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Distributed eco-driving control of a platoon of
electric vehicles through Riccati recursion

Rémi Lacombe, Sébastien Gros, Nikolce Murgovski, and Balázs Kulcsár

Abstract—This paper presents a distributed optimization pro-
cedure for the cooperative eco-driving control problem of a
platoon of electric vehicles subject to safety and travel time
constraints. Individual optimal trajectories are generated for
each platoon member to account for heterogeneous vehicles and
for the road slope. By rearranging the problem variables, the
Riccati recursion can be applied along the chain-like structure
of the platoon and be used to solve the problem by repeatedly
transmitting information up and down the platoon. Since each
vehicle is only responsible for its own part of the computations,
the proposed control strategy is privacy-preserving and could
therefore be deployed by any group of vehicles to form a platoon
spontaneously while driving. The energy efficiency of this control
strategy is evaluated in numerical experiments for platoons of
electric trucks with different masses and rated motor powers.

Index Terms—Distributed optimal control, Riccati recursion,
platooning, eco-driving, electric vehicles, nonlinear programming.

I. INTRODUCTION

CONTRARY to other sectors, the greenhouse gases emis-
sions of the transport sector have continued to increase

in recent years, reaching 24% of direct global CO2 emissions
in 2018 [1]. At the same time, the freight demand is expected
to triple between 2015 and 2050 [2]. In this report, the
International Transport Forum emphasizes the need for a
massive deployment of zero-emission propulsion for heavy-
duty vehicles, such as with electric batteries, in order to reach
the internationally agreed emission targets. Energy efficiency
improvements are also listed as a significant mitigation mea-
sure [2].

In this context, truck platooning offers a promising way
to reduce the energy consumption of road freight transport
without requiring any structural change. By driving in close
succession, the overall drag force acting on the trucks can be
decreased. This has the effect of reducing the energy needed
to maintain a certain speed, and field experiments indicate
that sizeable energy savings can be achieved as a result
[3]–[5]. However, safety must be guaranteed when driving
vehicles at a close distance, meaning that the trade-off between
drag reduction and collision avoidance should be carefully
addressed when operating vehicle platoons.
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Control methods for vehicle platoons have historically fo-
cused on string stability, i.e. the attenuation of deviations on
position and speed along a string of vehicles, rather than
energy or fuel optimality [6]–[8]. The latter has sometimes
been addressed indirectly by using vehicle proximity as a
proxy for energy efficient operation [9]. But as emphasized
in this last work, the road slope can significantly impact the
energy savings obtained through platooning for heavy-duty
vehicles. In a hilly terrain, tracking a constant spacing or time
gap between successive vehicles is not energy-optimal if it
requires some of the vehicles to use their friction brakes in
order to avoid collisions.

Optimal driving profiles can be generated for one or several
vehicles by forming and solving an optimal control prob-
lem (OCP) including external factors like the road slope, a
procedure generally known as eco-driving [10]. In the case
of a truck platoon, the overall energy consumption can be
minimized by either following a single common optimal
trajectory for the entire platoon [11], or by computing and
tracking the individual optimal trajectory of each member [12],
[13]. Whichever approach is used, the optimal control problem
is always solved centrally in the works cited above. In fact,
there are currently no works in the literature proposing fully
distributed algorithms to solve the eco-driving control problem
of a truck platoon, to the best of our knowledge.

To remedy this, we take a different perspective on this
problem in this work and use the concept of Riccati recursion
to solve it in a distributed fashion. The Riccati recursion is a
matrix factorization scheme traditionally deployed for solving
unconstrained linear-quadratic (LQ) OCPs faster [14]–[16], i.e.
problems with linear dynamics and a quadratic cost function.
Such problems have a particular stage-wise structure and often
arise in model predictive control (MPC) [17].

If inequality constraints are also considered, which is the
case in most MPC applications, then constrained LQ OCPs
must be solved, a general form of which is given in [18] for
instance. In the rest of this paper, we refer to the particular
structure of this family of problems as the standard LQ OCP
structure. Constrained LQ OCPs are often solved with second-
order iterative methods in practice, where an unconstrained LQ
OCP needs to be solved at each iteration [14]–[16]. Solving
these intermediate LQ OCP subproblems is in fact often the
computational bottleneck of these solution methods, which is
why the Riccati recursion is today routinely used in specialized
solvers for LQ OCPs [19].

In this paper, we make the argument that the backward
and forward sweeps needed in the Riccati recursion can be
carried out between successive agents instead of successive
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stages when solving unconstrained LQ OCPs. By doing so, we
show that second-order solution methods for problems with a
standard LQ OCP structure can be fully distributed over agents
organized in a chain-like structure.

Second-order optimization methods are known for their
strong convergence properties: they can achieve a quadratic
convergence rate when taking full Newton steps [20]. As a
result, they require less iterations than first-order methods,
which results in reduced communication needs in the case of
distributed algorithms. In settings where communications are
slow or expensive this grants a clear advantage to second-order
methods. However, second-order methods are in general much
more difficult to distribute fully since they usually require
specific problem structures with sparse coupling, see e.g. [21],
[22], and references therein.

The main contribution of this paper is to propose a dis-
tributed solution procedure for the cooperative eco-driving
control problem of a vehicle platoon. This procedure combines
the greater convergence speed of second-order optimization
methods with fully distributed computations. The absence of
centralized computation requirements means that every vehicle
is ultimately responsible for computing its own optimal trajec-
tory and needs not trust a third party with it. The local problem
information of each vehicle can be kept private as it does not
have to be shared directly with the other vehicles, meaning
that this control method is privacy-preserving. Therefore, in
the case of heavy-duty vehicles, this method could even be
deployed on vehicles belonging to competing transportation
companies. In addition, the proposed procedure exploits the
chain-like structure of a platoon since it only requires each
vehicle to communicate with its direct neighbors. This opens
the door to the use of high-bandwidth communications (e.g.
optical or microwave communication) while also reducing the
risk of interference or packet loss. The distributed aspect of
the solution procedure is achieved through the use of the
Riccati recursion. To the best of our knowledge, no other
study has applied the Riccati recursion scheme to the end of
physically distributing computations between agents organized
in succession.

The originality of the proposed procedure is also that it
solves a detailed formulation of the eco-driving platoon control
problem. Namely, this formulation includes the influence of
both the road slope and aerodynamic drag reduction on the
energy consumption of the vehicles. Furthermore, each vehicle
is allowed to compute its own optimal trajectory, so that
headways between successive vehicles are not constrained to a
fixed target value but allowed to vary along the route in order
to save energy and to account for heterogeneous vehicles. This
paper is the first work that we are aware of in the literature
which proposes a fully distributed solution procedure for a
formulation of the cooperative eco-driving platoon control
problem including all the features described above. It is also
the first one to explicitly study the eco-driving problem for a
platoon of heavy-duty electric vehicles. Note that even though
the present study focuses on truck platoons, the proposed
method could in principle be deployed on platoons of different
vehicle types, such as cars or buses.

The article is organized as follows. The vehicle platoon

model is presented in Section II, together with the formulation
of the eco-driving control problem. Section III introduces a
sequential quadratic programming (SQP) algorithm to solve
this problem, and Section IV a primal-dual interior point
(PDIP) algorithm based on the Riccati recursion to solve the
SQP subproblems. These two algorithms are detailed further
in Section V. In Section VI, simulation results are shown and
commented, while some key properties of the proposed control
method are discussed in Section VII. Finally, the paper closes
on some concluding remarks in Section VIII.

II. MODELING

Consider a platoon of n electric trucks traveling on a hilly
highway, where the platoon leader has index 1. These trucks
need not have the same physical properties, i.e. the platoon can
be heterogeneous. The goal is to minimize the overall energy
consumption of the platoon over a spatial horizon of length
sf . This horizon is assumed to start at the current position of
the platoon leader, where s = 0, and to be common to all the
trucks in the platoon. The problem of controlling the trucks
before they reach s = 0 is left outside the scope of this paper.

A. Longitudinal Dynamics

In this paper, the dynamics of the vehicles are modeled
in the space domain, i.e. as functions of the position s.
For instance, for any truck with index i in the platoon, its
velocity and travel time at position s are written vi(s) and
ti(s), respectively. Note that this is a common practice in the
eco-driving literature as it removes some nonlinearities from
the vehicle longitudinal dynamics equations, compared with a
formulation in the time domain [12], [13], [23]–[25].

It is assumed that the platoon has a constant preferred
cruising speed v̄ when traveling [12]. However, due to limited
motor power and large vehicle mass, some of the trucks may
not be able to reach v̄ in steep uphill sections of the road.
Instead, a reference speed function vref,i is used for each truck
i of the platoon. This function takes value v̄ on most of the
horizon, with the exception of steep uphills where it is the
maximum speed that truck i can achieve.

Instead of simply tracking the reference speed, each truck i
has the freedom to adjust its velocity around vref,i, in order to
minimize the energy consumption of the platoon. The speed
constraints for each truck i can be formulated as:

vmin,i(s) ≤ vi(s) ≤ vmax,i(s), ∀s ∈ [0, sf ], (1)

where the bounds vmin,i and vmax,i can encode information on
the legal speed limit or the minimum allowed speed for ex-
ample. Note that these bounds can be designed independently
from the reference speed, but they are assumed to satisfy
vmin,i(s) ≤ vref,i(s) and vref,i(s) ≤ vmax,i(s) at each position
s.

In order to not slow down the trucks too much during their
driving mission, they are required to reach the end of the
horizon as fast as they would by following their reference
speed. Let tref,i be the reference travel time for truck i:

tref,i =

∫ sf

0

ds

vref,i(s)
. (2)
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The constraint on the terminal travel time of truck i can then
be written as:

ti(sf ) ≤ ti(0) + tref,i, (3)

where ti(0) denotes the time at which truck i reaches the start
of the horizon. In the case of a heterogeneous platoon, it can
happen that a powerful vehicle trails behind a less powerful
one. In this case, the travel time constraints must be modified
to avoid infeasibility. Therefore, for every index pair {i− 1, i},
i ∈ I[2,n], the reference travel time tref,i is set to tref,i−1 in case
tref,i < tref,i−1.

In addition, the platoon vehicles should never be too close to
each other on the road in order to avoid any possible collision.
These safety constraints are enforced by specifying a minimum
time headway th at which trucks are allowed to be from each
other [12]:

ti(s)− ti−1(s) ≥ th, ∀s ∈ [0, sf ], (4)

for every truck with index i ≥ 2.
In order to remove additional nonlinearities from the

longitudinal dynamics of truck i, the kinetic energy
Ei(s) = (1/2)mivi(s)

2 is used as a state variable, together
with the travel time ti. This is also a common modeling choice
when working in the space domain, and a complete treatment
of the derivation of the longitudinal equations in that case can
be found in [23]. We now directly state these equations for a
single truck i:

dEi(s)

ds
= Fm,i(s)− Fb,i(s)− F 0

drag,i(Ei)

−mig(sin θ(s) + cr cos θ(s)), (5a)
dti(s)

ds
=

√
mi

2Ei(s)
, (5b)

where mi is its mass, Fm,i is the longitudinal force, Fb,i is
the braking force from the mechanical friction brakes, Fdrag,i
is the aerodynamic drag, θ is the road gradient, and cr is
the rolling resistance coefficient. We define the state vector
of truck i as xi = [Ei, ti]

⊤ and the control input vector as
ui = [Fm,i, Fb,i]

⊤.
It is assumed that the braking force is bounded below by a

constant value Fb,min, such that:

Fb,min ≤ Fb,i(s) ≤ 0, ∀s ∈ [0, sf ]. (6)

Likewise, the longitudinal force Fm,i is bounded above and
below by functions of the vehicle speed, due to the power
limitations of the electric motor [26]. These constraints can in
general be expressed with non-convex functions Fm,min and
Fm,max as:

Fm,min(Ei) ≤ Fm,i(s) ≤ Fm,max(Ei), ∀s ∈ [0, sf ]. (7)

The longitudinal force constraints of the electric motor (EM)
model used in this paper are displayed in Fig. 1. Notice that
the regenerative braking feature of the EM is modeled by the
negative longitudinal force values in this figure.

In case truck i is not surrounded by any vehicle, the
aerodynamic drag acting on it has the form:

F 0
drag,i(Ei) =

ρacdAf,i

mi
Ei(s), (8)
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Fig. 1: Efficiency map of the EM model used, given as a function of vehicle
speed and longitudinal force. The black lines denote the longitudinal force
constraints.

where ρa is the air density, cd is the aerodynamic drag
coefficient, and Af,i is the frontal area of truck i [26].

B. Drag Reduction Model

In the case of a truck platoon, each platoon member is
surrounded by other vehicles in its lane. Consequently, the
drag force experienced by each truck is reduced. It is assumed
here that the drag reduction is only caused by the preceding
truck, since it is the one which contributes the most. As
a result, the platoon leader does not benefit from any drag
reduction, and the drag force acting on it can be modeled by
(8) directly: Fdrag,1(E1) = F 0

drag,1(E1). For the other trucks,
the magnitude of the drag reduction depends primarily on
the distance with the preceding truck. Using a simple drag
reduction model [27], the drag force acting on each truck i,
with i ≥ 2, can be modeled as:

Fdrag,i(Ei, di) = F 0
drag,i(Ei)(1− fd(di)), (9)

where the function fd is:

fd(di) =
c1

c2 + di(s)
. (10)

In these expressions, c1 and c2 are drag reduction coefficients,
and di is the distance between truck i and the preceding
truck in the platoon. However, the inter-vehicular distances
cannot be obtained directly in our modeling framework, since
the truck positions are not state variables. An alternative is
to approximate di as an affine function of the travel time.
Under the assumption that the truck speeds do not deviate
significantly from v̄, we have:

di(s) ≈ v̄(ti(s)− ti−1(s))− Li−1, (11)

where Li−1 is the length of the truck with index i− 1, which
is the truck preceding truck i in the platoon. The complete
derivation of this approximated expression, together with a
discussion of its validity, can be found in [12]. In what follows,
this approximation is used when computing the drag reduction.
The complete drag force terms Fdrag,i are now used in the
longitudinal dynamics (5) instead of F 0

drag,i.
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C. Optimal Control Formulation

The cooperative eco-driving problem for the truck platoon
can then be formulated as:

min
x(s),u(s)

n∑
i=1

∫ sf

0

Pb,i(Ei, Fm,i)

vi(s)
ds, (12a)

s.t. xi(0) = x0i , ∀i ∈ I[1,n], (12b)
dx1(s)

ds
= f(x1, u1), (12c)

h(x1, u1) ≤ 0, (12d)
∀i ∈ I[2,n] :
dxi(s)

ds
= f(xi, ui, xi−1), (12e)

h(xi, ui, xi−1) ≤ 0, (12f)

where Pb,i is the internal battery power of truck i, and x0i
gathers its initial kinetic energy and initial travel time. The
right-hand side of the longitudinal dynamics (5) has been noted
as a function f , for the sake of simplicity. Similarly, all the
inequality constraints defined above, i.e. (1), (3), (4), (6), (7),
have been gathered in a common inequality constraint function
h.

Note that the equality and inequality constraints for the
platoon leader have been written separately from those of the
other trucks in (12). This is to emphasize the special role of the
leader in the coupling structure of the platoon OCP. Indeed, the
platoon leader does not benefit from any drag reduction in our
model, nor does it have to maintain a minimum headway with
preceding platoon members. As a result, there is no inter-truck
coupling in equations (12c) and (12d), contrary to (12e) and
(12f). This observation becomes important in the next section,
when the problem has to be solved in a distributed fashion.

The expression for the internal battery power in (12) can
be derived by assembling an EM and a battery model, as is
done in [13] for instance. In this paper, we proceed along
similar lines, and the efficiency map of the EM model used is
presented in Fig. 1 for reference.

Remark 1: In most practical applications, the horizon length
sf in OCP (12) will likely be shorter than the total length of
the driving mission of the platoon, mostly due to the numerical
complexity of solving this problem over long horizons. In
this case, the cooperative eco-driving problem must be solved
repeatedly in a receding horizon fashion, i.e. as part of an
MPC. OCP (12) would then be solved online at each sampling
instant of the MPC. Since solving optimization problems tends
to be the bottleneck in any MPC implementation, we focus our
attention on the problem of solving OCP (12) in the rest of
this paper.

Remark 2: Solving OCP (12) only provides energy-optimal
reference trajectories for the vehicles, meaning that a lower
control layer might be needed in a practical implementation
in order to reject disturbances and track these trajectories. A
distributed MPC scheme such as the one proposed in [8] could
for example be deployed to that end. In this context, some of
the constraints in (12) should be modeled as soft constraints
instead, in order to avoid running into feasibility issues. In
particular, the lower speed bound in (1) and the terminal travel

time constraint (3) may need to be relaxed. The design of
this lower control layer is left outside the scope of this paper,
however.

D. Formation of an NLP

In order to be able to treat (12) numerically, a direct method
is deployed to assemble a nonlinear program (NLP) which
approximates the OCP. This is done through a piecewise
input parametrization and a multiple shooting formulation of
the dynamics [28]. Assume that the spatial horizon [0, sf ] is
partitioned into N intervals of equal size, and that the state
and control input vectors of truck i at the k-th grid point
are noted xi,k and ui,k, respectively, with xi,k = [Ei,k, ti,k]

⊤

and ui,k = [Fm,i,k, Fb,i,k]
⊤. The following NLP can then be

formulated:

min
X,U

n∑
i=1

N−1∑
k=0

Ji(xi,k, ui,k) (13a)

s.t. xi,0 = x0i , ∀i ∈ I[1,n], (13b)
∀k ∈ I[0,N−1] :

x1,k+1 = Fk(x1,k, u1,k), (13c)
hk(x1,k, u1,k) ≤ 0, (13d)
∀i ∈ I[2,n] :
xi,k+1 = Fk(xi,k, ui,k, xi−1,k), (13e)
hk(xi,k, ui,k, xi−1,k) ≤ 0, (13f)

where Ji carries out the numerical integration of the power
consumed by truck i on each interval, and Fk the numerical
integration of the dynamics (12c) or (12e) of each truck
between the k-th and (k + 1)-th grid points. Any numerical
integrator may be chosen to implement these functions, but
the classical Runge-Kutta method (RK4) has been used in
this work due to its good accuracy. In addition, the initial
conditions (12b) are expressed as (13b), while the function hk
is used to express the inequality constraints (12d) and (12f) at
the k-th grid point.

Note that (13) is a non-convex NLP with the modeling
choices above. In what follows, a solution procedure is pro-
posed to solve this NLP in a distributed fashion.

III. PRESENTATION OF THE DISTRIBUTED SQP
ALGORITHM

In this section, we show how NLP (13) can be solved
by deploying the SQP method [20]. However, note that the
procedure presented below could in principle be adapted to
other types of second-order optimization methods, like interior
point methods, since it boils down to a particular factorization
of the KKT systems which appear when using such methods.
The crux of this procedure is to organize the problem agent-by-
agent instead of stage-by-stage as in a typical optimal control
application, while keeping a standard LQ OCP structure. This
way, standard methods like the Riccati recursion can still be
deployed to solve it. This is the topic of next section.

In the rest of this paper, the subscript i denotes local
information to which only vehicle i has access, except if
explicitly stated otherwise. The rationale for indexing variables
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in this way is to specify exactly which information needs to be
exchanged between the vehicles when solving the cooperative
eco-driving problem in a distributed fashion.

A. Sequential Quadratic Programming

The SQP method operates by iteratively forming a local
quadratic program (QP) approximation of (13) around the
current iterate of the primal-dual variables [20], which are
gathered in the vector Yi hereafter. The Newton direction at
the current iterate can be computed by solving this quadratic
subproblem, and the next iterate is generated by taking a
step along this direction. Note that the issue of distributed
backtracking is left outside the scope of this paper, and it
is assumed that full steps are taken by the SQP algorithm.
Furthermore, Hessian regularization is deployed to improve
the quality of these steps [20].

In order for the Riccati recursion to be deployed when
solving the SQP subproblems, these problems must have the
standard LQ OCP structure. However, the inter-truck coupling
of some of the state variables in the constraints (13e) and (13f)
introduces some non-diagonal blocks in the Hessian of the
Lagrangian of (13), which is used to generate the subproblems.
This results in a non-separable Hessian and in subproblems
which lack the desired sparse structure.

For this reason, we will now focus on a modified version
of the quadratic subproblems where the Hessian coupling
blocks have been removed by being set to zero. The modified
Hessian is then block diagonal, and each of its block can
be regularized independently by each vehicle. Note that, in
practice, the coupling blocks have been observed to have a
small magnitude compared with that of the diagonal blocks
of the Hessian. For instance, the maximum matrix 2-norm
observed for an individual coupling block in the simulation
section was around 10−1, whereas the norm of individual
diagonal blocks was consistently in the order of 102. This
ratio 3 in the order of magnitude of the different Hessian block
types indicates that the modified Hessian likely constitutes a
very good approximation of the full Hessian matrix. Therefore,
it can be expected that the SQP iterates should not differ
significantly from those obtained with the full Hessian.

Since the optimization problem (13) is a non-convex NLP
in general, no global convergence result can be stated for
the SQP method. However, the SQP method is known to
have robust convergence properties, even from remote starting
points [20]. It should also be noted that taking steps with the
modified Hessian instead of the full Hessian does not impact
the convergence of the SQP method locally. The iterates will
converge to the same local minimum as with the full Hessian,
provided that the method is initialized close enough to the
local minimum in question [20]. This, in turn, can usually be
achieved with a sensible initial guess.

B. Reorganization of the SQP subproblems

In the rest of this section, we discuss how a search direction
for the SQP algorithm can be computed distributively at each

iteration by solving the quadratic subproblem described above.
At the current iterate, this subproblem can be written as:

min
∆X,∆U

n∑
i=1

N−1∑
k=0

1

2

[
∆xi,k
∆ui,k

]⊤ [
qi,k mi,k

m⊤
i,k ri,k

] [
∆xi,k
∆ui,k

]

+

[
lx,i,k
lu,i,k

]⊤ [
∆xi,k
∆ui,k

]
(14a)

s.t. ∆xi,0 = c0i , ∀i ∈ I[1,n], (14b)
∀k ∈ I[0,N−1] :

∆x1,k+1 = a1,k∆x1,k + b1,k∆u1,k + c1,k, (14c)
hx,1,k∆x1,k + hu,1,k∆u1,k + d1,k ≤ 0, (14d)
∀i ∈ I[2,n] :
∆xi,k+1 = ai,k∆xi,k + bi,k∆ui,k + ci,k

+ âi,k∆xi−1,k, (14e)
hx,i,k∆xi,k + hu,i,k∆ui,k + di,k

+ ĥx,i,k∆xi−1,k ≤ 0, (14f)

where the decision variables ∆xi,k and ∆ui,k are the search
directions in the state and input variables of truck i, respec-
tively. All the parameters appearing in the objective function
and in the constraints are obtained in a traditional SQP fashion
[20], and are not discussed further here.

In order to be able to exploit the chain-like structure of the
platoon and solve the problem in a distributed fashion, QP (14)
is rewritten in a more compact form by arranging the decision
variables over successive trucks rather than successive grid
points:

min
X,U

n∑
i=1

1

2

[
Xi

Ui

]⊤ [
Qi Mi

M⊤
i Ri

] [
Xi

Ui

]

+

[
Lx,i

Lu,i

]⊤ [
Xi

Ui

]
(15a)

s.t. X1 = B1U1 + C1, (15b)
Hx,1X1 +Hu,1U1 +D1 ≤ 0, (15c)
∀i ∈ I[2,n] :
Xi = AiXi−1 +BiUi + Ci, (15d)

Hx,iXi +Hu,iUi +Di + Ĥx,iXi−1 ≤ 0. (15e)

The decision variables for truck i have been gathered in the
vectors Xi and Ui, such that Xi = [∆xi,0, ...,∆xi,N ]⊤ and
Ui = [∆ui,0, ...,∆ui,N−1]

⊤. Note that ∆ has been dropped
from these notations for the sake of simplicity. The weights in
the objective function have been assembled into the matrices
Qi, Mi, Ri and the vectors Lx,i, Lu,i for truck i, and the
inequality constraints into the matrices Hx,i, Hu,i, Ĥx,i and
the vector Di. By using the stage-wise dynamics (14c), (14e),
and the initial conditions (14b), the state vector of truck i can
be expressed as a function of the control inputs of i and of
the state variables of the preceding truck. The matrices Ai, Bi

and the vector Ci are used to write the dynamics of truck i in
this compact form.

Contrary to a typical MPC-type problem, which is usually
arranged from one grid point to the next, QP (15) has been
arranged in a truck-by-truck fashion, and has a structure which
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is slightly different from a standard LQ OCP structure as a
result. First, state vectors with different indices appear in the
inequality constraints (15e). Second, there is some coupling
between Xi and Ui in the objective function, whereas only
coupling between Xi−1 and Ui would appear in a standard LQ
OCP structure. This last point might be harder to see given
our choice of indices, and it is useful to remember here that
Xi−1 appears together with Ui in the right-hand side of the
dynamics (15d): the states of truck i are determined by its own
control inputs and by the states of the preceding truck i− 1.

Fortunately, QP (15) can easily be transformed into a QP
with a standard LQ OCP structure. This is done by injecting
the dynamics (15d) both in the inequality constraints (15e)
and in the objective coupling terms mentioned earlier in (15a).
Likewise, the leader dynamics (15b) are injected in (15c) and
in (15a). By following these steps, a modified QP with a
standard LQ OCP structure is obtained:

min
X,U

n∑
i=2

(
1

2

[
Xi−1

Ui

]⊤ [
Q̃i−1 M̃i

M̃⊤
i R̃i

] [
Xi−1

Ui

]

+

[
L̃x,i−1

L̃u,i

]⊤ [
Xi−1

Ui

])
+

1

2
U⊤
1 R̃1U1

+ L̃⊤
u,1U1 +

1

2
X⊤

n Q̃nXn + L̃⊤
x,nXn (16a)

s.t. X1 = B1U1 + C1, (16b)

H̃u,1U1 + D̃1 ≤ 0, (16c)
∀i ∈ I[2,n] :
Xi = AiXi−1 +BiUi + Ci, (16d)

H̃x,iXi−1 + H̃u,iUi + D̃i ≤ 0, (16e)

where:

Q̃i = Qi, R̃i = Ri +B⊤
i Mi +M⊤

i Bi, i ≥ 1, (17a)

M̃i = A⊤
i Mi, i ≥ 2, (17b)

L̃x,i = Lx,i, L̃u,i = Lu,i +M⊤
i Ci, i ≥ 1, (17c)

H̃x,i = Ĥx,i +Hx,iAi, i ≥ 2, (17d)

H̃u,i = Hu,i +Hx,iBi, i ≥ 1, (17e)

D̃i = Di +Hx,iCi, i ≥ 1. (17f)

The following proposition establishes a relation between
the optimal solutions of these two QPs. Its proof is given in
Appendix A.

Proposition 1: The modified QP (16) has the same primal
solution as the original QP (15). In addition, the dual solution
of (15) can be obtained as:

µ∗
i = µmod

i , (18a)

λ∗i = λmod
i +H⊤

x,iµ
mod
i +MiU

∗
i , (18b)

where λmod
i and µmod

i are the optimal dual variables associated
with the equality and inequality constraints of (16) correspond-
ing to truck i, respectively. The optimal dual variables λ∗i and
µ∗
i are defined in a similar way for (15).
From Proposition 1, it follows that SQP search directions

can be obtained by repeatedly solving (16). Solving this QP
in a distributed fashion is the topic of the next section.

IV. PRESENTATION OF THE DISTRIBUTED PDIP
ALGORITHM

In this section, we present how a PDIP method can be
deployed to solve QP (16). We consider a standard PDIP
algorithm where the search direction is computed at each
iteration by solving the perturbed KKT conditions of (16) [20].
It is shown how the resulting KKT system can be solved in
a distributed fashion with the Riccati recursion. In particular,
we detail the exact computations and information exchanges
needed to do so.

For each truck i, the primal-dual variables at the j-th PDIP
iteration are noted (U

[j]
i , X

[j]
i , λ

[j]
i , µ

[j]
i ) and the slack variables

σ
[j]
i . All these variables are assembled in Z

[j]
i hereafter. The

’+’ superscript is used to denote the PDIP search direction.

A. Construction of the KKT System

The KKT system to solve at each PDIP iteration can be
modified to have the same structure as that of an unconstrained
LQ OCP. By applying a block-elimination procedure, which is
standard in interior point methods, the slack variables and the
dual variables for the inequality constraints can be successively
removed from the KKT system. More details on how this
compact form is obtained can be found in [18]. At the j-
th PDIP iteration, the search direction can then be computed
by solving the compact KKT system:

T [j]Z̄+[j] = −r̄[j], (19)

where:

T [j] =



R̄
[j]
1 B⊤

1

B1 −I
−I Q̄

[j]
1 M̄

[j]
2 A⊤

2

M̄
[j]⊤
2 R̄

[j]
2 B⊤

2

A2 B2 −I

−I
. . . . . .
. . . Q̄n


(20a)

Z̄+[j] =
[
U

+[j]
1 λ

+[j]
1 X

+[j]
1 . . . X

+[j]
n

]⊤
(20b)

r̄[j] =
[
r̄
[j]
u,1 r̄λ,1 r̄

[j]
x,1 . . . r̄x,n

]⊤
(20c)

with:

Q̄n = Q̃n, r̄x,n = L̃x,n, (21a)

Q̄
[j]
i = Q̃i + H̃⊤

x,i+1Σ
[j]
i+1H̃x,i+1, i ≤ n− 1, (21b)

M̄
[j]
i = M̃i + H̃⊤

x,iΣ
[j]
i H̃u,i, i ≥ 2, (21c)

R̄
[j]
i = R̃i + H̃⊤

u,iΣ
[j]
i H̃u,i, i ≥ 1, (21d)

r̄
[j]
x,i = L̃x,i + H̃⊤

x,i+1

(
τ [j]Λ

[j]
i+1

+Σ
[j]
i+1D̃i+1 + µ

[j]
i+1

)
, i ≤ n− 1, (21e)

r̄
[j]
u,i = L̃u,i + H̃⊤

u,i

(
τ [j]Λ

[j]
i

+Σ
[j]
i D̃i + µ

[j]
i

)
, i ≥ 1, (21f)

r̄λ,i = Ci, Λ
[j]
i = diag

(
σ
[j]
i

)−1
, i ≥ 1, (21g)

Σ
[j]
i = diag

(
µ
[j]
i

)
Λ
[j]
i , i ≥ 1, (21h)
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where τ [j] is the barrier parameter at the j-th iteration [18].
The Newton step components for the variables which have
previously been eliminated can be recovered as:

µ
+[j]
1 = µ

[j]
1 + τ [j]Λ

[j]
1 e+Σ

[j]
1

(
H̃u,1U

+[j]
1 + D̃1

)
, (22a)

µ
+[j]
i = µ

[j]
i + τ [j]Λ

[j]
i e

+Σ
[j]
i

(
H̃x,iX

+[j]
i + H̃u,iU

+[j]
i + D̃i

)
, i ≥ 2, (22b)

σ
+[j]
i = σ

[j]
i −

(
Σ

[j]
i

)−1(
µ
+[j]
i − τ [j]Λ[j]

i e
)
, i ≥ 1, (22c)

where e = [1, 1, ..., 1]⊤.
It can be observed that the problem matrices and vectors in

(21) have been modified compared with their original form in
(16)-(17) in order to obtain the compact KKT system (19)
where the KKT matrix (20a) is banded. This system now
has the same structure as an unconstrained LQ OCP, and the
Riccati recursion can be deployed to solve it.

Note that the KKT matrix (20a) is non-singular if the
matrices: [

Q̄
[j]
i−1 M̄

[j]
i

M̄
[j]⊤
i R̄

[j]
i

]
, i ≥ 2, (23)

and Q̄[j]
n are positive semidefinite, and the matrices R̄[j]

i , i ≥ 1,
are positive definite [16]. These conditions generally hold in
practice due to the Hessian regularization carried out before
each SQP iteration, but an extra regularization step may be
applied to enforce them if needed. This guarantees that system
(19) has a unique solution.

Remark 3: Due to the bandwidth of the banded KKT matrix
(20a), the complexity of solving the KKT system (19) with
the Riccati recursion is O(N3n). This difference with the
O(Nn3) complexity usually given for the Riccati recursion
in the literature is explained by the fact that the variables
of the linear system to be solved here have been arranged
in a truck-by-truck fashion instead of a stage-by-stage fashion
[18]. While the former structure enables a distributed truck-by-
truck solution approach to be designed, it replaces the linear
complexity of the Riccati recursion in the number of stages N
with a cubic complexity when implemented in a naive way.
This problem may perhaps be avoided in an implementation
where the sparse stage-by-stage structure of the initial QP
formulation (14) is exploited, but we believe this to be a
research topic in its own right and this is not further discussed
here.

B. The Riccati Recursion

The Riccati recursion for an unconstrained QP OCP is
conceptually very similar to the dynamic programming (DP)
solution detailed in standard textbooks [17], [29]. Just like
the DP solution, the Riccati recursion consists of a backward
sweep where recursive expressions such as the discrete-time
Riccati equation are applied, and a forward sweep where the
dynamics are propagated forward. The complete derivation of
the Riccati recursion equations for a KKT matrix with the
form (20a) can be found in [18]. Here, this procedure is used
to solve the KKT system (19) and compute the PDIP search
direction in a distributed fashion. Algorithm 1 presents the

Algorithm 1: Riccati Recursion. The superscript j has
been dropped for the sake of simplicity. The truck
index at which computations take place is given in each
line.

1 procedure RICCATIRECURSION(Z1, ..., Zn, τ )
2 n: Pn ← Q̄n, ψn ← −r̄x,n
// Backward recursion

3 for i = n, ..., 2 do
4 i: Pi−1 ← H̃⊤

x,iΣiH̃x,i +A⊤
i PiAi − (A⊤

i PiBi +
M̄i)(R̄i +B⊤

i PiBi)
−1(B⊤

i PiAi + M̄⊤
i )

5 i: ψi−1 ← −H̃⊤
x,i(τΛi +ΣiD̃i + µi)−A⊤

i Pir̄λ,i +
A⊤

i ψi − (A⊤
i PiBi + M̄i)(R̄i +

B⊤
i PiBi)

−1(B⊤
i ψi − r̄u,i −B⊤

i Pir̄λ,i)
6 i: send τ, Pi−1, ψi−1 to i− 1

7 i− 1: Pi−1 ← Pi−1 + Q̃i−1

8 i− 1: ψi−1 ← ψi−1 − L̃x,i−1

9 end

10 1: solve

R̄1 B⊤
1

B1 −I
−I P1

U+
1

λ+1
X+

1

 = −

 r̄u,1r̄λ,1
−ψ1


11 1: compute µ+

1 , σ
+
1 from (22a),(22c)

12 1:
α← min

t
(tµ+

1 + (1− t)µ1 > 0, tσ+
1 + (1− t)σ1 > 0)

13 1: Z+
1 ←

[
U+
1 X+

1 λ+1 µ+
1 σ+

1

]⊤
// Forward recursion

14 for i = 2, ..., n do
15 i− 1: send α,X+

i−1 to i
16 i: U+

i ← (R̄i +B⊤
i PiBi)

−1(B⊤
i ψi − r̄u,i −

B⊤
i Pir̄λ,i − (B⊤

i PiAi + M̄⊤
i )X+

i−1)
17 i: X+

i ← AiX
+
i−1 +BiU

+
i + Ci

18 i: λ+i ← PiX
+
i − ψi

19 i: compute µ+
i , σ

+
i from (22b),(22c)

20 i:
αi ← min

t
(tµ+

i +(1−t)µi > 0, tσ+
i +(1−t)σi > 0)

21 i: α← min(αi, α)

22 i: Z+
i ←

[
U+
i X+

i λ+i µ+
i σ+

i

]⊤
23 end

computations and information exchanges required to carry out
the Riccati recursion in the platoon.

In this algorithm, a block factorization scheme is first
applied to the KKT matrix (20a) in Lines 2-9, followed by
the computation of the search direction in Lines 10-23. Both
steps involve recursive equations between consecutive platoon
members, where Line 4 is the discrete-time Riccati equation
[29]. These equations are used to compute the vectors ψi and
matrices Pi in the backward recursion step, and the primal-
dual search directions Z+

i and maximum step size α in the
forward recursion step. Note that backward recursion is to be
understood in the sense of truck indices here, and not in terms
of the direction in which the platoon is moving.

Each truck is only responsible for computations involving
its own local matrices when applying the Riccati recursion.
Therefore, ψi−1 and Pi−1 need to be partially computed by
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Algorithm 2: PDIP algorithm for solving QP (16).

1 procedure PDIPSOLVER(Y guess
1 , ..., Y guess

n )
2 j ← 1, τ [1] ← τini, β ← true
3 ∀i: Z [1]

i ←
[
Y guess
i 0

]⊤
// Main PDIP loop

4 while β = true or τ [j] > tolP do
5 Z

+[j]
1 , ..., Z

+[j]
n , α

[j]
max ←

RICCATIRECURSION(Z
[j]
1 , ..., Z

[j]
n , τ [j])

// Backward recursion
6 for i = n, ..., 1 do
7 i: Z [j+1]

i ← α
[j]
maxZ

+[j]
i + (1− α[j]

max)Z
[j]
i

8 if i ≥ 2 then
9 i: send α[j]

max to i− 1
10 end
11 end
12 1: β ← false, ϕ

[j+1]
0 ← 0

// Forward recursion
13 for i = 1, ..., n do
14 if β = false then
15 i: r[j+1]

i ←
KKTCONDITIONS(Z

[j+1]
i , ϕ

[j+1]
i−1 , τ [j], i)

16 if ∥r[j+1]
i ∥∞ > tolP then

17 i: β ← true
18 else if i ≤ n− 1 then
19 i: ϕ[j+1]

i ← Q̃iX
[j+1]
i + L̃x,i − λ[j+1]

i

20 i: send ϕ[j+1]
i to i+ 1

21 end
22 end
23 if i ≤ n− 1 then
24 i: send β to i+ 1,
25 end
26 end
27 if β = false then
28 n: τ [j+1] ← γτ [j]

29 else
30 n: τ [j+1] ← τ [j]

31 end
32 j ← j + 1
33 end
34 ∀i: U∗

i ← U
[j+1]
i , X∗

i ← X
[j+1]
i

35 ∀i: λmod
i ← λ

[j+1]
i , µmod

i ← µ
[j+1]
i

truck i first and are then sent to truck i − 1 in Line 6.
Likewise, the search direction in the variables of any follower
is computed by passing forward the search direction in the
state variables of the previous truck in Line 15. A parameter
α is also transmitted, which indicates the maximum step size
value such that the PDIP constraints µi > 0 and σi > 0 hold
at the next iteration for all preceding trucks.

V. SUMMARY OF THE DISTRIBUTED SOLUTION
PROCEDURE

This section offers an overview of the complete procedure
proposed to solve the platoon eco-driving NLP (13). The

Algorithm 3: Subroutine to compute the part of the
perturbed KKT conditions of QP (16) corresponding
to truck i. The superscript j has been dropped for the
sake of simplicity.

1 procedure KKTCONDITIONS(Zi, ϕi−1, τ, i)
2 if i = 1 then

3 ri ←


R̃⊤

1 U1 + L̃u,1 +B⊤
1 λ1 + H̃⊤

u,1µ1

B1U1 + C1 −X1

H̃u,1U1 + D̃1 + σ1
diag(µ1)σ1 − τe


4 else
5 ri ←

M̃iUi +A⊤
i λi + H̃⊤

x,iµi + ϕi−1

M̃⊤
i Xi−1 + R̃⊤

i Ui + L̃u,i +B⊤
i λi + H̃⊤

u,iµi

AiXi−1 +BiUi + Ci −Xi

H̃x,iXi−1 + H̃u,iUi + D̃i + σi
diag(µi)σi − τe


6 end
7 if i = n then

8 ri ←
[

ri
Q̃nXn + L̃x,n − λn

]
9 end

algorithms assembled in the two previous sections are detailed
further, and the exact information that needs to be sent along
the platoon for solving (13) in a distributed fashion is given.

A. PDIP Algorithm

Algorithm 2 presents the complete PDIP algorithm which is
deployed to solve QP (16). After running the Riccati recursion,
an additional step of backward and then forward recursion is
needed for each PDIP iteration. The former, in Lines 6-11, is
used to transmit the maximum feasible step size α[j]

max, which
is originally only available to the last truck of the platoon, to
all trucks. Each truck can then take a Newton-type step on its
local variables.

The forward recursion detailed in Lines 13-26 is used to
check the termination criterion for a given barrier parameter
τ [j]. Namely, the norm of the perturbed KKT conditions of
QP (16) must be below a certain tolerance threshold. This
condition can be checked in a distributed fashion since the
perturbed KKT conditions vector is almost separable. For each
follower, only a term ϕ

[j+1]
i needs to be computed and passed

forward by the previous truck in Line 20. The local part
r
[j+1]
i of the KKT conditions vector can then be computed, as

detailed in Algorithm 3.
If the termination criterion is not met for one of the trucks,

the Boolean variable β can be transmitted with a positive value
to indicate that another PDIP iteration must be carried out, and
that there is no need to further compute the KKT conditions
vector. Note that it can be assumed that each follower i holds
a local copy of X [j+1]

i−1 when running Algorithm 3. Indeed,
the step size α[j]

max is the same for all trucks, and the search
direction in the state variables of i − 1 has previously been
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τ, ,ψi−1 Pi−1

i i − 1
α, X+

i−1

αmax

β, ϕi−1

Fig. 2: Information exchange required between successive trucks during one
PDIP iteration. The black and blue arrows denote backward and forward
recursions, respectively.

transmitted to i during the backward recursion step of the
Riccati recursion.

Finally, a simple update procedure is used for the barrier
parameter in Line 28 of Algorithm 2, where γ ∈]0, 1[. Since
the update is carried out by the last truck of the platoon,
the new value τ [j+1] has to be transmitted backward at the
beginning of the next PDIP iteration, which can be done during
the Riccati recursion.

The total information exchange between successive trucks
during each PDIP iteration is summarized in Fig. 2. It can
be seen that the trucks do not need to transmit directly the
matrices associated with their local problem in this algorithm.
Note that even though all computations involved in the PDIP
algorithm are distributed, the iterates are exactly the same as in
a centralized version of the algorithm since no approximation
has been introduced in the distributed solution approach.

B. SQP Algorithm

Once the modified subproblem (16) has been solved, a
search direction for the SQP algorithm can be obtained. The
complete distributed SQP procedure is detailed in Algorithm
4. Note that the ∆ notation is briefly readopted there in order
to emphasize the role of the solution of QP (16) as a search
direction.

Each vehicle i starts by recovering the primal-dual solution
of the original subproblem (15) through (18). Then, a Newton-
type step on the local primal-dual variables Yi is taken with
the search direction ∆Yi. As was mentioned previously, it
is assumed here that only full steps are taken in the SQP
algorithm. The vector of the KKT conditions of NLP (13) is
then computed at the new SQP iterate to check for optimality.
Finally, each truck can start forming their local matrices for
the next version of subproblem (16).

Note that all the computations described in the previous
paragraph can be carried out in parallel aboard each vehicle.
Contrary to the backward and forward recursion steps of the
PDIP algorithm, where each computation is dependent on
some information that has to be transmitted by a neighboring
truck, the vehicles only need to exchange a Boolean variable
β in Algorithm 4. The communication overhead needed for
the SQP method is therefore almost zero.

As before, β is used to decide whether another SQP iteration
is needed, and is transmitted through backward recursion in
order to avoid unnecessary computations in the event that the
local KKT conditions of one of the vehicles do not hold. Once

Algorithm 4: SQP algorithm for solving NLP (13).

1 Y1, ..., Yn ← Y ini
1 , ..., Y ini

n , β ← true
2 ∀i : form local matrices of QP (16) at Yi
// Main SQP loop

3 while β = true do
4 {∆U∗

i ,∆X
∗
i , λ

mod
i , µmod

i }i=1,...,n ←
PDIPSOLVER(Y1, ..., Yn)

5 ∀i: compute λ∗i , µ
∗
i from (18)

6 ∀i: ∆Yi ← [∆U∗
i ,∆X

∗
i , λ

∗
i , µ

∗
i ]

⊤

7 ∀i: Yi ← TAKESTEP(∆Yi)
8 ∀i: form local matrices of QP (16) at Yi
9 n: β ← false

// Backward recursion
10 for i = n, ..., 1 do
11 if β = false then
12 i: ri ← KKTCONDITIONSSQP(Yi)
13 if ∥ri∥∞ > tolS then
14 i: β ← true
15 end
16 end
17 if i ≥ 2 then
18 i: send β to i− 1
19 end
20 end
21 end

convergence to the desired tolerance has been reached for the
SQP method, a final forward recursion may be needed to notify
the rest of the platoon that the problem has been solved.

In order to validate that the proposed distributed solution
method can satisfactorily solve the eco-driving NPL (13),
the problem is also solved centrally using the open source
symbolic framework CasADi [30] and the solver IPOPT,
known for its robust convergence features [31]. In each case
tested, the two solution approaches converge to the same
minimum when starting from the same initial point, and the
iterates converge to that same minimum for all initial points
tested.

VI. SIMULATIONS

This section presents the results obtained for a platoon of
electric trucks. One of the main advantages of solving the
cooperative eco-driving problem in a distributed fashion is that
this can easily be deployed on the go for trucks belonging
to different transportation companies. The main purpose of
this case study is therefore to give some indications on the
practical implications of deploying the proposed distributed
algorithms. Since the trucks may have very different properties
in case they belong to different companies, we focus mainly
on heterogeneous platoons in what follows.

A. Setup

The following control methods are deployed on the platoon:
• Cooperative eco-driving: The trucks cooperate to solve

NLP (13) by using the distributed solution method pro-
posed in this paper.
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Fig. 3: Driving cycles used in the simulations.

• Non-cooperative eco-driving: Each truck greedily solves
its own eco-driving problem with the aim of minimizing
its own energy consumption. It is assumed that the
individual truck problems are solved sequentially, starting
with the leader of the platoon. The optimal state trajectory
obtained by each truck is then transmitted to its direct
follower, which uses this information when solving its
own problem.

• Reference speed tracking: The platoon leader tracks the
reference speed vref,1 over the entire horizon. Each fol-
lower then tracks a headway of th with the preceding
truck in order to form a tight platoon and benefit from
the air drag reduction.

Note that the non-cooperative controller presented here should
be seen as a ’best-case scenario’ of the performances non-
cooperating trucks could achieve in practice. In more realistic
settings, trucks would probably not have access to the perfect
state information of the truck preceding them, and would
most likely keep larger headways than they do here for safety
reasons, thus benefiting less from drag reduction.

The tracking controller is meant to represent a scenario
where all the trucks do not have the computing resources
necessary to solve eco-driving optimization problems onboard,
but rather rely on tracking simpler references. This controller
is based on the observation that a tight platoon formation is
energy-optimal most of the time.

In total, 6 driving cycles of 6 km each are used, and
displayed in Fig. 3. They are extracted from the Södertälje-
Norrköping highway in Sweden, which has many uphill and
downhill segments [24]. These driving cycles have been cho-
sen to cover the principal features of the road. Each of them
should be considered as the horizon of the eco-driving problem
at one sampling instant in an online MPC implementation. In
order to avoid unnecessary conversion of kinetic energy to
battery energy, the vehicles are made to have a speed of v̄
when reaching the end of the horizon.

TABLE I: SIMULATION PARAMETERS

Horizon length sf = 6 km
Cruising speed v̄ = 80 km/h
Allowed speed deviation ∆v = 10 km/h
Rolling resistance coefficient cr = 0.006
Air density ρa = 1.184 kg/m3

Frontal truck area Af = 10 m2

Aerodynamic drag coefficient cd = 0.6
Drag reduction coefficients c1 = 12.8 m−1, c2 = 19.7 m
Truck length L = 18 m
Minimum time headway th = 1.35 s
Number of samples N = 75
PDIP tolerance tolP = 10−4

SQP tolerance tolS = 10−3

The simulation parameters are given in Table I, and the
vehicle models used in the simulations are the same as the ones
presented earlier in the modeling section. For heterogeneous
platoons, the truck masses are assumed to be uniformly spaced
within 27-44 t and the rated electric motor powers within 200-
330 kW. Electric motors are modeled by linearly scaling an
original model of a 300 kW motor. In all the simulations, it is
assumed that the trucks are initially at 3 times the minimum
allowed time headway from each other. In addition, the speed
of each truck is only allowed to vary in a window of size 2∆v
centered around the reference trajectory of this truck.

B. Optimal Trajectories

We start by considering a heterogeneous platoon in which
4 trucks are organized in a decreasing motor power order,
with the motor and mass characteristics specified above. Fig.
4 presents the optimal solution of the cooperative eco-driving
NLP (13) when solved with the proposed method. The speed
limits vlim displayed in Fig. 4a are those that apply to the last
truck of the platoon. Being the least powerful vehicle of the
group, it is the one with the most restrictive speed limits in
steep uphill sections. Similarly, the longitudinal force limits of
the last truck are computed from its optimal speed trajectory
and displayed in Fig. 4c as Flim.

It can be observed in this figure that the longitudinal force
demanded never comes close to the lower bound. Conse-
quently, the last truck of the platoon never needs to use
its friction brakes since regenerative braking can always be
used, meaning that the braking force Fb remains zero. This
observation holds in fact for all the trucks and across all
the simulation scenarios studied in this paper. Under our
modeling assumptions, electric trucks can avoid dissipating
energy through braking altogether, even during steep down-
hills. The direct conclusion is that it is always energy-optimal
for a platoon of electric trucks to adopt the tightest possible
formation, regardless of the road gradient.

Interestingly, this result stands in sharp contrast to what is
commonly observed for platoons of conventional or hybrid
electric vehicles. In such cases, the use of friction brakes
cannot usually be avoided and the vehicles have an incentive to
momentarily increase their time headways in downhill sections
in order to avoid energy losses due to braking [12], [13].

The optimal speed trajectories obtained by the cooperative
and non-cooperative eco-driving methods are shown in Fig.
4a and Fig. 5, respectively. They are very similar to each
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(a) Speed profiles for all trucks.
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(b) Time headways of successive trucks.
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(c) Control input trajectories for the last truck of the platoon.

Fig. 4: Optimal trajectories of the cooperative eco-driving control method for
a heterogeneous platoon of 4 trucks.

other since the trucks adapt their driving behavior to the road
gradient. On the other hand, the simpler reference tracking
controller has the leader remain at the reference speed over
the entire horizon, as shown in Fig. 6. The other trucks go
through a strong initial acceleration phase in order to reach
headways of th with the truck in front of them, at which point
they drive at the reference speed until the end of the horizon.

In the case of the cooperative eco-driving control method, it
can be seen in Fig. 4b that the trucks travel in a tight platoon
formation when their speeds coincide, starting shortly after the
first kilometer. For the other two control methods, however,
a tight platoon is formed only after the second kilometer.
The non-cooperative controller is the latest to achieve a tight
platoon formation due to the high initial speed of the platoon
leader. On the other hand, the platoon leader purposefully
slows down initially with the cooperative controller in order to
wait for the trailing vehicles to catch up. This then results in
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Fig. 5: Optimal speed profiles of the non-cooperative eco-driving control
method for a heterogeneous platoon of 4 trucks.
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Fig. 6: Optimal speed profiles of the reference speed tracking control method
for a heterogeneous platoon of 4 trucks.

the leader needing to accelerate shortly before the end of the
horizon and leave the platoon in order to satisfy its terminal
travel time constraint, as can be seen in the last kilometer in
Fig. 4a.

C. Energy Savings
Next, we present quantitative estimates of the energy sav-

ings that each control method can achieve. Note that all the
results in this section are averaged over the driving cycles
presented in Fig. 3.

In Fig. 7, energy saving performances for the platoon control
methods are given for different platoon sizes. The values
given are percentages which represent the energy savings
over a reference scenario without platooning, i.e. where the
vehicles travel individually without benefiting from any drag
reduction. It is assumed that each vehicle follows an eco-
driving trajectory in this scenario.

Regardless of the control method chosen, traveling as a
platoon seems to always be preferable in terms of energy con-
sumption. The same can be said about using slope information
to compute eco-driving trajectories, as the control methods
which do so perform better than the simpler tracking baseline.
The best performances are achieved by the cooperative eco-
driving method though, which displays greater overall energy
savings than the non-cooperative one.

In addition, it can be observed in Fig. 7 that the energy
savings of all control methods increase significantly with the
platoon size, for platoons of up to 4 vehicles. For larger pla-
toons, the energy savings over individual trucks remain almost
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TABLE II: ENERGY SAVINGS OF THE PLATOON CONTROL METHODS OVER A SCENARIO WITHOUT PLATOONING FOR HETEROGENEOUS 4-TRUCK
PLATOONS WITH DIFFERENT COMPOSITIONS. THE AVERAGE ENERGY CONSUMPTION PER DRIVING CYCLE OF THE VEHICLES IN THE REFERENCE

SCENARIO IS DISPLAYED IN THE RIGHTMOST COLUMN OF THE TABLE. THE LEADER OF THE PLATOON IS THE RIGHTMOST TRUCK.

Tracking Non-cooperative Cooperative No platoon

220 kW 257 kW 293 kW 330 kW 8.5% 9.5% 11.0% 26.8 kWh
27 t 33 t 38 t 44 t
330 kW 293 kW 257 kW 220 kW 8.5% 9.7% 11.2% 26.7 kWh
44 t 38 t 33 t 27 t
220 kW 257 kW 293 kW 330 kW 4.8% 7.2% 9.1% 28.2 kWh
40 t - - -
330 kW 293 kW 257 kW 220 kW 6.9% 8.5% 9.7% 27.6 kWh
40 t - - -
300 kW - - - 8.5% 9.6% 10.9% 27.0 kWh
27 t 33 t 38 t 44 t
300 kW - - - 7.2% 8.3% 10.7% 27.2 kWh
44 t 38 t 33 t 27 t
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Fig. 7: Energy savings of the platoon control methods over a scenario without
platooning for different platoon sizes. All trucks are assumed to have a mass
of 40 t and rated electric motor powers spaced uniformly within 330-200 kW.

constant. Therefore, it would be unpractical to organize a large
group of electric trucks into a single platoon, when similar
energy savings could be achieved by forming several smaller
platoons for which only problems with a lower complexity
would have to be solved.

We now study different compositions for a heterogeneous
platoon of 4 vehicles. The energy saving performances of the
different control methods for each platoon composition are
given in Table II. In this table, the platoons differ in the mass
and rated motor power of the trucks, and in how the trucks
are distributed within the platoon.

One can observe that the same performance pattern as in
Fig. 7 emerges, and that the cooperative eco-driving control
method proposed in this paper systematically outperforms the
other methods implemented.

The energy savings over individual trucks are the least
significant overall when the trucks are on average heavier, as
displayed in rows 3 and 4 of the table, where each truck weighs
40 tons and no controller can achieve savings above 10%.
This can be explained by the observation that a tight platoon
is formed later in that case, due to the larger inertia of the
vehicles. In fact, as discussed previously, the energy efficiency
of a platoon of electric trucks seems to be strongly correlated
with its ability to adopt and maintain a tight formation, thanks
to the regenerative braking ability of the trucks.

This last point is further motivated by the smaller relative

variations in energy savings of the cooperative control method
compared with the other control methods. Indeed, when the
trucks cooperate, the leading trucks tend to wait initially
for the other trucks to catch up. The time at which a tight
platoon is formed is consequently not greatly affected by the
characteristics of the trucks. However, the same cannot be said
of the other control methods, where the trucks act individually.
For these methods, the energy savings get noticeably worse in
settings where the trucks at the back of the platoon struggle
to catch up with the rest due to e.g. lower motor power over
mass ratios, such as in row 3 of Table II.

To conclude, the cooperative eco-driving method proposed
in this paper achieves significant energy savings compared
with a situation where the trucks would refuse to merge and
travel together as a platoon. For electric trucks, the savings in
question have been found to be quite consistent across various
platoon compositions, meaning that independent trucks would
greatly benefit from spontaneously forming a platoon on the
go regardless of their individual characteristics.

D. Comments on Computation Times

We want to draw the reader’s attention to the fact that
the implementation of the distributed cooperative eco-driving
procedure used in this section should only be seen as a
proof of concept. This is why the focus of this case study
has been on the practical implications of having a fully
distributed algorithm, such as the potential energy savings,
and not on benchmarking a mature implementation of this
algorithm against alternatives.

That being said, we give here a few orders of magnitude
for the runtime of different parts of the implementation used
in the case study to complete the picture. Note that these
runtime values represent pessimistic upper bounds since they
are obtained from a prototype version of the algorithm. A
platoon of 4 vehicles with N = 75 samples is considered, in
which case the algorithm solves an NLP with 1508 variables.
The communication overheads are not included.

In our prototype implementation, the most computationally
demanding step is the backward sweep of the Riccati recur-
sion, which can take up to 100 milliseconds to complete in
the worst case. The forward sweep is faster as it only requires
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up to 30 milliseconds. We refer the reader to Algorithm 1
for a detailed description of these steps. The computation of
the perturbed KKT conditions and of the next PDIP step in
Algorithm 2 and Algorithm 3 takes up to 50 milliseconds in
total. Finally, computing the KKT conditions and the next SQP
step takes up to 30 milliseconds in Algorithm 4. Note that
these values scale linearly with the number of vehicles due to
the distributed nature of the procedure, where all computations
are arranged vehicle-by-vehicle.

In comparison, a few hundred milliseconds are required
to solve each individual vehicle problem with both the non-
cooperative and tracking control methods. Such methods
would likely be implemented very differently in practice,
however. For instance, the tracking method is simulated here
by solving an NLP for the sake of consistent comparison
with the other methods, whereas adaptive cruise controllers
would normally be used for fixed headway tracking. Any direct
runtime comparison between these methods should therefore
be drawn cautiously as they do not reflect accurately what a
real-life implementation would look like.

In fact, our prototype implementation of the proposed dis-
tributed solution procedure uses exclusively Matlab’s internal
linear algebra routines. While this is enough for a proof
of concept, significant improvements in computation times
could be obtained by using a dedicated solver instead. For
instance, the HPIPM software [19] contains hardware-tailored
linear algebra routines specifically designed for the real-time
execution of MPC algorithms.

VII. DISCUSSION

The focus of this paper has been on proposing distributed
algorithms to solve the cooperative eco-driving control prob-
lem when expressed as NLP (13). As explained before, this
problem would probably need to be embedded in an MPC
implementation and solved repeatedly in order to be applied
to real-time settings. We think that this would only require
little extra work, however, and that frequent updates could in
fact be achieved for this MPC through the use of a real-time
iteration scheme [32]. A low-level tracking layer could then be
implemented independently for each vehicle in order to follow
the resulting optimal trajectories.

When solving NLP (13), improvements in performance
could likely be gained by taking better steps in the SQP and
PDIP algorithms by using a backtracking line-search on a
merit function [20], and even more importantly by carefully
warm-starting the SQP method. The latter could easily be
implemented in a receding horizon context, where the shifted
previous solution could be used as an initial guess. In addition,
a lot of the computations could likely be parallelized thanks to
the distributed aspect of the solution procedure. The algebraic
operations in Algorithm 1 and Algorithm 3 could for example
be precomputed in parallel by the vehicles, and potentially
reused across PDIP iterations. We believe that this would result
in significant runtime improvements.

The proposed distributed solution method for NLP (13)
could then likely be carried out in real-time with the per-
formance gains mentioned above. Indeed, with properly op-
timized algorithms, large-scale NLPs can be solved extremely

fast with the SQP method, as was observed both in simulations
and on real systems [33]. In the case of automotive appli-
cations, experimental results suggest that vehicle-to-vehicle
communication delays may be more of a bottleneck than
actually solving NLPs [34].

In the case of a practical implementation of our method,
trucks belonging to different transportation companies might
be dissuaded from spontaneously forming platoons since the
truck acting as platoon leader does not usually benefit from
it. A way to incentivize platoon formation on the go is to
make the role of platoon leader rewarding, which could be
achieved through a simple compensation mechanism. Once
NLP (13) has been solved, this mechanism could estimate how
much energy the leader would have saved had it been trailing
behind another platoon member instead. This difference could
be materialized as an energy ’price’ Pleader for being the leader
of the platoon instead of a follower. This price could serve as
the basis of this compensation mechanism whereby the other
platoon members would ’owe’ Pleader to the leader. Appendix
B details how such a mechanism could be implemented.

VIII. CONCLUSION

In this paper, the cooperative eco-driving of a platoon of
electric vehicles has been formulated as an optimal control
problem, and a solution procedure has been proposed to
solve it. This procedure exploits the chain-like structure of
the platoon, and can be carried out in a distributed fashion
as a result. This is achieved by solving the problem with
the SQP method, and by solving each intermediate SQP
subproblem with a PDIP algorithm. In this algorithm, the
particular structure of the subproblems results in banded KKT
matrices, which can be factorized in a truck-by-truck fashion
with the Riccati recursion. It follows from this factorization
method that vehicles only need to exchange information with
their direct neighbors, so that high-bandwidth communications
could potentially be used. In addition, the complete procedure
is privacy-preserving since the vehicles do not need to share
directly their local problem information in these algorithms.

The performances of the proposed cooperative eco-driving
control have been evaluated in numerical experiments, where
the benefits of forming and keeping tight platoons for electric
trucks in a hilly terrain, due to the efficiency of regenerative
braking, have been shown. Several heterogeneous platoon
compositions have been studied in order to model the sponta-
neous formation of a platoon by trucks belonging to different
transportation companies.

The next logical step in this line of research would now
be to focus on a computationally effective implementation
of the prototype algorithms presented in this study. Their
online implementation could be carried out with MPC, but
the issue of delay between successive updates would have to
be investigated further. This real-time implementation could
later be studied in a real truck system in order to assess
the potential of the proposed control method for a future
deployment in commercial systems. A complementary future
research direction is to investigate how this method could
fit into a higher-level framework aiming to decide when and



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 14

where it is optimal for truck platoons to form or split on the
go.

APPENDIX

A. Proof of Proposition 1

First, let us show that both problems have the same primal
solution. Recall that the modified QP (16) has been obtained
from the original QP (15) by injecting the linear dynamics
in the objective function and the inequality constraints. Con-
sequently, the objective function and inequality constraints
of both QPs are the same at any point which satisfies the
dynamics equations, i.e. the equality constraints (15b) and
(15d) (which are the same for both QPs). Since every point
in the feasible set of either QP must satisfy these equality
constraints, it follows that (15) and (16) have the same feasible
set and that their objective functions have the same value
everywhere on this set. Therefore, both QPs have the same
primal solution, which is noted W ∗ = [U∗

1 , X
∗
1 , ..., U

∗
n, X

∗
n]

⊤

hereafter. Note that W ∗ is the global solution of QP (15). This
follows from the strict convexity of (15), thanks to the Hessian
regularization step carried out in the SQP algorithm [20].

Then, let us show that the dual variables of both problems
are linked through (18) for every truck i ∈ I[1,n]. To do so, let
the Lagrange function of QP (15) be defined as:

L(W ∗, λ∗, µ∗) = J(W ∗) + λ∗⊤cg(W
∗) + µ∗⊤ch(W

∗), (24)

with λ∗ = [λ∗1, ..., λ
∗
n]

⊤ and µ∗ = [µ∗
1, ..., µ

∗
n]

⊤. In this ex-
pression, J denotes objective function (15a), while cg gathers
equality constraints (15b) and (15d), and ch gathers inequality
constraints (15c) and (15e).

Similarly, the Lagrange function of QP (16) can be defined
as:

L̃(W ∗, λmod, µmod) = J̃(W ∗)+λmod⊤c̃g(W
∗)+µmod⊤c̃h(W

∗),
(25)

where λmod = [λmod
1 , ..., λmod

n ]⊤ and µmod = [µmod
1 , ..., µmod

n ]⊤,
and where J̃ denotes objective function (16a). Functions
c̃g and c̃h gather equality constraints (16b) and (16d), and
inequality constraints (16c) and (16c), respectively.

Next, the stationarity part of the KKT conditions of both
QPs [20] can be combined into:

∇WL(W ∗, λ∗, µ∗)−∇W L̃(W ∗, λmod, µmod) = 0. (26)

By taking the rows corresponding to the set of variables
{Ui, Xi}, i ∈ I[1,n−1], in this equation, we obtain the follow-
ing equation system:

M⊤
i X

∗
i +RiU

∗
i − M̃⊤

i X
∗
i−1 − R̃iU

∗
i + Lu,i − L̃u,i

+B⊤
i (λ∗i − λmod

i ) +H⊤
u,iµ

∗
i − H̃⊤

u,iµ
mod
i = 0, (27a)

QiX
∗
i +MiU

∗
i − Q̃iX

∗
i − M̃i+1U

∗
i+1 + Lx,i − L̃x,i

− (λ∗i − λmod
i ) +H⊤

x,iµ
∗
i +A⊤

i+1(λ
∗
i+1 − λmod

i+1)

+ Ĥ⊤
x,i+1µ

∗
i+1 − H̃⊤

x,i+1µ
mod
i+1 = 0. (27b)

Using (17), this system is simplified to:

B⊤
i (λ∗i − λmod

i )−B⊤
i MiU

∗
i +H⊤

u,iµ
∗
i − H̃⊤

u,iµ
mod
i = 0,

(28a)

MiU
∗
i −A⊤

i+1Mi+1U
∗
i+1 − (λ∗i − λmod

i ) +H⊤
x,iµ

∗
i

+A⊤
i+1(λ

∗
i+1 − λmod

i+1) + Ĥ⊤
x,i+1µ

∗
i+1 − H̃⊤

x,i+1µ
mod
i+1 = 0.

(28b)

Similarly, the rows of (26) which correspond to the variables
{Un, Xn} can be written as:

B⊤
n (λ∗n − λmod

n )−B⊤
nMnU

∗
n +H⊤

u,nµ
∗
n − H̃⊤

u,nµ
mod
n = 0,

(29a)

MnU
∗
n − (λ∗n − λmod

n ) +H⊤
x,nµ

∗
n = 0. (29b)

We are now ready to prove (18) by induction:
• For the base case, here performed at index n, we start by

rewriting (29b) as:

λ∗n − λmod
n =MnU

∗
n +H⊤

x,nµ
∗
n. (30)

By using (30) in (29a), and using (17) again, we obtain:

H̃⊤
u,n(µ

∗
n − µmod

n ) = 0. (31)

Under the assumption that linear independent constraint
qualification (LICQ) holds at the optimal solution, the
gradients of the active constraints are linearly indepen-
dent [20]. In particular, for QP (16), this means that
matrix H̃u,i, ∀i ∈ I[1,n], is full row-rank for the ac-
tive constraints. Consequently, it results from (31) that
µ∗
n = µmod

n . By substituting µ∗
n with µmod

n in (30), we
obtain the desired expression for λ∗n.

• For the induction step, let us consider any index i,
i ∈ I[1,n−1], and assume that (18) holds at index i + 1,
i.e.:

µ∗
i+1 = µmod

i+1, (32a)

λ∗i+1 = λmod
i+1 +H⊤

x,i+1µ
mod
i+1 +Mi+1U

∗
i+1. (32b)

By using (32) in (28b), we obtain that:

λ∗i − λmod
i =MiU

∗
i +H⊤

x,iµ
∗
i , (33)

which can again be used in (28a), resulting in:

H̃⊤
u,i(µ

∗
i − µmod

i ) = 0. (34)

At this point, we can simply follow the same line of
reasoning as above to conclude that (18) holds at index
i. This concludes the proof by induction. □

B. Leader Compensation Mechanism

Let a scalar parameter pk be added to the leader dynamics
(13c) at each grid point:

x1,k+1 = Fk(x1,k, u1,k) +

[
pk
0

]
, ∀k ∈ I[0,N−1], (35)

with p = [p0, 0, p1, ..., pN−1, 0]
⊤. Each parameter pk can be

thought of as a virtual subtraction to the drag force acting
upon the leader at the k-th grid point. These parameters are
meant to model a scenario in which drag reduction would also
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apply for the leader. Note that other choices for the parametric
reformulation of constraints (13c) are possible, but an affine
model has been chosen here for the sake of simplicity.

Replacing the leader dynamics (13c) with their parametrized
version (35) in (13) defines a parametric NLP [35]. Let J∗(p)
be the parametric optimal cost of this parametric NLP, and
let L denote its Lagrange function. Note that the case p = 0
corresponds to the original NLP (13).

A first-order Taylor approximation of the optimal cost for
a given parameter p yields:

J∗(p) = J∗(0) +∇pJ
∗(0)⊤p+O(∥p∥2), (36)

where J∗(0) is the value of the cost function in (13) at
optimality. By noting Y ∗ the primal-dual solution of (13), the
sensitivity of J∗ to the parameters is given as:

∇pJ
∗(0) = ∇pL(Y ∗), (37)

under the assumptions that LICQ and second-order sufficient
conditions (SOSC) hold at Y ∗ [35]. Since p only appears
linearly in the leader dynamics, we have:

∇pL(Y ∗) = λ∗1, (38)

where λ∗1 is the set of optimal dual variables corresponding to
the dynamics of the leader. Consequently, the price for being
the platoon leader can be expressed as:

Pleader = J∗(0)− J∗(p) = −λ∗⊤1 p, (39)

and is therefore proportional to some of the Lagrange mul-
tipliers of NLP (13) as well as to the virtual drag reduction
modeled through p. The latter may be estimated in different
ways directly from the solution of (13), and thus requires very
few extra computations. For instance, p could be based on the
maximum drag reduction observed among platoon members
at each grid point. In this case, Pleader would be slightly
overestimated, which could act as an additional compensation
for the leader for having a delayed reward.

Once the platoon members agree on a value for Pleader, the
proposed compensation mechanism could split the cost equally
among the followers, which would then have to compensate
the leader in some way at the end of the trip.
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