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Abstract: The Conflict-Free Electric Vehicle Routing Problem (CF-EVRP) is a combinatorial
optimization problem of designing routes for vehicles to visit customers such that a cost function,
typically the number of vehicles or the total travelled distance, is minimized. The CF-EVRP
involves constraints such as time windows on the delivery to the customers, limited operating
range of the vehicles, and limited capacity on the number of vehicles that a road segment
can simultaneously accommodate. In previous work, the compositional algorithm ComSat was
introduced and that solves the CF-EVRP by breaking it down into sub-problems and iteratively
solve them to build an overall solution. Though ComSat showed good performance in general,
some problems took significant time to solve due to the high number of iterations required to
find solutions that satisfy the road segments’ capacity constraints. The bottleneck is the Path
Changing Problem, i.e., the sub-problem of finding a new set of shortest paths to connect a subset
of the customers, disregarding previously found shortest paths. This paper presents an improved
version of the PathsChanger function to solve the Path Changing Problem that exploits the
unsatisfiable core, i.e., information on which constraints conflict, to guide the search for feasible
solutions. Experiments show faster convergence to feasible solutions compared to the previous
version of PathsChanger .

1. INTRODUCTION

We consider scheduling a fleet of mobile robots, in the
sequel referred to as Automated Guided Vehicles (AGVs),
that pick-up and deliver components to workstations within
specified time-windows. The AGVs move on a predefined
road network, where each road segment has a maximum
number of AGVs it can accommodate at a specific time.
The problem is motivated by an industrial need to develop
more flexible logistic systems to deliver components just-
in-time to an assembly line.

In this scenario, in addition to time-windows in which
the components should be delivered, a scheduler needs to
consider additional constraints. First, AGVs have a limited
operating range and need to recharge their battery when
the state-of-charge becomes low. Second, jobs have specific
requirements on the AGV eligible to execute them. Finally,
the number of AGVs on road segments and workstations
are limited to allow low-level trajectory planning problems
to be feasible. Thus, we define the capacity of the road
segments, intersections, and workstations and include
capacity constraints. A schedule is said to be conflict-free
if it fulfills the capacity constraints at all times.
⋆ We gratefully acknowledge financial support from Chalmers AI

Research Centre (CHAIR), ITEA3-projektet AIToC (Artificial Intelli-
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The problem of computing conflict-free routes was first
introduced in Krishnamurthy et al. (1993) and tackled
by means of column generation. In Corréa et al. (2007),
conflict-free routing in combination with scheduling of jobs
for flexible manufacturing systems is discussed. An ant
colony algorithm is applied to the problem of job shop
scheduling and conflict free routing of AGVs by Saidi-
Mehrabad et al. (2015). In Yuan et al. (2016), a collision-
free path planning for multi AGV systems based on the
A∗ algorithm is presented. Another heuristic approach
to solve the conflict-free routing problem with storage
allocation is presented by Thanos et al. (2019). In Mu-
rakami (2020), a MILP formulation to design conflict-free
routes for capacitated vehicles is presented. In Zhong et al.
(2020) is presented a hybrid evolutionary algorithm to deal
with conflict-free AGV scheduling in automated container
terminals, and Chen et al. (2021) handles the problem
of conflict-free routing of AGVs by a meta-heuristic im-
provement strategy based on large neighbourhood search.
Hence, conflict-free routing and scheduling has been ad-
dressed previously, but to the best of our knowledge,
there is no work in the literature that tackles all above
mentioned constraints at once. Therefore, Roselli et al.
(2021) introduced the Conflict-Free Electric Vehicle Routing
Problem (CF-EVRP). The CF-EVRP is an extension of
the vehicle routing problem (VRP) Dantzig and Ramser
(1959), involving the additional constraints. In Roselli et al.
(2022) a compositional algorithm, ComSat, for solving the
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Knut Åkesson ∗

∗ Department of Electrical Engineering, Chalmers University of
Technology, Sweden (e-mail:{rsabino, fabian, knut}@chalmers.se).
∗∗ Department of Mechanical Engineering, Eindhoven University of

Technology, Netherlands (e-mail:r.m.vader@student.tue.nl)

Abstract: The Conflict-Free Electric Vehicle Routing Problem (CF-EVRP) is a combinatorial
optimization problem of designing routes for vehicles to visit customers such that a cost function,
typically the number of vehicles or the total travelled distance, is minimized. The CF-EVRP
involves constraints such as time windows on the delivery to the customers, limited operating
range of the vehicles, and limited capacity on the number of vehicles that a road segment
can simultaneously accommodate. In previous work, the compositional algorithm ComSat was
introduced and that solves the CF-EVRP by breaking it down into sub-problems and iteratively
solve them to build an overall solution. Though ComSat showed good performance in general,
some problems took significant time to solve due to the high number of iterations required to
find solutions that satisfy the road segments’ capacity constraints. The bottleneck is the Path
Changing Problem, i.e., the sub-problem of finding a new set of shortest paths to connect a subset
of the customers, disregarding previously found shortest paths. This paper presents an improved
version of the PathsChanger function to solve the Path Changing Problem that exploits the
unsatisfiable core, i.e., information on which constraints conflict, to guide the search for feasible
solutions. Experiments show faster convergence to feasible solutions compared to the previous
version of PathsChanger .

1. INTRODUCTION

We consider scheduling a fleet of mobile robots, in the
sequel referred to as Automated Guided Vehicles (AGVs),
that pick-up and deliver components to workstations within
specified time-windows. The AGVs move on a predefined
road network, where each road segment has a maximum
number of AGVs it can accommodate at a specific time.
The problem is motivated by an industrial need to develop
more flexible logistic systems to deliver components just-
in-time to an assembly line.

In this scenario, in addition to time-windows in which
the components should be delivered, a scheduler needs to
consider additional constraints. First, AGVs have a limited
operating range and need to recharge their battery when
the state-of-charge becomes low. Second, jobs have specific
requirements on the AGV eligible to execute them. Finally,
the number of AGVs on road segments and workstations
are limited to allow low-level trajectory planning problems
to be feasible. Thus, we define the capacity of the road
segments, intersections, and workstations and include
capacity constraints. A schedule is said to be conflict-free
if it fulfills the capacity constraints at all times.
⋆ We gratefully acknowledge financial support from Chalmers AI

Research Centre (CHAIR), ITEA3-projektet AIToC (Artificial Intelli-

gence supported Tool Chain in Manufacturing Engineering), and the

Wallenberg AI, Autonomous Systems and Software program (WASP)

funded by the Knut and Alice Wallenberg Foundation.

The problem of computing conflict-free routes was first
introduced in Krishnamurthy et al. (1993) and tackled
by means of column generation. In Corréa et al. (2007),
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The contributions in this paper are: (i) exploitation of SMT
solvers’ MUC to extract information about the infeasibility
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for a VRP; (ii) use of such information to find conflict-
free schedules; (iii) performance comparison between the
unguided and MUC guided paths search over a set of
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The remainder of the paper is organized as follows. Pre-
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the mathematical models of the sub-problems that form
the CFPS and how it is improved using the MUC from
the Capacity Verification Problem. Proof of soundness and
completeness of the procedure is provided in Section 4. In
Section 5, the results of the analysis over a set of problem
instances are presented. Finally, conclusions are drawn in
Section 6.

2. PRELIMINARIES

In the CF-EVRP the plant layout is represented by a
finite, strongly connected, weighted, directed graph, where
edges represent road segments and nodes represent either
intersections between road segments or customers’ locations.
A customer is defined by a unique (numerical) identifier,
a location, and a time window, i.e., a lower and upper
bound that represent the earliest and latest arrival time
allowed to serve the customer. Edges have two attributes,
the first representing the road segment’s length, and the
second its capacity. The capacity is 2 if two vehicles can
simultaneously travel in opposite directions, 1 otherwise.

The following definitions are provided:

• Node: a location in the plant. A node can only
accommodate one vehicle at a time unless it is a hub
node that can accommodate an arbitrary number of
vehicles.

N : a finite set of nodes.
NH ⊆ N : the set of hub nodes.

• Edge: a road segment that connects two nodes.
E ⊆ N ×N : the finite set of direct edges.
ē: the reverse edge of edge e ∈ E .
de ∈ R+: the length of edge e ∈ E .
ge ∈ {1, 2}: the capacity of edge e ∈ E .

• Time horizon: a fixed, continuous point of time when
all jobs have ended, assuming they start at time 0.

T : the time horizon.
• Customer : Entity representing a task to be executed
by a vehicle, e.g., a pickup or delivery of material,
that needs to be visited exactly once by the vehicle.
A customer is always associated with a node where
the pickup/delivery operation is executed, and has a
time window indicating the earliest and latest time
at which it can be visited. Unless explicitly given, the
time window is the entire time span [0, T ].
Let K be the finite set of all customers, and let
lk, uk ∈ R+, k ∈ K be the time window’s lower
(lk) and upper (uk) bound for customer k such that
uk > lk.
Also let sk ∈ R+ and Lk ∈ N , for k ∈ K, be the
service time and location of customer k, respectively.
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Abstract: The Conflict-Free Electric Vehicle Routing Problem (CF-EVRP) is a combinatorial
optimization problem of designing routes for vehicles to visit customers such that a cost function,
typically the number of vehicles or the total travelled distance, is minimized. The CF-EVRP
involves constraints such as time windows on the delivery to the customers, limited operating
range of the vehicles, and limited capacity on the number of vehicles that a road segment
can simultaneously accommodate. In previous work, the compositional algorithm ComSat was
introduced and that solves the CF-EVRP by breaking it down into sub-problems and iteratively
solve them to build an overall solution. Though ComSat showed good performance in general,
some problems took significant time to solve due to the high number of iterations required to
find solutions that satisfy the road segments’ capacity constraints. The bottleneck is the Path
Changing Problem, i.e., the sub-problem of finding a new set of shortest paths to connect a subset
of the customers, disregarding previously found shortest paths. This paper presents an improved
version of the PathsChanger function to solve the Path Changing Problem that exploits the
unsatisfiable core, i.e., information on which constraints conflict, to guide the search for feasible
solutions. Experiments show faster convergence to feasible solutions compared to the previous
version of PathsChanger .

1. INTRODUCTION

We consider scheduling a fleet of mobile robots, in the
sequel referred to as Automated Guided Vehicles (AGVs),
that pick-up and deliver components to workstations within
specified time-windows. The AGVs move on a predefined
road network, where each road segment has a maximum
number of AGVs it can accommodate at a specific time.
The problem is motivated by an industrial need to develop
more flexible logistic systems to deliver components just-
in-time to an assembly line.

In this scenario, in addition to time-windows in which
the components should be delivered, a scheduler needs to
consider additional constraints. First, AGVs have a limited
operating range and need to recharge their battery when
the state-of-charge becomes low. Second, jobs have specific
requirements on the AGV eligible to execute them. Finally,
the number of AGVs on road segments and workstations
are limited to allow low-level trajectory planning problems
to be feasible. Thus, we define the capacity of the road
segments, intersections, and workstations and include
capacity constraints. A schedule is said to be conflict-free
if it fulfills the capacity constraints at all times.
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The problem of computing conflict-free routes was first
introduced in Krishnamurthy et al. (1993) and tackled
by means of column generation. In Corréa et al. (2007),
conflict-free routing in combination with scheduling of jobs
for flexible manufacturing systems is discussed. An ant
colony algorithm is applied to the problem of job shop
scheduling and conflict free routing of AGVs by Saidi-
Mehrabad et al. (2015). In Yuan et al. (2016), a collision-
free path planning for multi AGV systems based on the
A∗ algorithm is presented. Another heuristic approach
to solve the conflict-free routing problem with storage
allocation is presented by Thanos et al. (2019). In Mu-
rakami (2020), a MILP formulation to design conflict-free
routes for capacitated vehicles is presented. In Zhong et al.
(2020) is presented a hybrid evolutionary algorithm to deal
with conflict-free AGV scheduling in automated container
terminals, and Chen et al. (2021) handles the problem
of conflict-free routing of AGVs by a meta-heuristic im-
provement strategy based on large neighbourhood search.
Hence, conflict-free routing and scheduling has been ad-
dressed previously, but to the best of our knowledge,
there is no work in the literature that tackles all above
mentioned constraints at once. Therefore, Roselli et al.
(2021) introduced the Conflict-Free Electric Vehicle Routing
Problem (CF-EVRP). The CF-EVRP is an extension of
the vehicle routing problem (VRP) Dantzig and Ramser
(1959), involving the additional constraints. In Roselli et al.
(2022) a compositional algorithm, ComSat, for solving the
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dressed previously, but to the best of our knowledge,
there is no work in the literature that tackles all above
mentioned constraints at once. Therefore, Roselli et al.
(2021) introduced the Conflict-Free Electric Vehicle Routing
Problem (CF-EVRP). The CF-EVRP is an extension of
the vehicle routing problem (VRP) Dantzig and Ramser
(1959), involving the additional constraints. In Roselli et al.
(2022) a compositional algorithm, ComSat, for solving the

CF-EVRP is proposed. ComSat breaks down CF-EVRP
into sub-problems and iteratively solves these to find a
feasible solution to the overall problem. Experimental and
analytical evaluation shows that ComSat generates high-
quality but not necessarily optimal solutions. Briefly, Com-
Sat computes routes to serve the customers, and assigns
vehicles to the routes attempting to make the execution of
the system conflict-free. In a plant there can be several ways
to travel from one customer’s location to another. Initially,
ComSat uses the shortest paths among the customers’
locations when designing the routes. However, if a feasible
schedule cannot be achieved using the shortest paths,
alternative paths have to be found, which is handled by the
Conflict-free Paths Search (CFPS). CFPS is composed of
two main functions; the PathsChanger function, that finds
alternative sets of paths if the current schedule violates
the capacity constraints, and the CapacityVerifier function,
that checks whether the schedule is conflict-free or not.

Experiments show that when a solution computed using
the shortest paths violates the capacity constraints, finding
alternative paths using the PathsChanger function may
require multiple iterations. This does not come unexpected,
since the number of possible paths in a graph can be high,
and minimizing the cumulative length while looking for
alternative paths does not guarantee that the schedule
will be conflict-free. In this paper we focus on the CFPS
and present improved versions of the PathsChanger and
CapacityVerifier that, in many cases, find feasible solutions
faster.

The sub-problems in ComSat are modelled as Satisfiability
Modulo Theory (SMT) problems Barrett et al. (2009);
De Moura and Bjørner (2011), as SMT solvers have shown
to be efficient in solving combinatorial problems Weber
et al. (2019).

Moreover, some SMT solvers come with algorithms that
allow them to deal with optimization problems Sebastiani
and Trentin (2020). Two sub-problems in ComSat, marked
by the round boxes in Fig. 1 (see below) are optimization
problems.

For the CFPS polynomial time algorithms exist to find
paths in graphs, Gross and Yellen (2003). However, mod-
elling the Path Changing Problem as an SMT problem is
beneficial as it allows to define problem-specific require-
ments, such as not returning solutions that are already
proven infeasible because they violate the capacity con-
straints. Moreover, when a problem is infeasible, SMT
solvers have the ability to return a Minimal Unsatisfiable
Core (MUC ) Cimatti et al. (2011), i.e., one of the (possibly
many) smallest subsets of constraints that make the prob-
lem infeasible. The MUC can provide useful information
about why a problem is infeasible and can therefore be
used to guide the search towards a feasible solution Selsam
and Bjørner (2019).

When dealing with the CF-EVRP, the MUC can be
extracted when the Capacity Verification Problem is
infeasible and used to define additional constraints for
the Path Changing Problem, to increase the chances of
finding a feasible schedule.

The contributions in this paper are: (i) exploitation of SMT
solvers’ MUC to extract information about the infeasibility
of an SMT formula representing a conflicting schedule
for a VRP; (ii) use of such information to find conflict-
free schedules; (iii) performance comparison between the
unguided and MUC guided paths search over a set of
CF-EVRP problem instances.

The remainder of the paper is organized as follows. Pre-
liminaries are presented in Section 2. Section 3 presents
the mathematical models of the sub-problems that form
the CFPS and how it is improved using the MUC from
the Capacity Verification Problem. Proof of soundness and
completeness of the procedure is provided in Section 4. In
Section 5, the results of the analysis over a set of problem
instances are presented. Finally, conclusions are drawn in
Section 6.

2. PRELIMINARIES

In the CF-EVRP the plant layout is represented by a
finite, strongly connected, weighted, directed graph, where
edges represent road segments and nodes represent either
intersections between road segments or customers’ locations.
A customer is defined by a unique (numerical) identifier,
a location, and a time window, i.e., a lower and upper
bound that represent the earliest and latest arrival time
allowed to serve the customer. Edges have two attributes,
the first representing the road segment’s length, and the
second its capacity. The capacity is 2 if two vehicles can
simultaneously travel in opposite directions, 1 otherwise.

The following definitions are provided:

• Node: a location in the plant. A node can only
accommodate one vehicle at a time unless it is a hub
node that can accommodate an arbitrary number of
vehicles.

N : a finite set of nodes.
NH ⊆ N : the set of hub nodes.

• Edge: a road segment that connects two nodes.
E ⊆ N ×N : the finite set of direct edges.
ē: the reverse edge of edge e ∈ E .
de ∈ R+: the length of edge e ∈ E .
ge ∈ {1, 2}: the capacity of edge e ∈ E .

• Time horizon: a fixed, continuous point of time when
all jobs have ended, assuming they start at time 0.

T : the time horizon.
• Customer : Entity representing a task to be executed
by a vehicle, e.g., a pickup or delivery of material,
that needs to be visited exactly once by the vehicle.
A customer is always associated with a node where
the pickup/delivery operation is executed, and has a
time window indicating the earliest and latest time
at which it can be visited. Unless explicitly given, the
time window is the entire time span [0, T ].
Let K be the finite set of all customers, and let
lk, uk ∈ R+, k ∈ K be the time window’s lower
(lk) and upper (uk) bound for customer k such that
uk > lk.
Also let sk ∈ R+ and Lk ∈ N , for k ∈ K, be the
service time and location of customer k, respectively.
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• Route: an ordered set of unique customers.
rj = ⟨kj1, . . . , kjm⟩, m ≤ |K|, kji ∈ K,

i = 1, . . . ,m, kjl ̸= kji for i ̸= l.
A route can at most include all customers, therefore
m ≤ |K|.

• Route set : a set of routes such that each customer
belongs to exactly one route, thus guaranteeing that
all customers are served.

R = {r1, . . . , rm}, m ≤ |K|
A route contains at least one customer, hence m ≤ |K|.

• Route start : the starting time τ r of route r, computed
by the function Assign. Γ is the set that contains the
route start of each route.

Γ = {τ r ∈ R | r ∈ R}
• Pair Set of route r: set containing the sequence of
customers of a route r = ⟨k1, . . . , km⟩, grouped as
pairs in sequence.

Pr = {⟨k1, k2⟩, ⟨k2, k3⟩, . . . , ⟨km−1, km⟩}
• Path: ordered set of unique nodes. It is used to keep

track of how vehicles are travelling among customers
of routes, since each pair of customers in a route is
connected by a path.

θp = ⟨n1, . . . , nm⟩, p ∈ Pr, m ≤ |N |,
ni ∈ N , i = 1, . . . ,m

• Edge sequence: ordered set of unique edges for a given
path θp.

δp = ⟨e1, . . . , em⟩, p ∈ Pr, m = |θp| − 1,
ei ∈ E , i = 1, . . . ,m

In order to clarify which part of ComSat is analyzed and
improved in this work, let us recap briefly how the algorithm
works. Fig. 1 shows a simplified flowchart of ComSat that
illustrate the concepts of this paper. The first step of
ComSat is to design a set of routes R to serve all the
customers; at this point, the shortest path between any two
customers is computed using Dijkstra’s algorithm Dijkstra
(1959).

This optimization problem is handled by the function
Router and must guarantee that the routes meet specific
requirements such as maximum length, specific ordering
among the customers and time windows. If this step is
infeasible the CF-EVRP instance has no solution and the
algorithm terminates. If this step is feasible, the function
Assign will try to allocate available vehicles to the routes
and compute a start time τr, ∀r ∈ R, to the routes. If
this step is infeasible then Router will try to find different
routes, but if it is feasible, the CapacityVerifier checks if
the current set of routes is conflict-free. More details on
the functions Router and Assign can be found in Roselli
et al. (2022).

2.1 The minimal UnsatCore

For infeasible problems, there can be identified a subset
of the constraints that conflict, meaning they cannot all
simultaneously be satisified. Such a subset is called an
Unsat Core. An Unsat Core with the property that removing
any one of the constraints makes the UnsatCore feasible,
is said to be minimal.

Start

Router

feasible?Infeasible

Assign

feasible?

Capacity
Verifier

feasible? Schedule

PathsChanger

feasible?
Conflict-free Paths Search

No

Yes

No

Yes

Yes

No
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Fig. 1. Flowchart of ComSat.

Formally, given an SMT formula φ and set of conflicting
constraints C ⊆ φ, C is a MUC of φ if removing any
constraint Ci ∈ C makes C\Ci no longer infeasible; removing
C removes the particular conflict represented by the MUC .
Consequently, for an infeasible problem with a MUC C,
adding to the problem a constraint that prevents all the
constraints in C to be simultaneously active will resolve
this particular conflict.

The näıve approach to MUC extraction, Dershowitz et al.
(2006), successively removes constraints and solves the
problem again; if the problem is still infeasible after a
constraint has been removed that constraint does not
belong to a MUC . There exist more efficient approaches
though; the MUC Huang (2005) algorithm based on
efficient manipulation of Binary Decision Trees guarantees
the extraction of a minimal UnsatCore. Nadel (2010)
presents an algorithm based on the resolution graph
Kroening and Strichman (2016) for MUC extraction. Nadel
et al. (2013) improves the resolution based algorithm using
model rotation and path strengthening.

3. THE CONFLICT-FREE PATHS SEARCH

In this section the two sub-problems that form the CFPS
are presented. The Capacity Verification Problem is mod-
elled as a job shop problem (JSP), in order to exploit
the good performance of the SMT solver Z3 Bjørner et al.
(2015) in dealing with JSPs, as demonstrated in Roselli
et al. (2018). The model formulation for the Path Changing
Problem is inspired by Aloul et al. (2006).

The following logical operators are used as a shorthand
to express cardinality constraints Sinz (2005) in the sub-
problems:

EN(A, n) : exactly n variables in the set A are true;
If(c, o1, o2) : if c is true returns o1, else returns o2.

We will write ENm∈M (m,n) to denote EN(
⋃

m∈M

{m}, n) in

order to shorten the notation.

3.1 The Capacity Verification Problem

The Capacity Verification Problem aims to find a feasible
schedule for the vehicles, where the routes that the vehicles
are assigned to satisfy the capacity constraints of the edges.

In this work the Capacity Verification Problem, as defined
in Roselli et al. (2022), has been extended to account for
pairs as well, since the information about conflicts must be
related to a specific pair to define additional constraints in
the PathsChanger .

Let nrpe be the node visited before edge e of pair p of route
r, and let erpn be the node visited before node n on pair
p of route r. Similarly, let nrpe be the node visited after
edge e of pair p of route r, and let erpn be the edge visited
after node n on pair p route r. Let p0r be the first pair of
route r and n∗

r be its starting node.

Example of Routes, Pairs, Nodes, and Edges
Let K = {k1, . . . , k7} and N = {n1, . . . , n20}. Let Lk1

= n1

and Lk2 = n7, and assume two routes designed to serve all
customers: r1 = ⟨k1, k2, k5, k7⟩, r2 = ⟨k3, k4, k6⟩.

In order to clarify the notation introduced above, let us
analyze r1. First, the set of pairs for r1 is defined as
Pr1 = {⟨k1, k2⟩, ⟨k2, k5⟩, ⟨k5, k7⟩}.
Then, let us assume that the path and edge sequence for
pair ⟨k1, k2⟩ are the following:
θ⟨k1,k2⟩ = ⟨n1, n2, n4, n5, n7⟩,
δ⟨k1,k2⟩ = ⟨⟨n1, n2⟩, ⟨n2, n4⟩, ⟨n4, n5⟩, ⟨n5, n7⟩⟩.
Then p0r1 = ⟨k1, k2⟩ and n∗

r1 = n1. Also, let p = ⟨k1, k2⟩;
then for e = ⟨n1, n2⟩, nr1pe = n1, and nr1pe = n2; for
n = n1, e

r1pn = ⟨n1, n2⟩, and for n = n2, er1pn = ⟨n1, n2⟩.

For each node it must also be specified whether there
exists a time window, since some of the nodes are only
intersections of road segments in the real plant, while others
are actual customers. Let lrpn and urpn be the earliest and
latest arrival time, respectively, at node n of pair p of route
r; let srpn be the service time at node n of pair p of route r.
Finally, let γ > 0 be a small real constant used to prevent
swapping of vehicles’ positions between a node and the
previous or following edge.

The Capacity Verification Problem decision variables are:

x rpn: non-negative real variable that models when a
vehicle executing route r starts using node n in pair
p;
yrpe: non-negative real variable that models when a
vehicle executing route r starts using edge e in pair p;

The model for the Capacity Verification Problem is:

x rp0
rn

∗
r
≥ τ r, ∀r ∈ R (1)

yrpe ≥ x rpnrpe
+ srpnrpe

, ∀r ∈ R, p ∈ Pr, e ∈ δp (2)

x rpn = yrperpn + derpn , ∀r ∈ R, p ∈ Pr, n ∈ θp (3)

x rpn ≥ lrpn ∧ x rpn ≤ urpn,

∀r ∈ R, p ∈ Pr, n ∈ θp (4)

x r1p1n ≥ yr2p2er1p1n + γ ∨ x r2p2n ≥ yr1p1er2p2n + γ,

∀r1, r2 ∈ R, r1 ̸= r2, p1 ∈ Pr1 , p2 ∈ Pr2

n ∈ θp1 ∩ θp2, n /∈ NH (5)

yr1p1e ≥ yr2p2e + γ ∨ yr2p2e ≥ yr1p1e + γ,

∀r1, r2 ∈ R, r1 ̸= r2, p1 ∈ Pr1 , p2 ∈ Pr2 ,

e ∈ δp1
∩ δp2

(6)

yr1p1e1 ≥ yr2p2e2 + de2 ∨ yr2p2e2 ≥ yr1p2e1 + de1 ,

∀r1, r2 ∈ R, r1 ̸= r2, p1 ∈ Pr1 , p2 ∈ Pr2 ,

e1 ∈ δp1
, e2 ∈ δp2

, e1 = ē2, ge1 = ge2 = 1 (7)

(1) constrains the start time of a route; (2) and (3) define
the precedence among nodes and edges to visit in a route;
(4) enforces time windows on the nodes that correspond to
the customers; (5) prevents vehicles from using the same
node at the same time; (6) and (7) constrain the transit of
vehicles over the same edge. If two vehicles are using the
same edge from the same node, one has to start at least
γ after the other and if two vehicles are using the same
edge from opposite nodes, one has to fully transit before
the other one can start.

Based on the model described above, the algorithm Capac-
ityVerifier (CV ) is defined, that takes a set of routes R,
the start times in Γ, and the current set of paths CP as
input and returns:

• CFS , a list that expresses where each vehicle is at
each time; this is empty if the problem is infeasible.

• C̄, the UnsatCore relative to constraints (5)-(7) (see
Section 3.3); this is empty if the problem is feasible.

3.2 Paths Changing Problem

In the Paths Changing Problem, alternative paths are
computed to connect the consecutive customers of each
route. Finding alternative paths may be necessary when,
for a given set of routes R and starting times Γ, no feasible
schedule exists. The Capacity Verification Problem may
be infeasible due to the current set of paths that connect
the customers’ locations, therefore a different set may lead
to a feasible solution. A route is defined as a sequence of
customers, and for any two consecutive customers there is a
path (a sequence of edges) connecting them. Therefore, for
a route containing i+1 customers we will have i paths and
for each path we can define a start and an end node, ξi and
πi, respectively. The sets of outgoing and incoming edges
for a certain node n are denoted On and In, respectively.

Decision variables used to build the model are:

wrpn: Boolean variable that represents whether the
pair p of route r is using node n;
z rpe: Boolean variable that represents whether the
pair p of route r is using edge e;
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The following logical operators are used as a shorthand
to express cardinality constraints Sinz (2005) in the sub-
problems:

EN(A, n) : exactly n variables in the set A are true;
If(c, o1, o2) : if c is true returns o1, else returns o2.

We will write ENm∈M (m,n) to denote EN(
⋃

m∈M

{m}, n) in

order to shorten the notation.

3.1 The Capacity Verification Problem

The Capacity Verification Problem aims to find a feasible
schedule for the vehicles, where the routes that the vehicles
are assigned to satisfy the capacity constraints of the edges.

In this work the Capacity Verification Problem, as defined
in Roselli et al. (2022), has been extended to account for
pairs as well, since the information about conflicts must be
related to a specific pair to define additional constraints in
the PathsChanger .

Let nrpe be the node visited before edge e of pair p of route
r, and let erpn be the node visited before node n on pair
p of route r. Similarly, let nrpe be the node visited after
edge e of pair p of route r, and let erpn be the edge visited
after node n on pair p route r. Let p0r be the first pair of
route r and n∗

r be its starting node.

Example of Routes, Pairs, Nodes, and Edges
Let K = {k1, . . . , k7} and N = {n1, . . . , n20}. Let Lk1

= n1

and Lk2 = n7, and assume two routes designed to serve all
customers: r1 = ⟨k1, k2, k5, k7⟩, r2 = ⟨k3, k4, k6⟩.

In order to clarify the notation introduced above, let us
analyze r1. First, the set of pairs for r1 is defined as
Pr1 = {⟨k1, k2⟩, ⟨k2, k5⟩, ⟨k5, k7⟩}.
Then, let us assume that the path and edge sequence for
pair ⟨k1, k2⟩ are the following:
θ⟨k1,k2⟩ = ⟨n1, n2, n4, n5, n7⟩,
δ⟨k1,k2⟩ = ⟨⟨n1, n2⟩, ⟨n2, n4⟩, ⟨n4, n5⟩, ⟨n5, n7⟩⟩.
Then p0r1 = ⟨k1, k2⟩ and n∗

r1 = n1. Also, let p = ⟨k1, k2⟩;
then for e = ⟨n1, n2⟩, nr1pe = n1, and nr1pe = n2; for
n = n1, e

r1pn = ⟨n1, n2⟩, and for n = n2, er1pn = ⟨n1, n2⟩.

For each node it must also be specified whether there
exists a time window, since some of the nodes are only
intersections of road segments in the real plant, while others
are actual customers. Let lrpn and urpn be the earliest and
latest arrival time, respectively, at node n of pair p of route
r; let srpn be the service time at node n of pair p of route r.
Finally, let γ > 0 be a small real constant used to prevent
swapping of vehicles’ positions between a node and the
previous or following edge.

The Capacity Verification Problem decision variables are:

x rpn: non-negative real variable that models when a
vehicle executing route r starts using node n in pair
p;
yrpe: non-negative real variable that models when a
vehicle executing route r starts using edge e in pair p;

The model for the Capacity Verification Problem is:

x rp0
rn

∗
r
≥ τ r, ∀r ∈ R (1)

yrpe ≥ x rpnrpe
+ srpnrpe

, ∀r ∈ R, p ∈ Pr, e ∈ δp (2)

x rpn = yrperpn + derpn , ∀r ∈ R, p ∈ Pr, n ∈ θp (3)

x rpn ≥ lrpn ∧ x rpn ≤ urpn,

∀r ∈ R, p ∈ Pr, n ∈ θp (4)

x r1p1n ≥ yr2p2er1p1n + γ ∨ x r2p2n ≥ yr1p1er2p2n + γ,

∀r1, r2 ∈ R, r1 ̸= r2, p1 ∈ Pr1 , p2 ∈ Pr2

n ∈ θp1 ∩ θp2, n /∈ NH (5)

yr1p1e ≥ yr2p2e + γ ∨ yr2p2e ≥ yr1p1e + γ,

∀r1, r2 ∈ R, r1 ̸= r2, p1 ∈ Pr1 , p2 ∈ Pr2 ,

e ∈ δp1
∩ δp2

(6)

yr1p1e1 ≥ yr2p2e2 + de2 ∨ yr2p2e2 ≥ yr1p2e1 + de1 ,

∀r1, r2 ∈ R, r1 ̸= r2, p1 ∈ Pr1 , p2 ∈ Pr2 ,

e1 ∈ δp1
, e2 ∈ δp2

, e1 = ē2, ge1 = ge2 = 1 (7)

(1) constrains the start time of a route; (2) and (3) define
the precedence among nodes and edges to visit in a route;
(4) enforces time windows on the nodes that correspond to
the customers; (5) prevents vehicles from using the same
node at the same time; (6) and (7) constrain the transit of
vehicles over the same edge. If two vehicles are using the
same edge from the same node, one has to start at least
γ after the other and if two vehicles are using the same
edge from opposite nodes, one has to fully transit before
the other one can start.

Based on the model described above, the algorithm Capac-
ityVerifier (CV ) is defined, that takes a set of routes R,
the start times in Γ, and the current set of paths CP as
input and returns:

• CFS , a list that expresses where each vehicle is at
each time; this is empty if the problem is infeasible.

• C̄, the UnsatCore relative to constraints (5)-(7) (see
Section 3.3); this is empty if the problem is feasible.

3.2 Paths Changing Problem

In the Paths Changing Problem, alternative paths are
computed to connect the consecutive customers of each
route. Finding alternative paths may be necessary when,
for a given set of routes R and starting times Γ, no feasible
schedule exists. The Capacity Verification Problem may
be infeasible due to the current set of paths that connect
the customers’ locations, therefore a different set may lead
to a feasible solution. A route is defined as a sequence of
customers, and for any two consecutive customers there is a
path (a sequence of edges) connecting them. Therefore, for
a route containing i+1 customers we will have i paths and
for each path we can define a start and an end node, ξi and
πi, respectively. The sets of outgoing and incoming edges
for a certain node n are denoted On and In, respectively.

Decision variables used to build the model are:

wrpn: Boolean variable that represents whether the
pair p of route r is using node n;
z rpe: Boolean variable that represents whether the
pair p of route r is using edge e;
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This problem can be split into r · i sub-problems (assuming
all routes have i+ 1 customers) that find paths for each
route separately; simpler and smaller models are faster to
solve. Unfortunately it may be necessary to explore different
combinations of paths, so to retain the information we have
only one model. Therefore, let the optimal solution to the
Path Changing Problem found at iteration h be

CP =
⋃
r∈R
p∈Pr

e∈E

{z ∗rpe},

where z∗rpe is the value of zrpe in the current solution; also,
let PP be the set containing the optimal solutions found
until the (h − 1)-th iteration. The model is then:

min
r∈R, p∈Pr, n∈E

∑
If(z rpe, de, 0) (8)

wrpξp ∧ wriπp
, ∀p ∈ Pr, r ∈ R (9)

ENe∈Oξp
(z rpe, 1), ∀p ∈ Pr, r ∈ R (10)

ENe∈Iξp
(z rpe, 1), ∀p ∈ Pr, r ∈ R (11)

z rpe =⇒ ¬z rpē, ∀p ∈ Pr, r ∈ R, e ∈ E (12)∧
n∈N ,n̸=ξp,n̸=πp

If(wrpn,

ENe∈On(z rpe, 1) ∧ ENe∈In(z rpe, 1),

ENe∈On(z rpe, 0) ∧ ENe∈In(z rpe, 0)),

∀p ∈ Pr, r ∈ R (13)∨
zrpe∈CP

¬z rpe, ∀CP ∈ PP (14)

The cost function (8) to minimize is the cumulative length
of the used edges; (9) guarantees that, for each path of
each route, the start and end nodes are used; (10) and (11)
make sure that exactly one outgoing (incoming) edge is
incident with the start (end) node of a route; (12) makes
sure that a path is not allowed to use both an edge and its
reverse; (13) guarantees that if a node (different from the
start or end) is selected, exactly one of its outgoing and
one of its incoming edges will be used. On the other hand,
if a node is not used, none of its incident edges will be used;
finally, (14) rules out all the previously found solutions.

Based on the model described above the function Paths-
Changer (PC ) is defined, that takes the previous paths PP
as input and returns a new set of paths NP . If the Paths
Changing Problem is infeasible then NP = ∅.

Up to this point, unless specified otherwise, the models
presented are taken from Roselli et al. (2022).

3.3 Exploiting the MUC

Experiments reported in Roselli et al. (2022), show that
ComSat performs well for many problem instances, however,
for some specific instances ComSat failed to find feasible
solutions in reasonable time. Investigations revealed the
PC to be the culprit. The reason is that it searches blindly
through the possible paths that connect any two customers,
while minimizing the paths’ cumulative length. A conflict-
free solution may involve paths that are quite longer
than the current ones though, and the PC will have to
explore many shorter solutions before finding the right one.

Improving the performance of the PathsChanger would
be beneficial for the overall performance of ComSat, and
letting the MUC guide the paths changing is such an
improvement.

When extracting the MUC , it is possible to only track
specific constraints. This feature can be exploited to focus
only on the capacity constraints violations. In fact, since
time windows and service time are not flexible, it is of little
to no use to track constraints represented by (1)-(4). Also,
an infeasible formula φ may have multiple MUCs; in the
CF-EVRP this means that conflicts may arise at different
locations in the plant. In order to catch all of them, it
is possible to iteratively relax the conflicting constraints
from the initial formula and solve it again, until it becomes
feasible. The formula will indeed become feasible eventually,
since it is based on a feasible solution R and only the
capacity constraints can make it infeasible; in the worst case
all such constraints will be removed during the iterations.
Note that, since not all constraints are tracked, the set of
constraints C̄ returned is not an actual UnsatCore, since
C̄ would only make the problem infeasible in conjunction
with the untracked constraints. Nonetheless, it provides
the information about the conflicts needed to guide the
search of paths.

Let φ0 be the conjunction of constraints (1)-(7). Assume
that φ0 is infeasible, and let C̄0 be the subset of a MUC
retrieved by tracking constraints (5)-(7). Then let φ1 = φ0\
C̄0, also infeasible, and let C̄1 be the subset of a MUC
retrieved by tracking constraints defined by (5)-(7), not
including the ones in C̄0. In general, the constraints in
C̄i−1 can be iteratively relaxed to obtain a new formula φi,
until a feasible φn = φ0 \ (C̄0 ∪ . . . ∪ C̄n−1) is found. Then
C̄ = C̄0 ∪ . . . ∪ C̄n−1 contains all the conflicts due to the
capacity constraints.

Each constraint represented by (5)-(7) is defined over two
routes r1 and r2 and their pairs p1 and p2 for a specific
node n or edge e; therefore, if the constraint is part of C̄,
the routes and pairs that caused the conflict over n or e can
be identified. If the conflict was generated by a constraint
from (5), then the following constraint is added to (8)-(14):

¬(wr1p1n) ∨ ¬(wr2p2n). (15)

On the other hand, if the conflict was caused by constraint
from (6) or (7), the following constraint is added to (8)-
(14):

¬(z r1p1e) ∨ ¬(z r2p2e). (16)

Constraints (15) and (16) force at least one of the routes
involved in the conflict to avoid the specific node (edge,
respectively) when computing a path for the pairs involved
in the conflict. The constraint is formulated so that the
choice of the route to change is left to the solver, including
the possibility of changing both routes; since the problem
is an optimization, the solver will choose the change that
leads to the shortest cumulative paths length.

Based on the model described by (8)-(16), the function
MUC-Guided-Paths-Changer (GPC ) is defined, that takes
the previous paths PP and C̄ as input and returns a new
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set of paths NP . If the Path Changing Problem is infeasible
NP = ∅.

Since for each constraint in C̄ a new constraint is added to
the GPC , it is imperative that the UnsatCore returned
when the CV is infeasible is minimal. This is so because if
the Unsat Core is not minimal, it could contain constraints
that are not actually causing capacity conflicts. These
constraints would in turn lead to defining constraints (15)
and (16) in the GPC that may remove feasible solutions.

Fig. 2 summarizes the steps required to find a conflict-free
schedule CFS , if such exists, using the improved paths
searching algorithm GPC . As mentioned, it is assumed
that routes R and their start times Γ have already been
computed. The shortest paths between any two customers
are computed using Dijkstra’s algorithm and then set as
the current paths CP to travel among customers. Also, CP
are added to the list of previous paths PP .

Start

CP ← SP; PP.add(CP)

C̄,CFS = CapacityVerifier(R, Γ,CP)

CFS ̸= ∅ CP ← NP; PP.add(NP)Schedule

NP = GuidedPathsChanger(PP, C̄)

NP ̸= ∅Infeasible

Yes

No

No Yes

Fig. 2. Flowchart of the MUC -Guided-CFPS.

Then the CV will check such routes against the capacity
constraints; if this sub-problem has a feasible solution
the algorithm terminates and a conflict-free schedule is
returned. Otherwise C̄ is extracted as described in the
previous paragraph and the the GPC algorithm is invoked.
GPC will use the information about previously computed
paths PP and the information about conflicts from C̄ to
compute new paths NP , which will be set as the current
paths and stored in PP . At this point the CV is run
again using the new paths. The iterations between the two
algorithms continue until either the CV is feasible, or the
GPC is infeasible, i.e., there are no feasible, conflict-free
paths to execute the routes R with the start times Γ.

4. PROOF OF SOUNDNESS AND COMPLETENESS

In this section, proof of soundness and completeness of
the Unsat Core Guided CFPS is provided. The underlying
idea for the proof is the following. There exists a finite
number of solutions to the Path Changing Problem; the
GPC can enumerate at least all feasible solutions to the
Path Changing Problem; if a solution that satisfies the
Capacity Constraints does exists, the GPC will eventually
find it, otherwise it will declare the problem infeasible.

Let S be the set of possible solutions to a Path Changing
Problem; let us divide S into the set of conflict-free solutions
F and the set of conflicting solutions U . In other words a
solution to the Path Changing Problem from F will make
the Capacity Verification Problem feasible, while a solution
from U will not. If the CFPS is infeasible, then S = U and
F = ∅. In this case, even if the GPC is not able to find all
feasible solutions F , there is none to find.

In case the CFPS is feasible though, in order to prove
completeness it is necessary to guarantee that at least
all feasible solutions F can be found by GPC . This is
proven for the PC , since each call of the PC function
will find the next optimal solution to the Path Changing
Problem, whether it belongs to F or not, until all solutions
are enumerated. However in the GPC there are additional
constraints that may remove feasible solutions. In the proof
it is shown that such additional constraints only remove
infeasible solutions.

Observation 1. The Path Changing Problem is a satisfia-
bility problem in propositional logic. The Capacity Veri-
fication Problem falls into the category of difference logic
(a fragment of linear arithmetic). Thus, both problems are
decidable.

Observation 2. The Path Changing Problem is bounded.
In fact, the Path Changing Problem involves only a finite
number of Boolean variables, so its domain is finite.

Lemma 1. Given a finite, directed, weighted graph, the
number of paths that connect two arbitrary nodes is finite.

Proof 1. By definition, a path is an ordered set of nodes
such that no node appears more than once. If the number
of nodes in the graph is finite, there cannot be an infinite
number of paths.

Lemma 2. For a given set of routes R and start times in
Γ, repeated calls to the PC function will enumerate all
feasible solutions to the Path Changing Problem, either
belonging to F or U , before returning infeasible.

Proof 2. Let φ0 be the conjunction of constraints (9)-(13),
a relaxation of the Paths Changing Problem, and let CP0

be a solution to φ0. Then, if another solution CP1 for
φ0 exists, it can be found by solving φ0 ∧ ¬CP0 = φ1.
In general, the n-th solution can be found by solving
φ0 ∧¬CP0 ∧ . . .∧¬CPn−1 = φn. Because of Lemma 1, we
know that the number of solutions to the Paths Changing
Problem, |S|, is finite and we can enumerate them all by
solving φ0, . . . , φ|S|−1.

Lemma 3. Using the PC and CV is a sound and complete
procedure to solve the CFPS

Proof 3. Because of Observation 1 we know there is a
finite number of solutions to the Path Changing Problem,
and because of Lemma 2 we know that the PC function
can enumerate them all. If a solution that belongs to
F exists the PC will find it, otherwise it will return all
solutions belonging to U ; the CV will then check whether
they are conflict-free. Therefore, using the PC and CV in
combination will correctly solve the CFPS.

Lemma 4. For a given set of routes R, the GPC is able to
find at least all solutions in F .
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Proof 4. For each set of current paths CP , C̄ only contains
constraints defined by (5), (6), and (7). The constraints in
C̄ are iteratively retrieved from minimal UnsatCore and
therefore represent combinations of nodes and edges in the
graph where the conflicts happen. Since each constraint
defined by (15) and (16) addresses one constraint from C̄,
(15) and (16) only define constraints over nodes or edges
that cause conflicts. Hence these constraints only remove
solutions of the Path Changing Problem that belong to U .
Theorem 1. Using the GPC and CV is a sound and
complete procedure to solve the CFPS.

Proof 5. The PC and the GPC are identical, except for
constraints (15)-(16), and because of Lemma 4, we know
that the addition of these constraints only removes solutions
from U . Thus, since the CFPS using the PC is sound and
complete (Lemma 3), so is the CFPS using the GPC .

5. EXPERIMENTS

In order to evaluate the goodness of the proposed method
and its performance against the previous version of the
CFPS algorithm, a set of problem instances is designed
and used for testing. Both the PC and GPC are embedded
in the ComSat algorithm. However, since the goal is to
compare the search for alternative paths, problems are
designed in such a way that there is only one feasible set of
routesR to serve the customers; also, only the running time
for search of conflict-free paths is measured. The algorithms
called by ComSat used the SMT solver Z3 4.8.9 (single
core mode) to solve the models. All the experiments 1 were
performed on an Intel Core i7 6700K, 4.0 GHZ, 32GB
RAM running Ubuntu-18.04 LTS.

Table 1 shows the results of the evaluation of five problem
instances of the CF-EVRP solved using ComSat. Each
instance was solved twice, once using the PC and once using
theGPC ; in each case the number of iterations and the time
(in seconds) required to find a feasible solution is reported.
The problem instances presented are increasingly hard to
solve, in terms of plant size (represented by the number of
nodes), number of routes and number of customers in each
route. The customers’ locations and time windows so that
conflicts will arise due to the capacity constraint when the
shortest paths are used and a search for alternative paths
will be necessary in order to find a conflict-free schedule.

For instances 1 through 4 it took only one iteration of the
GPC to find a feasible solution, while the PC required an
increasing number of iterations to find a feasible solution,
as the instances grew more complicated. The gap in the
running time between the GPC and the PC follows the
same trend; for instance 1 it only takes 2 iterations to
the PC to find a feasible solution, while it takes 24 and
54 iterations to find a solution to instances 2 and 3. This
number drops to 15 iterations for instance 4. On average, a
single iteration of the PC takes less time than an iteration
of the GPC , but due to the larger number of iterations

1 The implementation of the GPC presented in Section 3.3 and

the problem instances are available in the UNSAT Core folder at

https://github.com/sabinoroselli/VRP.git.

required, the overall running time for the PC is always
larger.

Instance 5 is the odd one out, as it only takes one iteration
of the PC to find a feasible solution, and, as for the
other instances, the running time for the single iteration is
shorter.

Results and Discussion

The experiments show that for most of the instances the
GPC performed better than PC in terms of running time
and number of iterations. To be more specific, one iteration
of the GPC is slower than one iteration of the PC , but the
number of iterations required by the PC is always higher,
and therefore the overall execution time is longer. As the
instances become larger, the gap between the running time
for one iteration of each method increases too. However,
since the number of iterations required for more complex
instances grows as well, the GPC shows increasing good
performance for harder-to-solve instances. On the other
hand, Instance 5 shows a different result, since both the
PC and the GPC take only one iteration. As for the other
instances, a single iteration of the PC is faster, hence the
PC beats the GPC on Instance 5. We can conclude that
for some instances, the PC may be able to quickly find
feasible solutions and outperform the GPC . However this
is behaviour is highly dependent on the instance and as
instances grow larger the chances could grow smaller, as
the number of possible paths available increases. Moreover,
a detailed analysis of the solutions to the Path Changing
Problem for each instance 2 confirms that, for the PC ,
there is no convergence to a feasible solution as the number
of iterations increases, since the number of conflicts does
not always decrease at the following iteration. On the other
hand, the GPC shows a consistent behaviour as it always
takes only one iteration to find feasible solutions.

Table 1. Comparison of the PC and GPC over
a set of instances of the CF-EVRP. For each
instance the number of iterations and the total
running time (in seconds) required to find a

feasible solution is reported.

Inst. |N | |R| |K|
Iterations Time

PC GPC PC GPC

1 3 2 4 2 1 0.25 0.16

2 8 3 6 24 1 8.81 0.40

3 5 4 8 54 1 35.92 1.08

4 64 4 28 15 1 643.40 184.60

5 64 4 28 1 1 21.20 128.40

6. CONCLUSIONS

This paper presents an algorithm to search for conflict-free
paths for a set of routes to serve customers in a conflict-
free electric vehicle routing problem (CF-EVRP). The
algorithm exploits the SMT solvers’ ability to return a

2 Details of the problem instances are discussed in the file In-

stances Results.pdf in the UNSAT Core folder of the Github reposi-

tory.

minimal unsat core (MUC ) when a formula is infeasible,
to guide the search for paths. Soundness and completeness
of the algorithm are proved, and preliminary experimental
data based on a set of generated CF-EVRP problem
instances are provided. The experiments show that the
new MUC based algorithm consistently finds feasible paths
taking only one iteration and significantly shorter time
than the previous naive method. Future work includes to
run extensive computational analyses to strengthen the
claims made in this paper, and further development of the
MUC guided paths search by improving the information
extraction from the MUC .
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Proof 4. For each set of current paths CP , C̄ only contains
constraints defined by (5), (6), and (7). The constraints in
C̄ are iteratively retrieved from minimal UnsatCore and
therefore represent combinations of nodes and edges in the
graph where the conflicts happen. Since each constraint
defined by (15) and (16) addresses one constraint from C̄,
(15) and (16) only define constraints over nodes or edges
that cause conflicts. Hence these constraints only remove
solutions of the Path Changing Problem that belong to U .
Theorem 1. Using the GPC and CV is a sound and
complete procedure to solve the CFPS.

Proof 5. The PC and the GPC are identical, except for
constraints (15)-(16), and because of Lemma 4, we know
that the addition of these constraints only removes solutions
from U . Thus, since the CFPS using the PC is sound and
complete (Lemma 3), so is the CFPS using the GPC .

5. EXPERIMENTS

In order to evaluate the goodness of the proposed method
and its performance against the previous version of the
CFPS algorithm, a set of problem instances is designed
and used for testing. Both the PC and GPC are embedded
in the ComSat algorithm. However, since the goal is to
compare the search for alternative paths, problems are
designed in such a way that there is only one feasible set of
routesR to serve the customers; also, only the running time
for search of conflict-free paths is measured. The algorithms
called by ComSat used the SMT solver Z3 4.8.9 (single
core mode) to solve the models. All the experiments 1 were
performed on an Intel Core i7 6700K, 4.0 GHZ, 32GB
RAM running Ubuntu-18.04 LTS.

Table 1 shows the results of the evaluation of five problem
instances of the CF-EVRP solved using ComSat. Each
instance was solved twice, once using the PC and once using
theGPC ; in each case the number of iterations and the time
(in seconds) required to find a feasible solution is reported.
The problem instances presented are increasingly hard to
solve, in terms of plant size (represented by the number of
nodes), number of routes and number of customers in each
route. The customers’ locations and time windows so that
conflicts will arise due to the capacity constraint when the
shortest paths are used and a search for alternative paths
will be necessary in order to find a conflict-free schedule.

For instances 1 through 4 it took only one iteration of the
GPC to find a feasible solution, while the PC required an
increasing number of iterations to find a feasible solution,
as the instances grew more complicated. The gap in the
running time between the GPC and the PC follows the
same trend; for instance 1 it only takes 2 iterations to
the PC to find a feasible solution, while it takes 24 and
54 iterations to find a solution to instances 2 and 3. This
number drops to 15 iterations for instance 4. On average, a
single iteration of the PC takes less time than an iteration
of the GPC , but due to the larger number of iterations

1 The implementation of the GPC presented in Section 3.3 and

the problem instances are available in the UNSAT Core folder at

https://github.com/sabinoroselli/VRP.git.

required, the overall running time for the PC is always
larger.

Instance 5 is the odd one out, as it only takes one iteration
of the PC to find a feasible solution, and, as for the
other instances, the running time for the single iteration is
shorter.

Results and Discussion

The experiments show that for most of the instances the
GPC performed better than PC in terms of running time
and number of iterations. To be more specific, one iteration
of the GPC is slower than one iteration of the PC , but the
number of iterations required by the PC is always higher,
and therefore the overall execution time is longer. As the
instances become larger, the gap between the running time
for one iteration of each method increases too. However,
since the number of iterations required for more complex
instances grows as well, the GPC shows increasing good
performance for harder-to-solve instances. On the other
hand, Instance 5 shows a different result, since both the
PC and the GPC take only one iteration. As for the other
instances, a single iteration of the PC is faster, hence the
PC beats the GPC on Instance 5. We can conclude that
for some instances, the PC may be able to quickly find
feasible solutions and outperform the GPC . However this
is behaviour is highly dependent on the instance and as
instances grow larger the chances could grow smaller, as
the number of possible paths available increases. Moreover,
a detailed analysis of the solutions to the Path Changing
Problem for each instance 2 confirms that, for the PC ,
there is no convergence to a feasible solution as the number
of iterations increases, since the number of conflicts does
not always decrease at the following iteration. On the other
hand, the GPC shows a consistent behaviour as it always
takes only one iteration to find feasible solutions.

Table 1. Comparison of the PC and GPC over
a set of instances of the CF-EVRP. For each
instance the number of iterations and the total
running time (in seconds) required to find a

feasible solution is reported.

Inst. |N | |R| |K|
Iterations Time

PC GPC PC GPC

1 3 2 4 2 1 0.25 0.16

2 8 3 6 24 1 8.81 0.40

3 5 4 8 54 1 35.92 1.08

4 64 4 28 15 1 643.40 184.60

5 64 4 28 1 1 21.20 128.40

6. CONCLUSIONS

This paper presents an algorithm to search for conflict-free
paths for a set of routes to serve customers in a conflict-
free electric vehicle routing problem (CF-EVRP). The
algorithm exploits the SMT solvers’ ability to return a

2 Details of the problem instances are discussed in the file In-

stances Results.pdf in the UNSAT Core folder of the Github reposi-

tory.

minimal unsat core (MUC ) when a formula is infeasible,
to guide the search for paths. Soundness and completeness
of the algorithm are proved, and preliminary experimental
data based on a set of generated CF-EVRP problem
instances are provided. The experiments show that the
new MUC based algorithm consistently finds feasible paths
taking only one iteration and significantly shorter time
than the previous naive method. Future work includes to
run extensive computational analyses to strengthen the
claims made in this paper, and further development of the
MUC guided paths search by improving the information
extraction from the MUC .
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Corréa, A.I., Langevin, A., and Rousseau, L.M. (2007).
Scheduling and routing of automated guided vehicles:
A hybrid approach. Computers & operations research,
34(6), 1688–1707.

Dantzig, G.B. and Ramser, J.H. (1959). The truck
dispatching problem. Management science, 6(1), 80–91.

De Moura, L. and Bjørner, N. (2011). Satisfiability modulo
theories: Introduction and applications. Commun. ACM,
54(9), 69–77. doi:10.1145/1995376.1995394. URL
http://doi.acm.org/10.1145/1995376.1995394.

Dershowitz, N., Hanna, Z., and Nadel, A. (2006). A scalable
algorithm for minimal unsatisfiable core extraction. In
International Conference on Theory and Applications of
Satisfiability Testing, 36–41. Springer.

Dijkstra, E.W. (1959). A note on two problems in connexion
with graphs. Numerische mathematik, 1(1), 269–271.

Gross, J.L. and Yellen, J. (2003). Handbook of graph theory.
CRC press.

Huang, J. (2005). MUP: A minimal unsatisfiability prover.
In Proceedings of the ASP-DAC 2005. Asia and South
Pacific Design Automation Conference, 2005., volume 1,
432–437. IEEE.

Krishnamurthy, N.N., Batta, R., and Karwan, M.H. (1993).
Developing conflict-free routes for automated guided
vehicles. Operations Research, 41(6), 1077–1090.

Kroening, D. and Strichman, O. (2016). Decision proce-
dures. Springer.

Murakami, K. (2020). Time-space network model and
MILP formulation of the conflict-free routing problem
of a capacitated AGV system. Computers & Industrial
Engineering, 141, 106270.

Nadel, A. (2010). Boosting minimal unsatisfiable core
extraction. In Formal Methods in Computer Aided
Design, 221–229. IEEE.

Nadel, A., Ryvchin, V., and Strichman, O. (2013). Efficient
MUS extraction with resolution. In 2013 Formal Methods
in Computer-Aided Design, 197–200. IEEE.

Roselli, S., Fabian, M., and Åkesson, K. (2022). A compo-
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