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Object Detection as Probabilistic Set Prediction
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Abstract. Accurate uncertainty estimates are essential for deploying
deep object detectors in safety-critical systems. The development and
evaluation of probabilistic object detectors have been hindered by short-
comings in existing performance measures, which tend to involve arbi-
trary thresholds or limit the detector’s choice of distributions. In this
work, we propose to view object detection as a set prediction task where
detectors predict the distribution over the set of objects. Using the nega-
tive log-likelihood for random finite sets, we present a proper scoring rule
for evaluating and training probabilistic object detectors. The proposed
method can be applied to existing probabilistic detectors, is free from
thresholds, and enables fair comparison between architectures. Three
different types of detectors are evaluated on the COCO dataset. Our
results indicate that the training of existing detectors is optimized to-
ward non-probabilistic metrics. We hope to encourage the development
of new object detectors that can accurately estimate their own uncer-
tainty. Code available at https://github.com/georghess/pmb-nll.

Keywords: Probabilistic object detection, random finite sets, proper
scoring rules, uncertainty estimation.

1 Introduction

Accurately locating and classifying a set of objects has a range of applications,
such as autonomous driving, transportation, surveillance, scene analysis, and
image captioning. Common approaches for solving this rely on a deep object
detector which provides a set of detections containing bounding box parameters,
semantic class and classification confidence. However, as pointed out in previous
works [3,5,11,15,28] most state-of-the-art networks lack the ability to assess their
own regression confidence and fail to provide a complete uncertainty description.
As an effect, this can limit the performance in downstream tasks such as multi-
object tracking, sensor fusion, or decision making, ultimately hindering humans
to establish trust in the deep learning agent.

There are many strategies to evaluate predictive uncertainties in the deep
learning regime. Broadly speaking, a distribution should perform well on two
criteria: calibration and sharpness. For a distribution to be well calibrated, it
should not be over- or under-confident, but reflect the true confidence in its
predictions. Sharpness instead promotes concentrated and, consequently, infor-
mative distributions [9]. Both these properties can be measured simultaneously
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IoU: 0.6

(a) Assigning predictions to ground truth
is non-trivial in probabilistic OD. The pre-
diction can either be considered a true pos-
itive with bad uncertainty estimates or a
false positive.

  

IoU: 0.6
IoU: 0.5

(b) mAP and [13] prefer the red prediction
with larger IoU. Our method considers un-
certainties and multiple assignments, and
finds the green prediction a more probable
match to the blue ground truth.

Fig. 1: Predictions (red and green) and ground truth (blue), highlighting the
object detection assignment problem. Ellipses represent spatial uncertainty.

by using a proper scoring rule such as negative log-likelihood [10]. Proper scoring
rules assess the quality of predictive uncertainties and are minimized only when
the prediction is equivalent to the distribution that generated the ground truth
observations [10]. Besides measuring calibration and sharpness, proper scoring
rules enable a theoretically sound ranking of different predictive distributions.

Evaluating the quality of predictive uncertainties in object detection (OD)
is a non-trivial task. First, any measure has to jointly consider the performance
in terms of ability to detect, correctly classify and accurately locate objects.
Second, as we do not know the correspondence between predictions and ground
truth objects, any analysis is colored by the selected assignment rules. As an
example, the prediction in Fig. 1a can be considered either a correct detection
with bad uncertainty predictions or a false positive. Having multiple predictions
makes the assignment even harder, as shown in Fig. 1b. The most common
measure in OD, mAP, uses handcrafted assignment rules based on IoU and
class confidence and fails to consider predicted uncertainties. The probability-
based detection quality (PDQ) [11] tries to address these issues, but is limited to
Gaussian distributions for regression. More recently, the lack of proper scoring
rules for evaluating probabilistic object detection was pointed out by [13], also
proving that PDQ is not a proper scoring rule. However, while they use proper
scoring rules for the different subtasks, such as the energy score for regression
and the Brier score for classification, predictions are assigned to targets using
ad hoc IoU-based rules which ignore regression uncertainties. As highlighted
earlier, these types of assignment rules have a large influence on the reported
performance, do not yield proper scoring rules, and make it harder to draw
conclusions about model performance.

In this paper, we propose to use random finite sets (RFS) to model the prob-
abilistic object detection task. Object detection is often seen as a set prediction
task, and we extend this perspective to probabilistic object detection (PrOD).
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We describe the set of objects in a given image by a single random variable,
and the task of our object detection networks is to describe the distribution
of that variable. This simple change of perspective enables us to use the nega-
tive log-likelihood to evaluate the uncertainty estimates of our detections, which
gives rise to the first proper scoring rule for object detection. Our framework
explicitly models the assignment problem, is general enough to be applied to any
type of distribution, enables easy ranking between different algorithms, and can
be decomposed to highlight different types of errors (detection, regression and
classification). Our key contributions are the following.

– We propose to view the set of objects in an image as a single stochastic
variable. By applying the negative log-likelihood (NLL) to a distribution
over sets, we present the first proper scoring rule for object detection.

– We show how to apply the random finite set framework to object detection
by interpreting the detector output as parameters of multi-Bernoulli (MB)
and Poisson multi-Bernoulli (PMB) densities. Further, we present how to
efficiently calculate and interpret the NLL of the MB and PMB densities.

– Using our proposed scoring rule, we evaluate one-stage, two-stage, and set-
based detectors on the popular MS COCO dataset, and showcase their
strengths and shortcomings using the decomposability of PMB-NLL.

– Further, we leverage the fact that the proposed method is differentiable and
fine-tune the detectors to optimize PMB-NLL directly. Our results show that
this helps detectors to reduce the number of false and duplicate detections.

2 Related Work

Quantifying uncertainties with deep neural networks has been a long-standing
challenge. We aim to provide a brief overview here, as to motivate the importance
of our work. Interested readers are referred to [1,5,8] for details.

Types of Uncertainties. In computer vision, uncertainties are generally di-
vided into two categories: aleatoric and epistemic [15]. The first category refers
to noise inherent to the data, which can originate from sensor noise, class ambi-
guities, label noise and such, and cannot be reduced with more data. Epistemic
uncertainties are due to uncertainties in model parameters, and can, in principle,
be eliminated given enough data. In this work, we do not aim to disentangle the
two types, but consider overall predictive uncertainty [26].

Uncertainty Estimation. Most approaches for quantifying uncertainties in
object detection either apply Monte Carlo dropout [12,21,33], deep ensembles
[6,19] or direct modeling [14,16,36]. Unfortunately, uncertainty estimates are
often overlooked when evaluating probabilistic detectors, while methods that
do evaluate their uncertainties use a range of different performance measures,
making comparison challenging. The lack in standard performance measures has
also been pointed out as a main obstacle for uncertainty estimation [1,5,28].
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Evaluating Uncertainty. As the commonly used performance measure mAP
fails to consider spatial uncertainties and is insensitive to badly calibrated clas-
sification, several methods trying to address these issues have been suggested.
The Probability-based Detection Quality (PDQ) [11] evaluates both spatial and
semantic uncertainties, but is limited to Gaussian spatial uncertainties, requires
practitioners to select confidence thresholds, and has been shown by [13] to not
be a proper scoring rule, thereby introducing biases into its ranking of detectors.
The authors of [13] promote the use of proper scoring rules for object detection.
However, their approach disregards the spatial uncertainty information when
assigning predictions to targets, requires confidence thresholds, and does not
provide clear recommendations on model ranking.

Set Prediction. While object detection inherently can be seen as a set pre-
diction task, this has been made more explicit by a range of set-based detectors
[2,27,35,37]. These detectors highlight the assignment problem, i.e., how to as-
sign predictions to ground truth elements when calculating losses or metrics. In
this work, we extend this perspective to probabilistic object detection by mod-
eling the problem using distributions over random finite sets. This paradigm is
applicable to any type of detector, set-based or not, and naturally models and
solves the assignment problem.

Random Finite Sets. Random finite sets have been used extensively in the
model-based multi-object tracking community [7,20,30,32]. The RFS framework
has proven useful for modeling potentially detected and undetected objects as it
captures uncertainties in the cardinality of present objects and their individual
properties. However, these algorithms are often evaluated without taking their
uncertainties into account. Recently, the authors of [24] suggested the use of
negative log-likelihood for probabilistic evaluation of model-based multi-object
trackers and presented an efficient approximation of the NLL. Our work shows
how to interpret parameters of existing deep object detectors as RFSs and uses
[24] to calculate our proper scoring rule. Unlike the custom designed and low-
dimensional regression problems explored in [24], we apply this method to a
large scale dataset, jointly evaluating detection, classification, and regression.

3 Probabilistic Modeling for Object Detection

Object detection is a set prediction task, where, given an image X, the aim is
to predict the set of corresponding objects Y present in said image. Here, the
number of objects n in the set Y = {y1, y2, . . . , yn} is unknown beforehand.
Further, for each object yi = (ci, bi), we do not know which class ci ∈ {1, . . . , C}
it belongs to, nor where its bounding box bi ∈ R4 is located in the image. In
supervised learning, we aim to learn a model that, given the image X, predicts
a set of n̂ objects Ŷ = {ŷ1, ŷ2, · · · , ŷn̂} which is close to the ground truth label Y
in some sense. For probabilistic object detection, we further want an uncertainty
description for the number of objects and their individual properties.
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In this work, we evaluate probabilistic object detectors by seeing the set of
objects Y as a single random variable. The task for our networks is to predict
the distribution of this set f(Y|X). This is a natural and general probabilistic
extension to the set prediction perspective, as a distribution over sets can capture
the varying cardinality and uncertainty in properties for individual objects. Using
this novel perspective, all predictions for a single image are evaluated together
by applying the negative log-likelihood

NLL((Y,X), f) = − log(f(Y|X)). (1)

This can be compared to existing methods where classification and regression
are treated separately and evaluated conditioned on an ad hoc assignment rule
[13], or network performance is measured using non-proper scoring rules [11].

To use the negative log-likelihood in practice, we need our deep object de-
tectors to predict distributions f(Y|X). We propose to use random finite sets
(RFSs) and the Poisson multi-Bernoulli (PMB) distribution and demonstrate
how the PMB parameters are naturally obtained from the output of standard
probabilistic deep object detectors. Further, using the results of [24], we show
how to efficiently calculate and decompose the negative log-likelihood of f(Y|X)
into detection, classification and regression errors.

Notation: Scalars and vectors are denoted by lowercase or uppercase letters
with no special typesetting x, matrices by uppercase boldface letters X, and sets
by uppercase blackboard-bold letters X. We define Na = {i ∈ N|i ≤ a}, a ∈ N.

3.1 Modeling Detections with Random Finite Sets

We need a way to describe the distribution over Y using deep neural networks.
Interestingly, existing probabilistic detectors already contain the parameters
needed. To this end, we propose to model Y with random finite sets. Random
finite sets are described using a multi-object density f(Y), which means that
sampling from f(Y) yields finite sets of objects with varying cardinality, where
objects consist of a class and a bounding box. We should note that RFSs are
not the only way to describe a distribution over Y. However, we will show that
our method has multiple properties suitable for object detection and advantages
such as being compatible with existing architectures.

Bernoulli RFS. One of the simplest RFSs is the Bernoulli RFS, commonly
used for modeling single potential objects in the multi-target tracking community
[7,29]. Here, we use it to model each individual detected object, and its density
is

fB(Y) =


1− r if Y = ∅,
rp(y) if Y = {y},
0 if |Y| > 1,

(2)

where p(y) is the single-object density. For instance, assuming the class and
bounding box to be independent, p(y) = pcls(c)preg(b) contains the class dis-
tribution pcls(c) and some density describing the object’s spatial distribution
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Fig. 2: Four sampled sets (left) from a Bernoulli RFS (right) with existence
probability r = 0.75. The RFS can model the absence of objects, as well as
semantic and spatial uncertainties. The image is only included for context.

preg(b). Further, r ∈ [0, 1] is the probability of existence, which is the probability
that the Bernoulli RFS yields an object when sampling from it. Note that a
Bernoulli RFS can account for at most one object since the likelihood is zero for
any set with cardinality greater than one.

The parameters of p(y) are already present in probabilistic detectors. De-
pending on the architecture, we can interpret r as objectness and predicted it
directly, or, find it as the sum of probabilities assigned to foreground classes
and let pcls(c) be the class distribution conditioned on existence. Note that
fB(∅) = 1−r is the probability that the object is not present, which we may think
of as the event where the prediction is background. An example of a Bernoulli
RFS prediction and corresponding samples is shown in Fig. 2.

Multi-Bernoulli RFS. Generally, the number of objects in an image can vary
greatly. Modeling many potential objects can be achieved by taking the union of
multiple Bernoulli RFSs [7], resulting in a multi-Bernoulli (MB) RFS. In other
words, individual predictions made by a detector are interpreted as parameters
of individual Bernoulli RFSs, and by taking their union we combine them into
a single random variable. Unlike a Bernoulli RFS, an MB RFS can be used to
model the set of potentially detected objects for an entire image.

Formally, let X1, . . . ,Xm be m independent Bernoulli RFSs with the densities
fB1

(X1), . . . , fBm
(Xm), existence probabilities r1, . . . , rm, and single-object den-

sities p1(x), . . . , pm(x). Then X = ∪m
i=1Xi is an MB RFS with multi-object den-

sity

fMB(X) =
∑

⊎m
i=1Xi=X

m∏
j=1

fBj (Xj), (3)

where
∑

⊎m
i=1Xi=X denotes the sum over all disjoint sets whose union is X. In

other words, when evaluating the multi-object density fMB(Y) of a set Y we
sum the multi-object densities of all possible assignments between elements in
Y and Bernoulli components in fMB.

We illustrate this concept with an example. Consider an image containing
two objects Y = {y1, y2}, yi = (ci, bi) and two predictions, as shown in Fig. 3.
Each prediction consists of a class distribution and a spatial pdf. We let these
parameterize the densities fB1

(·), fB2
(·) of two separate Bernoulli RFS, whereas

the multi-object density fMB(Y) of their union is the MB RFS used to describe
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(a) Set Y (yellow) with two ground truth
objects and a multi-Bernoulli with two
Bernoullis X1 and X2 with densities fB1(·)
and fB2(·). Ellipses represent uncertainties
in bounding box location and shape. The
large spatial uncertainties in fB1(·) make it
a decent description of both true objects.

  
(b) Visualization of the four potential as-
signments, ordered in decreasing likeli-
hood. In the bottom row, both ground
truth objects have been assigned to X1 and
X2 respectively. As fB1(Y)=fB2(Y)= 0 for
sets with cardinality larger than one, both
these assignments have a likelihood of zero.

Fig. 3: Visualization of likelihood evaluation for a multi-Bernoulli RFS.

all objects in the image. When evaluating the likelihood fMB(Y) using (3), we
sum the four ways to assign ground truth objects to the Bernoulli RFSs

fMB(Y) =fB1
({y1})fB2

({y2}) + fB1
({y2})fB2

({y1})+
fB1

({y1, y2})fB2
(∅) + fB1

(∅)fB2
({y1, y2}),

(4)

where each individual assignment is visualized in Fig. 3b. As fB1
(·) and fB2

(·)
both evaluate to zero for sets with more than one element, the last two assign-
ments have a likelihood of zero, and we are left with two terms

fMB(Y) =r1p1,cls(c1)p1,reg(b1) · r2p2,cls(c2)p2,reg(b2)+
r1p1,cls(c2)p1,reg(b2) · r2p2,cls(c1)p2,reg(b1).

(5)

In contrast to existing methods with handcrafted assignment rules [11,13,18],
the assignment problem is modeled explicitly and rigorously by the RFS frame-
work. The intuition behind considering all possible assignments is that we cannot
know the correspondence between ground truths and predictions. In cases with
overlapping boxes, predictions may have large IoU with multiple objects, mak-
ing the assignment highly ambiguous. Further, for PrOD, large uncertainties can
make it even harder to pair predictions to true objects.

3.2 Proper Scoring Rule for Object Detection

A scoring rule measures the quality of predictive uncertainty in terms of sharp-
ness and calibration [10]. It does so by assigning a numerical value S(pθ, (x,y))
to a predicted distribution pθ(y|x), given that some event (x,y) ∼ p∗(y|x)p(x)
materialized, where a lower number indicates better quality. A scoring rule is fur-
ther known to be strictly proper if it is minimized only when pθ is equal to the
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distribution p∗ that generated the observed event. For OD this translates to the
predictive distribution being the same as the distribution from which the anno-
tations have been generated. The noise present in a perfect prediction pθ should
in other words be equal to the noise in the annotations. These properties make
proper scoring rules suitable for evaluating and ranking different predictions.

Negative log-likelihood (NLL) is a local proper scoring rule used to evaluate
the quality of predictive distributions for both regression and classification. Local
refers to the fact that the predicted distribution is only evaluated at the event
that materialized [4]. If we let Y denote the set of ground truth objects present
in the current image and let fMB(X) be the multi-object density of an MB RFS
produced by some model, then

NLL(Y, fMB) = − log fMB(Y) = − log

 ∑
⊎m

i=1Yi=Y

m∏
j=1

fBj (Yj)

 . (6)

As discussed in the previous section, to evaluate the likelihood of an MB
RFS density fMB(Y), we consider all possible assignments. As the number of
predictions m, or the cardinality of the ground truth set |Y| grows, the num-
ber of assignments grows super-exponentially, making the NLL computation
intractable. However, recently it was shown how to efficiently approximate the
NLL of certain RFS densities, including the MB density [24]. Assuming that
the ground truth objects, as well as the individual Bernoulli components, are
somewhat separated, only a few assignments have a substantial contribution to
the overall likelihood. Referring back to the example from Fig. 3, we can see
that mainly the first assignment contributed to the sum of likelihoods. Thus, we
approximate the NLL by only considering the most likely assignments. We find
these assignments efficiently by solving an optimal assignment problem

min
A

∑
k

∑
l

Ck,lAk,l (7a)

s.t.

m+|Y|∑
k=1

Ak,l = 1,

|Y|∑
l=1

Ak,l ≤ 1, (7b)

Ck,l = − log

(
pk(yl)

1− rk
rk

)
, (7c)

where C is a cost matrix and its derivation can be found in Appendix A. In (7c),
both the cost of assigning the object l to prediction k, pk(yl)rk, and the alter-
native of not assigning the prediction to anything, 1− rk, are considered jointly.
The assignment matrix A describes the pairing between predictions and ground-
truth objects, where ground truth object yl is assigned to the k-th component
of the MB i.f.f. [A]k,l = 1. Murty’s algorithm [22,23] efficiently computes the Q
lowest cost associations A∗

1, · · · ,A∗
Q to this assignment problem. We obtain

NLL(Y, fMB) ≈ − log

(
Q∑

q=1

m∏
k=1

fBk
(Yk(A

∗
q))

)
, (8)
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where Yk(A
∗
q) = {yj ∈ Y|[A∗

q ]k,j = 1}, i.e., Yk contains the ground truth yj
if yj was assigned to Bernoulli component k, otherwise it is the empty set.
Comparing this expression to (6), only Q terms have to be calculated. During
our experiments, we use Q = 25 as we find that the approximation does not
change considerably when using additional assignments.

3.3 Modeling All Objects

Using only a MB RFS to describe the objects in an image can be problem-
atic as it assumes that the number of predictions is greater than or equal to
the number of objects present. For an algorithm providing too few detections,
multiple objects are assigned to the same Bernoulli in (3), resulting in the MB
likelihood being zero and an infinite NLL. Fortunately, there are RFSs that can
model an arbitrary number of objects. Within model-based multi-object track-
ing, the Poisson Point Process (PPP) is used to model undetected objects [7],
and we show here how to use it for OD to ensure a finite NLL. The PPP is then
combined with the detections, yielding the Poisson multi-Bernoulli (PMB) RFS.
Importantly, we also establish a technique to obtain the PPP directly from the
output of our deep object detectors.

Poisson Point Process. Intuitively speaking, the PPP is intended to capture
objects that are not properly detected. By complementing the detections in the
MB, we model both the detected and undetected objects in an image. In contrast
to the MB, the cardinality of a PPP is Poisson distributed which gives it a non-
zero probability for any set cardinality. Thus we avoid the issue of infinite NLL
due to lack of detections. The multi-object density of a PPP is

fPPP(X) = exp
(
−λ̄
) ∏
x∈X

λ(x), (9)

where λ(·) is the intensity function and λ̄ =
∫
λ(x′)dx′ is the expected cardinality

of the set. The intensity function is expected to describe the properties of poorly
detected objects, e.g., partially occluded objects, far-away objects, or even classes
of objects that are inherently harder to detect. The intensity function is similar
to a density function, but its integral does not have to sum to one.

Poisson multi-Bernoulli RFS. With models for both detected and unde-
tected objects, we have to combine them to a single model for all objects. To
this end, we propose to use a Poisson multi-Bernoulli (PMB) RFS, which is the
union of a PPP and an MB RFS. The PMB RFS also arises naturally as the
posterior density of all objects after a single measurement update, when using
standard models in model-based target tracking [7,32].

The multi-object density of a PMB is

fPMB(X) =
∑

XU⊎XD=X

fPPP(XU)fMB(XD), (10)
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were XU⊎XD refers to summing over all possible ways of partitioning X into two
disjoint sets, one being the set of undetected objects XU and the other one being
the set of detected objects XD. When evaluating the likelihood of a set Y this
translates to, for each object in Y, considering it to be detected and assigning it
to a Bernoulli following (3), or it being undetected and assigning it to the PPP.

Selecting the PPP Intensity. To use the PMB in object detection, we must
describe the PPP intensity function λ(·). During this work, we explored various
ways of learning λ(·) from data, e.g., estimating the parameters of a uniform
intensity function or describing λ(·) as a constant mixture model. However, the
method we found to work best for the detectors considered in our experiments,
is to create λ(·) from low confidence predictions. In practice, we parameterize
the intensity function as the unnormalized mixture of low confidence predictions
where the mixture weights are the existence probabilities

λ(x) =
∑
i

ripi(x). (11)

Specifically, we remove all predictions from the MB RFS, whose existence proba-
bilities are r < 0.1, and instead use them to construct the intensity function using
(11). The theoretical motivation for this change is that the Kullback-Leibler di-
vergence between a Bernoulli RFS with existence probability r < 0.1 and a PPP
with intensity function λ(x) = rp(x) is small [31]. The proposed PMB density
should therefore be a good approximation to the MB density that we had before,
but this minor adjustment is sufficient to avoid issues with infinite NLL.

NLL Evaluation. For evaluating the NLL of a PMB RFS, we use the same
approach as for the MB and consider only the Q most likely assignments. The
cost matrix from (7c) used in the optimization is extended to

Ck,l =


− log

(
pk(yl)
1−rk

rk

)
, if k ≤ |Y|

− log λ(yl), if k = l + |Y|
∞, otherwise,

(12)

which translates to appending a diagonal matrix of size |Y| × |Y| to the original
cost matrix. The NLL from (8) is extended as

NLL(Y, fPMB) ≈
∫

λ(y′)dy′ − log
( Q∑

q=1

∏
y∈YU(A∗

q)

λ(y)

m∏
k=1

fBk
(Yk(A

∗
q))
)
, (13)

where we define YU(A∗
q) = Y \ ∪m

i=1Yi(A
∗
q), i.e., YU contains all the ground

truth elements matched to the PPP.
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NLL Decomposition. Often the most likely assignment yields a good approx-
imation to the NLL. For Q = 1, the NLL can be decomposed into four parts and
expressed in terms of assignments

NLL(Y, fPMB) ≈ min
γ∈Γ

−
∑

(i,j)∈γ

log
(
ripi,cls(cj)

)
︸ ︷︷ ︸

Classification

−
∑

(i,j)∈γ

log
(
pi,reg(bj)

)
︸ ︷︷ ︸

Regression

(14)

−
∑

i∈F(γ)

log(1− ri)︸ ︷︷ ︸
False detections

+

∫
λ(y′)dy′ −

∑
j∈M(γ)

log λ(yj)︸ ︷︷ ︸
Missed objects

,

where Γ is the set of all possible assignment sets, (i, j) ∈ γ means that predic-
tion i has been assigned to ground truth j, and F(γ) = {i ∈ Nm|∄j : (i, j) ∈ γ}
is the set of indices of the Bernoullis not matched to any ground-truth, i.e. false
positives. Note that we assume the classification and regression distributions
are independent pi(x) = pi,cls(·)pi,reg(·) for this decomposition. Further, we de-
fine M(γ) =

{
j ∈ N|Y||∄i : (i, j) ∈ γ

}
as the set of indices of ground-truths not

matched to any Bernoulli component, i.e., missed objects. This decomposition
enables further insight into the types of errors made by an algorithm, e.g., in-
stead of treating all false positives equally as in [11], we take their existence
probability into account for deciding how much to penalize an algorithm.

4 Experiments

For our experiments, we evaluate three existing object detection models: DETR
[2], RetinaNet [17], and Faster-RCNN [25], all using ResNet50 backbones. These
are chosen to represent a set-based, one-stage, and two-stage detector, which
highlights that the RFS framework is applicable regardless of architecture. All
these models are publicly available through the Detectron2 [34] object detection
framework, with hyperparameters3 optimized to produce competitive detection
results for the COCO dataset [18]. Further, the models have previously been
retrofitted with variance networks to estimate their spatial uncertainty [13]. Due
to hardware limitations, models in [13] used a smaller batch size and adjusted
learning rates, resulting in decreased mAP compared to numbers reported by
Detectron2. For fair comparison, we use the same hyperparameters as [13], but
note that increasing the batch size can improve mAP for all models.

The models are also fine-tuned with MB-NLL (8) as loss function. During
training, the aim is to detect all objects, hence the PPP for undetected objects
is ignored. We also found training to be more stable when the number of as-
signments Q is set to one. Further, when calculating the assignment costs for
matching, ignoring spatial uncertainties improved training stability. That is, in
(7c), we use the L2 distance instead of log(pk,reg). This can be thought of as
learning the spatial uncertainty given the predicted mean of the bounding box.

3 Hyperparameters are used as is unless stated otherwise.
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Table 1: mAP, PMB-NLL and PDQ with/without threshold for three detectors
on the COCO validation set. ∗ detections excluded due to ∞ NLL.

Detector Loss PMB-NLL ↓ mAP ↑ PDQ@F1 ↑ PDQ@0.0 ↑

DETR
ES 120.33 0.407 0.262 0.033
NLL 152.13 0.376 0.113 0.014
MB-NLL 124.20 0.389 0.271 0.023

RetinaNet
ES 127.66 0.362 0.228 0.028
NLL 126.86 0.351 0.185 0.021
MB-NLL 121.02 0.361 0.251 0.023

Faster-RCNN
ES∗ 140.53 0.373 0.281 0.087
NLL∗ 139.08 0.371 0.282 0.087
MB-NLL 117.77 0.326 0.199 0.024

For evaluation, the Q = 25 assignments with the highest likelihood are used
to approximate the PMB-NLL, as larger values for Q do not affect the approx-
imation for any of the models considered. In contrast to training, the matching
cost is used as described in (12). Further, following the COCO standard, mod-
els are limited to 100 predictions and no confidence threshold is used. DETR
is designed to provide exactly 100 predictions, while we apply NMS and keep
the 100 top-scoring predictions for RetinaNet and Faster-RCNN. For all models,
bounding boxes are parameterized by their top-left and bottom-right coordi-
nates [x1, y1, x2, y2]. While the pre-trained models from [13] used a Gaussian
distribution for regression, we found that using a Laplace distribution results in
considerably lower NLL for both training and evaluation, across all models.

Evaluating Object Detection with Proper Scoring Rule. We report mAP,
PDQ [11] and PMB-NLL in Table 1 and the decomposed results following (14)
are shown in Table 2, with additional analysis in the supplementary material. For
models with loss ES (energy score) and NLL, please refer to [13] for their details.
PDQ is reported both when thresholding prediction confidences at the detectors’
optimal F1-score and without any thresholding. The decomposition in Table 2 is
calculated for the assignment with the lowest NLL and shown averaged per image
and per assigned objects. For instance, the DETR ES regression term 82.3/12.3
is read as, on average the regression distribution of all matched predictions
contributes with 82.3 to the overall NLL. For a single matched prediction, it
contributes with 12.3 to the total NLL on average.

We can see from Table 1 that optimizing the networks toward MB-NLL rather
than the NLL formulation used in [13] consistently gives lower PMB-NLL at eval-
uation. With the exception of Faster-RCNN, this lower PMB-NLL is achieved
without sacrificing mAP performance. We can also note that mAP does not in-
dicate quality of predictive uncertainty. For instance, Faster-RCNN trained with
the energy score achieves competitive performance in terms of mAP, but its
uncertainty estimates result in the second worse PMB-NLL among the models.
Further, although PDQ is described as a threshold-free performance measure,
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Table 2: Decomposed PMB-NLL on COCO validation set. Numbers are given
as [mean per image]/[mean per prediction]. FP=NLL of unmatched predictions.
PPP match+PPP rate=missed objects. ∗detections excluded due to ∞ NLL.

Detector Loss Regression ↓ Classification ↓ FP ↓ PPP match ↓ PPP rate ↓

DETR
ES 82.3 /12.3 3.79/0.57 17.6/0.71 15.6/23.3 1.46
NLL 124.7/17.5 3.57/0.50 18.4/0.59 5.0 /23.8 1.52
MB-NLL 93.3 /14.6 3.26/0.51 3.1 /0.99 24.8/25.4 0.18

RetinaNet
ES 103.1/14.4 7.95/1.11 10.1/0.22 4.3 /23.8 2.87
NLL 105.0/14.5 7.87/1.09 9.8 /0.22 2.3 /20.7 2.91
MB-NLL 79.9 /13.9 4.00/0.70 2.6 /0.44 34.1/21.1 0.98

F-RCNN
ES∗ 105.5/15.1 8.23/1.18 12.9/0.57 14.0/37.1 0.43
NLL∗ 104.7/15.0 8.23/1.18 13.2/0.58 13.5/36.1 0.43
MB-NLL 62.0 /12.3 4.94/0.98 3.3 /0.36 46.8/20.4 1.30

it is sensitive to false positive detections regardless of their confidence, as pre-
dictions with low and high confidence receive the same penalty by PDQ. When
including low confidence predictions (PDQ@0.0), the reported PDQ results be-
come hard to distinguish between detectors. For PMB-NLL, FP penalties are
instead proportional to the predicted existence probabilities.

Inspecting the decomposition of PMB-NLL in Table 2 gives further insights
into the strengths and weaknesses of the detectors. Models that have not been
trained with MB-NLL, show high penalties for producing many false positives.
This is exemplified in Fig. 4, where the model trained with MB-NLL produces a
single prediction per object, and fewer false detections. Rather than producing
multiple plausible predictions per object, where each prediction has low spa-
tial uncertainty, they are compiled into a single hypothesis with slightly larger
uncertainty. More examples of this are available in the Appendix. We theorize
that the ES and NLL training is optimized toward mAP evaluation, where low
confidence predictions are not penalized as heavily, and that the MB-NLL loss in-
stead encourages models to produce plausible set predictions. Comparing across
architectures, we can see from FP penalties that RetinaNet generally assigns
lower existence probabilities to its incorrect predictions compared to DETR. For
the matched predictions, DETR instead has the strongest classification perfor-
mance, indicating that DETR generally has higher existence probabilities for its
predictions, regardless of them being assigned to a ground truth or not.

The example in Fig. 4 also underlines important advantages with our eval-
uation. For the person in the image, DETR ES has one prediction with good
regression but low confidence (in turquoise with 0.4), and one confident (in
white with 0.96) with bad regression. Depending on which prediction is assigned
to the true object, the error is either related to classification or regression. As
highlighted previously, confidence thresholds are in practice needed by PDQ and
used explicitly in other methods [13]. Thus, existing methods only consider the
confident prediction and report large regression errors. In contrast, PMB-NLL
evaluates both possibilities and seamlessly weighs their contribution based on



14 G. Hess et al.

  

Fig. 4: Ground truth (left), predictions from DETR ES (middle) and DETR
MB-NLL (right). Predictions with a score less than 0.1 not shown. Models not
trained with MB-NLL tend to produce many false positive detections.

their individual likelihood, where the most likely assignment is in fact the one
with lower existence probability.

Further, it is interesting to study the balance between matched predictions,
and ground truth objects matched to the PPP. For Faster-RCNN trained with
MB-NLL, many objects are assigned to the PPP. However, its PPP is a reason-
ably good description of the missed objects, resulting in a total PMB-NLL which
is lower than the other models. For an application where a high recall level is
desirable, the RetinaNet ES model might be a better choice, at the cost of worse
regression and classification performance.

5 Conclusions

We propose the use of random finite sets for probabilistic object detection. In-
stead of predicting a set of objects X, we ask our models to predict the distri-
bution over the set of objects f(X). Using a distribution over sets enables us to
evaluate model performance for the true set of objects Y by applying the proper
scoring rule negative log-likelihood − log(f(Y)). Our proposed method is general
enough to be applied to detectors with any type of regression or classification
distribution. It handles the assignments between predictions and objects auto-
matically and can be decomposed into different error types. We evaluate three
types of detectors using our new scoring rule and highlight their strengths and
weaknesses. Our method enables fair comparison between probabilistic object
detectors and we hope this will encourage the creation of novel architectures
that aim for accurate uncertainty estimates rather than just accurate means.
Future directions include how to better optimize networks toward our scoring
rule and exploring further scoring rules within the random finite set framework.
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A Cost Matrix

Suppose that we have a PMB density with Poisson intensity λ(·) and with m
Bernoulli components where the i-th Bernoulli component has probability of
existence ri and existence-conditioned object density pi(·). Note that we can
model an MB as a PMB with Poisson intensity λ(·) = 0, which means that it is
enough to describe how to handle PMB densities. To evaluate the multi-object
density of a PMB, we have to calculate all possible assignments, which can be
computationally intractable when working with many elements. However, we can
approximate the PMB likelihood by only considering the assignments with the
highest likelihood. This section shows how to find these assignments by solving
an optimal assignment problem and how to select the corresponding cost matrix.

Before formulating the optimal assignment problem, we remind ourselves of
the problem setting. For an object with state yj ∈ Y = {y1, . . . , yn}, the single
object likelihood is proportional to λ(yj) if it is associated to the PPP and
proportional to ripi(yj) if it is associated to the i-th Bernoulli component. If this
Bernoulli component is not associated to any object states, then the likelihood
is 1− ri.

Next, to formulate the optimization problem of finding the assignment with
highest likelihood we introduce an association variable. Define a surjective asso-
ciation θ : {1, . . . , n} → {0, 1, . . . ,m} such that θ(i) = θ(j) ∈ {1, . . . ,m} if and
only if i = j. If θ(j) = 0, object yj is associated to the PPP, while θ(j) = i > 0
means that object state yj is associated to the i-th Bernoulli component. Fur-
ther, let Θ be the set of all such θ. Then, the PMB likelihood for the set of
objects Y can be expressed as

fPMB(Y) =
∑
θ∈Θ

∏
j:θ(j)>0

rθ(j)pθ(j)(yj)
∏

i:∄θ(j)=i∀j

1− ri
∏

j:θ(j)=0

λ(yj) exp
(
−λ̄
)
,

∝
∑
θ∈Θ

∏
j:θ(j)>0

rθ(j)pθ(j)(yj)
∏

i:∄θ(j)=i∀j

1− ri
∏

j:θ(j)=0

λ(yj).

(15)

When searching for the most likely associations θ, we disregard exp
(
−λ̄
)
=

exp
(
−
∫
λ(y′)dy′

)
since it is independent of θ.

We note that (15) captures the association of every Bernoulli component. If
the i-th Bernoulli component does not appear in the second product in (15),
then it must appear in the first product in (15). We also note that the factor∏m

i=1(1− ri) is independent of the association θ. This means that dividing (15)
by
∏m

i=1(1− ri) yields

fPMB(Y) ∝
∑
θ∈Θ

∏
j:θ(j)>0

rθ(j)pθ(j)(yj)

1− rθ(j)

∏
j:θ(j)=0

λ(yj), (16)

and the association that maximizes the PMB likelihood can be found as

θ∗ = argmax
θ

∏
j:θ(j)>0

rθ(j)pθ(j)(yj)

1− rθ(j)

∏
j:θ(j)=0

λ(yj). (17)
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Equivalently, we can search for the association that minimises the negative log-
arithm of (17), which gives us

θ∗ = argmin
θ

−
∑

j:θ(j)>0

log
rθ(j)pθ(j)(yj)

1− rθ(j)
−

∑
j:θ(j)=0

log λ(yj). (18)

In order to formulate this minimization as an optimal assignment problem,
we make a slight change in notation. Each association map θ can be represented
by a (m+n)×n assignment matrix A consisting of 0s or 1s. There is a bijective
mapping between θ and A: for i = 1, . . . ,m, j = 1, . . . , n, Ai,j = 1 if and only if
θ(j) = i. For i = m + j, j = 1, . . . , n, Ai,j = 1 if and only if θ(j) = 0, whereas
Ai,j is always 0 when i > m and i ̸= m+ j. The assignment matrix hence must
satisfy the constraints

∑
i Ai,j = 1, ∀j, and

∑
j Ai,j ≤ 1, ∀i.

The cost matrix of the corresponding assignment matrix A is the (m+n)×n
matrix C where

Ci,j = − log
ripi(yj)

1− ri
, i = 1, . . . ,m, j = 1, . . . , n, (19)

and where the lower part of C is a “diagonal” matrix such that Cm+j,j =
− log λ(yj), j = 1, . . . , n, and entries not on the diagonal are ∞. The cost of
assignment matrix A is then given by the Frobenius inner product

trace(ATC) =

m+n∑
i=1

n∑
j=1

Ci,jAi,j , (20)

and the problem of finding the optimal assignment A∗ becomes

A∗ = argmin
A

m+n∑
i=1

n∑
j=1

Ci,jAi,j (21a)

s.t.

m+n∑
i=1

Ai,j = 1,

n∑
j=1

Ai,j ≤ 1, (21b)

Ci,j =


− log

(
pi(yj)
1−ri

ri

)
if i ≤ m,

− log λ(yj) if i = m+ j,

∞ otherwise.

(21c)

B Experimental Details

B.1 Model Implementation

For implementing the DETR, RetinaNet and Faster-RCNN models, we used the
probabilistic extension [13] of the Detectron2 [34] object detection framework. In
that framework, models are trained to predict the covariance matrix Σb for the
corresponding bounding box b. Specifically, models output the parameters of a
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lower triangular matrix L of the Cholesky decompositionΣb = LLT . While orig-
inally trained with a Gaussian distribution, we found that using an independent
Laplace distribution for each parameter in b yielded better results. Using the
diagonal elements of L as [σ1, σ2, σ3, σ4], we find the scale of each Laplace distri-
bution as si = σi/

√
2. The choice of a diagonal matrix is partially motivated by

the evaluations in [13]. While their study was limited to Gaussian distributions,
they found that diagonal covariance matrices perform on par with, or better
than, their full equivalent.

B.2 Training Details

Fine-tuning toward MB-NLL was done given the pre-trained weights in [13]4.
For DETR and Faster-RCNN, models trained with ES were used as a starting
point, while the model trained with NLL was used for RetinaNet. Faster-RCNN
and RetinaNet were fine-tuned for 135,000 gradient steps, where the learning
rate was dropped by a factor of 10 at 105,000 iterations, and again at 125,000
iterations. The initial learning rate was set to 0.001 for RetinaNet and 0.0025
for Faster-RCNN. DETR was also fine-tuned for 135,000 iterations, but with
an initial learning rate of 5 · 10−5 and with learning rate drops at 60,000 and
100,000 iterations. Otherwise, no changes to hyperparameters from the standard
Detectron2 framework were done.

As both RetinaNet and Faster-RCNN rely on non-maximum suppression to
remove duplicate detections, we applied NMS when training with the MB-NLL
loss. Here, we used the standard IoU threshold of 0.5 and used the top 100
detections. For DETR, this was not necessary since it predicts the set of objects
directly.

B.3 Inference Details

Following the COCO standard, detectors are limited to 100 predictions per im-
age. We do not apply any confidence thresholding, but for RetinaNet and Faster-
RCNN the 100 predictions with highest existence probability after NMS are used.
For DETR, no selection is needed as the model only produces 100 predictions
per image.

C Additional Results

C.1 Qualitative Results

In addition to the example detections shown in Section 4, we provide further
examples for DETR, RetinaNet and Faster-RCNN in figures 5, 6 and 7. We can
identify similar trends in these examples as in the ones described in our results.
First, Fig. 7b shows additional examples where the assignment is ambiguous.
There, the cat predictions for Faster-RCNN trained with MB-NLL either have

4 https://github.com/asharakeh/probdet

https://github.com/asharakeh/probdet
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large regression or classification errors, depending on which one of them is as-
signed to the true object. Second, we see that MB-NLL reduces the number of
confident false detections across all models. When comparing the models trained
with ES and MB-NLL, the reduction of false detections can also be interpreted
as a different representation of spatial uncertainty. In both Fig. 5a and Fig. 6a,
there is uncertainty in where the surfboard ends on the left side. The MB-NLL
models have a single prediction with larger regression uncertainty, while the
ES models have many detections, each with relatively small spatial uncertainty.
Further, the MB-NLL loss is normalized with the number of predictions during
training.

(a) Example 1.

(b) Example 2.

(c) Example 3.

Fig. 5: Examples from COCO validation data with predictions made by DETR
detectors trained with ES (left), NLL (middle), and MB-NLL (right). True ob-
jects are shown in green and without confidence values. Predictions with r < 0.1
are not shown.
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(a) Example 1.

(b) Example 2.

(c) Example 3.

Fig. 6: Examples from COCO validation data with predictions made by Reti-
naNet detectors trained with ES (left), NLL (middle), and MB-NLL (right).
True objects are shown in green and without confidence values. Predictions with
r < 0.1 are not shown.
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(a) Example 1.

(b) Example 2.

(c) Example 3.

Fig. 7: Examples from COCO validation data with predictions made by Faster-
RCNN detectors trained with ES (left), NLL (middle), and MB-NLL (right).
True objects are shown in green and without confidence values. Predictions with
r < 0.1 are not shown.
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C.2 PMB-NLL Decomposition

To complement the PMB-NLL decomposition in Table 2, we also provide corre-
sponding histograms for DETR, RetinaNet and Faster-RCNN in figures 8, 9 and
10. The histograms show how predictions contribute to the overall PMB-NLL
in the assignment with the highest likelihood. Further, for matched predictions,
histograms are also decomposed based on the size of the true object. Here, we
follow the COCO standard for defining small, medium and large objects. For
the regression of matched Bernoullis and PPP, the values have been limited to
40 for enhanced visualizations. For the classification of matched Bernoullis, the
upper limit is set to 3.

Generally, the models are worse at detecting small objects, which is shown
by them being assigned to the PPP more often than medium or large objects.
Further, the detectors are more confident when predicting larger objects, as can
be seen from the classification histograms over matched Bernoullis. This is of
course expected as large objects are inherently easier to detect. Lastly, we can
observe that the histograms for models trained with ES or NLL tend to have
more outliers, i.e., predictions whose values have been clipped to the visualization
limits.

D Comparison to DETR loss

The DETR object detector [2] popularized the concept of treating object de-
tection as a direct set prediction task. Similar to our method, they rely on a
one-to-one matching between predictions and ground truth objects. We aim to
compare their formulation to ours, highlighting similarities and differences.

D.1 DETR Loss Revisited

We start by reviewing the methods used in DETR. To find the matching between
predictions and true objects, they rely on the Hungarian algorithm to minimize

σ̂ = argmin
σ∈SN

N∑
i

Lmatch(yi, ŷσ(i)), (22)

where ŷ = {ŷi}Ni=1 is the set of predictions and y is the ground truth set of
objects, where we assume y to be padded to size N with ∅ (no object). An
object yi = (ci, bi) consists of a class label (which can be ∅) and a bounding

box bi ∈ R4, while a prediction ŷi = (p̂i,cls(ci), b̂i) consists of a class distribution
p̂i,cls(ci) which assigns probabilities to all classes including ∅ and a predicted

bounding box b̂i. Further, SN is the set of all permutations of N elements and
Lmatch(yi, ŷσ(i)) is a pair-wise matching cost defined as

Lmatch(yi, ŷσ(i)) = −1ci ̸=∅p̂σ(i),cls(ci) + 1ci ̸=∅Lbox(bi, b̂σ(i)), (23)
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(a) Matched Bernoullis regression.

(b) Matched Bernoullis classification.

(c) Matched PPP.

(d) Unmatched Bernoullis.

Fig. 8: Histograms over PMB-NLL decomposition for DETR trained with differ-
ent loss functions: ES (left), NLL (middle), and MB-NLL (right). Note varying
y-axes across models.
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(a) Matched Bernoullis regression.

(b) Matched Bernoullis classification.

(c) Matched PPP.

(d) Unmatched Bernoullis.

Fig. 9: Histograms over PMB-NLL decomposition for Retinanet trained with
different loss functions: ES (left), NLL (middle), and MB-NLL (right). Note
varying y-axes across models.
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(a) Matched Bernoullis regression.

(b) Matched Bernoullis classification.

(c) Matched PPP.

(d) Unmatched Bernoullis.

Fig. 10: Histograms over PMB-NLL decomposition for Faster-RCNN trained
with different loss functions: ES (left), NLL (middle), and MB-NLL (right).
Note varying y-axes across models.
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with

Lbox(bi, b̂σ(i)) = λiouLiou(bi, b̂σ(i)) + λL1||bi − b̂σ(i)||1, (24)

where hyperparameters are typically set to λiou = 2 and λL1 = 5. We can note
that the matching cost for ci = ∅ is zero.

Given the optimal matching σ̂, the final loss is calculated as

LHungarian(y, ŷ) =

N∑
i=1

[
− log(p̂σ̂(i),cls(ci)) + 1ci ̸=∅Lbox(bi, b̂σ̂(i))

]
. (25)

However, rather than using the negative log-likelihood for class predictions, the
log-probability term is down-weighted by a factor 10 when ci = ∅. This is
motivated in [2] to handle class imbalance.

D.2 MB-NLL Relation to DETR

This section aims at describing the MB-NLL using the same notation as DETR;
to simplify the comparison we focus on MB-NLL rather than PMB-NLL. We
start by comparing the matching costs before moving on to the loss formulation.

Matching Cost. We can compare (23) with the cost of matching objects to
Bernoulli predictions used in this work. As described in Section 3.1, we use
r = 1 − p̂cls(∅). Further, for the Bernoulli predictions, the class distribution is
assumed to be conditioned on existence, i.e., it has non-zero probability only for
foreground classes. Hence, to clarify the relation to DETR we define

pcls(c) =

{
0 if c = ∅,

p̂cls(c)/r otherwise,
(26)

as the class distribution over foreground classes. We scale the predicted distri-
bution p̂cls(c) by 1

r such that pcls(c) becomes a proper distribution and fulfills∑
c pcls(c) = 1.
In Appendix A, we showed how to find the assignment that maximizes the

likelihood (15) and consequently minimizes the negative log-likelihood. To enable
easier comparison, we want to use the same notation as DETR and formulate a
minimization over permutations

σ̂ = argmin
σ∈SN

N∑
i

Lmatch,MB(yi, pσ(i)), (27)

where Lmatch,MB is a pair-wise matching cost. Using (15), we can express Lmatch,MB

as

Lmatch,MB(yi, pσ(i)) =− 1ci ̸=∅
(
log(rσ(i)pσ(i)(yi))

)
− 1ci=∅ log

(
1− rσ(i)

)
=− log(p̂σ(i),cls(ci))− 1ci ̸=∅ log(pσ(i),reg(bi)),

(28)
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since the cost of assigning a prediction to a true object is − log(rσ(i)pσ(i)(yi)),
while the cost of assigning it to background is − log(1− rσ(i)). In (28), we have
also used the fact that pi(yi) = pi,cls(ci)pi,reg(bi), and the relation

p̂i,cls(ci) =

{
rpi,cls(ci) if ci ̸= ∅
1− r if ci = ∅,

(29)

to obtain an expression that resembles (23) and (25).
Further, if we assume pσ(i),reg(bi) to be a Laplace distribution with indepen-

dent box parameters b = [b1, b2, b3, b4], with means b̂ = [b̂1, b̂2, b̂3, b̂4] and scales
ŝ = [ŝ1, ŝ2, ŝ3, ŝ4], we can rewrite

− log(pσ(i),reg(bi)) = − log

(
4∏

k=1

1

2ŝkσ(i)
exp

(
−
|bki − b̂kσ(i)|

ŝkσ(i)

))
,

= −
4∑

k=1

log

(
1

2ŝkσ(i)
exp

(
−
|bki − b̂kσ(i)|

ŝkσ(i)

))
,

=

4∑
k=1

|bki − b̂kσ(i)|
ŝkσ(i)

+ log
(
ŝkσ(i)

)
+ log (2) .

(30)

As log(2) is present in all matching costs between pairs of predictions and true
objects, it does not affect the optimal assignment and can be disregarded. Fur-

ther, if we let ŝki = s,∀i, k, we can use the same argument to disregard log
(
ŝkσ(i)

)
and replace − log(pj,reg(bi)) in (28) with ||bi − b̂σ(i)||1/s, obtaining

Lmatch,MB(yi, pσ(i)) =− log(p̂σ(i),cls(ci)) + 1ci ̸=∅||bi − b̂σ(i)||1/s. (31)

We can now compare the expressions for the matching losses in (31) and (23),
used by MB-NLL and DETR, respectively, and analyze their similarities and dif-
ferences. Rather than using the log-probabilities, the original DETR matching
loss uses the class probabilities directly. In [2] this is motivated as making the
classification part of the cost comparable to the regression part. Interestingly,
we find that the classification log-probability is comparable to the L1 regression
under the constant scale assumption. Further, the classification cost in (23) only
evaluates the probability of the true class when the object is not ∅. For back-
ground, the cost is set to zero. In contrast, the MB matching cost also considers
the log-probability of the prediction being background and favours predictions
for which the probability of background p̂cls(∅) is small. The reason for also
considering the cost of assigning predictions to background in MB-NLL is that
predictions with large existence probabilities infer large penalties in the final loss
function if they are not assigned to a true object.

We further highlight the difference in how p̂cls(∅) is handled by the two
matching costs with an example. Imagine a scenario that contains two predictions
and one true object, a car. Both predictions have the same regression error,
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but differ in their classification. Suppose that both predictions have the same
p̂cls(car) = rpcls(car) but that the first prediction has a small r and a large
pcls(car) whereas the second prediction has a large r and a small pcls(car). In
(23), both these predictions would be treated as equally good. For MB-NLL
however, it is better to assign the second prediction to the car, simply because
that implies that the first prediction, which has a small r, is assigned to the
background.

For the regression part, (23) contains both an additional IoU-loss, and the
hyperparameters λiou, λL1 when compared to (31). While the IoU-part has no
related term in (31), we find an inverse relationship for λL1 and the assumed
constant Laplace scale s, i.e., λL1 = 1

s . Thus, the choice λL1 = 5 is equivalent
of assuming a constant Laplace scale s = 0.2, and increasing λL1 translates to
assuming smaller spatial uncertainties.

Loss Function. The MB-NLL training loss

LMB(y, ŷ) =

N∑
i

− log(p̂σ̂(i)(ci)) + 1ci ̸=∅

4∑
k=1

|bki − b̂kˆσ(i)
|

ŝkσ̂(i)
+ log

(
ŝkσ̂(i)

) , (32)

is very similar to the matching loss, but makes use of the scaling parameters
ŝkσ(i) predicted by our networks, whereas the matching loss uses a fixed scaling
parameter s.

We see that both (25) and (32) contain two terms, one for classification
and one for regression. However, in contrast to the original DETR loss (25),
we do not down-weigh the log-probability when predictions are assigned to ∅.
We believe this is one of the contributing factors to the reduced number of
false detections when training with the MB-NLL loss. By down-weighing the
penalty for predictions assigned to ∅, the detector is encouraged to produce
artificially high classification confidence. In mAP, the measure that DETR most
likely has been optimized toward, the high classification confidence is generally
not penalized as it only relies on the ranked confidences among predictions and
not the absolute confidence values.

Similar to the matching cost, (32) lacks the IoU cost found in (25), but has
an identical L1-loss when λL1 = 1

ŝ1
σ(i)

= · · · = 1
ŝ4
σ(i)

. Naturally, L1-losses increase

with larger λL1, but using (32) this can also be explained as assuming smaller
regression uncertainties. Finally, when training with MB-NLL, the relation be-
tween the Laplace scale and λL1 also shows how the network can self-regulate
the regression penalties. For the network to chose suitable scales, it has to bal-

ance the two terms log
(
ŝkσ̂(i)

)
and

|bki −b̂kˆσ(i)
|

ŝk
σ̂(i)

. While the first term encourages

smaller scales, choosing too small scales may yield a large cost if the regression
performance |bki − b̂kˆσ(i)

| is poor.
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