n⟩/nc)β. β equal to 1/2
is predicted by the standard tunneling model. However, variations from
this scaling have been observed [60, 61, 62] and interpreted as TLS-TLS
interactions [63, 64, 60]. Indeed, in paper III the β that we fit a power
dependence of the TLS model of another 3D cavity is 0.11. And this is
the typical value that we see. The power dependence for this particular
cavity is presented in paper III Fig. S2(c), and cannot be faithfully fitted
to a TLS model due to lack of data at higher power, where we would
observe the beginnings of the high power saturation.

Notice that at the highest measured average photon number (⟨n⟩ =
6 · 104) the FWHM = 2 Hz. The frequency is so stable that its noise is
lower than the frequency reference of the signal generator’s phase-locked
loop. In fact, in paper III Fig. S1(c) we observe a peak around 200 mHz
that is a consequence of this fact.

At each power, we compute the Welch power spectral density [65]
(PSD) and the overlapping Allan deviation and fit a single dominant
Lorentzian using common fitting parameters (see example in Fig. 3.3(c)
and (d)). We do this for three different resonators and present all the
fitted data in Fig. 3.4. Even though the materials, quality factors, and
geometries are very different in the case of three different resonators, the
switching times of the TLS that dominates the frequency fluctuation all
fit to an empirical power law τ0(⟨n⟩) = (1s)(⟨n⟩/nc)−α, where α = 1.1
for all devices and nc is a device dependent parameter (Fig. 3.4(b)).
The switching rates at close to one average photon are 3 mHz for the
coplanar resonator and 0.4 mHz for the 3D cavity. These numbers fit
the order of magnitude that we found in paper I for the switching rates
of statistical analysis of T1 fluctuations of aluminum transmon qubits.
The amplitudes of the fluctuations are orders of magnitude different,
but they follow a 1/

√
n decrease until saturating at some amplitude A0

(Fig. 3.4(a)). Although the microscopic origin of the TLSs is different
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3.6. Resonator resonance frequency fluctuations (Results summary)

Figure 3.4: Adapted from paper II. Power dependence of the Lorentzian noise (a)
amplitude A and (b) switching time τ0 for the three different resonators. The horizontal
dashed lines in (a) indicate the saturation amplitude A0 related to minimum FWHM
in Fig. 3.3(b). Diagonal lines in (a) indicate 1/

√
n scaling and not a fit. The dashed

lines in (b) are fits of τ0 to empirical power law (⟨n⟩/nc)−α with α = 1.1.

in these resonators, they all share the same power behavior.

The best cavity we produced in paper III has a low-power quality
factor of 115 million, 10 times bigger than the one measured in paper II.
It would be an interesting experiment to see if the setup we used can
at all measure the frequency fluctuations of this cavity since we would
expect them to be even smaller and well below the frequency stability
of the setup.

Reagor et al. [20] established the contribution of the ancilla qubit,
coupled to the 3D cavity, to the degradation of the cavity mode relax-
ation and dephasing time by studying the quality factor vs. temperature
and the qubit steady-state population. The frequency fluctuations could
further uncover the type of noise that the cavity mode inherits from the
coupled qubit. This would be particularly interesting in the case of a
very small dispersive coupling χ around tens of kHz [66], where we would
expect the qubit contribution to be diminished, but we see the coherence
times of the cavity to be sub-millisecond.
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3. Resonators and transmon qubits

Figure 3.5: (a) Recipe for making reproducible 3D aluminum cavities with quality
factors of 100 million. Each symbol represents one cavity made from 5N (99.999%)
aluminum. Internal quality factor measured after machining (blue), etching (orange),
and etching and annealing (green). (b) Adapted from [18]. Recipe from paper III(panel
(a)) is compared with other work. Planar resonators are depicted in red circles [50,
49, 69, 70, 71], 3D rectangular cavities in purple triangles [25, 67, 23, 27], 3D stub
geometry cavities [72, 20, 73] and paper III, and 2.5D cavities [74, 75, 76, 77].

3.7 Improving quality factor of 3D cavity resonators
(Results summary)

From geometrical considerations, we understand that the participation
ratios of all losses are orders of magnitude smaller in 3D cavities com-
pared to coplanar circuits. This gives us a starting advantage when
designing high-Q resonators. Now we should consider loss tangents
themselves. When fabricating coplanar circuits we start from a pristine
substrate with a low-loss tangent [67, 68]. The goal is then to deposit
high-quality metal films and make sure all the surfaces are as defect-free
as possible.

When we make a 3D cavity resonator we start from a high-purity
block of material, but in the very first step, machining, we introduce
strain and defects on the surface that was milled out. The goal now is to
make this surface as defect-free as possible. In paper III we use etching,
annealing, and electrochemical polishing in an attempt to increase the
quality factor. We also try these surface treatments on aluminum of
three different purities.
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The recipe for reproducibly making aluminum cavities with quality
factors of 90 million is presented in Fig. 3.5(a). Each cavity is represented
by a symbol and each process by a color. The cavities differ in height
and resonance frequency (details in paper III). Machining a block of 5N
(99.999%) aluminum we get quality factors ranging from 8-82 million.
After etching, the cavities have quality factors ringing from 44-98 million.
Finally, after annealing the average quality factor is 88 million and the
cavities have quality factors ranging from 66-115 million.

Our cavity was placed among other work in a review by Joshi et.al. [18]
(Fig. 3.5(b)). We are proud that our recipe compares favorably with the
work of others. As indicated in the review, we did not manage to keep
this level of quality factor when we integrated the qubit. In fact, in
papers IV, V, and VI we integrated a transmon qubit. The quality
factors of the cavity modes in those papers are 7, 9, and 13 million
respectively. We, unfortunately, did not measure those bare cavities
(due to a lack of time), so we cannot tell if the qubit is indeed the
limiting factor as we suspect. This is something that should be further
investigated.
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CHAPTER 4

Control and characterization of the
resonator

In this chapter, we will define the resonator from a quantum mechanical
perspective. We will see that driving the resonator with classical control
pulses is not enough to reach universal control of the bosonic mode or
to perform any computation faster than classical computers. This is
what the ancilla qubit enables. We will go through the types of gates
that dispersive coupling to a fixed frequency qubit paired with resonant
driving enables. Finally, we will see how these gates allow us to both
universally control the state of the resonator and to characterize the
states and the gates we are implementing.

4.1 Limitations of the linear system

A resonator is a simple linear system described by the Hamiltonian:

H = ℏω(a†a + 1/2) (4.1)

here ℏ is the reduced Planck constant, ω is the angular frequency of the
mode, and a† (a) is the creation (annihilation) operator. The energy
spectrum is infinite and equidistant (see Fig. 4.1). If we drive the sys-
tem with a classical field ε(t), the driven Hamiltonian (with ℏ = 1 and
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Figure 4.1: (a) Circuit representation of a resonator. (b) The energy spectrum of a
linear resonator. Ground state in which only the vacuum state |0⟩ is populated. (c)
Representation of the vacuum state in phase space. (d) Coherent state Poissonian
distribution of number states represented in the energy spectrum of a linear resonator.
(e) Phase space representation of the coherent state α.

neglecting constant terms) becomes

H = ωa†a + ε(t)
(
a eiωt + a†e−iωt

)
(4.2)

where the frequency of the drive is the same as the frequency of the
cavity. The evolution of such system is "trivial" in the sense that we
can only ever create coherent states, and this is easily simulated on a
classical computer. The evolution of the system is given by

U(t0, t) = eαa†−α∗a ≡ Dα (4.3)

where α = ∫ t
t0

dτε(τ)eiωτ is the complex amplitude of the displacement.
Starting from the vacuum state, the displacement operator Dα creates a
coherent state

Dα|0⟩ = |α⟩ = e|α|2/2 ∑
n

αn

√
n!

|n⟩ (4.4)

The probability to find the resonator in Fock state |n⟩ in a coherent state
|α⟩ follows the Poisson distribution:

Pn(α) = e−|α|2 |α|2n

n! (4.5)
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The expectation values of both position and momentum are defined
as Re(α) and Im(α) and the uncertainty in both quadratures is the min-
imum prescribed by the Heisenberg uncertainty principle. The Wigner
function (see Sec. 4.4 for more details) of the coherent state is a 2D
Gaussian and is completely positive. Because of all these properties,
coherent states are sometimes characterized as "almost quantum". How-
ever, displacements and coherent states are not enough, by themselves,
to enable universal control of the bosonic mode or to enable quantum
advantage. Nonetheless, they are a versatile resource that we can cre-
ate with fidelities exceeding 99%. They will be one of the two gates
that enable universal control of the bosonic mode [78] (see Sec. 4.5) and
they will be our trusted probes when we characterize processes in the
n-dimensional Hilbert space (see Sec. 4.6).

One solution to achieve universal control of a bosonic mode is to design
a Hamiltonian that has terms that are at least cubic (i.e. (a†)MaN , with
M +N ≥ 3) [17]. Proposed implementation of this approach [79] requires
frequency tunable circuits that are additionally subject to flux noise,
which makes their coherence properties lower than their fixed frequency
counterparts.

In this thesis we take the well-established approach of dispersively
coupling a transmon qubit to a bosonic mode and we use this qubit for
control and characterization of the bosonic mode.

4.2 Charge qubit in the transmon regime

There are a few reasons superconducting circuits make up such a good
platform for quantum computing. First, the property of superconductors
that makes them a good candidate is their very small resistive losses
at microwave frequencies. The resistance is precisely zero only for DC
currents. However, the resistive losses are very rarely the limiting factor
for circuits made out of superconductors. For comparison, the internal
quality factor at room temperature, limited by resistive loss, of cavities
fabricated in paper III is around 2000. When cooled down to 10 mK the
Q factor of the same cavities becomes limited by the dielectric losses at
around 2 · 108, an improvement of five orders of magnitude. The second
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Figure 4.2: (a) Circuit model of the transmon qubit. A Josephson junction (JJ) is
shunted by a capacitance C. (b) Energy spectrum of a transmon qubit. α here is the
anharmonicity of the qubit. (c) Bloch sphere representation of a state of the qubit.

property is the size of the circuits, which is comparable to the wavelength
of the microwaves. Hence, strong coupling between individual elements is
easy to achieve. The most important property is the existence of the low-
loss engineerable nonlinearity provided by Josephson junctions (JJs) [80].
The Josephson effect describes tunneling of Cooper-pairs between two
superconductors separated by a thin tunnel barrier. It turns out that a
JJ behaves like a nonlinear inductor

LJ = ℏ
2eIc

1√
1 −

(
I
Ic

)2 (4.6)

where LJ is the Josephson inductance that increases with increasing
current I. This formula is valid for currents smaller than the critical
current Ic.

The first qubit, demonstrated by Nakamura et al. [81], was a charge
qubit in the Cooper-pair box regime characterized by EJ/EC ≪ 1, where
EJ = ℏIc/(2e) is the Josephson energy and EC = e2/(2C) is the charging
energy. In this regime, the charge qubit is susceptible to charge noise.
The transmon qubit [82] (Fig. 4.2) is a charge insensitive variant of
the charge qubit. This regime is characterized by EJ/EC ≫ 1. The
charging energy sets the anharmonicity of the transmon qubit, and the
Hamiltonian is described approximately as:

H = ℏωqb
†b − Ec

2 b†b†bb (4.7)
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The transmon frequency is set by ℏωq =
√

8ECEJ − EC .

In our experiments, we use a transmon qubit as the ancilla with a self-
Kerr α = EC/ℏ ≈ 2π×(200−300) MHz. In most of our experiments, we
use only the first two levels of the transmon qubit |g⟩ and |e⟩ (Fig. 4.2),
and we always make sure our drives are such that they do not excite
the higher states. In this case, we can simplify the qubit Hamiltonian
(ℏ = 1):

H = ωq

2 σz (4.8)

where σz is the Pauli z operator and any pure state of the qubit can be
represented on the surface of a Bloch sphere (Fig. 4.2)

|Ψ⟩ = cos (θ/2)|g⟩ + eiϕ sin (θ/2)|e⟩ (4.9)

And in general, any state of the qubit can be represented by a density
matrix

ρ = 1
2 (I + νxσx + νyσy + νzσz) (4.10)

where (νx, νy, νz) are projections of the vector representing the qubit
state onto axis (x, y, z) (Fig. 4.2), and σx, σy and σz are the Pauli oper-
ators.

Universal control of a single qubit is simple. Any qubit rotation around
axis ϕ for angle θ (Rϕ(θ)) is easily implemented with classical drives
oscillating at the frequency of the qubit, and having appropriate phases
and envelope shapes.

4.3 Dispersive coupling to a transmon qubit

Now that we understand both the resonator and the qubit representa-
tions as circuits and their Hamiltonians, coupling them to each other
is easy. We bring them close together, so that the electric field of the
resonator overlaps with the dipole moment of the plates forming the
capacitance of the qubit. In circuit terms, this forms a coupling capac-
itance Cqc (Fig. 4.3). The Hamiltonian is described by the individual
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Figure 4.3: (a) Circuit representation and (b) energy spectrum of a resonator dis-
persively coupled to the two levels of a qubit. The dispersive coupling χ modifies the
frequency of both the resonator and the qubit depending on the state of the other.

Hamiltonians of each element plus the interaction term, which forms the
Jaynes-Cummings Hamiltonian [83]:

H = ωca
†a + ωq

2 σz + g(a†σ− + aσ+) (4.11)

In the case of large detuning (∆ = |ωc − ωq| ≫ g) we can approximate
the Jaynes-Cummings Hamiltonian with a dispersive model:

H = ωca
†a + ωq

2 σz + χ

2 a†aσz (4.12)

where χ = g2/∆ is the dispersive shift. This is an exact solution for
the dispersive shift for a two-level system. Taking into account qubit
self-Kerr, the dispersive shift gets modified:

χ = g2

∆
α

α − ∆ . (4.13)

The dispersive interaction manifests itself as a frequency shift of each
mode depending on the occupation number of the other mode. The
frequency of the resonator is shifted by χ depending on the state of
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the qubit, and equivalently, the frequency of the qubit will be shifted
by nχ depending on the number of photons in the cavity (Fig. 4.3). If
all the dissipation rates of the qubit and the cavity are smaller than
the dispersive shift, κq, κc ≪ χ, we are able to perform gates that are
selective on the state of either the qubit or the cavity simply by applying
drives at the appropriate frequencies. If we stick to resonant drives, there
are a few "obvious" operations we can perform:

1. Unselective cavity displacements Dα

2. Unselective qubit rotations about an axis Rϕ(θ)

3. Entangling conditional phase Cϕ = eiϕa†a|e⟩⟨e|

4. Selective cavity displacements Dα|g⟩⟨g| + Ia|e⟩⟨e|

5. Selective qubit rotations |n⟩⟨n|Rϕ(θ) + (Ia − |n⟩⟨n|)Iq

Ia (Iq) is the identity operator on the cavity (qubit) Hilbert space.
The unselective cavity displacement is precisely what we described in
Sec. 4.1. We implement it by applying a short resonant pulse at the
cavity frequency. This will produce an unselective drive if the width
of the pulse in the frequency domain is much larger than χ. Similarly,
unselective qubit rotations are implemented with short pulses resonant
with the qubit frequency. Hence, the width of the pulses in the frequency
domain has to be larger than nχ if we want the pulse to be unselective
for up to n Fock states.

We get the entangling conditional phase operation "for free" by letting
the Hamiltonian evolve in time. The angle ϕ = tχ depends on the
evolution time and the dispersive shift χ. As we will see in Sec. 4.4,
this operation can be used to map the parity of the cavity field onto the
qubit.

The selective cavity displacement is implemented by a long pulse res-
onant with ωc or ωc −χ to make it selective on the ground or the excited
state of the qubit, respectively. Here the length of the pulse should
be much longer than 1/χ. For the selective qubit rotations, we send a
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4. Control and characterization of the resonator

long pulse resonant with ωq − nχ in order to drive a rotation selective
on Fock number n. The selective number-dependent arbitrary phase
(SNAP) gate is a special case of the selective qubit rotations. SNAP
gates and unconditional displacements are enough for universal control
of a bosonic mode (see more in Sec. 4.5).

4.3.1 Corrections to the ideal dispersive Hamiltonian

Unfortunately, when we couple a strongly nonlinear mode, such as the
transmon qubit, to the linear mode of the cavity, the modes hybridize and
the cavity mode inherits a little bit of nonlinearity from the transmon.
The relevant Hamiltonian is then:

H = ωca
†a + Kc

2 a†a†aa + ωqq
†q + αq

2 q†q†qq + χa†aq†q + χ′

2 a†a†aaq†q

(4.14)
In our system, the cavity self Kerr Kc is usually a few kHz, and the
correction to the dispersive shift χ′ is about 10-20 kHz. These are small
corrections compared to qubit self-Kerr αq ≈ 200-300 MHz and the dis-
persive shift χ ≈ 1-3 MHz. However, they are comparable to qubit and
cavity dissipation rates (around 2-8 kHz for the qubit and around 500-
800 Hz for the cavity). It is therefore necessary to take these corrections
into account to maximize the fidelities of the bosonic states and gates
we want to prepare in the cavity.

In our system in papers IV-VI, we have an additional readout res-
onator that is patterned on the same chip as the qubit. The readout
resonator is dispersively coupled to the qubit and is exclusively used
to probe its state. We will omit this mode in the following discussions
about the control of the cavity mode, and whenever we refer to the res-
onator, what we really mean is the cavity. This is not to say that the
readout resonator mode does not have any use beyond the readout of
the qubit state. On the contrary, having a mode strongly coupled to
the transmission line can be really useful. For example, the readout res-
onator was used to reset the state of the cavity [84], reset the qubit [85],
and it is crucial for autonomous quantum error-correction [24] and error-
suppression [86] as a place to dump excitation.
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4.4. Probing the state of the cavity

The first experiment that we perform in papers IV-VI is system cal-
ibration. The system calibration is measuring all the parameters in
Eq. 4.14 plus decoherence and dephasing times of both the cavity and the
qubit. All of the parameters are listed in the supplementary information
of the papers and the calibration procedure is detailed in Appendix A.
This is a standard procedure and has been described before for example
in [87]. We will list it out explicitly in Appendix A.

4.4 Probing the state of the cavity

We can probe the state of the cavity in two different ways. We can
map the population of individual Fock states onto the population of the
qubit, or we can map the cavity state’s parity onto the qubit’s popu-
lation. Measuring only populations of the Fock states is not enough to
completely characterize the bosonic state, but it’s a useful tool. It is
implemented by applying a selective π pulse whose frequency we select
to be ωq − nχ, where n depends on which Fock states we are interested
in. The population of the qubit at each frequency ωq − nχ is directly
proportional to the population of each Fock state |n⟩.

The Wigner function W (α) is a quasi-probability distribution, which
uniquely describes a bosonic state. It is defined as the scaled expectation
value of the parity operator:

P = eiπa†a (4.15)

in each point of the phase space:

W (α) = 2
π

Tr(D†
αρDαP ) (4.16)

Notice that α is a complex displacement amplitude. W (α) can take
both positive and negative values. Negative values, so-called Wigner
negativity, is what makes a state nonclassical and is a necessary resource
for quantum advantage [88, 89].

To measure the Wigner function in the point W (α), we typically ini-
tiate the qubit in the ground state (although the qubit can be initiated
in the excited state). Next, we should apply displacements D−α to map
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4. Control and characterization of the resonator

Figure 4.4: Pulse sequence to measure Wigner function with step-by-step state trans-
formation showing the mapping of the parity of the cavity onto the population of the
qubit.

different parts of the phase space. Now we map the parity of the cav-
ity state to the population of the qubit. We do this by applying two
unselective π/2 pulses separated by a waiting time of 1/(2χ). In our ex-
periments χ takes values from 1.5-3 MHz, so the waiting time is around
166-333 ns. We are applying a special case of entangling conditional
phase gate, where all the even Fock states are going to end up mapping
to the excited state of the qubit, and all the odd states will map to the
ground state of the qubit (see Fig. 4.4).

Once we have measured the Wigner function, finding the density ma-
trix that best fits the measured data is not trivial. It is common to use a
method called maximum likelihood estimation [90]. However, we opted
for using the gradient descent approach [91, 92], because of its ability to
perform reconstruction for large dimensions of Hilbert space and with
noise present in the data.

4.5 Creating arbitrary states and gates

It has been proven that by applying an interleaved sequence of displace-
ment and SNAP gates, one can implement any unitary on the bosonic
mode [78]. Not only is this control universal, but it is efficient [93] in
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4.5. Creating arbitrary states and gates

Figure 4.5: Example of standard SNAP gate S(0, π/4, π/2, π, 0). (a) Pulse envelopes
are a sum of pi pulses at frequencies nχ, (b) evolution of Fock state populations and
phases during the SNAP gate. Each Fock state |n⟩ is represented by a color. We
initiate the cavity state in an equal superposition of all the Fock states from |0⟩ to |5⟩.
(c) Bloch representation of the evolution of qubit state conditioned on the cavity state
|n⟩.

the sense that very few gates are needed in order to achieve high-fidelity
bosonic states and gates.

4.5.1 Standard SNAP gates

As we mentioned earlier, SNAP gates [94] are a special case of selective
qubit rotations. SNAP gate that adds an arbitrary phase θn to Fock
state |n⟩ is defined as

Sn(θn) = eiθn|n⟩⟨n|. (4.17)

In general, a SNAP gate can add any phase to any Fock state |n⟩ simul-
taneously

S(θ⃗) =
m∏

n=0
eiθn|n⟩⟨n|. (4.18)
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To implement a SNAP gate Sn(θn), we apply two consecutive selective
π pulses whose axis of rotation are separated by θn. The frequency of
the selective π pulses is ωq − nχ, for each Fock level n, respectively,
and each individual π rotation has to be long such that the duration
T ≫ 1/χ. Implementing a SNAP gate that adds multiple phases to
multiple Fock states S(θ⃗) comes down to applying a sum of individual
SNAP components Sn(θn). Since frequencies are well separated by χ, it
is very easy to calibrate SNAP gates individually. All we need to do is
to measure the qubit frequency ωq, the dispersive shift χ, the Rabi rate
ωRabi, the correction to the dispersive shift χ′ and the cavity Kerr Kc

(see Appendix A).

An example of implementing a standard SNAP gate S(0, π/4, π/2, π, 0)
is given in Fig. 4.5(a). We used the dispersive shift χ/(2π) = 3.14 MHz
(same as in paper IV). The gate time is 4 µs ≈ 12(2π)/χ. We initiate
the cavity state in an equal superposition of states 1√

6
∑5

n=0 |n⟩. A SNAP
gate does not change the population of the cavity state (see Fig. 4.5(b)).
Since the SNAP gate is a sum of π pulses with frequencies ωq − nχ,
it is obvious that this drive will not influence the cavity populations.
The phase evolution during the SNAP gate (Fig. 4.5(b)) is ideally a
Heaviside step function with the step happening at half the gate time.
After the entire duration of the gate, the phase error is up to ±0.3 rad.
This is because the gate time is still too short and multiple frequency
components are driving the neighboring transitions. We did not include
any decoherence in our simulation, so all the errors are coherent errors.
Another way to visualize evolution during the gate is to represent the
qubit evolution on Bloch spheres conditioned on cavity being in Fock
state |n⟩ (Fig. 4.5(c)). The evolution is close to the one we expect from
two π pulses. However, we can clearly see that states conditioned on the
cavity being in state |0⟩ and |4⟩ that are not supposed to move from the
ground state are in fact moving slightly.

Since the evolution of the cavity mode under the Kerr term is just
deterministically adding phases to Fock states, SNAP gates are ideal to
cancel this evolution.
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4.5. Creating arbitrary states and gates

Figure 4.6: Example of optimized SNAP gate S(0, π/4, π/2, π, 0). (a) Pulse envelopes,
(b) evolution of Fock state populations and phases during the SNAP gate. Each Fock
state |n⟩ is represented by a color. We initiate the cavity state in an equal superposition
of all the Fock states from |0⟩ to |5⟩. (c) Bloch representation of the evolution of qubit
state conditioned on the cavity state |n⟩.

4.5.2 Optimized SNAP gates

In order to make SNAP gates as short as possible T ≈ 1/χ we can
optimize the envelopes of the microwave drives that we apply. We use an
optimizer [95] that needs the parameters of Hamiltonian from Eq. 4.14.
The Hamiltonian in Eq. 4.14 is supplemented by a qubit drive term with
discretized envelope whose amplitudes are optimized to implement the
desired SNAP gate. In order for the pulses that the optimizer finds to
be implemented in the laboratory, we need to limit the maximum Rabi
rate, the bandwidth, and the sampling frequency of the pulses. The
upside of optimizing the SNAP envelopes is that we do not need to do
any extra calibration experiments compared to calibrating the standard
SNAP gates.

An example of an optimized SNAP gate S(0, π/4, π/2, π, 0) is given
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4. Control and characterization of the resonator

in Fig. 4.6(a). We used the dispersive shift χ/(2π) = 3.14 MHz, max-
imum Rabi rate 20 MHz, the cutoff frequency for the maximum band-
width 60 MHz and the sampling frequency 1 Gs/s (same as in paper IV
and standard SNAP example in Fig. 4.5). The gate time is 500 ns ≈
1.5(2π)/χ which is 8 times shorter than the standard SNAP gate de-
scribed in Sec. 4.5.1. We again initiate the cavity state in an equal
superposition of states 1√

6
∑5

n=0 |n⟩. The SNAP gate does not change the
population of the cavity state (Fig. 4.6(b)). Since the SNAP gate center
frequency is the qubit frequency ωq and the bandwidth of the optimized
SNAP pulses is always chosen to be a few tens of MHz, it is obvious that
this drive will not influence the cavity populations. The phase evolution
during the SNAP gate (Fig. 4.6(b)) is not something we could predict
without running the simulation. After the entire duration of the gate,
the phases added are what we wanted, namely 0, π/4, π/2, π, 0 for Fock
states |0⟩ to |5⟩ respectively. Another way to visualize the evolution
during the gate is to represent the qubit evolution on Bloch spheres con-
ditioned on cavity being in Fock state |n⟩ (Fig. 4.6(c)). The evolution is
clearly more complicated than in the case of standard SNAP gates (see
Fig. 4.5(c)).

4.5.3 Wigner negative states with displacement and SNAP
gates (Results summary)

In order to maximize the fidelity of bosonic states and gates created
by interleaved sequences of displacement and SNAP gates, we need to
ensure two things: i) we should apply the smallest number of gates to
achieve the target fidelity and ii) make individual gates as short as possi-
ble. This is exactly what we do in paper IV in order to create arbitrary
bosonic states in the 3D cavity. In paper V we use this technique to
apply a bosonic X-gate on a binomially encoded bosonic qubit.

We use a two-step optimization (Fig. 4.7(b)). First, we optimize the
parameters of displacement and SNAP gates [93] in order to get the best
possible fidelity of the target state. Second, we reduce the length of the
SNAP gates by optimizing their pulse envelopes.

The states that we can prepare with two SNAP gates are Fock state
|2⟩, binomial state (|0⟩ + |4⟩)/

√
2 and an odd cat state (|α⟩ − | − α⟩)/λ,
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4.5. Creating arbitrary states and gates

Figure 4.7: (a) Pulse sequence used to prepare and characterize the Wigner negative
states. Dαi

are the displacement and S(θ⃗i) are the SNAP gates. Wigner tomography
is explained in Sec. 4.4. (b) The two steps of optimization that we perform to find the
desired displacement and SNAP gates.

Figure 4.8: Examples of states we can create with displacement and SNAP gates. (a)
Two-photon Fock state |2⟩, (b) binomial state (|0⟩ + |4⟩)/

√
2, and (c) an odd cat state

(|α⟩ − | − α⟩)/λ, with α =
√

2 and λ the normalization constant. These three states
have 2 photons on average and were created with two SNAPs and three displacements.
Next, (d) the GKP state with four photons on average and (e) the cubic phase state.
The GKP state was prepared with three SNAPs and four displacements and the cubic
phase state was prepared with three SNAPs and three displacements.

with α =
√

2 and λ the normalization constant (see Fig. 4.8(a)-(c)).
We prepared these states with fidelities 0.99, 0.94, and 0.96 respectively.
More surprisingly, we were able to prepare a Gottesman-Kitaev-Preskill
(GKP) state and a cubic phase state (see Fig. 4.8(d)-(e)) using three
SNAP gates. We prepared these states with the fidelity of 0.93 and 0.92,
respectively. The reason we found this surprising is that both GKP
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and cubic phase state have a rather complicated structure. The Wigner
functions of these states have a lot of alternating positive and nega-
tive regions. GKP states were only recently demonstrated using condi-
tional displacement gates in both superconducting circuits and trapped-
ions [30, 31]. To date, to the best of our knowledge, this is the only
experimental demonstration of a cubic phase state.

We found one more curious fact about optimized SNAP gates. They
are 5 times less sensitive to the calibration of dispersive shift χ, and
7 times less sensitive to fluctuations of qubit frequency compared to
standard SNAP gates. We suspect that it has to do with the fact that
optimized SNAP gates have continuous support in frequency space up to
a cutoff while standard SNAP gates have peaks centered at frequencies
ωq − nχ making them sensitive to changes in these two parameters.

4.6 Process tomography of a large Hilbert space
(Results summary)

We already showed that by measuring the Wigner function we can de-
termine the state of the cavity mode. From the Wigner data we can
reconstruct the n × n density matrix. In order to characterize a bosonic
gate or process we need to describe a quantum process matrix that maps
the initial n × n density matrix into the final n × n density matrix. This
quantum process matrix has dimensions n2 × n2.

Often we will encode the state of the logical qubit into a suitable
encoding, e.g. binomial encoding. This encoding spans a binary logical
subspace within the n-dimensional Hilbert space of the resonator. Some-
times we are only interested in the gate fidelity within this logical sub-
space. Then it is possible to use encoding and decoding operations [96]
that map the state of the ancilla qubit into the logical subspace and vice
versa. We could sandwich the bosonic gate we are interested in with
the encoding and decoding gates and use all the standard qubit gate
measurements such as e.g. qubit process tomography [97] or random-
ized benchmarking [98] to assign the fidelity to the bosonic gate. This
approach has two limitations. The first limitation is that the encoding
and decoding operations often have similar fidelity as the bosonic gates
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4.6. Process tomography of a large Hilbert space (Results summary)

Figure 4.9: (a) Process tomography is divided into three parts. Preparation of the
probe coherent states αp, applying the process (in our example X-gate on binomial
encoding) and measuring Wigner function in points αm. (b) Measured population
transfer matrix for X-gate on binomial encoding implemented by four displacements
and three SNAP gates.

that we are trying to characterize, therefore they cannot be considered
as "trusted" operations. The second limitation is that the n2 × n2 di-
mensional process matrix is getting reduced to a 4 × 4 process matrix
of the binary system. This means that we are not able to distinguish
incoherent errors from, for example, leakage errors, which we might be
able to avoid by calibrating our gate better.

The technique that improves on these two limitations is the coher-
ent state process tomography. It was previously used in quantum op-
tics together with homodyne detection in order to characterize bosonic
gates [99, 100]. We adopt this technique and advance it by replacing the
homodyne measurements with Wigner function measurements. Further-
more, a major difference is that we combine it with the gradient-descend
based learning algorithm [101] that reconstructs the quantum process
matrix from very limited data. This way we get the full n2 × n2 process
matrix and avoid using the complex encoding and decoding gates.

The coherent-state process tomography consists of three parts. Prepa-
ration of a probe state, which we choose to be a coherent state. We can
prepare these states with fidelities exceeding 99%, meaning that they are
"trusted" states. We apply the process or a gate that we want to char-
acterize, and finally, we measure the Wigner function of the resulting
state (see Fig. 4.9(a)). Then the procedure is repeated for a matrix of
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probe states spanning the part of the Wigner space of interest. Because
of the reconstruction algorithm we are using, we are able to reconstruct
the process matrix of the binomial X-gate using only 5×5 probe states
and 21×21 Wigner points.

There are different representations of the process matrix. One of
the easiest to understand is the population transfer matrix presented
in Fig. 4.9(b). It does not contain the full information contained in the
process matrix, but it allows us to spot certain kind of errors easily.
The top left corner of the matrix represents the logical subspace. Ide-
ally, matrix elements |0L⟩⟨1L| and |1L⟩⟨0L| should be 1, and all the other
elements in the first two columns and first two rows should be 0. Impor-
tantly, the non-zero elements outside the top left square of the transfer
matrix indicate leakage outside the computational subspace, informa-
tion that is typically inaccessible when using the encode-decode process
tomography protocol.

From this and other representations (see paper V for more details),
we can learn how the bosonic gate is acting on a large Hilbert space of
the resonator, which is another useful tool in our bosonic toolkit.
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CHAPTER 5

Off-resonant drives

As we discussed in the previous chapter, driving the dispersively coupled
cavity-qubit system on resonance with either mode enables universal con-
trol of the cavity mode. We chose to use unselective displacements and a
special case of selective qubit rotations (SNAP gates) in papers IV and V
to control the cavity mode. It has been shown that a complementing pair
of operations, namely the special case of selective displacements (echoed
conditional displacements) and unconditional qubit rotations will do the
same [66]. The upside of resonant driving is that the drives do not induce
Stark shifts of the modes, meaning they can be calibrated independently
of each other. However, just because a set of gates forms a universal set,
it does not mean they are the best way to implement a particular gate.
For example, selective displacements are well-suited for correcting small
displacement errors as demonstrated in the successful implementation of
quantum error correction on GKP encoding [32, 30]. However, SNAP
gates are much better suited to adding the phases to individual Fock
states. It would be inefficient to use displacement and SNAP gates to
implement conditional displacements and vice versa - it would be inef-
ficient to use conditional displacements and unselective qubit rotations
to implement a SNAP gate.
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This is why we decided to explore off-resonant driving to implement
selective single photon addition. In our implementation, off-resonant
drives simultaneously selectively add a photon and excite the qubit de-
pending on the cavity state. Even though it could be implemented with
displacement and SNAP gates, we found a more efficient way to do it.
Off-resonant drives will introduce Stark shifts and we have to consider
more Hamiltonian terms to try and capture the results we measure in
paper VI.

5.1 Hamiltonian derivation

Our derivation closely follows the derivation in [102]. Our starting point
is the Hamiltonian of a coupled qubit-cavity system described by:

H = ωaa†a + ωqq
†q + EJ

4!
[
φq(q + q†)

]4 − g
(
q − q†) (a − a†) , (5.1)

where we neglect all terms higher than the fourth order in the expansion
of the Josephson cosine potential and g is the coupling strength between
the qubit and the cavity. One can diagonalize (5.1) and get

H = ωaa†a + ωqq
†q − EJ

4! ϕ4, (5.2)

where ωa and ωq already include contributions due to the quadratic part
of the Josephson potential and

ϕ = φq(q + q†) + φa(a + a†), (5.3)

is the total flux field across the junction with φq and φa the participation
ratios of the qubit and cavity modes, respectively. The goal is to drive
transitions from |n⟩|g⟩ to |n + 1⟩|e⟩, selectively, i.e., we perform a two
excitation transition where we excite the qubit and add a photon to the
cavity only if the cavity is in Fock state |n⟩. In order to achieve this,
we are going to drive both the cavity and the qubit off-resonance. The
total Hamiltonian of the driven system is

H(t) = ωqq
†q + ωaa†a − EJ

4! ϕ4

+ ϵ1
(
q eiω1t + q†e−iω1t

)
+ ϵ2

(
a eiω2t + a†e−iω2t

)
, (5.4)
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where ϵ1 and ϵ2 are the strengths of the qubit and cavity drives, respec-
tively, with frequencies ω1 and ω2. We eliminate the linear terms in (5.4)
by means of the time-dependent displacement transformation

D(t) = exp
(
ξ1e−iω1tq† − ξ̄1e+iω1tq

)
exp

(
ξ2e−iω2ta† − ξ̄2e+iω2ta

)
. (5.5)

The Hamiltonian in the displaced frame is then

H(t) = ωqq
†q + ωaa†a

− EJ

4!
[
φq

(
q − ξ1e−iω1t

)
+ φa

(
a − ξ2e−iω2t

)
+ h.c.

]4
. (5.6)

Here, the amplitudes ξi, i = 1, 2 are given by

ξ1 = ϵ1

∆1
, (5.7)

ξ2 = ϵ2

∆2
, (5.8)

where ∆1 and ∆2 are the detunings of the qubit and cavity drives respec-
tively. Regardless of the drive frequencies, the fourth-order interaction
yields the following nonrotating (nr) contributions

Hnr,1 = −αq

2 q†2q2 − Kc

2 a†2a2 − χ q†q a†a, (5.9)

Hnr,2 = δStark,q q†q + δStark,a a†a. (5.10)

The Hamiltonian (5.9) corresponds to the drive-independent terms. Here
αq is the qubit anharmonicity, Kc is the Kerr nonlinearity of the cavity,
and χ is dispersive interaction (cross-Kerr) between the qubit and the
cavity. Furthermore, the corresponding interaction strengths are given
by

αq =
EJ φ4

q

2 , (5.11)

Kc = EJ φ4
a

2 , (5.12)

χ = EJ φ2
a φ2

q. (5.13)

On the other hand, the Hamiltonian (5.10) corresponds to the drive-
activated quadratic terms, i.e., the ac Stark shifts or frequency shifts
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due to the drives. These are given by

δStark,q = −2 αq |ξ1|2 − χ |ξ2|2, (5.14)
δStark,a = −2 Kc |ξ2|2 − χ |ξ1|2. (5.15)

The time-dependent term corresponding to this effective drive is

Hdrive(t) = ξeff e−i(ω1+ω2)t q†a† + h.c., (5.16)

where the effective drive strength is given by

ξeff = −EJφ2
qφ

2
aξ1ξ2 = −χξ1ξ2. (5.17)

Together with (5.6) we obtain H(t) = Hnr,1 + Hnr,2 + Hdrive(t) as the
following

H(t) = (ωq + δStark,q) q†q + (ωa + δStark,a) a†a − αq

2 q†2q2

− Kc

2 a†2a2 − χq†q a†a +
(
ξeff q†a†e−i(ω1+ω2)t + h.c.

)
. (5.18)

The purpose of the drives is to allow for the number-selective simul-
taneous excitation of the cavity and the qubit. As stated above, the
goal is to induce transitions of the form |n⟩|g⟩ → |n + 1⟩|e⟩. Instead of
driving them directly, we are going to consider driving them via a vir-
tual state detuned by some detuning ∆. Thus, in order to activate this
two-excitation process we require that the frequencies of both drives add
to the corresponding transition frequency. In the presence of the Stark
shifts, the energy of exciting the qubit is ωq + δStark,q − nχ depending
on the state of the cavity, while the energy of adding a photon to the
cavity is ωa + δStark,a. Thus, the total frequency of this two-excitation
transition is given by

ω1 + ω2 = (ωq + δStark,q) + (ωa + δStark,a − χ) . (5.19)

We note that we should have additional higher-order terms resulting
from the four-wave mixing of the cavity, qubit, and driving fields in
(5.18). However, for now, we neglect them as they are not resonant
terms. Number selectivity imposed ξeff < χ, therefore from (5.17), we
require ϵi < ∆i.
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Figure 5.1: First calibration experiment in supplementary of paper VI. The excited
population of the qubit in color scale for (a) transition |0⟩|g⟩ → |1⟩|e⟩ and (b) transition
|2⟩|g⟩ → |3⟩|e⟩. The curving of the red areas is reproduced by a crosstalk term in the
Stark shift in Eqs. 5.23 and 5.24.

For the purpose of fitting a part of the experimental data, we consider
drives with the following drive frequencies

ω1 = ωq − ∆, (5.20)
ω2 = ωa − χ + ∆ (5.21)

Moving to the frame rotating with the free Hamiltonian and making
the rotating wave approximation (RWA) allows selecting slow-rotating
terms from the fourth-order interaction so that the Hamiltonian can be
written as

H(t) = δStark,q q†q + δStark,a a†a − αq

2 q†2q2 − Kc

2 a†2a2 − χq†q a†a

+
(
ξeff e+i nχtq†a† + h.c.

)
. (5.22)

We are still working on fully reproducing the results of our experi-
ments and the above Hamiltonian does not fully capture the results we
measured. We can add here that in [102, 24] they use off-resonant drives
and they find that their experimental data fits qualitatively rather than
quantitatively their theoretical predictions.
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To fit the experimental data in Fig. 5.1 with the model that we have,
we find that a cross term in the Stark shifts (5.14) and (5.15) is needed.
Assuming fitting parameters η1, η2, η12, one can use (5.14) and (5.15) and
write

δStark,q = −2 η1 αq |ξ1|2 − η2 χ |ξ2|2 − η12 χ ξ1 ξ2, (5.23)
δStark,a = −2 η2 Kc |ξ2|2 − η1 χ |ξ1|2 − η12 χ ξ1 ξ2, (5.24)

The experimental data in Fig. 5.1 is the first calibration experiment we
do in order to find approximate amplitudes of the off-resonant drives
for each transition |n⟩|g⟩ → |n + 1⟩|e⟩ that we are interested in driving
(n = 0 and n = 2 in Fig. 5.1(a) and (b) respectively). We apply a qubit
drive at frequency fq−∆ and a cavity drive at frequency fc+∆−(n+1)χ,
where ∆ = 20 MHz. The red areas indicate the regions where the qubit
is excited. The fitting parameters for both color plots are found to be

(η1, η2, η12) = (3.75, 3.35, 60.25) . (5.25)

Without the extra term the red areas do not bend to form arrow-like
regions pointing to the top-right corner of the color plots (Fig. 5.1).

Even though we cannot fully describe the evolution of our system
under off-resonant drives just yet, we can still apply selective photon
additions experimentally. We just need to calibrate our pulses on the
experiment itself. It turns out it is not a time-intensive calibration pro-
cedure and it is explained in detail in the Supplementary information
of paper VI. Once we find the Hamiltonian that fully describes evolu-
tion under off-resonant drives we will be able to shorten the duration
of selective photon addition gates by optimizing the envelopes of the
off-resonant drives, similarly to what we did with the SNAP gates (see
Sec. 4.5.2 and paper IV).

5.2 Experimental implementation of selective pho-
ton addition (Results summary)

We implement the selective photon addition gate in paper VI. We have
a specific use for it in mind, namely correcting the single photon loss.
However, this does not mean that the selective photon addition gate
cannot be used for other purposes.

50



5.2. Experimental implementation of selective photon addition (Results summary)

Figure 5.2: (a) Level diagram sketching the SNAPPA gate, here implemented to map
the cavity odd parity subspace onto the even-parity subspace, without compromising
the even-parity states. The qubit off-resonant drive at frequency fq − ∆ is common
for all the transitions (green arrows). In different shades of magenta arrows, the cavity
off-resonant drives at frequencies fc + ∆ − (n + 1)χ enable the transition from |n⟩|g⟩
to eiθn|n + 1⟩|e⟩, for each odd n respectively. The phase θn is directly related to the
relative phases of the drives. (b) Pulse sequence used to apply the SNAPPA gate.
We initialize cavity and qubit to |Ψ⟩|g⟩, apply the SNAPPA gate, and perform direct
Wigner tomography to measure the state of the cavity.

We can encode the logical qubit in a four-component cat state (same
as in [25]) that has, for example, even parity. When a photon is lost, the
parity of the logical states will change. We want our selective photon
addition gate to leave the even parity states unchanged, and we want
the odd parity states to be mapped back to even parity states. Our off-
resonant drives will further put the qubit in the excited state if the parity
has been changed, and leave it in the ground state if there was no parity
change. They can also add an arbitrary phase to the added photons.
This is why we call this gate selective number-dependent arbitrary phase
photon addition or SNAPPA for short. It is defined as

SPA({(θi)ni→ni+1}) ≡
∑

i⊂N

eiθi|ni + 1⟩|e⟩⟨ni|⟨g| + h.c., (5.26)

where |ni⟩ are the Fock states which are affected by the transformation
when the qubit is in the ground state, {θi} the corresponding phases
they acquire, and |g⟩ and |e⟩ are the ground and excited states of the
qubit, respectively.

We will show all these properties by initiating cavity in equal su-
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5. Off-resonant drives

Figure 5.3: Characterization of the SNAPPA gate SPA(θ1→2, θ3→4), where θ1→2 = 0, to
map odd-parity states(error), i.e., {|1⟩, |3⟩} to even-parity states(computational), i.e.,
{|2⟩, |4⟩}, whereas the computational states are almost unaffected by the SNAPPA
gate. Wigner functions of experimental versus target states when the SNAPPA gate is
applied to an error initial state(upper panels) and a computational initial state(upper
panels) confirms transition |1⟩|g⟩ → |2⟩|e⟩ and |3⟩|g⟩ → |4⟩|e⟩. (a) Error initial state
(|1⟩ + |3⟩)|g⟩/

√
2 and final/target states (|2⟩ + |4⟩eiθ3→4)|e⟩/

√
2, where θ3→4 is the

phase of the cavity off-resonant drive fc + ∆ − 4χ, given by (b) θ3→4 = 0, (c) θ3→4 = π,
(d) θ3→4 = π/2. The lower panels show that the drives have little to no effect on
the even-parity subspace. (e) Computational initial state (|2⟩ + |4⟩)|g⟩/

√
2 and (f)-(h)

identical final state (|2⟩ + |4⟩)|g⟩/
√

2 for θ3→4 = 0, π, −π/2.

perposition of odd states |Ψ⟩ = (|1⟩ + |3⟩)/
√

2 and even states |Ψ⟩ =
(|2⟩ + |4⟩)/

√
2 (Fig. 5.2). Then we will apply a SNAPPA gate that acts
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5.3. Open questions

on the states |1⟩ and |3⟩, SPA(θ1→2, θ3→4), with θ1→2 = 0 and θ3→4 being
an arbitrary phase. This phase is set by the relative phases of the off-
resonant drives (see Fig. 5.2). We finally measure the Wigner function
and the state of the qubit to characterize the state of the system after
applying the SNAPPA gate.

The results are summarized in Fig. 5.3. When we initialize the cavity
state in the odd parity state (|1⟩+ |3⟩)/

√
2 and apply the SNAPPA gate

SPA(01→2, θ3→4) we create the state (|2⟩ + eiθ3→4|4⟩)/
√

2 and the qubit
ends up in the excited state as expected (Fig. 5.3(a)-(d)). When we
initialize the cavity state in the even parity state (|2⟩ + |4⟩)/

√
2 and

apply the same SNAPPA gate, the cavity state does not change, except
for a slight rotation that is the same for all states, and the qubit ends
up in the ground state as expected (Fig. 5.3(e)-(h)). Since the rotation
is the same, we can easily compensate for it, by updating our knowledge
of the qubit measurement outcome. The average error introduced in the
qubit state population is about 0.05 and the average error introduced in
the cavity state is about 0.02.

We can conclude that we successfully calibrated the SNAPPA gate
and in the following chapter we will discuss the possible improvements
and outlook for the application of the SNAPPA gate.

5.3 Open questions

There are a few open questions we would like to answer in the future.
The obvious one is whether applying selective photon addition followed
by an unconditional qubit reset would improve the lifetime of the bosonic
qubit encoded in a four-component cat state or any other suitable code.
There is still an option of whether to apply all the drives simultaneously
(similar to [24]) or to do it in a more conventional pulsed manner where
we do rounds of error correction repeatedly. The simultaneous option
has the disadvantage of a more complicated calibration procedure, since
it would involve more simultaneously applied drives. We do not know
if the dives induce dephasing of either the qubit or the cavity. If the
answer is yes, it would be better to apply them for short times in a
pulsed manner.
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5. Off-resonant drives

We would obviously like to be able to find the Hamiltonian that fully
describes the system driven by multiple off-resonant drives. This would
allow us to shorten the duration of selective photon addition gates by
optimizing the envelopes of the off-resonant drives, similarly to what
we did with the SNAP gates (see Sec. 4.5.2 and paper IV). This would
further improve the fidelity of the SNAPPA gates.
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CHAPTER 6

Summary

In this thesis, we show how to build a bosonic microwave qubit in a 3D
cavity. Starting from hardware components, moving on to techniques
to shape bosonic states and gates, and proposing a novel single-photon
error correction technique. We additionally introduce the experimental
setup and room-temperature radio-frequency system on a chip we used
to perform the measurements.

We first describe the cryogenic experimental setup and the sample
fabrication common for all the experiments performed in this thesis. We
discuss the room-temperature measurement and control systems we used
for both bosonic and discrete variable qubit systems.

Next, we introduce the quality factor as a figure of merit we can use
to compare the quality of resonators and qubits. We then present the
different sources of loss that can limit the quality factor. Finally, we list
the techniques used to analyze fluctuations of parameters both in the
time and in the frequency domain.

In paper I relaxation and dephasing mechanisms of transmon qubits
are studied over an extended time period. The analysis of fluctuations
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6. Summary

of coherence times and resonance frequencies indicates that the parasitic
two-level systems are the main cause of the instability of these parame-
ters in time.

In paper II we measure the resonance frequency fluctuations of three
different types of resonators. All the resonators’ fluctuations show a sig-
nature of coupling to multiple two-level systems. The switching time
and amplitude of the fluctuations of the strongest coupled two-level sys-
tem have the same functional form of the power dependence in all three
resonators indicating that TLSs are neither geometry nor material de-
pendent.

In paper III we were focused on finding a good recipe for treating the
surface of aluminum 3D cavities with the goal of reproducibly achieving
quality factors close to 100 million. The best recipe we found includes
wet etching that removes about 100 µm of the surface, which is affected
by machining, followed by annealing in a nitrogen atmosphere for 3 hours
to allow some of the defects to rearrange and heal.

Next, we focused on the universal control of a bosonic qubit. Disper-
sively coupling the ancilla qubit to the cavity was the way we chose to
introduce the nonlinearity needed for universal control. We introduced
the types of gates we can perform by resonantly driving the ancilla qubit
and the cavity.

In paper IV we used interleaved displacement and optimized SNAP
gates to create arbitrary Wigner-negative states such as Gottesman-
Kitaev-Preskill (GKP) states and cubic phase states. We were able to
do this by employing a two-step optimization process. In the first step,
we optimized the parameters of the gates, and in the second step, we
optimized the envelopes of SNAP gates in order to make them 8x shorter
compared to the standard SNAP gates.

In paper V we then used the coherent state process tomography to fully
characterize the bosonic X-gate on a binomially encoded qubit. The X-
gate was implemented by interleaving 4 displacement and 3 optimized
SNAP gates that were optimized in the way described in paper IV. The
coherent state tomography is made practical by employing the gradient-
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descend based learning algorithm that reconstructs the quantum process
matrix from very limited data.

In chapter 5 and paper VI we explore driving the cavity-qubit system
off-resonantly. In particular, we focus on the two-excitation transition
that selectively adds a photon and excites the qubit at the same time.
We explore the Hamiltonian description that would allow us to capture
the Stark shifts induced by multiple off-resonant drives. By choosing
the drives carefully and implementing a qubit reset, we believe we can
implement a single photon error correction on a qubit encoded in a four-
component cat state.

In paper VI we focus on calibrating the selective two-excitation transi-
tions. When the two-excitation transitions implement a π pulse between
levels |ng⟩ and |(n + 1)e⟩ we call the gate selective number dependent
arbitrary phase photon addition or SNAPPA for short.

In paper VII the measurement system on a chip Presto is used to
characterize a discrete two-qubit transmon system. This is the same
system used in paper VI to implement the SNAPPA gates.
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APPENDIX A

Common calibration experiments

Papers IV-VI are all performed on the same system1. It consists of
a 3D cavity dispersively coupled to the transmon qubit and a readout
resonator. The Hamiltonian describing this system is given in Eq. 4.14.
Next, we will go through all the experiments needed to calibrate the
parameters of that Hamiltonian.

The frequency of the qubit ωq is obtained from a Ramsey experiment
(see Fig. A.1(a)). We send two π/2 pulses separated by a variable time.
The result is an exponentially decaying oscillation at a frequency that
corresponds to the difference frequency between the qubit frequency and
the frequency of the π/2 pulses ωRamsey = ωq − ωπ/2. From the exponen-
tial decay we extract T2q the decoherence time of the qubit

f(t) = e−t/T2q cos [(ωq − ωπ/2)t]. (A.1)

The frequency of the cavity we fit in a similar manner. We apply two
displacements of opposite phase (Dα and D−α) separated by a variable
time dt. The average photon number associated with the displacement
amplitude has to be much smaller than 1 (|α|2 ≪ 1) in order to use a

1This does not mean that the physical components were identical.
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A. Common calibration experiments

Figure A.1: Calibrating the frequency of the qubit (a) and the cavity (b). We use
a Ramsey experiment that we fit to an exponentially decaying oscillation. The pulse
sequence to perform the experiment (top) and an example of the measurement data
with the fit (bottom).

simple exponentially decaying cosine as a fit. The difference between
the frequency of the displacement pulses and the frequency of the cavity
is going to determine the frequency of the cosine. We then apply a
π pulse selective on cavity being in vacuum (see Fig. A.1(b)). One
way to visualize why we are getting oscillations in this experiment is to
think about it in phase space. The first displacement creates a coherent
state |α⟩. Since the displacement frequency does not exactly match the
frequency of the cavity, this displaced state is going to rotate around
the origin of phase space with frequency ωc − ωD. So the state |α⟩ will
evolve into |αei(ωc−ωD)t⟩. Depending on how much time has passed, by
applying displacement D−α we will either bring the state back to the
vacuum state (for time dt = 1/(ωc −ωD)) and read high amplitude when
we probe the population of the Fock state |0⟩, or low probability to be
in the vacuum state at times dt = 1/[2(ωc − ωD)] when the displaced
state evolved into state | − α⟩.

Measurements of the relaxation time of the qubit and the cavity are
presented in Fig. A.2. The qubit relaxation time T1q is measured by
applying a π pulse to the qubit and waiting a variable time dt. The
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Figure A.2: Calibrating the relaxation time of the qubit (a), and the cavity (b)
and (c). The pulse sequence to perform the experiment (top) and an example of the
measurement data with the exponentially decaying fit (bottom). One way to prepare
Fock state |1⟩ is to apply displacement α1 = 1.14, SNAP gate that adds π phase to
Fock state |0⟩ and another displacement α2 = −0.58. α = 3.3 is the displacement
amplitude in the example in panel (c).

exponential decay of the qubit population is fitted to:

f(t) = e−t/T1q . (A.2)

The cavity relaxation time T1c can be measured in two ways. The first
way is to prepare Fock state |1⟩ and measure the population of either
Fock state |0⟩ or |1⟩ after variable time dt. The population of Fock
state |1⟩ will exponentially decay and population of Fock state |0⟩ will
exponentially approach one with characteristic time T1c (see Fig. A.2(b)).
Another way is to prepare a coherent state α instead of Fock state |1⟩.
The population of Fock state |0⟩ will then fit to a double exponential:

f(t) = exp
(
−|α|e−t/T1c

)
. (A.3)

The qubit drive amplitude is calibrated using the standard Rabi mea-
surement (see Fig. A.3). For each amplitude in instrument units (arbi-
trary units, a.u.) we sweep the length of the qubit pulse. We fit the
population of the qubit to a cosine function

f(t) = cos (ωRabit − π/2). (A.4)

and find the Rabi rate ωRabi corresponding to the instrument amplitude
A in (a.u.). The dependence of ωRabi(A) is usually linear, except for
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A. Common calibration experiments

Figure A.3: Calibrating the qubit drive amplitudes. (a) pulse sequence, (b) example
of Rabi oscillations for one amplitude of qubit drive, and (c) linear dependence of Rabi
rate and qubit drive amplitude.

very high powers where there might be saturation effects or at very low
powers where there might be nonlinearities caused by finite amplitude
digitization. We use this measurement to convert the amplitudes we
acquire from the optimizer when optimizing SNAP gate envelopes into
instrument units.

The experiment detailed in Fig. A.4 is used to calibrate displacement
amplitude, dispersive shift χ, and the correction to the dispersive shift χ′.
We first apply a displacement pulse, and then we probe the population
of the Fock states by applying a selective π pulse of varying frequency.
We fit the individual peaks to Gaussian functions and the heights of
the Gaussians to the Poisson distribution. This way we can find the
linear relation between the displacement amplitude |α| and the voltage
amplitude in arbitrary units that we apply. Further, the frequency of
the peaks is fitted to

ω(n) = ωq − χn − χ′

2 n(n − 1). (A.5)

Cavity Kerr Kc is very small in our system (few kHz) and on the same
order as cavity relaxation time, so it is impossible to use spectroscopic
methods. Instead, we do the same experiment as when we were determin-
ing cavity frequency, but now we also sweep the displacement amplitude
(see Fig. A.5). If the cavity was perfectly linear we would see the red
areas becoming more narrow as the displacement amplitude is increased.
The cavity Kerr adds more phase to higher Fock states, and that is why
we see the red areas bending as the displacement amplitude increases.
The whole color plot is then fitted to find the cavity Kerr. The fitting
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Figure A.4: Calibrating the cavity drive amplitudes. (a) Example of qubit frequency
peaks whose heights fit the Poissonian distribution of a coherent state with amplitude
α. (b) Linear dependence of displacement amplitude on cavity drive amplitude. (c)
Frequencies of the peaks in (a) fitted to Eq. A.5 that allows us to extract dispersive
shift χ and the correction to the dispersive shift χ′. Many points at the same photon
number n correspond to extracting the position of the same peak for different displace-
ment amplitudes Dα. (bottom) Pulse sequence for calibration displacement amplitude,
dispersive shift, and the correction χ to the dispersive shift χ′.

Figure A.5: Calibrating the cavity Kerr Kc. (a) Pulse sequence, (b) data, and (c) fit
to Eq. A.6.

function computes the expression

f(α, t) = ⟨0|D−α

∏
n

eiω∆t|n⟩⟨n|ei Kc
2 n(n−1)t|n⟩⟨n||α⟩ (A.6)

for every α and t in the 2D data set, and the only fitting parameters are
Kc and the detuning from the cavity frequency ω∆ = ωD −ωc. We choose
the maximum time dt ≪ T2c so we have negligible decay of amplitude,
and ω∆ such that we see a few oscillations.
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