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A B S T R A C T   

The hybrid cybernetic model (HCM) approach is a dynamic modeling framework that integrates enzyme syn-
thesis and activity regulation. It has been widely applied in bioreaction engineering, particularly in the simu-
lation of microbial growth in different mixtures of carbon sources. In a HCM, the metabolic network is 
decomposed into elementary flux modes (EFMs), whereby the network can be reduced into a few pathways by 
yield analysis. However, applying the HCM approach on conventional genome-scale metabolic models (GEMs) is 
still a challenge due to the high computational demands. Here, we present a HCM strategy that introduced an 
optimized yield analysis algorithm (opt-yield-FBA) to simulate metabolic dynamics at the genome-scale without 
the need for EFMs calculation. The opt-yield-FBA is a flux-balance analysis (FBA) based method that can 
calculate optimal yield solutions and yield space for GEM. With the opt-yield-FBA algorithm, the HCM strategy 
can be applied to get the yield spaces and avoid the computational burden of EFMs, and it can therefore be 
applied for developing dynamic models for genome-scale metabolic networks. Here, we illustrate the strategy by 
applying the concept to simulate the dynamics of microbial communities.   

1. Introduction 

Mathematical modeling of cellular metabolism supports and accel-
erates the development of metabolic engineering and industrial bio-
processes (Aboulmouna et al., 2020; Nielsen and Keasling, 2016; Young, 
2015). Among various types of mathematical models, genome-scale 
metabolic models (GEMs) and cybernetic models are widely used and 
have many successful applications underlying different assumptions and 
frameworks (Chen et al., 2022; Geng et al., 2021; Lu et al., 2019; Orth 
et al., 2011; Ramkrishna and Song, 2012). 

A GEM is a collection of all the biochemical reactions occurring in the 
organism of interest, and these models systematically organize and 
process metabolic information. For example, GEMs can be used to 
calculate flux distributions at steady state or simulate phenotypes of 
different mutants and/or growth at different conditions (Bordbar et al., 
2014). With the availability of genome sequences for many organisms, 
more than thousands of GEMs have been constructed. For analysis of 
these models, many standardized tools and analysis methods have been 
developed, such as flux balance analysis (FBA) (Gu et al., 2019; Henry 

et al., 2010; Lieven et al., 2020; Orth et al., 2010b; Amit Varma and 
Palsson, 1994). 

Cybernetic modeling is an ordinary differential equation (ODE) 
modeling approach that incorporates control strategies for the optimal 
investment of enzymatic resources (Dhurjati et al., 1985; Straight and 
Ramkrishna, 1994). The hypothesis underlying cybernetic models is that 
microorganisms can regulate the synthesis and activity of enzymes as a 
survival mechanism for cells growing in different environments (Young 
and Ramkrishna, 2007). The approach has been applied to describe not 
only the dynamic behaviors of microorganisms in a mixture of carbon 
sources, but also to describe multi-species relationships (Martínez et al., 
2020; Perrin et al., 2020; Song et al., 2009). To process more complex 
networks, some diverse methods of cybernetic modeling were developed 
such as first-generation lumped cybernetic models (Song and Ramk-
rishna, 2010, 2011) and second-generation hybrid cybernetic models 
(HCMs). The HCM is a widely used dynamic model in recent years, that 
uses elementary flux modes (EFMs) and yield analysis to reduce the 
number of pathways to be described with kinetic expressions (Geng 
et al., 2012; Kim et al., 2008; Kompala et al., 1986; Song and 
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vector; opt-yield-FBA, optimized yield analysis algorithm; LP, linear programming. 
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Ramkrishna, 2009). Using this framework, it is possible to describe 
metabolic dynamic behaviors well by only requiring the measurement of 
exchange fluxes and considering intracellular metabolites under 
pseudo-steady-state conditions (Kim et al., 2008; Song et al., 2009). 

However, applying the HCM approach on conventional genome- 
scale metabolic models is still a challenge due to the high computa-
tional demand for calculating EFMs. EFMs are a set of all non- 
decomposable pathways containing a minimal set of reactions and 
these pathways can be considered as a catalog of all possible flux balance 
analysis (FBA) results (Schuster et al., 1999, 2000; Terzer and Stelling, 
2008; Vilkhovoy et al., 2016). The number of EFMs is exponentially 
growing with the number of reactions in a network, and this is therefore 
a bottleneck for applying the HCM approach at the genome-scale 
directly (Vilkhovoy et al., 2016). According to the metabolic yield 
analysis (MYA) by Song and Ramkrishna, EFMs provide a master yield 
space and convex hull for pathways selection, and selected pathways’ 
yield values are located on the boundaries of the yield space (Song and 
Ramkrishna, 2009). Therefore, to fill the gap between GEMs and HCMs 
without EFMs, the replacement methods should be able to obtain yield 
spaces from GEMs. 

Some studies tried to replace the EFMs in the HCM approach by 
elementary flux vectors (EFVs) or FBA modes (Ahamed et al., 2021; 
Vilkhovoy et al., 2016). EFVs are alternatives to EFMs but can account 
for inhomogeneous constraints (Klamt et al., 2017, 2018; Müller and 
Regensburger, 2016). With inhomogeneous constraints, the EFVs can 
provide a theoretically correct yield space better than EFMs. Although 
EFVs are more reliable for calculating the yield space, the computational 
demand is still large (Ahamed et al., 2021). FBA modes cannot provide a 
complete yield space because they optimize the output rate of target 
metabolites, not yield (Klamt et al., 2018; Vilkhovoy et al., 2016). The 
comparison of current methods for optimizing yield or obtaining yield 
space for HCM is shown in Table 1. 

To obtain the yield spaces from GEMs without EFMs, a yield opti-
mization method is required. Typically, the yield is defined as a ratio of 
product fluxes and substrate uptake fluxes (Y = rp

/
rs

), and represents a 

relative value of the amount of product or biomass formed per amount of 
substrate consumed (Klamt et al., 2018). Some studies tried to optimize 
yield by FBA, such as fixing the substrate uptake rate (rs) as an experi-
mentally measured value or one, then the maximized product fluxes or 
growth (rp) represent maximized yield (Schuster et al., 2008; Teusink 
and Smid, 2006). The other mathematical frameworks for yield opti-
mization have been developed by linear-fractional programming and 
higher-dimensional linear programming (Klamt et al., 2018). 

In this study, we present an optimized yield analysis algorithm (opt- 
yield-FBA) that converts the objective function of yield from the 
nonlinear problem of rp

/
rs 

to a linear problem of rp − Ytemp • rs, and the 

algorithm can thus compute, analyze optimal yield solutions and obtain 
yield spaces from GEMs. With the yield space obtain using opt-yield-FBA 
rather than EFMs, the HCM strategy can be applied to describe metabolic 
dynamics at the genome-scale. We illustrate the HCM strategy by 
metabolic networks of different sizes and use the generated models to 
simulate the dynamics of microbial communities. Finally, we also 
evaluate the robustness of the yield space and the challenges of HCM. 

2. Methods 

2.1. Metabolic flux analysis 

Flux balance analysis (FBA) is a widely used method for studying 
GEMs. It is based on using an objective function to calculate flux dis-
tributions by linear programming (Orth et al., 2010b; Schuetz et al., 
2012; Amit Varma and Palsson, 1994) combined with a mass balance 
constraints around the individual metabolites. GEM manipulation was 
performed by the cobrapy 0.17.0 (Ebrahim et al., 2013) on Python 3.8. 

EFMs and EFVs calculations were performed by efmtool 4.7.1 (Terzer 
and Stelling, 2008) and CellNetAnalyzer 2019.2.842 (Klamt et al., 2007) 
on MATLAB 2018b. 

2.2. Metabolic yield analysis and pathway selection 

Metabolic yield analysis is used to reduce pathways based on the 
convex hull in a yield space. Pathways with flux distributions come from 
EFMs, EFVs or opt-yield-FBA, and yield values of products could be 
calculated by Y = rp

/
rs

. All yield values construct a convex shape and 

provide the master yield space. For prior reduction, a subset of pathways 
that cover 99% yield space can be obtained by calculating subsets 
convex hull volumes (Song and Ramkrishna, 2009). The threshold of 
99% is suggested by Song and Ramkrishna’s study and the resulting 
subset is a minimal number of pathways that contribute 99% volumes of 
yield space (Song and Ramkrishna, 2009). 

For active pathways selection with experimental data, the sum of 
squared weights or the distance is minimized, as described by the 
following equations. When the yield of experimental data in the master 
yield space, 

min
h

1
2
‖h‖2

2  

Subject to : Zyh − ym = 0  

h ≥ 0  

‖h‖1 = 1 

When the yield of experimental data is outside the master yield 
space, 

min
h

1
2
⃦
⃦Zyh − ym

⃦
⃦2

2  

Subject to : h ≥ 0  

‖h‖1 = 1  

Here h (npaths), is a vector of weight for pathways and all weights are 
positive (h ≥ 0) and the sum of weights is one (‖h‖1 = 1). Zy (nmets * 
npaths) is a yield matrix of all pathways and products, and ym (nmets) is a 
product yield vector from experimental data. The “Zyh − ym = 0” is the 
distance between the master yield space and the experimental yield 
vectors. If the experimental yield is in the master yield space the distance 
is zero. When the experimental yield is outside, the distance should be 
minimized (Song and Ramkrishna, 2009). 

The convex hull and its volume were calculated by SciPy 1.8.0 and 
the selection of active pathways was performed by CVXPY1.2.0 
(Agrawal et al., 2018) on Python. 

2.3. Cybernetic modeling 

The ordinary differential equations of HCM describe metabolite mass 
balances and enzyme balances. The x is variables vector that contains 
extracellular metabolite concentrations (mex), biomass concentration (c) 
and enzyme levels (e), the x vector could be written like Equation (1) 

Table 1 
The comparison of current methods to obtain yield space for HCM.  

Methods Correct yield 
space 

Constrains 
bounded 

Process complex 
GEMs 

EFMs × × ×

EFVs ✓ ✓ ×

FBA modes × ✓ ✓ 
Opt-yield- 

FBAa 
✓ ✓ ✓  

a This study. 
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x =

⎡

⎢
⎢
⎣

mex

e

c

⎤

⎥
⎥
⎦ (1)  

Here biomass concentration c can be included in the vector of extra-
cellular metabolite concentrations (mex). HCM focuses on extracellular 
metabolites and all intracellular metabolites under a pseudo-steady- 
state dmin/dt = 0. Mass balances for extracellular metabolite concen-
trations (mex), enzyme levels (e) and biomass concentration (c) are 
described by Equations (2)–(4). 

dmex

dt
= Sex • Z • diag(v) • r • c (2)  

de
dt

= α + diag
(

u) • rE −

(

diag
(

β
)

+ μ
)

• e (3)  

dc
dt

= μ • c (4) 

In Equation (2), mex (nmets) is a vector of extracellular metabolite 
concentrations; Sex (nmets * nrxns) is the stoichiometric matrix of the 
extracellular metabolites; Z is the (nrxns * npaths) stoichiometric matrix of 
pathways and extracellular metabolites, the pathways could come from 
EFMs or EFVs or opt yield FBA; diag(v) is a diagonalization v (npaths) and 
v is the vector of the cybernetic control variables that regulate the 
enzyme activities; r (npaths) is the vector of exchange fluxes from cor-
responding pathways, c is the biomass concentration per unit volume. In 
Equation (3), α (npaths), denotes the vector of the constitutive rates of 
enzyme synthesis; rE represents the maximum enzyme synthesis rate 
which inductive synthesis of the enzyme occurs without resources lim-
itation. The diag(u) is a diagonalization u (npaths) and u is a vector of the 
cybernetic control variables that regulate the enzyme synthesis; β 

(npaths) is a vector of is enzyme degradation rates, μ • e is the dilution 
rate by growth. In Equation (4), μ is the specific growth rate. 

The specific pathway rate, enzyme synthesis rate and growth rate are 
described by Equation (5) (6) and (7). 

ri = kmaxi • erel
i •

sj
(
Kij + sj

) (5)  

rEi = kei •
sj

(
Kij + sj

) (6)  

μ = h • r (7) 

Equations (5) and (6) are the Michaelis–Menten type of kinetic 
expression of the pathway rate and the enzyme synthesis rate. Here i is 
the index of the pathway, j is the index of the substrate, different 
pathways could consume different substrates; where kmaxi is the reaction 
rate constant (g/gDW/h); Kijand kei are the Michaelis–Menten constant 
(g/L); sj denotes the substrate concentration; h is the matrix to find the 
biomass-related pathways and sum their rates. The erel

i is the relative 
enzyme level, which is described by Equation (8): 

erel
i ≡

ei

emax
i

(8)  

emax
i =

αi + kei

βi + μmax
i

(9) 

Equation (9) is under the condition of maximized enzyme level and 
comes from enzyme balance in equation (3). When the left-hand side of 
Equation (3) is zeroed and u = 1, the maximum enzyme level can be 
established as equation (9). 

The matching law and proportional law to specify the cybernetic 
control variables shown by Equations (10) and (11). 

Fig. 1. Overview of the yield optimization algorithm. a) Formulas of the yield optimization problem. The objective function of yield is the ratio of rp and rs, where rp 

represents the production rate and rs represents the substrate uptake rate. The optimization is subject to a steady-state (S • r = 0) with constraints (rlb ≤ r ≤ rub) and 
the directions of rp and rs are both defined as positive. b) The approximate solution of the optimal yield. The optimal yield solution is generated by a series of FBA 
solutions iteratively. In each iteration, an assumed yield is defined as Ytemp and the optimized objective function (rp − Ytemp • rs) is set as the differences between rp and 
the product of Ytemp and rs. The initial value of Ytemp is YFBA (yield of green dots), which is the yield value when rate optimized by FBA. The return of each iteration is a 
vector of flux distribution that updates Ytemp for the next iteration. The iterations will be terminated when the optimization return zero and the maximum yield is 
found. c-e) Potential relationships of the substrate uptake rate (rs) and the production rate (rp). The maximal rp value from FBA is shown as a green dot and the 
maximal yield is shown with an orange dot or line. In c and d, the max(r) and max(y) overlap and YFBA = Ymax, and the iterations are terminated in the first iteration. 
In e, the max(r) and max(y) points do not overlap and the maximal Y requires multi optimal calculations. The objective function of rp − Ytemp • rs is shown by the blue 
line and text. c) Illustration of a case where the maximum yield is at the maximum flux and the yield is constant for all set of fluxes. d) Illustration of a case where the 
maximum yield is at the maximum flux but the yield is not constant for all set of fluxes. e) Illustration of a case where the maximum yield is at not the maximum flux. 
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ui =
pi∑

J
pj (10)  

vi =
pi

max
(
pj
) (11) 

The variables vi and ui are bounded between 0 and 1, and p is the 
return on investment defined by Equation (12) 

pi = fcarboniri (12)  

Here fcarboni is the number of carbon atoms in the substrate through the ith 
pathway. 

Codes are available in GitHub: https://github.com/SysBioChalmers/ 
GEM2CB_model 

3. Results and discussions 

3.1. Optimized yield analysis for GEMs and the opt-yield-FBA 

Yield is a crucial requirement for industrial fermentation and com-
mercial production, which describes the units of product synthesized per 
unit of substrate consumed. As shown in Fig. 1a, the yield is defined as a 
fractional form of Y = rp

/
rs

, which is the ratio of the product output rate 

(rp) and the substrate uptake rate (rs). This optimization is a simplified 
linear-fractional programming (LFP) problem in mathematics, which is 
challenging to solve directly with current LP methods or tools. To be 
compatible with current GEM analysis tools and LP solvers, the LFP 
needs to be transformed into an LP. In Fig. 1b, we transform the 
objective function of yield optimization from a fraction into a linear 
formula. The optimization is subject to steady-states (S • r = 0) and 
reversibility bounds (rlb ≤ r ≤ rub). The directions of rp and rs are defined 
as being positive in the model and both reactions are irreversible 
because the product cannot be absorbed, and the substrate cannot be 
produced in this case. Based on the definition of yield, the denominator 
cannot be zero, and the additional constraints of rp ≥ 0 and rs > 0 are 
added. We assume there is a temporary yield (Ytemp ≥ 0) to approach the 
optimal yield (Ymax), and the objective function is set as rp − Ytemp • rs. In 
fact, when the Ytemp is set as the minimum, i.e. at zero, Ytemp • rs = 0, and 
the objective function will be rp, which means that the objective function 
is the same as maximizing the production rate and it can be solved by 

FBA. Thus, the initial value of Ytemp can be set as the yield when rate is 
optimized (YFBA). The objective function is set as the difference between 
the real production rate (rp) and the production rate from the substrate 
rate (rs) according to the temporary yield (Ytemp). In the first iteration, a 
vector of flux distribution that includes rp1 and rs1 is returned and can be 
used to generate a new Ytemp1 = rp1

/
rs1 

and the Ytemp1 which will be in-

tegrated into the objective function for the next round of optimization. 
The iteration is applied to find a yield value higher than the current 
Ytemp. If the objective function rp − Ytemp • rs is reaching zero, it means 
that the current Ytemp is the maximized yield. 

As shown in Fig. 1c–e, the potential relationships between substrate 
uptake rate (rs ,x − axis) and the production rate (rp, y-axis) are shown. If 
the model constraints are continuous and homogeneous, the rp and rs 

usually have a linear correlation (Fig. 1c), and the yield will be a con-
stant, which can be represented by the slope of the lines (grey dashed 
lines). In practice, inhomogeneous constraints are usually present in a 
GEMs, especially when enzymatic or expression constraints are inte-
grated (Sánchez et al., 2017; Yang et al., 2021). With inhomogeneous 
constraints, the flux distribution can be concave or convex, as in Fig. 1d 
and e. In Fig. 1d when there are limitations for growth requirements like 
maintaining basic growth or energy. As substrate uptake increases, the rp 

increases rapidly when growth requirements are fulfilled, and more 
substrates are used for products. In this case, the maximum yield (orange 
point) is reached to yield of maximized production rate rp (green point). 
In Fig. 1e when the model encounters more constraints with substrate 
uptake like oxygen limitation. The flux distributions of rp and rs could be 
described as convex and the state with maximized rp (green point) will 
not correspond to the state with maximized yield (orange point). The 
objective function of differences between the current calculated yield 
with the maximum yield is shown in blue text in Fig. 1e. Similarly, we 
can also use this strategy to get the minimum yield Ymin. When the 
substrate uptake rate is close to zero (rs→0), there is a problem of yield 
closing to infinite (Ymax→∞). That is against yield definitions and 
product cannot be produced without substrate and the substrate must 
bound larger than zero because the denominator of yield cannot be zero. 
Finally, the opt-yield-FBA could be considered as a derivative of the FBA 
method with an objective function of rp − Ytemp • rs, which can be used to 
search maximal yield with a serial FBA solution. 

Fig. 2. Overview of the HCM strategy and comparison with the traditional HCM. The HCM strategy in this study (top part) and the traditional HCM strategy (bottom 
part). In our HCM strategy, a yield space is calculated by the opt-yield-FBA from a complete GEM. All yield values of pathways from opt-yield-FBA are located on the 
boundaries of the yield space. The traditional HCM strategy processes small or medium size models and calculates EFMs to obtain the yield space. The yield values of 
EFMs are located both on the boundaries of space and inside of the yield space. The pathways from opt-yield-FBA or EFMs provide the master yield space for 
pathways selection by MYA and convex hull. The active pathways can be further selected with experimental data. Based on the pathways selected, the HCM approach 
can be applied. 
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3.2. The HCB strategy with opt-yield-FBA and application at the small 
scale 

Our HCM strategy gets the yield space by opt-yield-FBA and avoids 
the calculation difficulties associated with identification of EFMs. To 
obtain the yield space, there are two types of methods, one is to calculate 
all feasible pathways in a network like EFMs and EFVs, the other method 
is to identify the boundaries of the yield space by yield optimization like 
opt-yield-FBA. Usually, the second method can save computing sources 
for complex models because of few pathways calculation and focus on 
the boundaries of the yield space. In the second method like opt-yield- 
FBA, the range of yield values can be identified by maximizing and 
minimizing a single target product, for pairs of target products, the 
yields space can also be calculated by sampling. For example, as shown 

in Fig. 2, after getting the maximum and minimum yield values of Y1 
(Y1max, Y1min, X-axis), any values between Y1min and Y1max can be 
sampled as constraints to optimize the Y2 (Y-axis). After calculating the 
maximum and minimum yield values of Y2 in different sampled in-
tervals from Y1max and Y1min, the yield space of Y1 and Y2 can be ob-
tained. Compared to EFMs or EFVs, opt-yield-FBA can obtain yield 
spaces straightforwardly. The opt-yield-FBA algorithm can be imple-
mented by the FBA framework and is compatible with most current 
modeling tools or solvers since they process models by linear pro-
gramming such as COBRApy (Ebrahim et al., 2013). With the replace-
ment of EFMs by opt-yield-FBA, the strategy of HCM makes it possible to 
process complex GEMs directly and apply the HCMs approach to 
describe metabolic dynamics GEMs (Fig. 2). 

We first illustrate the HCM strategy by using a reduced E. coli 

Fig. 3. Overview of a reduced E. coli network used for illustration, the yield space, and simulation results. a) Overview of the receded E. coli network, which contains 
12 reactions and 14 metabolites. GLC (glucose), G6P (glucose 6-phosphate), T3P (fructose 1,6-biphosphate), PEP (phosphoenolpyruvate), PYR (pyruvate), AcCoA 
(acetyl coenzyme-A), SUC (succinate), FOR (formate), ACT (acetate), LAC (lactate), ETH (ethanol), B (biomass), CO2 and H2. b) The yield distributions are calculated 
by EFMs and opt-yield-FBA for acetate, ethanol, lactate, succinate, and formate. The grey dot indicates the pathway generated by opt-yield-FBA (the dark grey dots 
are overlapping yield values from different pathways), most of them located on the boundaries. The blue ‘+’ marker indicates the extreme point of opt-yield FBA 
pathways, and the dashed line indicates the convex hull of the yield space. The orange ‘x’ marker indicates the pathway by EFMs. c) The simulation of biomass and 
metabolic dynamics under anaerobic conditions. The dot indicates experimental data, while the lines are obtained from the simulation. 
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metabolic network under anaerobic conditions (Kim et al., 2008). This 
small-scale network contains 12 internal reactions and 19 metabolites 
(Table S1) (Kim et al., 2008). The main metabolic pathways under 
anaerobic conditions are shown in Fig. 3a, which include one substrate 
(glucose), five internal metabolites, and eight products. The simulation 
of the cybernetic model relies on seven external metabolites including 
glucose, succinate, formate, acetate, lactate, ethanol, and biomass. The 
first step of the strategy is yield space calculation. The biomass yield is 
defined as the flux of biomass divided by the flux of glucose consump-
tion, written as Ybiomass = rbiomass

/
rglucose

. The range of biomass yield was 

calculated by opt-yield-FBA. When calculating the minimum yield 
value, the optimization direction was set as ‘min’. The minimum and 
maximum yield values are 0.0112 and 0.027, respectively. Then, we 
divided the biomass yield range into ten intervals. For each biomass 
yield interval value, we set the biomass yield as a constraint of the 
model, and search for the minimum and maximum acetate yield (Yac.). 
For the biomass-acetate yield space, we obtained 22 pathways (10 equal 
intervals with both max and min, grew points in Fig. 3b), which form a 
convex set (dashed lines region in Fig. 3b). Furthermore, the smallest set 
of extreme points was obtained by the convex hull process and these 

extreme points can be represented as the entire yield space (blue ‘+’ in 
Fig. 3b. Finally, we obtained 22 pathways for each targeted metabolite, 
and 38 pathways at extreme points were selected to cover the five 
complete yield spaces. Compared to the yield space from EFM, the shape 
of yield space from opt-yield-FBA is the same as that from EFMs except 
for formate. The formate decomposition reaction (FOR => CO2 + H2) is 
an independent mode of EFMs without glucose consumption. Therefore, 
the formate yield of that EFM cannot be calculated without glucose 
consumption (the denominator of formate yield), but the formate can be 
decomposed freely in the model. With opt-yield-FBA, the glucose con-
sumption was bounded greater than zero to avoid this issue. After 
employing experimental data, six activity pathways were selected by 
MYA for cybernetic modeling. After estimating the parameters using 
experimental data by least squares, the simulation showed well agree-
ment with the experimental observations (Fig. 3c). 

3.3. The opt-yield-FBA based performance is robust for the medium scale 
network 

To test the availability and correctness of opt-yield-FBA for a larger 

Fig. 4. The yield spaces from EFMs, EFVs and opt-yield-FBA, and corresponding simulation using the E. coli core metabolic model. a) Yield spaces of acetate, ethanol, 
lactate, succinate, and formate by EFMs, EFVs, and opt-yield-FBA. The X-axis represents the biomass yields, and the Y-axis represents the product yields. The dots and 
markers denote the yield values distribution, and the line denotes the convex hull in a yield space. The colors of blue, green, and orange correspond to the EFM, EFV, 
and opt-yield-FBA respectively. The EFVs’ yield space is considered as a theoretically correct result. The yield space from opt-yield-FBA is the same as that of EFVs. 
EFMs have a larger yield space because inhomogeneous constraints in the model are not considered. b) The simulation of fermentation. The dots denote the 
experimental observations, while the lines denote the simulation from the cybernetic model. 
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metabolic network, a core model of E. coli containing 95 reactions and 
60 metabolites was applied (Orth et al., 2010a). The oxygen exchange 
reaction was set to be capable to simulate aerobic conditions. The model 
calculation generated 100,273 EFMs and 95,106 EFVs. We also calcu-
lated the pairwise yield space of five metabolites and biomass by 
opt-yield-FBA, and 110 opt-yield-FBA pathways were generated 
(Fig. 4a). As previously mentioned, the FEVs could consider inhomo-
geneous constraints better than EFMs, and the E. coli core model con-
tains many such constraints like minimal maintain energy bounds. The 
yield space from EFVs is considered as a theoretically correct result 
which is smaller than that from EFMs (Fig. 4a). The difference between 
the EFMs yield space (blue lines) and the EFVs yield space (green lines) 
may be related to the inhomogeneous constraints. The pathways from 
opt-yield-FBA are significantly less than the other two methods and are 
mainly located at the boundaries of the yield space. The yield space of 
opt-yield-FBA is almost the same as the EFVs’ with 99.888% ± 0.098% 
and 100% similarity in the convex hull area and parameters (Table S3 
and Fig. 4a), which indicates similar performance of opt-yield-FBA as 
EFVs’. More quantity comparison of EFMs, EFV and opt-yield-FBA are 
shown in Table S3. During the calculation, 110 pathways from 
opt-yield-FBA could represent the same yield space of 95,106 EFVs and a 
more accurate yield space of 100,273 EFMs. After that, we performed 

MYA based on the convex hull to further reduce the membership of the 
pathways and identified the smallest set of 38 pathways that cover the 
entire yield space. Finally, we identified five active pathways by 
experimental data to construct a cybernetic model to simulate the 
metabolic dynamics under aerobic conditions (A. Varma and Palsson, 
1994). The simulation result was shown in Fig. 4b, the dots are the 
experimental concentrations, and the lines are the simulation results of 
the cybernetic model. All model parameters can be found in Table S4. 

3.4. The metabolic dynamics prediction at the genome scale 

One of the challenges of the traditional hybrid cybernetic model 
approach is that the EFMs based methods are hard to process the com-
plex metabolic networks at the genome-scale. Here, we applied opt- 
yield-FBA with E. coli iML1515, which contains 1515 genes, 2719 re-
actions, and 1192 metabolites (Monk et al., 2017). In this case, the 
calculation of EFMs or EFVs using tools like efmtools (Terzer and Stel-
ling, 2008) is challenging due to the large computational demand. As 
previously described, opt-yield-FBA is an FBA based method and can be 
used to calculate iML1515 yield space of succinate, formate, acetate, 
lactate, and ethanol (Fig. 5a). There are 220 pathways generated in 
total. A following convex hull yield analysis was used to reduce the 

Fig. 5. The yield space analysis and simulation using the E. coli iML1515 model. a) The yield space of acetate, ethanol, lactate, succinate, and formate. The X-axis 
represents the biomass yields, and the Y-axis represents the product yields. The dots and markers denote the yield distribution of pathways, and the lines denote the 
yield space. The grey dots are all pathways generated by opt-yield-FBA (the dark grey dots are overlapping yield values from different pathways) and the red stars 
denote experimental data. The blue and orange lines are convex hulls which covering complete and 99% yield spaces. The red line denotes the convex hull of active 
pathways identified by MYA with experimental data. b) The cybernetic model simulation is under anaerobic conditions. The dots denote the experimental obser-
vations, and the lines denote simulations of cybernetic models. 
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number of pathways and 37 pathways were selected to represent the five 
pairwise yield spaces. We also calculated a set of pathways that covers 
99% of the volume of the original convex hull (orange line and * in 
Fig. 5a). As reference suggested (Song and Ramkrishna, 2009), the 
threshold was set as 99% and that threshold could reduce the number of 
pathways and has little effect on the yield space. We also tried different 
thresholds of the convex hull to test the robustness of yield spaces 
calculation shown in Fig. S3 and Table S6. Based on the experimental 
data (red stars in Fig. 5a) (Kim et al., 2008), we identified the final active 
pathways by MYA (red lines and ‘x’ in Fig. 5a), these are a minimal set of 
pathways that could cover the experimental yield. We collected the 
experimental data of six metabolites and biomass concentrations under 
anaerobic conditions. After estimation of the parameters, the cybernetic 
model was used to simulate dynamic conditions as shown in Fig. 5b. All 
metabolites concentration simulations agree with experimental data, 
especially formate degradation. The biomass formula and its molar mass 
should be considered, and the trend of biomass also agrees with exper-
imental data. All the model parameters can be found in Table S5. 

3.5. Prediction of multi-species interactions 

With the advancement of fermentation technology and the 
increasing recurrence of research systems, dynamic models are also 

widely applied to multi-species fermentation as well as for studying the 
gut microbiota. To evaluate our modeling approach, we tested multi- 
species models to test whether our method can be used to simulate the 
dynamics of microbial consortia. The first case includes a system con-
sisting of three yeast, Saccharomyces cerevisiae, Pichia stipites, and Kluy-
veromyces marxianus (Geng et al., 2012). This simple system was 
simulated by a reduced model by the traditional HCM, and we per-
formed our HCM strategy with a complete yeast GEM (Geng et al., 2012) 
(Lu et al., 2019). These three yeast have similar fermentation charac-
teristics, and most interspecific relationships are competitive for 
absorbing the same carbon source (Rouhollah et al., 2007). For 
simplicity we used the same GEM for the three species like done in the 
traditional HCM analysis (Geng et al., 2012) and the GEM were adopted 
from the Yeast8 model, which contains 3989 reactions and 2693me-
tabolites (Lu et al., 2019). 88 pathways were first identified to provide 
the master yield spaces and after the convex hull yield analysis, 17 
pathways were selected to cover 99% of the master yield space. We 
identified different sets of active pathways for the three species using 
MYA with different fermentation data. For S. cerevisiae mono-culture, 
nine active pathways are selected to cover the experimental yield 
space; for P. stipites 10 active pathways were selected, and 10 active 
pathways were selected for K. marxianus. As shown in Fig. 6a–e, we 
estimated a set of the parameters that could simulate the mono-culture 

Fig. 6. Use of the HCM strategy for predicting three yeast species interactions. a-c) The simulation of monoculture including Saccharomyces cerevisiae, Pichia stipites 
and Kluyveromyces marxianus. Both the biomass (log g/L) and metabolites concentrations (g/L) were shown. d) The simulation of two species co-culture of 
S. cerevisiae and P. stipites. e) The simulation of two species co-culture of P. stipites and K. marxianus. f) The prediction of three species co-culture. The dots denote the 
experimental observations, while the lines denote results generated by the cybernetic model simulation. 
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and two species co-culture. Next the same parameters were used to 
predict three-species co-cultures. Because the experimental date only 
observed the total biomass, for the culture of muti species, the biomass 
of different species was assumed to be the same. 

Complex systems such as the gut microbiota system are a challenge 
for mathematical modeling. Models of these complex systems often have 
high requirements for both modeling mechanisms and complete exper-
imental data. To validate the ability of our strategy in gut microbiota 
and understand its limitations for complex microbial communities, a 
three-bacterial cross-feeding community was selected (D’hoe et al., 
2018). These three species co-culture including representative gut mi-
crobial species Roseburia intestinalis L1-82, Faecalibacterium prausnitzii 
A2-165 and Blautia hydrogenotrophica S5a33 (D’hoe et al., 2018). All 
three species are capable of using fructose as the main carbon source. 
B. hydrogenotrophica is an acetate producer and formate consumer, while 
R. intestinalis and F prausnitzii are acetate consumers. All three species 
sequences are available on NCBI, the sequences numbers are 
NZ_GG657710.1, NZ_GG697168.2 NZ_LR027880.1. Three draft GEMs 
were constructed by Carveme (Machado et al., 2018). The 
B. hydrogenotrophica GEM contains 1719 reactions and 1195 metabo-
lites; the F prausnitzii GEM contains 1358 reactions and 989 metabolites; 
the R. intestinalis GEM contains 1724 reactions and 1215 metabolites. 
Because the three species have different substrate usage, the production 

yields were generated based on different substrates and different rates. 
All the yield calculations and pathways selection considered fructose as 
the carbon source, and acetate or formate as an alternative carbon 
source accordingly. After analyzing the convex hull yield, we finally 
selected 4, 5, and 5 active pathways for B. hydrogenotrophica, R. intesti-
nalis, and F prausnitzii separately. 

Because of the complexity of the experimental data and the differ-
ences in fermentation phenotypes of different strains, we did not get 
parameters to make the model perform as well as the previous cases. 
Therefore, we try to split the experimental data and use different com-
binations of experimental data to narrow down the parameters to 
improve the model performance. We tried to use only mono-culture data 
(Fig. 7, Table S8), only two-species co-culture data (Fig. S1), and both 
mono-culture and two-species co-culture data (Fig. S2) to estimate pa-
rameters separately and check the performance. First, the model pa-
rameters were estimated using mono-culture experimental data, and 
then applied to check two species and three species co-cultures 
(Table S8). For mono-cultures, shown in Fig. 7 a-c, some biomass and 
metabolites concentration agree with experimental data, but some 
mismatches were identified for F prausnitzii mono-culture (Fig. 7 b) 
where the acetate concentration was not simulated well. And in 
R. intestinalis, and F prausnitzii (Fig. 7b and c) mono-culture, during the 
stationary and decline phases, the carbon source is still present in the 

Fig. 7. The simulation of human gut microbial consortia with three members. a-c) The simulation of single species mono-culture of Roseburia intestinalis (R.i), 
Faecalibacterium prausnitzii (F.p), and Blautia hydrogenotrophica (B.h) d-f) The simulation of two species co-cultures. g) The simulation of three species co-cultures. The 
dots denote the experimental measurements, while the lines denote model simulations. Both the cells count (upper part), and metabolites concentrations (mM, lower 
part) are shown. 
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medium, but the number of cells no longer increases. In model results, 
there is no carbon source during the stationary and decline phases. The 
experimental growth medium data used in the original study (D’hoe 
et al., 2018) includes unknown carbon sources and that is one of the 
reasons why some metabolites are mismatched. For two species 
co-culture, shown in Fig. 7d–f, parts of biomass and metabolites con-
centration agree well with experimental data. The relationship between 
R. intestinalis and F prausnitzii is competition and their dual-culture 
simulation in Fig. 7d was better than the other two dual-culture in 
Fig. 7e and f. For three species co-culture, shown in Fig. 7 g-h, there are 
two different states are observed in the experiments, which are domi-
nated by R. intestinalis and B. hydrogenotrophica (Fig. 7g) or by 
F. prausnitzii and B. hydrogenotrophica (Fig. 7h), respectively. That two 
different states may be due to dependency on the initial species abun-
dance. Even though the model is not fitting quantitatively to all the 
experimental data, some species and metabolites are matching the 
experimental data or at least trends for the three species culture simu-
lations such as mono-culture and R. intestinalis and F prausnitzii 
dual-culture. We tried to improve model performance by integrating 
different experimental data sets to estimate the parameters 
(Figs. S1–S2). However, the prediction for three species co-culture was 
not as good as expected. Although the model performance can be 
improved by increasing the number of paths and parameters, or even 
more radical fitting methods. We believe that there are some limitations 
or conditions that are important for cybernetic model performance. The 
first one is the need for well-quantified experimental data (especially for 
the substrate uptake) because both the assumptions and pathways se-
lection steps of cybernetic modeling are based on yield. The experi-
mental growth medium data from reference (D’hoe et al., 2018) includes 
unknown carbon sources that may affect our model performance. The 
second limitation is that the model method is not sensitive to initial 
species abundance and cannot have two different results for three spe-
cies co-culture. As shown in Fig. 7g and h, two different states are ob-
tained and our model only simulated one state and failed to obtain a 
good fit. Since the initial abundances are very low for the three species, 
the slight change in the initial species abundance did not result in a 
significant change in the model results. The last point that might 
improve the performance of the model is the need to adjust the weights 
according to the different systems when estimating the parameters. For 
example in this system, there are four metabolites and biomass for three 
species and eight 8 scenarios to simulate (Fig. 7 a-h), the weight of ac-
etate can be increased because it is a key metabolite for this 
cross-feeding system. Moreover, we believe that interspecies effects may 
be also an important factor affecting the performance of the model, 
which is also a reason the model of the three-bacterial cross-feeding 
system did not perform as well as the previous three-yeast model. 

4. Discussions 

The concept of yield is deeply rooted in metabolic engineering, and 
the optimization difference between rate and yield had been clearly 

articulated by Klamt and Schuster (Klamt et al., 2018; Schuster et al., 
2008). When the growth environment is stressed and resources are 
constrained, the survival goal for an organism may be is how to use the 
substrate effectively, rather than maximizing the growth rate. This 
assumption is consistent with the hypothesis underlying cybernetic 
models, which regulates the allocation of resources to achieve the 
maximum return on investment. In industrial production, the yield re-
quirements of strains are sometimes more important than the rate re-
quirements, because the production rate can be compensated by 
increasing fermentation facilities, however, the yield cannot be 
compensated. Especially when the fermentation substrate is expensive, 
the cost of the substrate will be an essential economic factor. In 
modeling part, with the improvement of modeling techniques and more 
information can be integrated into GEMs such as incorporated enzy-
matic constraints like GECKO (Sánchez et al., 2017; Yang et al., 2021). 
EFMs and EFVs face challenges when processing large-scale models with 
many inhomogeneous constraints, requiring extensive computational 
resources to perform a large number of pathways calculations. The 
opt-yield-FBA can be an alternative of EFMs in the HCM approach 
because it can obtain yield space using GEMs with lower computational 
demands. As shown in Table 2, opt-yield-FBA calculated 110 pathways 
for the E. coli core model, while EFMs and EFVs calculated ~100,000 
pathways. 

When computing yield space, a potential question is how to deal with 
multi products yield space at the same time, not only pairwise products 
yield space. The yield space for more than two products is a multi- 

Table 2 
Yield space and its perimeter and area.  

GEMs reactions metabolites EFM/EFV Opt-Yield-FBA Convex hull Active path/final path 

Receded E. coli 12 19 8/- 110 38 6 
E. coli core 95 60 100,273/95,106 110 37 5 
iML1515 2712 1192 − /− a 210 20 (99% convex hull) 8 
Yeast 3989 2693 − /− a 88 17 (99%) 9 
S. cerevisiae 
P. stipitis 3989 2693 − /− a 88 17 (99%) 10 
K. marxianus 3989 2693 − /− a 88 17 (99%) 10 
B. hydrogenotrophica 1719 1195 − /− a 132 14 (99%) 4 
F prausnitzii 1358 989 − /− a 132 22 (99%) 5 
R. intestinalis 1724 1215 − /− a 132 16 (99%) 5  

a -: EFMs/EFVs cannot be calculated. 

Table 3 
Multi-dimensional (multi-products) yield space.  

Relative 
Valuesa 

(Mean ±
std) 

EFVs 
volumeb 

opt- 
yield- 
FBA 
volume 

EFMs 
volume 

EFVs 
areac 

opt- 
yield- 
FBA 
area 

EFMs 
area 

2-D 
biomass- 
related 

1 0.999 ±
0.001 

1.064 
± 0.024 

1 1.000 
± 0.000 

1.009 
±

0.019 
2-D All 1 0.957 ±

0.081 
1.025 
± 0.032 

1 0.997 
± 0.006 

1.007 
±

0.012 
3-D 1 0.898 ±

0.109 
1.036 
± 0.040 

1 0.930 
± 0.078 

1.006 
±

0.006 
4-D 1 0.831 ±

0.113 
1.049 
± 0.040 

1 0.841 
± 0.101 

1.005 
±

0.003 
All 1 0.891 ±

0.115 
1.037 
± 0.038 

1 0.918 
± 0.101 

1.006 
±

0.008  

a Relative values: divided by EFV values. 
b Volume: volume of the convex hull when input dimension >2. When the 

space is 2-dimensional, this is the area of the convex hull. 
c Area: surface area of the convex hull when input dimension >2. When the 

space is 2-dimensional, this is the perimeter of the convex hull. 
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dimensional polygon and vector in geometric and algebraic separately. 
We compared the properties of multi-dimensional yield space from 
EFMs, EFVs and opt-yield-FBA for a reduced E. coli core model and the 
EFVs’ yield space is still considered the theoretically correct result 
(Table 3 and Table S9). For biomass-related 2-dimensional yield space 
(one dimension is biomass yield the other dimension is other product 
yield), the opt-yield-FBA convex hull covered 99.9% volume and 100% 
area of the EFVs’ convex hull. And for all multi-dimensional yield space, 
the opt-yield-FBA convex hull covered 89.1% volume and 91.8% area of 
EFVs’ convex hull. The coverage could be improved by increasing the 
step number of calculations with smaller sampling intervals. Even 
though the opt-yield-FBA could provide most coverage (89.1%) of multi- 
dimensional yield space, how to improve the coverage or even provide a 
theoretically correct result like EFVs’ still is promising, especially 
helpful for pathway selections. 

A challenge for advancing HCM is the need for more precise substrate 
data because both yield analysis and cybernetic modeling rely on the 
analysis of substrate uptake. Especially for multi-species cross-feeding or 
human gut microbiota community simulation. As the cybernetic 
modeling is a parametric modulation model, the balance of accuracy and 
over-fitting should also be considered. Some random sampling methods, 
such as the Bayesian-based method (Machado et al., 2018), may be an 
alternative for parameter estimation in cybernetic modeling because the 
result will be a normally distributed range rather than taking a specific 
value. The distribution of different combinations of parameters for the 
sampling estimation is also a direction for further study. 

In conclusion we present an optimized yield analysis algorithm (opt- 
yield-FBA) and a HCM framework to simulate the metabolic dynamics at 
the genome-scale without the need for model reduction and EFMs 
calculation. The opt-yield-FBA can search for the maximal yield by 
solving a series of linear programming problems. The opt-yield-FBA 
algorithm could be implemented by the flux balance analysis (FBA) 
framework and is compatible with most current modeling tools. With 
the introduction of opt-yield-FBA, HCM can directly get the yield spaces 
and avoid the bottleneck of EFMs, and it will therefore can possible to 
apply the HCM strategy on genome-scale metabolic networks. 
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