
Thesis for the degree of Licentiate of Engineering

Geometric discretization in shape
analysis
Erik Jansson

Department of Mathematical Sciences
Division of Applied Mathematics and Statistics

Chalmers University of Technology and the University of Gothenburg
Göteborg, Sweden 2022



Geometric discretization in shape analysis
Erik Jansson

©Erik Jansson, 2022

Department of Mathematical Sciences
Division of Applied Mathematics and Statistics
Chalmers University of Technology and the University of Gothenburg
SE-412 96 Göteborg
Sweden
Telephone: +46 (0)31-772 1000

Typeset with LATEX
Printed by Chalmers Reproservice
Göteborg, Sweden 2022
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Geometric discretization in shape analysis
Erik Jansson

Department of Mathematical Sciences
Division of Applied Mathematics and Statistics

Chalmers University of Technology and the University of Gothenburg

Abstract

Discretizations in shape analysis is the main theme of this licentiate thesis, which
comprises two papers. The first paper considers the problem of finding a pa-
rameterized time-dependent vector field that warps an initial set of points to a
target set of points. The parametrization introduces a restriction on the number
of available vector fields. It is shown that this changes the geometric setting of
the matching problem and equations of motion in this new setting are derived.
Computational algorithms are provided, together with numerical examples that
emphasize the practical importance of regularization. Further, the modified prob-
lem is shown to have connections with residual neural networks, meaning that it
is possible to study neural networks in terms of shape analysis. The second pa-
per concerns a class of spherical partial differential equations, commonly found in
mathematical physics, that describe the evolution of a time-dependent vector field.
The flow of the vector field generates a diffeomorphism, for which a discretization
method based on quantization theory is derived. The discretization method is ge-
ometric in the sense that it preserves the underlying Lie–Poisson structure of the
original equations. Numerical examples are provided and potential use cases of
the discretization method are discussed, ranging from compressible flows to shape
matching.

Keywords: Shape analysis, diffeomorphisms, machine learning, residual neu-
ral networks, compressible fluids, quantization.
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Chapter 1: Preliminaries

1.1 Background

Shape analysis is the mathematical study of shape, which immediately begs the
question: What does a mathematician mean by the word shape? While many of
us have an intuitive understanding of what it is—something like a circle, square or
dodecahedron—in shape analysis a shape is anything a so-called diffeomorphism
can act on. It can be for instance a function, a density or a curve.

The central problem of this thesis is the shape matching problem. It is about
finding the optimal way to warp a source shape to a target shape. Here, optimal
means that the diffeomorphism should be the solution to a minimization problem—
it should be the least complicated warp that gets the source shape the closest to the
target shape while distorting the ambient space as little as possible. In Figure 1.1,
we see a schematic illustration of the idea behind the matching problem.

A
warp

B

Figure 1.1: The idea behind shape matching: move from A to B in the optimal
way.

The study of how one shape can be deformed into another has proven to be
an important problem with applications in for instance medical image analysis
[Bistoquet et al., 2008, Bruveris and Holm, 2013, Ceritoglu et al., 2013, Risser
et al., 2013, Qiu et al., 2009]. As a more concrete example, Bruveris and Holm
[2013] describes how Qiu et al. [2009] uses shape analysis to compare MRI images of
a number of patients with a common “template brain”. It was then seen that certain
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2 Chapter 1. Preliminaries

changes in the shape of the brain are associated with Alzheimer’s disease and mild
cognitive decline, an intermediate stage between normal ageing and Alzheimer’s
disease.

A possible lens through which to view shape analysis is that of geometric
mechanics, which allows for a “fluid interpretation” of the shape matching problem.
By means of the Riemannian geometry of the manifold of diffeomorphisms, the
matching problem can be reduced to a PDE called the EPDiff equation [Bruveris
and Holm, 2013]. Many equations in hydrodynamics and mechanics, for instance
the rigid body equations, Euler’s equation or the KdV equation, can be obtained
using the same type of reduction used to arrive at the EPDiff equation [Arnold and
Khesin, 1998]. In fact, there are connections between shape analysis and many
areas of mathematics, computer science and physics: numerical analysis of partial
differential equations [Azencot et al., 2018, Larsson et al., 2016], hydrodynamics
[Mumford and Michor, 2013], optimal transport [Feydy et al., 2017], information
theory [Bauer et al., 2015] and even artificial intelligence [Vialard et al., 2020,
Younes et al., 2020].

In this thesis, two of the problems arising from connections between shape
analysis and other areas of mathematics are investigated. The thesis begins with
an introduction to some background and notation necessary for describing shape
analysis and the methods used in the papers. For a more complete description
of the preliminaries, the interested reader is referred to the sources on which the
first chapter builds, Arnold [1978], Lee [2012, 2018], Marsden and Ratiu [1999],
da Silva [2008].

1.2 Differential geometry

Our approach to shape analysis is to use geometric mechanics. As its name sug-
gests, this approach to mechanics builds on the language of geometry. In this
section we therefore introduce several concepts needed to do geometric mechanics.
The idea is to start with some basics of differential geometry, such as manifolds of
different kinds, differential forms and Lie groups.

The basic geometric concept necessary is that of a manifold. Intuitively, an
n-dimensional manifold M is a space locally resembling Rn. Another useful pic-
ture is to think of a manifold as a generalization of a surface embedded in Rn+1.
More formally, a topological manifold M of dimension n is a completely separable
Hausdorff topological space that has the property that every point x ∈ M has a
neighbourhood U homeomorphic to an open subset of the n-dimensional Euclidean
space. Denoting the homeomorphism by ϕ, the pair (U, ϕ) is called a chart. A
point x is said to be in the chart if x ∈ U . An atlas is a family of charts (Ui, ϕi)

m
i=1

such that every point of M is in at least one of the charts. An atlas is smooth if for
every pair of charts (Ui, ϕi) and (Uj , ϕj) it holds that ϕi(Ui ∩Uj) and ϕj(Ui ∩Uj)
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are open sets in Rn and ϕj ◦ϕ−1
i : ϕi(Ui∩Uj) → ϕj(Ui∩Uj) is smooth in the sense

that each of its components is a smooth real-valued function. A smooth manifold
is a topological manifold equipped with a smooth atlas that cannot be contained
in a larger smooth atlas. Charts allow us to define local coordinates. If x ∈ (U, ϕ),
then the set of local coordinates for x is (x1, x2, . . . , xn) = ϕ(x). The concept of
charts is illustrated in Figure 1.2.

ϕi ϕj

M

Ui

Uj

ϕi(Ui)

Rn

ϕj ◦ ϕ−1
i

ϕj(Uj)

Rn

Figure 1.2: Two charts on a smooth manifold M . Figure inspired by Lee [2012,
Figure 1.6].

Having introduced manifolds, we now consider some important objects associ-
ated to each manifold.

1. The set of vectors v tangent to M at the point x ∈ M is a vector space
known as the tangent space at x and is denoted TxM . Equivalently, TxM is
the set of all derivations of smooth functions C∞(M) at x, i.e., the linear
maps v : C∞(M) → C∞(M) satisfying

v(fg) = f(x)v(g) + g(x)v(f)

for f, g ∈ C∞(M).

2. The tangent bundle of the manifold, denoted by TM , is the disjoint union
of the tangent spaces TxM at each x ∈ M . The tangent bundle is a 2n-
dimensional manifold [Lee, 2012, Proposition 3.18]. There is a natural pro-
jection p : TM →M sending v ∈ TxM to x.

3. The cotangent bundle T ∗M is the disjoint union of the duals T ∗
xM of the

tangent spaces.



4 Chapter 1. Preliminaries

4. Let M and N be smooth manifolds. The space of isomorphisms of manifolds,
or, the space of diffeomorphisms of M to N is denoted Diff(M,N). If M =

N , the notation Diff(M) is used. Under composition, Diff(M,N) is a group.
Further, a diffeomorphism φ acts on a smooth function f ∈ C∞(M) by
φ · f = f ◦ φ−1 [Lee, 2012, Proposition 2.15].

Example 1. The circle S1 = {x ∈ R2, ∥x∥R2 = 1} is a smooth manifold of
dimension 1. It locally resembles R. Its tangent space at x is TxS1 = R and
TS1 ∼= S1 × R. Geometrically, TS1 is exactly a cylinder, see Figure 1.3a.

Whenever the tangent bundle is a copy of the manifold times the space it locally
resembles, as is the case for S1, the tangent bundle is trivial and the manifold is
said to be parallelizable.

TxS1

x

(a) TxS1 (b) TS1

Figure 1.3: Illustration of the tangent space and tangent bundle of the circle. In
Figure 1.3a, note how the tangent space at each point x ∈ S1 is equal to the real
line. By rotating the real lines attached to each point of the circle, one obtains a
cylinder of infinite height.

A smooth vector field v on M is informally an assignment of a tangent vector
to each point x ∈M . This is made precise in the definition below.

Definition 1. A vector field is a section of TM , meaning that it is a continuous
map X :M → TM with the property that for all x ∈M ,

p(X(x)) = x.

If the map from M to TM is smooth, then X is a smooth vector field. Equiva-
lently, one can understand vector fields as the linear maps on the space of smooth
functions C∞(M) that are derivations, i.e.,

X(fg) = gX(f) + fX(g),
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for all f, g ∈ C∞(M). The space of all smooth vector fields on M is denoted
X(M). Two vector fields X and Y can be combined into a third by the commutator
[X,Y ] ∈ X(M). For any f ∈ C∞(M), it is given by

[X,Y ](f) = X(Y (f))− Y (X(f)).

When working with vector fields, we make use of two important concepts: the
pushforward of a vector field by a smooth map, used to move a vector field from
one manifold to another, and the integral curve of a vector field, used to move
points on a manifold.

A smooth map F : M → N between two smooth manifolds M and N pushes
a vector field X ∈ X(M) forward by

F∗X(x) = dFF−1(x)(X(F−1(x))) ∈ X(N),

where x ∈ N and dFF−1(x) is the differential of F at F−1(x) ∈ M , i.e., the linear
map dFF−1(x) : TF−1(x)M → TxN defined by

dFF−1(x)(X)(f) = X(f ◦ F ) (1.1)

for any f ∈ C∞(N) and any X ∈ TF−1(x)M .
Equipped with the definition of differentials, we can define submanifolds. An

m-dimensional immersed submanifold M of M is a manifold that is a subset of
M , and for which the inclusion map ι : M → M is an immersion, meaning that
the differential of ι is injective everywhere. Further, M is said to be an embedded
submanifold if in addition ι is a topological embedding.

An integral curve γ(t) of a vector field X is a differentiable curve on M satis-
fying

d

dt
γ = γ̇ = X ◦ γ

for all t ∈ I := Dom(γ) ⊂ R.
Manifolds can be equipped with structures, of which we here consider two

types. First, Riemannian manifolds are reviewed in some detail, after which we
move on to symplectic manifolds.

A Riemannian manifold (M, g) is a manifold M equipped with a Riemannian
metric g. This means that at each x ∈M the metric is an inner product on TxM .
The metric at x ∈M is denoted gx(·, ·). All smooth manifolds admit a Riemannian
metric [Lee, 2012, Proposition 13.3]. On a Riemannian manifold one can define
for instance distances, angles, and curvature. The length of a vector v ∈ TxM is
given by

|v|g =
√
gx(v, v).
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Further, if γ : [a, b] →M is a smooth curve, the length of γ is given by

Lg(γ) =

∫ b

a

|γ̇(t)|g dt.

The distance between two points x, y ∈ M is the infimum of the length of all
curves starting in x and ending in y. Finally, a geodesic is the curve minimizing
the energy functional [Lee, 2018, Chapter 6]

Eg(γ) =

∫ b

a

|γ̇(t)|2g dt. (1.2)

Example 2. The sphere S2 = {x ∈ R3, ∥x∥R3 = 1} is a smooth manifold. Note
that TxS2 = {v ∈ R3 : (v, x)R3 = 0}. This description of the tangent space
relies on the embedding into R3. Equivalently, one can use local coordinates
(θ, ϕ) ∈ [0, 2π)× [0, π]. If tangent vectors are seen as derivations, TxS2 is the span
of ∂

∂θ and ∂
∂ϕ . Therefore, one can specify a Riemannian metric on S2 by giving its

values for the pairwise inner products of the basis vectors of the tangent space.
On the sphere, the standard example is the round metric

[g] =

[
1 0

0 sin2 θ

]
.

Equipped with this metric, S2 is a Riemannian manifold. In fact, the round metric
on S2 is the induced metric determined by the usual immersion of S2 into R3. See
Figure 1.4 for an illustration.

In order to do calculus on manifolds we need differential forms. A differential k-
form is informally an object that measures the (oriented) volume of k-dimensional
parallelepiped. More formally, a k-form is a field of alternating multilinear forms,
i.e., for each x ∈M , there is a multilinear form αx : (TxM)k → R that changes sign
whenever two arguments are exchanged. The space of k-forms on M is denoted
Ωk(M).

Two differential forms can be combined with the wedge product, ∧ : Ωk(M) ×
Ωl(M) → Ωk+l(M). The wedge product is associative and bilinear. It is commu-
tative if kl is even, and anticommutative if kl is odd.

The interior product ιXα of a differential k-form α with a vector field X is the
(k − 1)-form α(X, ·). The interior product is also called the contraction of α with
X.

The exterior derivative dα of a k-form α is a (k+1)-form. The exterior deriva-
tive is the R-linear mapping from Ωk(M) to Ωk+1(M) that satisfies d2 = 0 and
d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ, where α ∈ Ωk(M) and β ∈ Ωl(M). For 0-
forms, which are functions, d coincides with the differential. A differential form
α ∈ Ωk(M) is said to be exact if there is a β ∈ Ωk+1(M) such that α = dβ. It is
closed if dα = 0.
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TxS2

y

x

Figure 1.4: The sphere, with the tangent plane TxS2 at x ∈ S2. The geodesic
between x and y ∈ S2 is depicted in blue. Note how the geodesic, as expected,
follows the surface.

The Lie derivative of a differential form α with respect to a vector field X can
be defined using Cartan’s magic formula,

LXα := d(ιXα) + ιXdα.

The exterior derivative d allows us to define equivalents of many tools from
vector calculus on Riemannian manifolds, for instance, the gradient of a function.

Definition 2. Let (M, g) be a Riemannian manifold. The gradient of a smooth
function f is given by the vector field ∇f satisfying

df = g(·,∇f).

A, or maybe the, key feature of differential forms is that they can be integrated.
On Rk, a k-form ω is given by ω = ϕ(x)dx1 ∧ . . . ∧ dxk, for some smooth function
ϕ. The integral over a bounded convex polyhedron D ⊂ Rk is∫

D

ω :=

∫
D

ϕ(x) dx1 . . . dxk,

in the usual sense, familiar from multivariate calculus.
In order to integrate ω ∈ Ωk(M), where M is n-dimensional, consider the k-cell

σ = (D,F,O), where D is a bounded convex polyhedron in Rk, F : D → M is a
differentiable map and O is an orientation of Rk. The integral of ω over σ is∫

σ

ω =

∫
D

F ∗ω,
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where F ∗ω(X1, . . . , Xk) := ω(F∗X1, . . . , F∗Xk) is the pullback of ω. Given a se-
quence of r ∈ N k-cells (σi)ri=1 = (Di, Fi, Oi)

r
i=1 and a sequence of integers (mi)

r
i=1,

a k-chain ck on M is the formal sum ck =
∑r

i=1miσi, and the integral of ω over
ck is ∫

ck

ω =

r∑
i=1

mi

∫
σi

ω.

Integrating a k-form over a k-dimensional submanifold K of M is done in two
steps. First, K is triangulated with bounded convex polyhedrons, whereafter one
integrates over the k-chain defined by the triangulation.

Example 3. As an example, let us integrate the 1-form ω = xdx−ydy on R2 over
the submanifold K depicted in Figure 1.5. The manifold consists of two parts, so
we will need two 1−cells in order to integrate over it. The polyhedron covering
the circular arch is just the interval D1 = [0, π/2], with ϕ(t)1 = (cos(t), sin(t)). The
line segment is covered by the interval D2 = [0, 1] with ϕ(t)2 = (t, 0). Thus,∫

K

ω =

∫
σ1+σ2

xdx− ydy =

∫
σ1

xdx− ydy +

∫
σ2

xdx− ydy

=

∫ π/2

0

− sin(2t) dt+

∫ 1

0

tdt = −1

2
,

as dF = ω, with F = x2/2 − y2/2, ω is exact. Further, the boundary of K is
∂K = [(0, 1)]− [(0, 0)] and∫

∂K

F = F (−1, 0)− F (0, 0) = −1/2.

The integral of ω over K is equal to the integral of F over ∂K. In fact, this is
an example of Stoke’s theorem [Fortney, 2018, Theorem 11.1], which states that
given a (k − 1)-form η and a k-dimensional manifold M ,∫

M

dη =

∫
∂M

η.

A Riemannian metric defines a linear map between tangent and cotangent
spaces, by means of the interior product. If this map is an isomorphism, the
metric is said to be strong, but if it is only injective, the metric is weak.

Having introduced Riemannian manifolds, we move on to an essential tool in
geometric mechanics, symplectic manifolds. They can be thought of as general-
izations of phase spaces of mechanical systems. A smooth manifold M is said to
be symplectic if it can be equipped with a closed, non-degenerate 2-form ω. This
means that dω = 0 and that for all x ∈ M , if ωx(u, v) = 0 for all v ∈ TxM , then
u = 0. A symplectic manifold is even-dimensional [Lee, 2012, Proposition 22.7].
For instance R3 cannot be symplectic. However, this is in fact indicative of why
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R2

σ1

σ2 (1, 0)(0, 0)

(0, 1)

x

y

Figure 1.5: The submanifold K used in Example 3. It consists of a quarter circle
of radius 1 starting in (1, 0) and a line segment from the origin to (1, 0). As the
submanifold consists of two distinct parts, we will need two 1-cells to integrate
over it.

symplectic manifolds are generalizations of phase spaces. In a phase space, one
doubles the number of variables by including momentum variables—so the number
of variables and thus the dimension is even.

While symplectic manifolds may appear similar to Riemannian manifolds, there
are important differences. Firstly, not all smooth manifolds (of even dimension) ad-
mit a symplectic form. For instance, it is only in 2 dimensions that the sphere can
be equipped with a symplectic form [Lee, 2012, Chapter 22]. More importantly, on
a symplectic manifold (M,ω) there are coordinates such that ω coincides with the
canonical symplectic form on Rn. This means that, in contrast with Riemannian
manifolds, there is no local structure; from the symplectic point of view, locally
everything is just as Rn [Koszul and Zou, 2019, Theorem 2.3.7].

Example 4. The sphere, S2, is a symplectic manifold when equipped with the
closed and non-degenerate form

ωx(u, v) = x · (u× v),

where x ∈ S2, u, v ∈ TxS2, · is the standard Euclidean inner product and × is the
cross product. In cylindrical local coordinates, (θ, z) ∈ [0, 2π] × [−1, 1], we have
that ω = dθ ∧ dz.

Example 5. If V is a real vector space of dimension n, then

T ∗V = V × V ∗,

where V ∗ is the dual of V . Just as V is an n-dimensional manifold, T ∗V is a
manifold of dimension 2n. Moreover, V × V ∗ can be equipped with a canonical
symplectic form, given by

ω((v1, α1), (v2, α2)) = α2(v1)− α1(v2), (1.3)
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where v1, v2 ∈ V and α1, α2 ∈ V ∗. In fact, the cotangent bundle of any smooth
manifold can be equipped with a canonical symplectic form
[Lee, 2012, Proposition 22.11].

A natural question to ask is if a manifold can be both Riemannian and sym-
plectic simultaneously, in the sense that the symplectic form fits together with
the Riemannian metric. We have seen such an example already: the sphere. The
round metric in Example 2 and the symplectic form on S2 are compatible, meaning
that there is an integrable almost-complex structure J connecting the Riemannian
metric and the symplectic form. In other words, there is a smooth field J of
automorphisms of TS2 such that J2 = −I, where I denotes the identity, and

g(u, v) = ω(Ju, v),

for all u, v ∈ TS2. A manifold of this type is called a Kähler manifold. In addition
to S2, another example of a Kähler manifold is Cn [da Silva, 2008, Chapter 16.4].

We are now almost ready to proceed to geometric mechanics. However, an
important concept appearing in mechanics is that of continuous transformations
acting on systems, such as rotations and translations. Properties that are pre-
served under continuous transformations are called continuous symmetries. The
mathematical tool describing these are Lie groups. A Lie group H is a smooth
manifold that also is a group with the property that the map (h1, h2) 7→ h1h

−1
2 is

smooth for all h1, h2 ∈ H.
The Lie algebra h of a Lie group H is defined as the tangent space of H at the

identity e ∈ H. It is equipped with a Lie bracket, which is a map [·, ·] : h× h → h.
A Lie bracket is bilinear over scalars, anticommutative and should satisfy the

Jacobi identity

[h1, [h2, h3]] + [h2, [h3, h1]] + [h3, [h1, h2]] = 0,

for all h1, h2, h3 ∈ h. A Lie subalgebra is a linear subspace of h that is closed under
the Lie bracket. Note that different Lie groups can have the same algebra.

Example 6. A classical example of a Lie group is the general linear group GL(n).
It consists of all invertible n×n matrices with real entries equipped with standard
matrix multiplication. Its Lie algebra is denoted by gl(n) and is the space of all
n × n matrices. The Lie bracket on gl(n) is the standard matrix commutator,
[A,B] = AB − BA. The general linear group contains several subgroups. One
example is O(n), containing orthogonal matrices of dimension n. Another example
is SO(n), consisting of elements of O(n) with determinant 1. Note that while
SO(n) ⊂ O(n), so(n) = o(n) = {A ∈ gl(n), AT = −A}.

A Lie group H can act on itself. The element h1 ∈ H can for instance act on an
element h2 ∈ H by left translation, Lh1

h2 = h1h2, right translation Rh1
h2 = h2h1,

and by conjugation Ch1
h2 = Lh1

Rh−1
1
h2 = h1h2h

−1
1 . The conjugation action gives

rise to the adjoint representation.
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Definition 3. The adjoint representation at h ∈ H, denoted by Adh ∈ End(h),
is given by the differential of Ch at the identity. Here, End(h) refers to the space
of endomorphisms of h. By varying h we obtain a map Ad : H → End(h).
Differentiating Ad yields the map ad : h → End(h). Explicitly, h ∋ ξ 7→ [ξ, ·] = adξ.

These definitions can be rather opaque, and an enlightening example is found
in matrix Lie groups.

Example 7. Let us again consider GL(n). Let G,H ∈ GL(n). The conjugation
action is given by CGH = GHG−1. In order to explicitly compute AdGX, where
X ∈ gl(n), we take the curve in GL(n) given by γ(t) = I + tX, t ∈ R. Note that
at t = 0, γ(0) = I. Then,

d(CG)I(X) =
d

dt

∣∣∣∣
t=0

CG(I + tX) =
d

dt

∣∣∣∣
t=0

G(I + tX)G−1 = GXG−1 = AdGX.

In order to calculate adY X, with Y ∈ gl(n), take the curve I+tY and differentiate,

adY X =
d

dt

∣∣∣∣
t=0

(I + tY )X(I + tY )−1 = Y X −XY = [Y,X].

As we shall see later, the dual of Ad, the coadjoint representation, is central to
geometric mechanics and in particular to our approach to shape analysis.

1.3 Geometric mechanics

In this section, we introduce necessary concepts from mechanics, of which there
are two main flairs, Lagrangian and Hamiltonian. In both cases, one starts with a
manifold, or in the language of physics, a configuration space, often denoted by Q.
Having introduced geometric mechanics in general, we then will move on to the
most central type of system for our purposes, Euler–Arnold systems. These are,
as we shall see, are very useful in shape analysis.

Lagrangian mechanics studies systems where a state is specified by a position
and a velocity. Geometrically, this means that Lagrangian systems are defined on
TQ. A system is described by its Lagrangian L, which is a smooth function from
TQ to the reals. Given a curve γ : [a, b] → Q, the action functional is

A(γ) =

∫ b

a

L(γ, γ̇). (1.4)

The curve γ is a motion of the system if it minimizes the action functional. This
is known as Hamilton’s principle. Note here the similarity between geodesics, that
extremize the energy functional of Equation (1.2), and motions of a system that
extremize the more general action functional. As we shall see later, an interesting
class of mechanical systems can indeed be understood as geodesics on a suitable
Riemannian manifold.
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From the fundamental lemma of calculus of variations and Hamilton’s principle,
one can deduce that a motion of a Lagrangian system follows the Euler–Lagrange
equations,

d

dt

∂L
∂γ̇

− ∂L
∂γ

= 0. (1.5)

Hence, Lagrangian mechanics builds on a variational principle [Marsden and
Ratiu, 1999, Chapter 1].

Example 8. A basic example of a Lagrangian system is a particle of unit mass in
Rn. Its position is given by x ∈ Rn and its velocity by ẋ. The particle is affected
by some potential V : Q → R. The Lagrangian is the difference of kinetic and
potential energy,

L(x, ẋ) = ẋ · ẋ
2

− V (x).

By Equation (1.5), the equation of motion is ẍ + ∇V (x) = 0, which exactly is
Newton’s second law.

Having briefly introduced Lagrangian mechanics, we can move on to Hamil-
tonian mechanics, where one works not with positions and velocities, but with
positions and momenta. In terms of geometry, we work not in TQ, but in T ∗Q.
Recall from Example 5 that T ∗Q is a symplectic manifold.

Given a smooth function H on a symplectic manifold, it’s Hamiltonian vector
field XH is defined by

dH = ω(·, XH), (1.6)

the function H is called the Hamiltonian. Often, the Hamiltonian describes the
total energy of the system, which in the Lagrangian case is given by E = ∂L

∂γ̇ ·
γ̇ − L. In fact, with the momenta p = ∂L

∂γ̇ , we have that the energy, and thus the
Hamiltonian, is given by

H = p · γ̇ − L.

This is called the Legendre transformation and describes the relation between
Lagrangian and Hamiltonian mechanics.

The governing equations of a Hamiltonian system is given by

ż = XH(z). (1.7)

where z = (γ, p) [Marsden and Ratiu, 1999, Chapter 5.4]. Note that on a Kähler
manifold, such as the sphere, the Hamiltonian vector field is given by XH =

J−1∇H, i.e., by rotating the gradient 90 degrees.
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Example 9. Let us revisit Example 8. There, the particle was described by its
position and velocity. The cotangent bundle of R3 is identified with R3 ×R3. The
symplectic form is given by Equation (1.3). The momenta is given by

p =
∂L
∂ẋ

= ẋ.

By the Legendre transform, H = p2−L = p2/2+V (x) and by rotating the gradient
of H, one obtains that XH = J−1(∇V, p) = (p,−∇V ). The Hamiltonian dynamics
are then

ẋ = p,

ṗ = −∇V.

The symplectic form gives rise to a Poisson bracket {·, ·} : C∞(M)×C∞(M) →
C∞(M) by

{H,F} = ω(XF , XH).

A Poisson bracket is a Lie bracket that also satisfies the Leibniz rule,

{ω1ω2, ω3} = {ω1, ω2}ω3 + ω1{ω2, ω3}

for all ω1, ω2, ω3 ∈ C∞(M).
Hamiltons equations (1.7) can be formulated using the Poisson bracket,

ż = {z,H}.

This formulation of Hamiltonian mechanics allows us to easily define for instance
conserved quantities. A smooth function f is a conserved quantity if it is in in-
volution with H, meaning that {H, f} = 0 [Marsden and Ratiu, 1999, Chapter
5.5].

Before moving on to shape analysis, we describe how geodesics of left-invariant
metrics on Lie groups are a useful tool for the study of a large class of systems.
As a warm-up, let us consider the rigid body.

Example 10. A classical example of a mechanical system is the rotating rigid
body. We assume that the rigid body consists of a continuous body B of uniform
density. The configuration of the rigid body is described by its rotation, i.e., by an
element in Q = SO(3). The body is assumed not to be influenced by any external
torques, so the Lagrangian is just the kinetic energy of the body. The rotation
of the body is given by A ∈ SO(3). Then, at x ∈ B, the velocity is given by
d
dtAx = Ȧx and the infinitesimal kinetic energy is Ȧxdx, so the Lagrangian is

L(A, Ȧ) = 1

2

∫
B

∥Ȧx∥2R3 dx. (1.8)
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Firstly, note that L is quadratic and positive definite, so it is a metric on SO(3).
Further, if we let X ∈ SO(3) act on A by left translation, L remains unchanged
as X is an orthogonal matrix. This means that L is an example of a left-invariant
metric. In fact, this invariance is central to the understanding of the behaviour of
the rigid body.

By using left-invariance and that SO(3) has a trivial tangent bundle, the prob-
lem can be moved to TI SO(3) ∼= so(3) and the analysis can be continued to obtain
the classical equations of motions for a rigid body [Arnold, 1978, Appendix 2]. The
important observation for us, however, is that the Lagrangian is a left-invariant
Riemannian metric, so the motion of the rigid body is a geodesic. The rigid body
is an example of an Euler–Arnold system, a type of system that can be used
to study a large class of mechanical systems, including those that arise in shape
analysis [Arnold, 1966, Bruveris and Holm, 2013].

In what follows, let G be a Lie group and denote by g its Lie algebra. A Rie-
mannian metric on G is left-invariant if its value is unchanged by left translations.
A left-invariant metric can be wholly specified by an inner product on g, as left
translations can be used to move the metric to the correct tangent space. This
inner product can be specified with a positive-definite, symmetric linear operator
A : g → g∗, by (u, v) = Av(u).

The key fact of the Euler–Arnold framework is the following theorem.

Theorem 1. Let the Lagrangian L be given by a left–invariant Riemannian metric
defined by the operator A : g → g∗. Then, the curve γ : [0, 1] → G extremizing the
functional ∫ 1

0

L(γ, γ̇) dt

satisfies the Euler–Arnold equation

ṁ− ad∗vm = 0,

m = Av
(1.9)

where v ∈ g. The curve γ is a geodesic on G.

For a proof, see Modin [2019].
There is a Hamiltonian interpretation of the Euler–Arnold framework. In order

to do Hamiltonian mechanics, we shall specify an appropriate symplectic form.

Definition 4. Consider the coadjoint representation Ad∗ : G → End(g∗). The
coadjoint orbit through ξ ∈ g∗ is given by

Oξ = {Ad∗g ξ, g ∈ G}.
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It is possible to show that TηOξ = {ad∗g η, g ∈ g}. The coadjoint orbits can be
endowed with a natural symplectic structure. If η ∈ Oξ, the Kirillov form Ξη is
given by

Ξη(ad
∗
g1 η, ad

∗
g2 η) = η([g1, g2]).

Two important facts are that Euler–Arnold systems evolve on the coadjoint
orbits and that they are Hamiltonian systems. The Hamiltonian is given by H(η) =
1
2η(A

−1η), where η ∈ Oξ. Further, the coadjoint orbits “slices up” the dual algebra.
More precisely, the set of coadjoint orbits foliate g∗ [Kirillov, 2004]. Again, the
rigid body provides an illustrating example.

Example 11. The configuration space of the rotating rigid body is G = SO(3).
Thus g = so(3) = g∗. The identification of g with its dual is performed by
equipping so(3) with the Frobenius inner product

⟨ω1, ω2⟩F = Tr(ω1ω
T
2 ).

With A ∈ SO(3) and ξ, η ∈ so(3) arbitrary, the coadjoint action on so(3) is found
by

⟨Ad∗A ξ, η⟩F = ⟨ξ,AdA η⟩F = ⟨ξ, AηA−1⟩F = ⟨A−1ξA, η⟩F .

Thus, the orbits are of the form

Oξ = {A−1ξA,A ∈ SO(3)}.

It is possible to write the matrix ξ as a vector ξ̂ in R3, and it holds that Â−1ξA =

A−1ξ̂. The coadjoint action of A is thus the ordinary action of A−1 on vectors.
As rotation matrices preserve distance, the vector ξ̂ can only be transported to
vectors of the same length. The coadjoint orbit Oξ is therefore the sphere with
radius ∥ξ̂∥R3 . This gives rise to a foliation of the space by concentric spherical
shells. In order to obtain an intuitive understanding, it is constructive to picture
this as resembling an onion, which also consists of concentric layers, see Figure 1.6.

1Image source: Bell, Darwin, 2007. One a day food item #26 - January 2006 [On-
line]. Available from: https://upload.wikimedia.org/wikipedia/commons/3/35/Red_onions_
%28cross-sections%29.jpg [Accessed 21 September 2022].

https://upload.wikimedia.org/wikipedia/commons/3/35/Red_onions_%28cross-sections%29.jpg
https://upload.wikimedia.org/wikipedia/commons/3/35/Red_onions_%28cross-sections%29.jpg


16 Chapter 1. Preliminaries

Figure 1.6: Some sliced onions. Notice how onions consist (approximately) of
concentric spherical shells, thus being similar to the coadjoint orbits of the rigid
body.1



Chapter 2: Shape Analysis

In this chapter we briefly introduce shape analysis. We first describe the matching
problem, and then describe the geometric structure of the problem, in particular
how geometric mechanics is used to obtain an understanding and reduction of the
matching problem to a differential equation, using the Euler–Arnold framework
described in Section 1.3. For a more detailed description on shape matching, see
Bruveris and Holm [2013], Joshi and Miller [2000], Younes [2010].

2.1 Diffeomorphic shape matching

In this section, we let (M, g) be an orientable compact Riemannian manifold.
We consider a class of weak right-invariant Riemannian metrics on Diff(M)

given by

⟨γ̇, γ̇⟩γ =

∫
M

v · Lvdx, (2.1)

where γ(t) is a smooth curve taking values in Diff(M), L : X(M) → X∗(M) is an
invertible elliptic differential operator acting on vector fields and v = γ̇ ◦γ−1. One
example of such an operator L = (1−∆)k for some k ∈ N ∪ {0}.

In the following, let us model shapes as smooth functions. The shape matching
problem in the large deformation diffeomorphic metric mapping (LDDMM) setting
matches two shapes f0 and f1, which are represented by smooth functions, i.e., as
elements of C∞(M). The time-dependent vector field v : [0, 1] → X(M) resulting
in the best matching is the one minimizing the energy functional

E(v) = ∥f0 ◦ γ(1)−1 − f1∥2 +
1

2σ

∫ 1

0

∫
M

v(t) · Lv(t)dxdt, (2.2)

where γ is obtained by the differential equation γ̇(t) = v(t) ◦ γ(t), γ(0) = Id.
Let us disect the right-hand side in Equation (2.2). The first term is a matching

term, measuring how close the target image and the warped source are. The second
term is a regularization term, penalizing deformations that are too extreme. The
parameter σ, which must be positive, is a parameter that tunes the influence of

17
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the regularization parameter. The second term can be thought of as either the
energy of the deformation, or as a measure of how different γ is from the identity.

One approach to spatially discretize the matching problems is to use landmarks.
The f0 and f1 are approximated by points x1, . . . , xm ∈M that discretizes f0, and
z1, . . . , zm ∈M that discretizes f1. These points are known as landmarks. SinceM
is a Riemannian manifold, the metric induces a distance function dM : M×M → R.
The landmark matching problem is to find the time-dependent vector field v that
solves

min
v

m∑
i=1

d2M (yi(1), zi) +
1

2σ

∫ 1

0

∫
M

v · Lvdxdt, (2.3)

s.t. ẏi(t) = v(t, yi(t)), t ∈ [0, 1], y(0) = xi. (2.4)

Just as for Equation (2.2), the first term in Equation (2.3) is a matching term,
and the second is a regularization term.

Minimization in the landmark matching problem is over all smooth vector
field. The optimal vector field should warp ambient space as little as possible as
this results in lower energy. Therefore, the optimal momentum should only have
support on the landmark paths y1(t), y2(t), . . . , ym(t), meaning that

Lvt =

n∑
i=1

piδyi(t),

for some variables p1, . . . pn, and the optimization problem can be reduced to a
finite-dimensional Hamiltonian system, which is why moving to landmarks results
in a spatial discretization of the vector fields [Joshi and Miller, 2000].

Remark 1. Note that in both Equation (2.2) and Equation (2.3), the matching
terms are explicitly written down. As we shall see later, the geometric structure
of the matching problem, which leads to its reduction to a differential equation, is
determined only by the regularization term. Therefore, this treatment holds also
for more general matching terms.

2.2 The geometry of shape matching

In this section we will describe the geometric structure of the shape matching prob-
lem. Firstly, note that Diff(M) can be given the structure of a Fréchet manifold.
It is an infinite-dimensional manifold, which in contrast with finite-dimensional
manifolds resembles not a Euclidean space but a Fréchet space—a particularly
well-behaved topological vector space. We omit further discussion, but remark
that the group multiplication (composition) in Diff(M) is smooth with respect to
the Fréchet structure. Thus, Diff(M) is a Lie group whose Lie algebra is given
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by the smooth vector fields. As we shall see, the matching problem will give rise
to an Euler–Arnold equation on X∗(M). In other words, matching problems have
a dynamic formulation. The initial image is warped to match the target via a
geodesic path of diffeomorphisms.

The matching term in Equation (2.2) only depends on γ(1). A curve being a
motion to the Lagrangian system governed by Equation (2.2) must therefore also
be a motion in the Lagrangian system determined only by the regularization term,

L(γ, γ̇) = 1

2

∫ 1

0

∫
M

v(t) · Lv(t) dxdt. (2.5)

Equation (2.5) is right-invariant by construction. Therefore, the Euler–Arnold
framework applies, and we conclude that the momentumm = Lv evolves according
to the equation

ṁ = ad∗vm,

Lv = m.

The group G = Diff(M) is known, so we can compute ad∗ explicitly. To this
end, let w ∈ X(M) be arbitrary and note that

ad∗vm(w) = m(adv w).

By Definition 3, adv w = [v, w]. By the properties of the so-called Levi–Cevita
connection, we have that [v, w] = ∇vw − ∇wv [Lee, 2018, Chapter 5]. Finally, a
calculation in local coordinates shows that

ad∗vm(w) = m(∇vw −∇wv) = (∇T
vm−∇mv + div(v)m)(w).

The Euler–Arnold equations on Diff(M) equipped with the metric given by the
integrand in Equation (2.5) are

ṁ = ∇T
vm−∇mv + div(v)m,

Lv = m.
(2.6)

Equation (2.6) is known as the EPDiff equation.
We thus have a reduction of the matching problem to a set of differential equa-

tion. This reduction also suggests some numerical algorithms for the computing of
the matching. For more details on computational aspects of matching problems,
see for instance Beg et al. [2005], Joshi and Miller [2000].

The geometric structure of LDDMM is illustrated in Figure 2.1. The curve of
diffeomorphisms γ : [0, 1] → Diff(M) is a geodesic in Diff(M), which descends to
a flow on the orbit of f0, given by

Orb(f0) := {f0 ◦ ψ−1 : ψ ∈ Diff(M)} ⊂ C∞(M).
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D
iff

f
0 (M

)

γ(1)

Id

Diff(M)

C∞(M)

f0 ◦ γ(1)−1f0
Orb(f0)

f1

Figure 2.1: Illustration of the geometric structure of LDDMM. The red line in
Diff(M) is a geodesic, and moves the initial shape f0 ∈ C∞(M) along its orbit to
get f0 as close as possible to the target shape f1.

The goal of the minimization is to find the element in the orbit as close to f1 as
possible. Typically, f1 /∈ Orb(f0), so the matching will not be exact.

Furthermore, consider the set

Difff0(M) := {ψ ∈ Diff(M) : f0 ◦ ψ−1 = f0} ⊂ Diff(M).

In other words, it consists of the diffeomorphisms that leaves f0 unchanged. Note
that Difff0(M) is a subgroup of Diff(M). Indeed, if ψ,φ ∈ Difff0(M), then f0 ◦
(ψ ◦ φ)−1 = f0 ◦ φ−1 ◦ ψ−1 = f0, and f0 ◦ ψ = f0 ◦ ψ−1 ◦ ψ = f0, thus, Difff0(M)

is closed under composition and inversion and is a subgroup. The orbit can be
represented by the quotient set Diff(M)/Difff0(M), so points of the orbit can be
thought of as fibers in Diff(M).



Chapter 3: Summary of Included Papers

3.1 Paper 1

In paper 1, we consider landmark matching modified in two ways. The first mod-
ification is that the vector field warping the initial landmarks is parametrized in
the sense that it is determined by a set of parameters U . The second modification,
inspired by Öktem et al. [2017], is that the matching term includes the case where
the target landmarks z1, . . . , zm are in a metric space N that may be different
from the original manifold M . The main reason for introducing these modifi-
cations is that they allow us to connect deep learning and landmark matching.
This is possible by viewing residual neural networks as temporal discretizations
of time-continuous control problems, as in Celledoni et al. [2021], Li et al. [2017],
and by describing how the control problems can be interpreted as high dimensional
landmark matching problems.

The main result of the paper lies in describing the geometric structure of the
modified problem. The parametrization of vector fields determines a subset of
X(M) which is not a Lie subalgebra of X(M). The matching problem is considered
as a nonlinear control system where the space of controls are given by U . Inspired
by Younes et al. [2020], we refer to this version of landmark matching as sub-
Riemannian landmark matching.

It is showed that a dynamic formulation of sub-Riemannian landmark matching
can be derived by means of an Euler–Arnold argument, just as in the non-modified
case. In more detail, an equation governing the evolution of the time-dependent
control variable u is derived. We describe how the dynamic formulation allows for
matching to be performed by means of a shooting algorithm, meaning that it is
only the initial state of the control u that needs to be determined. Finally, some
numerical results illustrate the algorithms.

21
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3.2 Paper 2

In paper 2, we consider the EPDiff equation

ṁ = ∇T
vm−∇mv + div(v)m,

m = (1−∆)v,
(3.1)

where v ∈ X(M) and ∇ denotes the covariant derivative. It can be derived as the
geodesic equation on Diff(S2) equipped with the H1 metric.

The main result of the paper is an extension of the spatial discretization of
Euler’s equations introduced by Zeitlin [1991, 2004], often called Zeitlin’s model,
to the EPDiff setting. This approach builds on quantization theory, [Hoppe, 1989,
Bordemann et al., 1991, 1994, Le Floch, 2018] and results in a discretization that
preserves the underlying Lie–Poisson structure of the equations.

The main result of the paper is that we derive a discretization of Equation (3.1),
obtaining the flow

Ẇ = [P,W ]

P = (1−∆N )−1∆−1
N W,

(3.2)

where N is an integer, P,W ∈ gl(N,C) and ∆N is the so-called Hoppe–Yau
Laplacian, see Hoppe and Yau [1998]. Formally, Equation (3.2) discretizes the
vorticity equation associated to Equation (3.1), but as the velocity field v can
be reconstructed from the vorticity, this is indeed a discretization of the EPDiff
equation. The main point of interest of this discretization lies in its applications
in for instance the simulation of compressible flows, optimal transport and shape
matching.
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