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Ever-growing energy consumption and CO2 emissions due to the increase in road transport
are major challenges that attract international attention, especially policy makers, logistic
service providers and customers considering environmental, ecological and economic issues.
Other negative side-effects caused by the growth of the road transport are the extensive
costs because of traffic congestion. Thus, there is a strong motivation to investigate possible
ways of improving transport efficiency aiming at achieving a sustainable transport, e.g. by
finding the best compromise between resource consumption and logistics performance. The
transport efficiency can be improved by optimal planning of the transport mission, which
can be interpreted as optimising mission start and/or finish time and increasing storage-
to-meter energy efficiency. Furthermore, there has been a recent paradigm shift within the
automotive industry towards battery electric vehicles (BEV). The main disadvantages of
BEVs, however, compared to conventional vehicles, are limited driving range and long re-
charge times, particularly at cold or warm temperatures. To address the issues of driving
range and long recharge times, it is possible to combine energy and thermal management of
BEVs. The objective is to develop a high-level supervisory controller that can take a holistic
approach, based on real-time data from navigation system and charging infrastructure, and
consider both climatization, driving and charging aspects over long-distance trips. Exam-
ple of potential control signals are: heating/cooling of compartment and battery, charging
power, and cruise control set speed.
To achieve above-mentioned goals, this thesis proposes a mission planner for vehicles over
long-distance trips. The mission planner consists of three components, i.e. logistics planner,
eco-driving supervisor, and thermal and charging supervisor.
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Abstract
This thesis proposes a mission planner for vehicles over long-distance trips,
for finding the optimal trade-off between trip time, energy efficiency, and
driver comfort, subject to road information, traffic situations, and weather
conditions. The mission planner consists of three components, i.e. logistics
planner, eco-driving supervisor, and thermal and charging supervisor. The
logistics planner aims at optimising the mission start and/or finish time by
minimising energy consumption and trip time. The eco-driving supervisor
computes the velocity profile of the driving vehicle, by optimising the energy
consumption and penalising driver discomfort. To do so, an online-capable al-
gorithm has been formulated in a model predictive control framework, subject
to road and traffic information, and the pre-optimised mission start and/or
finish time. This algorithm is computationally efficient and enables the driv-
ing vehicle to adapt and optimally respond to predicted disturbances within
a short amount of time. Eco-driving has also been achieved for a vehicle
confronted with wind, by applying stochastic dynamic programming method.
The thermal and charging supervisor regulates battery temperature and state
of charge by coordinating the energy use of different thermal components.
Within the thermal and charging supervisor design, a heat pump has been
included for waste heat recovery purposes. Also, the charging stops have been
optimally planned, in favour of energy efficiency and trip time. The perfor-
mance of the proposed algorithms over a road with a hilly terrain is assessed
using simulations. According to the simulation results, it is observed that
total travel time is reduced up to 5.5 % by optimising the mission start time,
when keeping an average cruising speed of about 75 km/h. Also, compared
to standard cruise control, the energy savings of using this algorithm is up
to 11.6 %. Furthermore, total charging time and energy consumption are re-
duced by up to 19.4 % and 30.6 %, respectively by developing the thermal and
charging supervisor, compared to a case without the heat pump activated and
without charge point optimisation.

Keywords: Energy efficiency, Mission planning, Logistics planning, Eco-
driving, Thermal and charging management, Optimal control, Nonlinear pro-
gramming, Model predictive control, Stochastic dynamic programming
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CHAPTER 1

Introduction

1.1 Motivation

Transport demand is linked with several factors, such as economic environ-
ment, political will, and technological advance. In particular, the economic
environment, characterized as gross domestic product (GDP), international
trade, and oil prices, plays a central role in the development of a transportation
system. The growth of GDP has been historically identified as a major con-
tributor to the extension of both freight and passenger transport, i.e. greater
rise in goods production can lead to greater transport distances travelled [1].
Also, international trade among different countries and people, outlined as a
crucial matter for the development of civilizations, is enabled by the means of
transport. The volume of international trade has grown twenty-seven-fold in
the post-war era between 1950 and 2007, three times faster than the growth
of world GDP [1].

Among all transport modes, road and rail (surface) transport include around
30 % of the freight transport demand and around 86 % of the passenger trans-
port demand [1]. In a baseline scenario, defined as an extrapolation of the
trends about current policy developments, surface freight demand is projected
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Chapter 1 Introduction

to grow from 32 000 to 83 000 billion tonne-kilometers between 2015 to 2050,
accounting road freight demand for about 60 % of the total, see Figure 1.1(a).
Also, global surface passenger demand is expected to increase from 43 500 bil-
lion passenger-kilometers in 2015 to around 92 800 billion passenger-kilometers
in 2050, see Figure 1.1(b), where road passenger-kilometers are estimated to
account over 80 % of the total. Although surface transport is increasing, its
growth rate is not the same in all countries. In this context, the future pro-
gression path of the countries in service-oriented economies highly influences
the surface transport sector [1].

Excessive energy consumption and CO2 emissions caused by the growth
of road transport are alarming concerns for policy makers, logistic service
providers, and customers due to economic, environmental, and ecological is-
sues. The nationally determined contributions (NDC) underline the necessity
of reducing vehicular energy consumption and fleet decarbonisation by ad-
dressing the important role of fuel-efficient technologies and development of
electromobility [1]. In 2015, energy consumption due to the road transport
in Europe amounted to around 11.5 million terajoules. Also, the calculated
volume of the emissions is 60 % higher compared to the total amount in 1990
and is estimated to increase by more than 70 % until 2050 [2]. In relation to
the oil prices, the risk of abandoning the commitments made against climate
change is reduced by current high oil prices, thus encouraging less fossil fuel
burning. In the long term, the chance for clean investments may be raised
further, as future possible cost-effective clean mobility solutions may win the
competition against conventional fuel [1].

Extensive costs, e.g. economic and social, due to traffic congestion are other
negative side effects caused by the increase in road transport. In 2010, the
estimated cost due to the traffic congestion is $115 billion over 439 urban ar-
eas of the United States [3]. The traffic congestion engenders mainly because
the traffic volume is too close to the maximum capacity of a road or network
for certain hours of a day. Current official forecasts point out that conges-
tion will grow considerably within future decades [4]. In public opinion, the
growing traffic congestion on motorways is indicated as a waste of money and
time, which can be resolved by means of building more roads. However, road
construction is not always cost-effective and can cause serious environmental
issues. Thus, due to the enormous increase in the energy consumption, CO2
emissions, and traffic congestion costs, there is a strong incentive to achieve

4
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(b) Surface passenger transport demand by mode.

Figure 1.1: Surface transport demand including freight and passenger, baseline
scenario. Data are extracted from [1].
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a sustainable transport by improving transport efficiency, which can be inter-
preted as providing service with less consumption of resources and not losing
logistics performance, i.e. costs and delivery service [5].

Transport efficiency can be improved by optimal planning the transport mis-
sion. To do so, it is essential to optimise the mission start and/or finish time,
and increase the efficiency of storage-to-meter, referring to the conversion of
energy drawn from a storage, e.g. fuel or electrical grid, into potential and
kinetic energy required for displacement, and accompanied losses [6]. The
storage-to-meter efficiency can be improved in several ways by, e.g. better
usage of vehicle components, reducing the vehicle mass, choosing the most
energy-efficient route, or providing the vehicle’s energy-efficient drive, so-
called eco-driving [7]–[9]. In particular, it is revealed in [6] that there is
a high potential of eco-driving in improving the storage-to-meter efficiency
without having any requirement for structural changes in the vehicle. To
achieve eco-driving, it is necessary to optimally plan the velocity profile of the
vehicle, subject to road and traffic flow information. One important factor in
optimising the velocity profile is the speed limits, which are imposed by not
only legal speed limits but also dynamic constraints [10], [11]. For instance,
surrounding traffic enforces such dynamic constraints due to the presence of
e.g. traffic lights, intersections, ramps and junctions. Another example that
dynamically affects the speed limits is the linking of two or more trucks in
convoy in order to increase the energy efficiency [12]. As dynamic speed limits
depend on day and time of day, the total trip time depends not only on the
planned velocity profile, but also on the mission start time. The traffic jam
could be avoided by optimising the mission start time [13].

In case of non-urban road transport, there is a great potential of improv-
ing the energy efficiency and reducing CO2 when driving in a hilly terrain,
especially for heavy-duty vehicles (HDVs), due to their large kinetic and po-
tential energy buffers [14]. Accordingly, the vehicle accelerates when driving
downhill and decelerates when climbing uphill. This leads to less waste of
non-recuperable energy compared to driving with constant speed [15]. To
implement such behaviour over complex road topographies, advanced opti-
mal control strategies [6] can be employed that maximise energy efficiency
by optimal coordination of energy sources, utilizing information of the road
topography.

In addition to the aforementioned solutions, another well-known way for
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increasing the storage-to-meter efficiency is to utilise alternative powertrains,
focusing on counteracting increasingly stringent legislation against greenhouse
gas emissions, and achieving more sustainable and environmentally friendly
vehicles [16], [17]. Thus, research and development (R&D) of electrified vehi-
cles (EVs) have recently gained extensive interest among researchers and man-
ufacturers, by adding a secondary energy source to conventional powertrains
with an internal combustion engine (ICE) [18]. Batteries, fuel cells, pneu-
matic and hydraulic reservoirs, flywheels, and supercapacitors are known as
the major additional energy carriers [19]. Depending on the size of the electric
energy source, the electrified powertrains can be classified into various con-
figurations, i.e. hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs) [18],
[20], and all-electric vehicles generally referred to as battery electric vehicles
(BEVs) [21]. In HEVs and PHEVs, ICE together with an electric machine
(EM) provide propulsion power at the wheel side of the vehicle, whereas in
BEVs, EM is the only actuator to do so.

The EV market has had a steep increase over the last decade, such that
several car companies have set a goal of pure electric production in near fu-
ture [22]. In 2020, worldwide BEV Market size worth 150 billion US Dollars,
which is forecasted to rise at a compound annual growth rate (CAGR) of over
10 % from 2021 to 2027 [23]. Tax rebate possibility and rapid investments
in R&D of advanced battery technologies are identified as other principal
reasons that can highly foster the market growth, in addition to the envi-
ronmentally friendly feature of the EVs. In 2021, Tesla publicized the use
of Lithium Iron Phosphate (LFP) based batteries in all of its produced cars,
aiming at achieving longer battery life expectancy, improved charge/discharge
capability, reduced vehicle weight, and zero maintenance costs. Furthermore,
it is easier to recycle the LFP batteries compared to nickel-cobalt aluminum
battery packs [24].

In 2020, overall automotive industry including the EV market inevitably
suffered from the negative impacts of the COVID-19 pandemic, due to un-
availability of electric components, shutdown of manufacturing facilities, and
contracted consumer demand followed by massive lockdowns and strict travel
banns [25]. This also led to a deferral in launching new BEVs, thus decreasing
the BEV market revenue. Although, the EV market growth has been shrunk
in the short-term because of the COVID-19 outbreak, the industry is stimu-
lated enough to grow steadily in the long run, as a consequence of supportive
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Chapter 1 Introduction

government policies and the restrictive emission standards [23].
Despite promising contributions in improving the energy efficiency and re-

ducing destructive emissions, EVs still confront several challenges impeding
their widespread adoption. Energy management, limited distance range, long
charging times, and thermal management are among those major challenges,
which become even more crucial to ponder in case of planning for long distance
trips, i.e. longer than the vehicle’s distance range [26]–[28]. Range anxiety, a
driver’s fear associated with running out of the battery energy before reach-
ing a planned destination or a suitable charging point, is a psychological side
effect of the BEVs’ limited range. Depending on a car model, the range can
vary over a large distance window [29]. The current range may meet most
consumers’ short to medium-distance mobility needs, revealed by recent in-
vestigations about actual driving profiles of BEVs [30], [31]. However, such
capabilities still fail to fully meet the range requirement of long-distance trips,
highlighting the significance of reducing total energy consumption as well as
promoting fast-charging technology for BEV customer acceptance. Lately, a
high-power fast-charging technology has been introduced, aiming at recharg-
ing a battery up to 80 % state of charge (SoC) within several minutes, in order
to provide more convenient long-distance trip experiences [32].

In addition to the charger’s rated power, charging time can also be highly
shaped by fast charging properties of the battery. This is mostly related
to the battery chemistry, aging, SoC, and temperature, implying that the
charging may not necessarily perform with a full rate [33]. Thus, solutions
associated with the BEV’s fast charging are required to incorporate various
aspects rather than just focusing on increasing the maximum power provided
by the charger [34].

A crucial factor that directly affects charging time as well as total energy
consumption is the thermal management system targeting the satisfaction
of safety, durability, and performance requirements, especially in harsh cli-
mates [35]. Lithium-ion (Li-ion) batteries, as a widely used alternative in the
market, are highly temperature sensitive. At high battery temperatures, cor-
rosion and even explosion can occur in the battery pack by creating bubbles,
bulge, sparks, and flames, due to overexposure of the battery to heat. Fur-
thermore, at sub-zero temperatures, the battery performance is deteriorated
due to a slowed electro-chemical process within the battery cells. This yields a
severe reduction in the cell’s available power and energy, thereby significantly
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increasing the charging time [36]. Moreover, to enhance the awareness about
total energy consumption of the vehicle, it is essential to incorporate the ther-
mal management system in optimising the storage-to-meter energy efficiency
of the BEV, since the demanded power for the thermal management system
components are supplied by the battery [37], [38].

1.2 Research gaps and questions

Although extensive research has been conducted on improving the transport
efficiency over the past years, still the inherent autonomy of the vehicle as
well as logistical service, over long distances are questionable due to the ve-
hicle’s limited range. During such long-distance trips, the range is highly
dependent on the driving behaviour, road topography, traffic situations, and
weather conditions. However, providing the logistic performance and achiev-
ing online-capable eco-driving algorithms for long-distance trip cases are not
properly addressed in the technical literature. Developing the online-capable
algorithms are essential, as the vehicle requires to react adequately against
potential disturbances and events along the driving route. Furthermore, re-
ducing the long charging time together with designing a suitable thermal man-
agement system, in order to experience an energy efficient and yet convenient
long-distance trips, have not thoroughly been studied.

The main research questions of this thesis are summarised as:

1. How to attain the logistics performance in terms of energy efficiency
and/or time?

2. How to develop a computationally efficient supervisory controller for
eco-driving of a vehicle over long look-ahead horizons?

3. How to develop a stochastic controller for eco-driving of a vehicle under
wind uncertainty?

4. How to develop an algorithm for combined eco-driving, charging, and
thermal management on long-distance trips?

5. What are the benefits of including a heat pump in the thermal manage-
ment system?

6. How to choose the charging locations in favor of achieving optimality in
time, energy, or a compromise of both?
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Logistics planner

Eco-driving supervisor

Mission start and/or finish time

Total trip time (average vehicle speed)

Mission Planner

Thermal and charging supervisor
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Battery & cabin heating/cooling attributes

Trajectories of 

vehicle speed & 

propulsion power

Lower control layer

Vehicle speed
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Road topography and traffic information

Climate conditions (wind, ambient temperature)

Available charging locations 

Figure 1.2: Structure of the mission planner, which consists of a logistics planner,
eco-driving supervisor, and thermal and charging supervisor.

1.3 Thesis focus and contributions
The focus of this thesis is on the development of an optimal mission planner
for a vehicle over long-distance trips, subject to predictive information about
the driving road, traffic situations, climate conditions, and available charging
locations along the road. As depicted in Figure 1.2, the mission planner con-
sists of three components, i.e. logistics planner, eco-driving supervisor, and
thermal and charging supervisor. Several goals have stimulated us to design
such a multi-component structure, for e.g. reducing computational complex-
ity, providing modularity and the ability to reject possible disturbances. Thus,
each component has specific tasks, which are performed by solving an optimal
control problem (OCP).

The logistics planner computes the optimal mission start and/or finish time
by offline optimising energy consumption and trip time. It also generates a ref-
erence velocity profile and, thus, an estimate of the time for reaching sparsely
assigned positions along the route, at intervals of about 250 m. To do so, the
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1.3 Thesis focus and contributions

logistics planner uses road information together with traffic situation. The
energy-efficient and time-optimal solution provided by the logistics planner
offers the logistics service providers a promising investigation, which is useful
for the coordination of the shipping and receiving of goods, supplies, foods
and people.

When solving the logistics planning OCP offline, reducing the computa-
tional time is often not the major bottleneck, since the problem solving is
allowed to take a considerable amount of time. However, the offline implemen-
tation has drawbacks in situations where the disturbances and/or constraints,
for e.g. traffic situation, change unpredictably and the vehicle is no longer
able to exactly follow the planned solution. In such situations an alternative
controller is needed to provide an adequate solution, where in each instance
the estimations and predictions of the vehicle and environment are utilised.
Thus, an online-capable eco-driving supervisor has been developed in a model
predictive control (MPC) fashion for look-ahead horizons of up to hundreds
of kilometers, subject to the pre-optimised mission start and/or finish time,
and the reference velocity profile.

Eco-driving is also achieved for a vehicle when confronted with wind, e.g.
headwind, tailwind crosswind. The wind speed has a stochastic behaviour in
general, leading to an unsteady driving environment. Thus, an OCP has been
formulated, aiming at improving energy efficiency and trip time, under the
wind uncertainty. The dimension of the formulated problem has been reduced,
by adjoining the trip time dynamics to the objective. This can considerably
boost the computational efficiency. Also, to cope with the stochastic wind
disturbance, stochastic dynamic programming (SDP) has been applied to find
the global optimum of the problem. Furthermore, soft constraints on speed
limits (kinetic energy) have been enforced to the problem by including sharp
penalties to the objective, in order to study potential constraints violations
on trip time and/or speed limits.

To increase awareness on total demanded power of the vehicle, and to fur-
ther improve the source-to-meter energy efficiency, eco-driving is combined
with optimal thermal management and charging of the vehicle. To do so,
an OCP has been formulated, with the goal of at finding the optimal trade-
off between trip time and energy efficiency. The formulated problem is then
transformed into a hybrid dynamical system, where the dynamics in driving
and charging modes are modelled with different functions and possibly with
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different state and control vectors. The formulated problem resembles realis-
tic driving situations, as it captures the vehicle’s both driving and charging
modes. Also, multiple charging options are incorporated along the driving
route to achieve scalability of the developed algorithm. Furthermore, the
benefits of including a heat pump (HP) in the thermal management system
for waste heat recovery (WHR) purposes have been investigated. WHR refers
to an energy recovery process by transferring heat from one part to another
part within the vehicle and, thus, improve the energy efficiency. Moreover,
the charging locations are planned, in favour of obtaining optimality in time,
energy, or their trade-off.

The main contributions of this thesis are summarised as:
• Developing an logistics planner to attain the logistics performance, by

optimising start and/or finish time of the vehicle mission, under legal
speed limits and dynamic speed limits imposed by surrounding traffic
(Chapter 3 and Paper A).

• Developing an eco-driving supervisor as a predictive supervisory con-
troller that employs communication and prediction abilities of modern
transportation to anticipate future events and react against potential
disturbances (Chapter 3 and Paper B).

• Developing a stochastic controller for eco-driving of a vehicle under wind
uncertainty, to achieve robustness against potential constraints viola-
tions of total trip time and/or speed limits (Chapter 3 and Paper C).

• Developing a thermal and charging supervisor combined with eco-driving
of the vehicle, to further improve the storage-to-meter efficiency and
reduce trip time (Chapter 3 and Paper D).

• Extending the scope of thermal and charging supervisor by including
an HP in the thermal management system for WHR, and charge point
planning to obtain optimality in time, energy, or their trade-off (Chapter
3 and Paper E).

1.4 Thesis outline
This thesis is divided into two parts. Part I consists of five chapters and
serves as an introduction to papers that are appended in Part II. The following
paragraph describes the outline of Part I.

Chapter 2 describes the studied vehicle powertrain and its driving mission
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over long-distance trips. Chapter 3 addresses the tools used for solving the
optimisation problem of each component of the mission planner. Chapter 4
provides a short summary for each of the appended papers. Finally, the last
chapter of introductory part concludes the thesis and presents the possible
directions for future extensions of current research.
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CHAPTER 2

Vehicle powertrain and driving mission

This chapter addresses a multi-domain configuration of the vehicle powertrain,
i.e. for a combustion engine vehicle or a BEV. Later, a long-distance driving
mission of the vehicle is demonstrated as a driving route accompanied with the
road topography, speed limits, wind effect, and available charging locations
along the route.

2.1 Vehicle powertrain
A schematic diagram of the studied powertrain is depicted in Figure 2.1, il-
lustrating the connection of the powertrain components via mechanical, elec-
trical, and thermal paths. The powertrain comprises propulsion components,
namely an energy supply/storage unit, e.g. fuel tank or battery, an actuator,
e.g. ICE or EM, and a transmission system, as well as a thermal manage-
ment system. Note that the electrical and thermal domains are addressed
for BEVs in this thesis, to model the electrical and thermal behaviours of
the electric powertrain, in favour of achieving performance, safety, and dura-
bility requirements [39]. The three powertrain domains are explained in the
following sections.
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Figure 2.1: Powertrain schematic diagram, which consists of an energy stor-
age/supply unit, an actuator, a transmission system, and a thermal
management system. The transmission translates shaft torque and
rotating speed to traction force and vehicle speed. The thermal man-
agement system may include an HVCH, an HVAC, and an HP, which
are employed for actively regulating the battery pack and cabin com-
partment temperatures.

Mechanical domain
The actuators in Figure 2.1 are modelled with static relations based on steady-
state measurements. An example of efficiency maps of the ICE and EM for
a given pair of rotational speed and torque at the shaft between the actuator
and transmission are shown in Figure. 2.2.

The negative torque limit, shown in Figure 2.2(a), corresponds to a lower
bound on negative torque due to an additional braking by a retarder, a com-
pression release, engine brake, and/or an exhaust pressure governor. The
additional braking is preferred over the service braking in order to reduce
wear and avoid lockup of the braking pads. In Figure 2.2(b), the positive and
negative torque regions indicate the motoring and the generating modes of
operation, respectively. For a combustion engine vehicle, the storage is con-
nected to the ICE through a mechanical path. The traction power provided
by the actuator is delivered to the wheels of the vehicle via the transmission
system through a mechanical path, by transforming the shaft torque and ro-
tational speed into traction force and vehicle speed, respectively. More details
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Figure 2.2: Steady-state efficiency map together with actuator torque limits.
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on modelling the propulsion components are given in Paper B.

Electrical domain
As depicted in Figure. 2.1, the electric power flow between the battery and
EM is bidirectional via the electrical path, depending on the EM’s operat-
ing mode, i.e. generating or motoring. Accordingly, the electrical energy
is supplied to the EM during the motoring mode, or stored in the battery
throughout the generating mode. In this thesis, the battery is modelling us-
ing an equivalent circuit, including a voltage source known as open-circuit
voltage, and an internal resistance of the battery. The open-circuit voltage is
generally proportional to the battery SoC. The internal resistance is usually a
nonlinear monotonically decreasing function of the battery temperature [40].
As the battery temperature increases, the ions inside the battery cells get more
energized, resulting in less internal resistance against the ions’ movement.

Thermal domain
The dynamical variations of the battery pack’s temperature is generally be-
cause of the convective heat exchange rate between the battery pack and am-
bient air and/or the chassis of the vehicle, and the heat generated/removed
by means of two groups of sources, i.e. passive and active, as explained in
the remainder of this section. Note that uneven conductive distribution of the
battery pack temperature associated with the diffusion is neglected in this the-
sis, to avoid increasing unnecessary complexity of the thermal model. Thus,
the core and crust battery pack temperatures are assumed to be identical.

Passive heating

The passive heat generation is due to: 1) the heat induced by the battery
internal resistive losses, so called irreversible ohmic Joule heat; and 2) the
conversion of electric drivetrain (ED) power losses into heat, which is generally
dependent on the propulsion power demand. Power electronic (PE) devices
and EM are the two major heat generating components within the ED circuit.
For cold climate operation, it is desirable to harvest the heat from the ED to
increase the temperature in the battery and/or cabin compartment. However,
in warm climate operation, it is most likely favourable to detach the ED
components from the battery by a valve, and cool them down, using various
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components, namely radiator, HP, or heating, ventilation, and air conditioning
(HVAC).

Active heating/cooling

The active heat generation/removal is due to: 1) high voltage coolant heater
(HVCH) power conversion for heating the battery pack and/or cabin, 3) HVAC
power conversion for cooling the battery pack, and 3) the heat transferred
from the battery as a source at low temperature to the cabin as a sink at
high temperature, by a heat pumping cycle. To perform the cycle, work
is required, as the heat cannot spontaneously flow from a colder place to a
warmer one, according to the second law of thermodynamics [41]. In the
technical literature, as a merit of the HP, a coefficient of performance (CoP)
is defined as a ratio of useful heat provided (e.g. for the cabin compartment)
to the work required [42].

2.2 Vehicle driving mission
Consider a vehicle that starts its long-distance trip from point A in Figure. 2.3,
and is driving a planned route in a hilly terrain. The main factors influencing
the total energy consumption and trip time of the vehicle can be summarised
as road topography, driving style, speed limits, and weather conditions. If the
driving vehicle is a BEV, then it is essential to make sure that there are avail-
able charging locations along the route, in order to finish the vehicle’s mission.
This also raises the significance of the thermal and charging management of
the battery with the goal of enhancing the energy efficiency and/or trip time
of the vehicle.

Vehicle longitudinal motion
According to the Newton’s law of motion, longitudinal movement of the vehicle
can be described as the traction and resistive forces exerted to the vehicle, as
depicted in Figure. 2.4. Thus, the net force at wheels of the vehicle is equal
to the subtraction of braking force, aerodynamic drag, and roll drag, from the
traction force. The braking force generally includes the force by the additional
braking. The aerodynamic drag is proportional to the vehicle speed relative
to the wind speed, the ambient air density, frontal area of the vehicle, and a
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Figure 2.3: Long-distance mission of the vehicle driving on a road with a hilly
terrain. Driving behaviour, speed limits, road topography, and charg-
ing/discharging properties of the battery are among major elements
that affect the energy efficiency of the vehicle.

drag coefficient, referred to as a dimensionless factor used to quantify the drag
or resistance of an object in a fluid environment. Furthermore, the roll drag
corresponds to resistive forces that depend on the vehicle mass, gravitational
acceleration, and the road gradient. At lower relative speeds, the rolling
resistance is the dominant element of the resistive forces. However, a threshold
is crossed somewhere in the 50-100 km/h speed window above which the air
drag becomes the dominant element. Note that this threshold is dependent
on the weight and configuration of the vehicle.

Hilly terrain

In the context of energy efficiency when driving in a hilly terrain, the com-
bustion engine vehicles burn extra fuel to climb an uphill, then continue with
burning less fuel on the way down, usually by idling and/or braking. However,
the BEVs can gain a considerable portion of the energy used for driving the
uphill, by the regenerative braking when rolling a downhill. Note that the
additional braking mechanism in combustion engine vehicles is only able to
reduce wear of the braking pads, and to prevent their overheating.
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roll drag

air drag

traction force 

braking force

Figure 2.4: Longitudinal motion of the vehicle. Traction force, braking force, aero-
dynamic drag, and roll drag are mainly the forces that are applied to
the vehicle.

Speed limits

Maximum total speed limit vmax for a given pair of travel distance and time of
day is computed as minimum value of the maximum legal speed limit, vlg

max,
and maximum dynamic speed limit, vdyn

max, as

vmax(s, t) = min
(
vlg

max(s), vdyn
max(s, t)

)
, (2.1)

where s is travelled distance, t is time of day. The maximum legal speed limit
can generally change abruptly for different segments of the driving road, see
Figure. 2.5(a). However, the dynamic speed limits generally vary smoothly
in terms of s and t, see Figure. 2.5(b), since there is no instantaneous change
in traffic flow neither in terms of s, nor in terms of t. Thus, the maximum
dynamic speed limit is modelled by a smooth function in terms of t. New
modern technologies, e.g. e-horizon systems, can provide the information
about legal and dynamic speed limits and the road slope [43].

Charge/discharge characteristics

Charging/discharging characteristics of the battery are mostly related to the
charger’s rated power and maximum available battery power while charging.
Maximum power delivered by the ith charger for i ∈ I = {1, 2, . . . , Nchg} is
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(b) Maximum legal speed limit.
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(c) Total speed limit as a minimum of legal and dynamic
speed limit.

Figure 2.5: Maximum speed limits in terms of travel distance and time of day.
The legal speed limits can change abruptly in terms of travel distance,
however dynamic speed limits vary smoothly in terms of travel distance
and time of day.
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given by

P i
grid(s) ∈

{0}, s ∈ Sdrv,

[0, P i,max
grid ], s ∈ Si

chg

(2.2)

where i is charger index, Nchg is total number of available charging locations
along the driving route, P i,max

grid is rated power of the ith charger, and Sdrv
and Schg denote sets of driving and charging distance instances, respectively.
Furthermore, an example of the battery charging power limit is demonstrated
in Figure 2.6(a), for a given combination of battery temperature and SoC.
Accordingly, the bound on the battery charge power is proportional to the
battery temperature and inverse of SoC level. Furthermore, the maximum
battery discharge power is also of interest, since it can limit the provided
traction power while driving. As depicted in Figure 2.6(b), the discharge
power limit is proportional to both the battery temperature and SoC level.
Thus, the battery power limits can be modelled by nonlinear functions of the
battery temperature and SoC, as

Pb(s) ∈

[P min
b,chg(soc(s), Tb(s)), P max

b,dchg(soc(s), Tb(s))], s ∈ Sdrv

[P min
b,chg(soc(s), Tb(s)), 0], s ∈ Si

chg
(2.3)

where P max
b,dchg > 0 and P min

b,chg < 0 are the discharge and charge power limits,
respectively. It is deduced from (2.3) that the battery power during driving
can also take negative values due to regenerative braking, referred to as a
mechanism that transforms the vehicle’s kinetic energy into electrical energy
to be stored in the battery. Also, the charging power limit generally may differ
in driving and charging modes.

Trip time

The vehicle’s total trip time includes the driving and charging times together
with a detour time from the main route to a charging stop and back. The
driving time depends directly on the vehicle average speed constrained by the
legal and dynamic speed limits. Also, the charging time is influenced by the
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Figure 2.6: Normalised absolute value of battery charge and discharge power limits
for a given pair of battery temperature and SoC.

charger’s maximum delivered power as well as the battery’s power availabil-
ity shaped by the battery temperature and SoC, according to Figure. 2.6.
This implies that the thermal management also plays an important role in
achieving a reduced charging time, as both the battery temperature and SoC
can be directly affected by the thermal management system. Furthermore,
optimal charge point planning is another way to reduce the total trip time.
More details on impacts of the thermal management system and charge point
planning on total trip time are given in Paper D and Paper E.
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CHAPTER 3

Optimisation tools

This chapter gives an overview of the optimisation methods used for solving
the OCP formulated in Paper A-E.

3.1 Optimal control problem
The OCP is summarised as

min
u∈U

(
S(x(sf), sf) +

∫ sf

s0

V (x(s), u(s), s)ds

)
(3.1a)

subject to:
dx(s)

ds
= f(x(s), u(s), s) (3.1b)

g(x(s), u(s), s) ≤ 0 (3.1c)
x(s) ∈ X (s) (3.1d)
u(s) ∈ U(s) (3.1e)
x(s0) ∈ X0(s0) (3.1f)
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x(sf) ∈ Xf(sf) (3.1g)

where s0 is initial position, sf is final position, and S and V , respectively known
as terminal and running costs, form the objective function of the OCP. The
objective function may differ for the mission planner components. However, it
may generally include total energy consumption, charging cost, and penalised
trip time and/or driver discomfort. The energy consumption in combustion
engine vehicles corresponds to consumed fossil fuel, while in BEVs it refers
to the electricity usage. Other objective functions that the OCP can accept
are found in [44]–[48], and the references therein. The vectors x and u gather
the state variables and control inputs, respectively. The vectors f and g in-
clude nonlinear functions in terms of the states, control inputs, and travelled
distance, where f denotes the system dynamics on for e.g. trip time, battery
temperature and SoC, and longitudinal motion of the vehicle. Also, g rep-
resents system general constraints, which may correspond to the maximum
dynamic speed limit, actuator bounds, or the battery power limits. Moreover,
X , X0, Xf and U denote the feasible sets of states, allowed initial states at s0,
target states at sf and control inputs, respectively.

The problem (3.1) generally represents a mixed-integer nonlinear program
(MINLP) if the set U is mixed-integer, otherwise it becomes a dynamic non-
linear program (NLP). As explained in Paper B, the set U includes an integer
subset, because of choosing gear as an additional control input. Also, the
optimal charge point planning performed in Paper E involves introducing an
integer variable for each charging location, in order to decide to use or skip a
charger. MINLPs are of the most general formats of optimisation problems.
Despite a considerable development in software for MINLP solvers in the last
twenty years, still solving such problems has proven to be challenging [49]. In
the remainder of this chapter, the strategies used in this thesis for effectively
solving the problem (3.1) have been briefly explained. These strategies include
bi-level programming [50], model predictive control [51], Pontryagin’s maxi-
mum principle (PMP) [52], sequential quadratic programming (SQP) [53],
real-time iterations (RTI) [54], dynamic programming (DP) [55], and hybrid
dynamical system reformulation [56].
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3.2 Bi-level programming

3.2 Bi-level programming

Bi-level programming is an optimisation scheme, in which one problem (as a
sub-problem) is embedded within another. Thus, the optimisation tasks are
divided between outer (upper-level) and inner (lower-level) tasks. Likewise,
the optimisation variables are categorised into the upper-level variables and
the lower-level variables. Bi-level programming is used for energy management
and optimal velocity control of vehicles, to overcome the computational burden
of high-dimensional optimisation problems [57]–[59].

In Paper B, bi-level programming has been used for gear optimisation. Ac-
cordingly, the optimisation of integer variables, i.e. gear, are moved to the
lower-level task, and all system dynamics reside in the top-level task which
form a dynamic NLP. Static modelling of the actuator and transmission sys-
tem allows separating the lower level and solving it offline, where the vehicle
speed (or kinetic energy) and traction force are regarded as parameters, and
optimal gear is computed as a function of these parameters.

To approach the offline-optimal gear selection that minimises energy con-
sumption, it is first needed to translate the brake specific fuel consumption
(BSFC) from the engine to the wheels. BSFC refers to the fuel efficiency of
any prime mover that burns fuel and produces rotational, or shaft power. A
given BSFC map of the engine translates to several equivalent maps at the
wheels, one map for each gear. This is illustrated in Figure. 3.1(a), where
BSFC is calculated over a grid of feasible vehicle speed and traction force. It
can be noticed that map regions with the same speed and force overlap for
different gears. Then, the optimal BSFC map for the overlapping regions is
derived by calculating the minimum BSFC value for each pair of speed and
traction force, see Figure. 3.1(b). Thus, the optimal gear is computed as the
corresponding gear that has minimised the BSFC for the given pair of speed
and traction force, see Figure. 3.1(c).

Gear selection is relevant even in the negative force region, where a retarder,
a compression release engine brake and/or an exhaust pressure governor can
be used for braking. The maximum braking force that these units can deliver,
also referred to as the minimum additional force limit, is calculated as the
minimum force at the wheels for a combination of speed and gear, as shown
in Figure. 3.1(c). The goal is to use these units, and thus avoid wear of
the service brakes. If the total negative demanded force is higher than the
minimum negative additional force, the highest possible gear is selected, which

27



Chapter 3 Optimisation tools

12

10 150

Traction force [kN] Speed [km/h]

1005

50
0

13

G
ea

r

14

200

250

300

350

400

B
S

F
C

 [
g
/k

W
h
]

(a) BSFC map for feasible combinations of speed and trac-
tion force for gears 12, 13 and 14.

20 40 60 80 100

Speed [km/h]

0

10

20

30

40

50

T
ra

ct
io

n
 f

o
rc

e 
[k

N
]

200

210

220

230

240

250

Optimal BSFC [g/kWh]

Max. traction force limit [kN]

(b) Offline-optimised BSFC map with maximum traction
force limit for the speed range of 20-100 km.

20 40 60 80 100

Speed [km/h]

-50

0

50

F
o

rc
e 

[k
N

]

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Optimal gear

Max. force [kN]

Min. negative add. force [kN]

(c) Offline-optimised gear map together with maximum
traction force and minimum negative additional force limits
for the speed range of 20-100 km.

Figure 3.1: Gear optimisation procedure.
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past control

past states

predicted states

applied control

predicted control

𝜉 𝜉 + 1 𝑠H(𝜉)

Figure 3.2: Concept of a model predictive controller in discrete domain, where ζ
is current instance and sH is prediction horizon length.

avoids unnecessary down-shifting. On the other hand, if total demanded force
is lower than the minimum negative additional force, the lowest possible gear
is selected, since it provides the most possible negative additional force and
thus reduces the need for using the service brakes.

3.3 Model predictive control
MPC is an online-capable framework that iteratively solves (3.1). The main
advantage of MPC is that it engages future instances in optimising the current
instance. In other words, a finite horizon of instances is optimised, but only the
optimal solution of current instance is implemented. This process repeatedly
continues up to the end of the horizon. Thus, MPC is able to anticipate future
events, e.g. disturbances, and can take adequate control action accordingly.
MPC is a commonly used scheme with high amount of academic literature in
the areas of energy management [60]–[62], eco-driving [63]–[65] and optimal
thermal management and charging [66], [67]. The concept of MPC in discrete
domain is demonstrated in Figure. 3.2.

In Paper B, the eco-driving supervisor has been developed using MPC
framework that allows horizons to cover the entire route. As computational
resources are always limited, we impose an upper bound on horizon length,
sHmax, hopefully in the range of hundreds of kilometers. Thus, the eco-
driving supervision OCP can be solved in a moving horizon MPC (MHMPC)
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framework if sHmax < sf, or in a shrinking horizon MPC (SHMPC) frame-
work if sHmax ≥ sf. The optimisation variables are predicted at samples
s ∈ [ζ, ζ + sH], given information of the actual vehicle’s states at ζ. Thus,
the actual horizon length can be computed as

sH(ζ) = min{sHmax, sf − ζ}. (3.2)

The problem can now be summarised as follows

min
u∈U

(
S(x(sH|ζ), sH) +

∫ ζ+sH(ζ)

ζ+s0

V (x(s|ζ), u(s|ζ), s)ds

)
(3.3a)

subject to:
dx(s|ζ)

ds
= f(x(s|ζ), u(s|ζ), s) (3.3b)

g(x(s|ζ), u(s|ζ), s) ≤ 0 (3.3c)
x(s|ζ) ∈ X (s|ζ) (3.3d)
u(s|ζ) ∈ U(s|ζ). (3.3e)
x(s0|ζ) ∈ X0(s0|ζ) (3.3f)
x(sf|ζ) ∈ Xf(sf|ζ) (3.3g)

The full statements of problem (3.3) is given in Paper B.

3.4 Insights from necessary PMP optimality
conditions

A way to reduce the computational complexity of the high-dimensional op-
timisation problems is done by adjoining system dynamics to the objective
function and neglecting or adjoining constraints on state variables, suggested
by the PMP approach [52]. This is a well-known strategy that has been ex-
tensively used for optimising the vehicle speed, gear selection, and energy use
of vehicles [10], [61], [68]–[72].

In this thesis, the above-mentioned strategy has been used, which involves
moving the dynamics on trip time to the objective function of the optimisation
problem. The new extended objective, i.e. the Hamiltonian [73], [74], is
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defined as

H(s, x, ur, λ) = V (x(s), ur(s), s) + λT f(x(s), ur(s), s), (3.4)

where ur is the top-level real-valued decision vector, including the vehicle
jerks and mechanical force. Also, λ denotes the vector of Lagrange multipliers
known as costate vector to the state vector x. The Hamiltonian (3.4) detailed
in Paper B is not an explicit function of trip time, thus optimal time costate,
λ∗

t , i.e. the value for λt that satisfies maximum trip time constraint, is a
constant value, i.e.

λ′∗
t (s) = −

(
∂H(·)

∂t

)∗

= 0. (3.5)

Furthermore, the trip time is a strictly monotonically increasing function that
may activate the maximum trip time constraint only at the final instance.
Consequently, if λ∗

t is known, it will be possible to adjoin the nonlinear dy-
namics on trip time to the objective function. The optimal λ∗

t can be calcu-
lated by solving a two-point boundary value problems (TPBVP). To do so,
it is considered that the optimal energy consumption corresponds in general
to driving slow, so it can be assumed that the vehicle will use the entire trip
time, i.e. t∗(λt, sH) ≈ tH, where t∗ is optimised trip time and tH is desired trip
time at final position of the horizon, obtained by the logistic planner. Thus,
it is possible to try different values for λt and then use search methods, e.g.
Newton or bisection, that minimises the cost

min
λt
||t∗(λt, sH|ζ)− tH(ζ)|| (3.6)

where || · || may indicate any norm. For more details on finding λ∗
t see Paper

B.

3.5 Sequential quadratic programming
Let an NLP be formulated as

min
d∈D

F (d) (3.7a)

subject to:
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G(d) ≤ 0 (3.7b)
H(d) = 0 (3.7c)
d ∈ D ⊆ Rn (3.7d)

where d is a vector of decision variables that are feasible within a set of D,
and n is a positive integer. Also, the objective F is a nonlinear function, and
G and H are vector nonlinear functions representing inequality and equality
constraints, respectively. The Lagrangian of the problem (3.7) is defined as

L(d, λ, σ) = F (d)− λT G(d)− σT H(d), (3.8)

where λ and σ are Lagrange multipliers.
If the functions F , G, and H are assumed to be twice continuously differen-

tiable, the NLP (3.7) can be solved efficiently using SQP method. Accordingly,
a quadratic version of the problem can be obtained, by linearising the inequal-
ity constraints (3.7b) and equality constraints (3.7c). Solving the resultant QP
generally gives an approximate solution to the NLP (3.7). However, the ac-
curacy of the solution can be improved, by modifying the objective function
with the gradient of the original objective function and the Lagrangian of the
constraints. Thus, the resultant problem is a convex quadratic program (QP),
as

min
∆d

F (dk) +∇F (dk)T ∆d + 1
2∆dT∇2F (dk)∆d (3.9a)

subject to:
G(dk) +∇G(dk)T ∆d ≤ 0 (3.9b)
H(dk) +∇H(dk)T ∆d = 0 (3.9c)

where ∇ and ∇2 denote the gradient and the hessian, respectively, and ∆d is
a search direction. The problem (3.9) referred to as a sub-problem is solved
iteratively in a way that the current sub-problem is linearized around the
previous solution. The k + 1 : th iterate of the sub-problem (3.9) is given by
dk+1 = dk + β∆d, where dk is the k : th iterate, and β ∈ (0, 1] is the search
step length. The iterations continue until a stop criterion is satisfied, e.g.
when the normed difference between two consecutive solutions is less than a
defined tolerance. SQP has recently shown a considerable usage in the areas
of energy management and eco-driving of vehicles [57], [75], [76].
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3.6 Dynamic programming

In Paper B, SQP has been applied for solving the NLP derived as the top-
level task of the bi-level program, where λt is also a given value.

Real-time iterations
The convex QPs are fast to solve, however, there is no guarantee for the
number of sub-problems (3.9) required to be solved until the convergence is
reached. This is a major drawback, especially when applying SQP in real-
time scenarios, as it is crucial to obtain the solution fast enough. Another
issue is that the solutions to the sub-problems (3.9) may be infeasible in the
original NLP (3.7). Thus, as the SQP is stopped prematurely, it is essential
to verify that the obtained solution by solving a single QP is also feasible
in the original NLP. Feasibility can be guaranteed if the domain of the QP,
obtained by linearizing nonlinear constraints, is inner approximation of the
feasible set of the NLP. RTI [54] facilitates the convergence loop’s removal,
where the idea is to solve only a single QP per MPC update, without waiting
for a full convergence. The obtained solution is possibly sub-optimal, but due
to the contractivity of the RTI scheme as shown in [77], the real-time iterates
quickly approach the optimal solution during the run-time of the process. The
significant reduction of computation time has encouraged researchers to use
RTI for real-time applications in automotive areas [57], [78].

Paper B uses RTI in order to boost the computational efficiency of solving
the problem (3.9). The feasibility of the sub-problem solution has also been
verified in Paper B.

3.6 Dynamic programming
DP [55] is a well-known strategy commonly used for optimal control of vehicles,
due to its potential to guarantee global optimum for non-convex, nonlinear and
mixed-integer optimisation problems [44], [79]–[83]. DP uses Bellman’s prin-
ciple of optimality [55], where the complex full problem is broken down into
simpler sub-problems and solved via backwards recursion handling the prob-
lem’s nonlinearities and constraints in a straightforward way. Major drawback
of using DP is the curse of dimensionality, which denotes to a fact that com-
putational time increases exponentially with the number of state variables and
control signals [55].
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Figure 3.3: Hybrid dynamical system demonstration including driving mode, charging
mode and transition between these two modes. During the driving and charg-
ing modes decisions are planned with respect to s and τ i, i ∈ I, respectively.

DP has been used in Paper C for studying the influence of wind uncertainty
on eco-driving of the vehicle. Here, the goal is to derive an optimal policy, i.e.
a policy prescribing how to act optimally in the face of the wind uncertainty.
Furthermore, to improve the computational efficiency, the dimension of the
problem has been reduced by appending trip time dynamics to the objective
function, followed by PMP.

3.7 Hybrid dynamical system
A hybrid dynamical system generally refers to a system that encompasses
both continuous and discrete dynamical behavior [56]. The structure of hy-
brid dynamical systems has the advantage of including a vast class of systems,
providing more flexibility in the system modelling. This has strongly encour-
aged using the form of hybrid dynamical system for modelling and control of
vehicles [84]–[87].

The Hybrid dynamical system has been used in Paper D, which addresses
the thermal management and charging design combined with eco-driving over
a long-distance trip with multiple charging options along the route, as illus-
trated in Figure. 2.3. Accordingly, an hybrid dynamical system has been

34



3.7 Hybrid dynamical system

formulated, where the driving dynamics are modelled in a spatial domain, i.e.
decisions are made along the travelled distance. Also, charging dynamics are
modelled in a temporal domain, i.e. decisions are made along a normalized
charging time. The actual charging time is optimised together with the opti-
mal state and control trajectories, for both charging and driving modes. The
demonstration of the hybrid dynamical system is shown in Figure. 3.3.

The thermal management and charging design in Paper D has been ex-
tended in Paper E, by studying the impacts of the optimal charge point plan-
ning and including an HP in the thermal management system, on the energy
efficiency and trip time.
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CHAPTER 4

Summary of included papers

This chapter provides a summary of the included papers. Full versions of the
papers are appended in Part II. The layout of the papers has been revised to
obey the layout of the rest of the thesis.

4.1 Paper A
Ahad Hamednia, Nikolce Murgovski, and Jonas Fredriksson
Time optimal and eco-driving mission planning under traffic constraints
23rd IEEE International Conference on Intelligent Transportation Sys-
tems (ITSC) .

This paper describes a methodology for achieving desired logistics perfor-
mance, i.e. providing service with reduced energy consumption and fulfilling
requested shipping and delivery time. The methodology is developed and im-
plemented in a tool, i.e. the logistics planner, by controlling the mission start
and/or finish time as well as the velocity profile of a vehicle driving in a hilly
terrain. In other words, logistics planner generates a reference velocity profile
and, thus, an estimate of the time for reaching sparsely assigned positions
along the route, at intervals of about 250 m. Inputs to logistics planner, road
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topography and total speed limits, are given by the user, where the total speed
limits have been calculated as the minimum value of the legal and dynamic
speed limits derived from the traffic information. Furthermore, the trade-off
between energy consumption and trip time has been investigated in Paper A,
while allowing a flexibility in starting time and a certain variation of vehicle
speed around an average. This gives a valuable information to the logistics
service provider, to optimally coordinate the shipping and delivering of sup-
plies, foods, goods, and people. It is observed that total trip time is reduced
up to 5.5% by adjusting the mission start time, when keeping an average
cruising speed of about 75 km/h.

4.2 Paper B
Ahad Hamednia, Nalin K.Sharma, Nikolce Murgovski, Jonas Fredriks-
son
Computationally efficient algorithm for eco-driving over long look-ahead
horizons
IEEE Transactions on Intelligent Transportation Systems .

This paper addresses developing eco-driving supervisor, which aims at ob-
taining a velocity profile for the entire route such that the trip time is upper
bounded and the total energy consumption is minimised. The upper bound
on trip time is computed by logistics planner from Paper A, subject to the
road and traffic flow information. Thus, an online-capable algorithm has been
developed in an MPC framework for long prediction horizons of up to hun-
dreds of kilometers. The controller is capable of using communication and
prediction abilities of modern transportation to anticipate future events and
disturbances. This implies that the controller is able to re-optimise the veloc-
ity profile online, considering possible changes in the condition of the vehicle
and/or the driving road. As a central concern for such online-implementable
supervisor, the computational efficiency has been considered by developing
a bi-level algorithm where integer variable, i.e. gear, is decoupled from the
real-valued variables. In the bottom level, the optimal gear map is derived
in a way that the total energy consumption is minimised. In the top level,
the remaining nonlinear problem has been solved by gaining insights from
PMP conditions for optimality and real-time iterations SQP. To provide more
comfortable way of driving, acceleration and jerk of the vehicle have been ap-
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4.3 Paper C

pended to the top level’s objective function. The proposed algorithm is able
to solve the optimisation in a very short amount of time, i.e. for a horizon
length of 118 km with the sampling interval kept at about 250 m, the com-
putation time is less than 20 ms. Compared to standard cruise control, the
energy savings of using this algorithm is up to 11.6 %. Also, Pareto frontier il-
lustrating the trade-off between energy efficiency and driver comfort has been
presented, which provides valuable information for vehicle manufacturers to
customise the vehicle’s performance for a desired energy use and comfort.

4.3 Paper C
Ahad Hamednia, Maryam Razi, Nikolce Murgovski, and Jonas Fredriks-
son
Electric vehicle eco-driving under wind uncertainty
24rd IEEE International Conference on Intelligent Transportation Sys-
tems (ITSC) .

This paper addresses eco-driving under wind speed uncertainty, subject to
road topography and legal and dynamic speed limits. Thus, an OCP has
been formulated, where the trip time dynamics has been adjoined to the ob-
jective function, in order to boost the computational efficiency. To find the
global optimum of the problem, DP method has been applied, which copes
with the stochastic wind disturbance. DP has been approached by discretiz-
ing the problem in continuous spatial domain, and gridding the feasible sets
of state variable (kinetic energy) and control input (traction acceleration).
Moreover, soft constraints on speed limits (kinetic energy) have been enforced
to the problem by including sharp penalties to the objective, in order to study
potential constraints violations. Subsequently, a deterministic controller and
a stochastic controller have been obtained. The deterministic controller has
been derived for a fixed wind speed, whereas for the stochastic controller, the
wind speed can have a value from a bounded and discretized normal distri-
bution. The performance of the stochastic controller has been evaluated in
comparison to the deterministic controller, on uncertain wind profiles. For
a fixed energy consumption and average trip time, the constraint violation
on speed due to the wind speed uncertainty is 21 % for the deterministic
controller, whereas the stochastic controller is robust against such violations.
Also, the percentage of violated maximum allowed trip time is 25 % for the
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deterministic controller.

4.4 Paper D
Ahad Hamednia, Nikolce Murgovski, Jonas Fredriksson, Jimmy Fors-
man, Mitra Pourabdollah, and Viktor Larsson
Optimal thermal management, charging, and eco-driving of battery elec-
tric vehicles
Re-submitted the revised version to IEEE Transactions on Vehicular
Technology in Oct 2022 .

In this paper, a tool has been developed for the thermal management and
charging combined with eco-driving of a BEV experiencing a long-distance
trip. To do so, a hybrid dynamical system has been formulated, where the
total energy consumption and trip time are minimised, subject to predictive
information about the driving road, traffic situations, climate conditions, and
available charging locations along the road. Within the hybrid dynamical
system, the dynamics in driving and charging modes are modelled with dif-
ferent functions and with different state and control vectors. Such hybrid
problem formulation allows for reduced computational burden, by modelling
the driving dynamics in a spatial domain, i.e. decisions are made along the
traveled distance. Also, charging dynamics are modelled in a temporal do-
main, where decisions are made along a normalized charging time. The actual
charging time is modelled as a scalar variable that is optimized simultane-
ously with the optimal state and control trajectories, for both charging and
driving modes. The developed tool provides the satisfaction of safety and
battery power availability requirements in extreme climates, as well as conve-
nient trip experiences due to reduced charging times and less range anxiety.
The performance of the proposed algorithm has been assessed via several sim-
ulations, where it is observed that the total trip time including driving and
charging times, is reduced by 44 %, compared to a case without battery active
heating/cooling.

4.5 Paper E
Ahad Hamednia, Victor Hanson, Jiaming Zhao, Nikolce Murgovski,
Jimmy Forsman, Mitra Pourabdollah, Viktor Larsson, and Jonas Fredriks-
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son
Optimal thermal management and charging of battery electric vehicles
over long trips
Submitted to IEEE Transactions on Vehicular Technology in Sep 2022 .

The thermal management and charging developed in Paper D has been ex-
tended in Paper E, with a focus on potential benefits of including an HP in
the TM system for WHR, and charging point planning in a way to achieve op-
timality in time, energy, or their trade-off. Thus, similar to Paper D, a hybrid
dynamical system has been formulated, where charging dynamics are modelled
in the domain of normalized charging time. Driving dynamics can be modelled
in either of the trip time or travel distance domains, as the vehicle speed is
assumed to be known a priori, and the vehicle is only stopping at charging lo-
cations. Within the hybrid dynamical system, a binary variable is introduced
for each charging location, in order to decide to use or skip a charger. This
problem is solved numerically, and simulations are performed to evaluate the
performance in terms of energy efficiency and time. Within the simulations,
Pareto frontiers describing the trade-off between energy efficiency and time
are derived versus different features, e.g. a heat pump, charging stops, and
ambient temperature. Such graphs provide a wide range of choices for car
manufacturers as well as grid service providers to gain more insight into the
design and development of TM and charging systems. Furthermore, various
car users can customise their trips according to the information given within
these graphs. According to the obtained results, energy consumption and the
time needed for charging are reduced by up to 19.4 % and 30.6 %, respec-
tively, by including an HP in the TM system. By including optimal charge
point planning in the form of binary decision variables, the solution depends
on factors such as the priority between time and energy, the availability of an
HP, and ambient temperature.
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CHAPTER 5

Conclusion and future work

In this chapter, the thesis is concluded by addressing the research goals and
possible directions for future research.

5.1 Concluding remarks
Automotive industry leaders and transport service providers constantly con-
sider reducing ever-growing energy consumption and CO2 emissions by im-
proving transport efficiency and logistics performance. This thesis has inves-
tigated how these goals are achievable by optimal planning of the vehicle’s
mission, which is characterized as optimising the start and/or finish time of
vehicle driving mission and increasing the storage-to-meter efficiency. It has
been shown that optimising the vehicle’s longitudinal drive has a significant
impact on enhancing the storage-to-meter efficiency. Thus, the core idea has
been introduced as formulating a driving mission as an optimal control prob-
lem. To do so, several factors have been considered that strongly influence
solving the optimal control problem, such as speed limits, trip time, weather
conditions, driver comfort, future events and disturbances, and the battery
power availability during driving and charging modes of the vehicle.
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In order to increase feasibility in realistic driving situations, the control
problem incorporates speed limits that include not only legal, but also dy-
namic limits using the information about the road and traffic available. Sur-
rounding traffic can impose such dynamic constraints on the vehicle speed due
to presence of e.g. traffic lights, intersections, ramps and junctions. Further-
more, the trade-offs between the energy efficiency and trip time, and between
the energy efficiency and driver comfort, are considered in the control problem,
i.e. lower energy cost generally yields non-smooth saw-tooth shape velocity
profiles and longer trip times. Moreover, predictive controllers are developed
that employ communication and prediction abilities of modern transportation
to anticipate future contradiction events and disturbances.

To improve the transport efficiency and not lose the logistics performance,
with all above-mentioned factors considered, a mission planner. The mission
planner consists of a logistics planner, an eco-driving supervisor, and a thermal
and charging supervisor. The logistics planner provides the optimal mission
start and/or finish time by offline optimising energy consumption and trip
time. It also provides a reference speed profile and, thus, an estimate of the
time for reaching sparsely assigned positions along the route, at intervals of
about 250 m. To do so, the logistics planner uses road information as well as
traffic situation characterized as a map of total maximum speed limits given
in terms of travel distance and time of day. Here, the trade-off between energy
efficiency and total trip time has been investigated, which offers the logistics
service provider a valuable information to tailor the vehicle’s trip in terms
of energy costs and delivery service. It is observed that total trip time is
reduced up to 5.5 % by adjusting the mission start time, when keeping an
average cruising speed of about 75 km/h.

In cases that the traffic situation and/or the driving road change unpre-
dictably for any reason, an algorithm is needed to generate a valid solution by
solving the optimal control problem, and consequently should be real-time im-
plementable. To achieve this, an online-capable algorithm for the eco-driving
supervisor has been developed in an MPC fashion, subject to the pre-optimised
mission start and/or finish time, and the reference velocity profile. It obtains
a velocity profile by optimising the energy consumption and penalising driver
discomfort. The algorithm is able to solve the optimisation in a very short
amount of time, i.e. for a horizon length of 118 km with the sampling interval
kept at about 250 m, the computation time is less than 20 ms. For on-line ap-
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plications, such small computation time can strongly enhance the optimality,
since the suggested optimal state of vehicle can be updated more frequently.
Also, this algorithm is applicable to offline analysis of multi-path problems,
where the optimal path of the driving vehicle in terms of energy consump-
tion can be obtained by iteratively solving the eco-driving problem within a
small amount of time. Compared to standard cruise control, the proposed
algorithm provides the energy savings of up to 11.6 %. Also, Pareto frontier
describing the trade-off between energy efficiency and comfortable driving has
been presented. This offers a wide range of choices for vehicle manufacturers
to customise the vehicle’s performance for a desired energy use and comfort.

To achieve the vehicle’s eco-driving in the face of wind uncertainty, an analy-
sis has been carried out, using dynamic programming. Thus, a stochastic con-
troller has been derived, where the wind speed takes a value from a bounded
and discretized normal distribution. The performance of the stochastic con-
troller has been compared later to a deterministic controller on 100 stochastic
wind profiles, where the energy consumption and average trip time are fixed.
For obtaining the deterministic controller, the wind speed is a fixed (average of
the distribution) value. Accordingly, the speed limits are violated for 21 % of
the wind profiles, in the deterministic controller case. However, the stochastic
controller is robust against such violations. Such robustness is due to the fact
that the stochasticity of the wind speed has been already taken into account
when obtaining the stochastic controller.

To further improve the energy efficiency, the thermal management and
charging has been designed, capturing both driving and charging modes of
the vehicle. Within the thermal management and charging, the benefits of a
heat pump system as a mechanism for waste heat recovery has been investi-
gated. According to the results, total charging time and energy consumption
are reduced by up to 19.4 % and 30.6 %, respectively by incorporating a heat
pump in the thermal management and charging design. It is worth mentioning
that the improvement varies noticeably with ambient temperature, however
as long as there is a heating demand for the cabin compartment, it is more
time and energy efficient in the case with the HP activated. Note that using
a heat pump may be beneficiary in cases where there are constraints on dis-
charge power capability of the battery at low battery temperature and SoC
regions, or the waste heat available within the battery pack is limited. Fur-
thermore, the charging stops have been optimally planned, which allows for a
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holistic solution of a long-distance trip in a BEV in terms of energy consump-
tion and total trip time. The solution depends on factors such as the priority
between time and energy, the availability of an HP, and ambient temperature
characterised as the cabin heating demand.

5.2 Future work
In this section, several possible directions for future research on the topic
mission planning are presented.

Optimal mission planning of HEVs
The current developed mission planner can also be extended to be applicable
to HEVs. To this end, an optimisation problem can be formulated, which aims
at planning optimal velocity trajectory for the entire route, in a way that total
energy consumption is minimised, trip time is upper bounded, and battery
SoC at final position is specified. Having the fixed trip time and the battery
SoC at the end of the route, indicate that the mission planning of HEVs is
also a long-horizon type of problem. Thus, the problem can be treated by
using an SHMPC considering the information to the end of the driving route
per each MPC update. This results in gradual battery depletion and reaching
the desired battery SoC at end of the route. Note that an important step
in designing the mission planner for HEVs is the offline gear optimisation,
where both fuel and electricity consumption are required to be incorporated
in finding the optimal gear map.

Stochastic charging coordination of electrified vehicles
The current developed mission planner can also be extended with a new func-
tionality that optimally coordinates electricity charging of multiple BEVs over
long-distance trips, subject to road and traffic information and systems dy-
namics. A key factor is to incorporate uncertain information on electricity
pricing that may vary from charger to charger and time of day, costs for over-
stay at charging locations and charging capabilities. When the uncertainties
are bounded, robust MPC can be designed to guarantee that constraints on
system states and control inputs are always respected. If the uncertainties
are unbounded, stochastic MPC can be employed to ensure that constraints
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are satisfied on average or with a given probability. The main challenge in
stochastic optimization over long horizons is in the development of efficient
numerical methods to comply to the real-time requirements and limitations
of computational units. Another crucial issue is to find a good balance be-
tween optimality, robustness and real-time computational feasibility. Thus,
current investigations on mathematical transformations, such as bi-level for-
mulation, variable changes and time-to-space coordinate transformation can
be extended by studying implications on conservativeness, convexity, accuracy
and optimality.
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1 Introduction

Abstract

This paper addresses optimising a transport mission by con-
trolling the mission start time and velocity profile of an electric
vehicle (EV) driving in a hilly terrain, subject to legal and dy-
namic speed limits imposed by traffic congestion. To this end,
a nonlinear program (NLP) is formulated, where the mission
start time is allowed to vary within an interval and final time
is kept free. The goal is to find the optimal trade-off between
energy consumption and travel time, while allowing a flexibil-
ity in starting time and a certain variation of vehicle speed
around an average. It is observed that total travel time is re-
duced up to 5.5% by adjusting the mission start time, when
keeping an average cruising speed of about 75 km/h.

1 Introduction
Transportation plays an important role in the current global trade system,
where the demand for transportation is highly connected to economic develop-
ment. Particularly, road transportation’s influence in the economy is crucial,
since it includes nearly 60 % of all surface freight transportation [1]. Although
the road transportation positively contributes to the economy, it is facing
serious challenges, e.g. increasing energy consumption and CO2 emissions.

In order to alleviate the destructive consequences from ever-growing CO2
emissions, one promising alternative for future transportation systems is to
electrify the vehicles ranging from hybrid to fully electric [2]. Furthermore,
time loss due to traffic congestion is an additional negative side effect of the
road transportation that greatly costs the society. The traffic congestion cost
is estimated to $115 billion over 439 urban areas of the United States in 2010
[3]. Thus, there is a strong motivation to achieve a sustainable transporta-
tion system by improving transport efficiency, which can be interpreted as
providing a service with less consumption of resources and not losing logistics
performance, i.e. costs and delivery service [4].

Logistics service providers are considered among major actors that are in-
volved in increasing the transport efficiency. The service providers can op-
timally plan the transport mission by controlling the mission start time and
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following the principles of energy-efficient driving, referred to as eco-driving
[5]–[7]. To achieve eco-driving it is necessary to optimally plan the velocity
profile of a vehicle, subject to road and traffic flow information. One important
factor in optimising the velocity profile is the knowledge about speed limits,
which are imposed by not only legal speed limits, but also dynamic constraints
[8], [9]. For instance, surrounding traffic sets such dynamic constraints due
to presence of e.g. traffic lights, intersections, ramps and junctions. Another
example that dynamically affects the speed limits is the linking of two or more
trucks in convoy in order to increase the energy efficiency [10]. The dynamic
speed limits make the travel time to be time-dependent, since the optimised
speed can vary depending on time of the day [11].

In case of driving in a hilly terrain, preferably the optimal velocity varies
within a bound, which originates from the legal and dynamic speed limits
and the utilization of the road topography, i.e. the vehicle accelerates when
driving downhill and decelerates when climbing uphill. This leads to less waste
of non-recuperable energy compared to driving with constant speed [12]. To
implement such behaviour over complex road topographies, advanced control
strategies [13] could be employed that maximise energy efficiency by optimal
coordination of energy sources, using information of the road topography and
traffic flow.

Among the optimal control strategies, dynamic programming (DP) [14],
which can handle mixed-integer, non-convex and nonlinear optimisation prob-
lems, is the most commonly used algorithm to optimise the velocity profile of
a vehicle. For instance, information about the road topography ahead is used
to optimise the velocity profile using DP in [15] to minimize fuel consumption
and travel time.

Although DP is a powerful tool in solving optimal control problems, its
main drawback is so-called curse of dimensionality, which refers to exponen-
tial increase in computational time with the increase in problem dimension
[14]. The high computation burden due to using DP can be reduced by em-
ploying a heuristic method, which priorities exploring to the most promising
solutions, utilizing the knowledge about considered problem [16]. As an al-
ternative approach to DP, Pontryagin’s Maximum Principle (PMP) [17] has
been widely applied to the velocity optimisation of vehicles, especially in order
to tackle the computational complexity due to high-dimensional optimisation
problems. An algorithm for optimising the velocity profile is proposed in [18]
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incorporating gear shifting, road grade constraints and speed limits. Neces-
sary optimality conditions as stated by the PMP have been exploited in the
well known equivalent consumption minimisation strategy (ECMS) to opti-
mally manage energy flows in hybrid electric vehicles [19]. ECMS provides
computational advantages by converting the optimisation problem to a two-
point boundary-value program. However, for problems where states’ bounds
are frequently activated, multiple-shooting techniques are preferred, where the
problem is directly transcribed to a nonlinear program (NLP) [20].

A combination of DP and other approaches for optimal control of vehicles
have also been investigated. In [21]–[23], a mixture of DP and (sequential)
convex optimisation is developed, where integer decisions, e.g. gear selection,
are optimised by DP and real-valued decisions are taken by sequential convex
optimisation. A PMP-DP method has been proposed in [24] to optimally plan
the vehicle speed, gear selection, battery energy and ICE on/off state.

The combination of eco-driving and start time of the vehicle’s mission by
considering the dynamic speed limits is not addressed in the technical litera-
ture. This paper formulates a nonlinear program (NLP), which aims at opti-
mal planning of the transport mission on long horizons that possibly stretches
up to 100 km. The goal is to find a possible solution for energy-efficient driv-
ing considering both legal and dynamic speed limits, where the mission start
time is allowed to vary within certain bounds. The method is demonstrated
and applied on electric vehicle (EV) example.

2 Vehicle modelling
This section addresses modelling of the dynamics of an EV as a lumped mass,
characteristics of EM and transmission system, and driving mission.

2.1 Travel time and longitudinal dynamics
Consider a vehicle driving on a planned route with a hilly terrain, where the
vehicle does not stop or change direction of movement. This allows choosing
travel distance, s, as an independent variable instead of travel time, t, i.e.
decisions are taken with respect to s. The reason for such transformation
is to alleviate high computational complexity due to nonlinearity in resistive
force originating from roll resistance, which is shown in the following. Similar
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transformations in the governing equations of the vehicle are done in [25]–[27]
and references therein. Thus, the dynamics on travel time is

t′(s) = 1
v(s) , (A.1)

where v is longitudinal velocity.
Longitudinal dynamics of the vehicle, according to the Newton’s law of

motion, is

mv(s)v′(s) = F (s) + Fbrk(s)− Fair(v)− Fα(s), (A.2)

where v′ = dv/ds is the space derivative and vv′ = dv/dt denotes the longitu-
dinal acceleration. Also, m is total lumped mass of the vehicle, F is EM force
at the wheel side of the vehicle generated by the EM, and Fbrk is non-positive
mechanical braking force. The nominal aerodynamic drag, Fair, and the roll
resistance, Fα(s), are defined as

Fair(v) = ρacdAfv
2

2 , (A.3)

Fα(s) = mg (sin(α(s)) + cr cos(α(s))) , (A.4)

where α is road inclination, ρa is air density, cd is aerodynamic drag coefficient,
Af is frontal area of the vehicle, g is the gravitational acceleration, and cr is
rolling resistance coefficient. Throughout this paper, all constants that are
not dependent on s are displayed in upright letters, e.g. m, does not depend
on s. Also, the dependency on s of the variables that are trajectories in terms
of s, e.g. F (s), is not shown in several places for simplicity.

2.2 Electric machine and transmission system

A schematic diagram of the studied fully electric powertrain is demonstrated
in Fig. 1. The powertrain includes an electric battery as an energy storage
unit, an EM, and a transmission system. The torque and rotational speed at
the shaft between the electric machine and transmission are represented by
M and ω, respectively.

The EM is represented using a steady-state model. The steady-state ef-
ficiency map of the EM for a given pair of rotational speed and torque is
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Figure 1: Schematic diagram of a fully electric powertrain. The powertrain consists
of electric battery as energy storage unit, electric machine and transmis-
sion system, which transfers shaft torque, M , with rotating speed ω.
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Figure 2: Steady-state efficiency map and torque limits of the electric machine.

shown in Fig. 2, where positive and negative torque regions correspond to the
motoring and the generating modes of operation, respectively.

The transmission system for the studied powertrain is solely a final gear
ratio, which translates the shaft torque and rotational speed to the EM force
and longitudinal velocity respectively, as

F (s) = M(s)
R

, v(s) = ω(s)R, R = rw

rfg
(A.5)

where γ denotes selected gear, rw is wheel radius and rfg is final gear ratio
respectively.
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2.3 Driving mission

We describe a driving mission by a map of maximum dynamic speed limits for
a given pair of travel distance and time of day, as given in Figure. 6.3(a) and
the associated road topography, see Figure. 6.3(b). Figure. 6.3(a) includes a
contour plot, where the lighter the contour color is, the greater the vehicle
speed is. Figure. 6.3(b) is a double y-axis plot, where the left y-axis corre-
sponds to the vehicle speed and the right axis is the road altitude, while the
gray area represents the road topography. According to the max speed map,
the vehicle’s mission, characterised as the mission start time, total travel time
and velocity profile, can be tailored in favour of the improved energy efficiency.
One execution of the mission in terms of speed/time trajectory is also shown
in Figure. 3, where the vehicle starts the mission at 10:00. It can be seen
that the traffic speed drops to about 30 km/h in the congested area, at travel
distance of about 25 km.

3 Problem statement
In this section an optimisation problem is formulated, which aims at planning
optimal velocity trajectory for the entire mission, in a way that total energy
consumption is minimised and the travel time is adjusted by a penalty factor.
Note that the travel time at initial position of the route is not fixed, but is
allowed to vary within a bound. Final travel time is kept free.

Based on the models derived in the previous section, the energy optimization
problem can be formulated as:

min
F,Fbrk

λt (t(sf)− t(s0)) +
∫ sf

s0

Pb(v, F )
v(s) ds (A.6a)

subject to:

t′(s) = 1
v(s) (A.6b)

mv(s)v′(s) = F (s) + Fbrk(s)− Fair(v)− Fα(s) (A.6c)
v(s) ∈ [vmin(s, t), vmax(s, t)] (A.6d)
F (s) ∈ [Fmin(v), Fmax(v)] (A.6e)
Fbrk(s) ≤ 0 (A.6f)
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(a) Map of maximum dynamic speed limits together with one
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Figure 3: Maximum dynamic speed limits map for a given pair of travel distance
and time of day, together with associated road topography and one exe-
cution of the driving mission.

t(s0) ∈ [tmin
0 , tmax

0 ], v(s0) = v0 (A.6g)

where tmin
0 is the minimum and tmax

0 is the maximum allowed initial time,
and v0 is initial longitudinal velocity. The longitudinal velocity limits includ-
ing legal speed limits and dynamics constraints are shown by vmin(s, t) and
vmax(s, t). Also, Fmin(v) and Fmax(v) represent the EM force limits for a given
longitudinal velocity. In (A.6a), s0 and sf are initial and final positions of the
driving vehicle respectively, and λt is a coefficient for penalising the travel
time. The division of the battery power with speed in (A.6a) is obtained from
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the time to space transformation, i.e.∫
Pb(v, F )dt =

∫
Pb(v, F )/v(s) ds.

The constraints (A.6b)-(A.6f) are enforced for all s ∈ [s0, sf]. Problem (A.6)
has two states, t and v, and two control inputs, F and Fbrk.

4 Smooth nonlinear programming

In this paper we define an NLP to be smooth if it is not mixed-integer. On
the other hand, if the program is non-smooth, i.e. it is mixed-integer NLP,
then there is at least one non-smooth or discontinuous function in the program
with unbounded derivative. Accordingly, the direction in which the function is
decreasing (or increasing) cannot generally be determined by using its deriva-
tive or gradient information. Thus, having one feasible solution provides very
little information about how to search for a better solution, which makes the
NLP extremely difficult to solve. Therefore, there is a strong motivation to
model the non-smooth functions within an optimisation program by smooth
or piece-wise smooth functions to alleviate the computational complexity.

The limits on longitudinal velocity (A.6d) and EM force (A.6e) may not be
smooth functions. Such problems may generally be solved with DP, with the
cost of high computation effort, which is exponential in the number of system
states. In addition to the two system states, travel time and longitudinal
velocity, having free initial and final time requires solving DP in an additional
loop, which is computationally equivalent to having a 3rd state in the problem.
Moreover, the problem may need to be solved multiple times, for different
values of the time penalty factor, or may involve additional states to model
driving comfort. Thus, there is a strong incentive to solve problem (A.6) in a
computationally efficient way. To this end, the EM force limits are modeled as
piecewise functions, where each of the pieces is a smooth function, and speed
limits are approximated by smooth functions. This allows the problem to be
translated to a smooth NLP that can be solved efficiently with Newton-based
methods.
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Electric battery power is modeled as

P (v, F ) ≈ p0 + p1v(s) + p2v3(s) + p3v5(s)+
+ p4v(s)F (s) + p5v(s)F 2(s),

(A.7)

with p0, p1, p2, p3, p4, p5 ≥ 0. Fig. 4 shows that the model fits well original
steady-state measurements.

The EM force limits are modelled as piecewise functions

Fmin(v) ≈ max
{

F , x0 + x1

v(s)

}
(A.8)

Fmax(v) ≈ min
{

F , y0 + y1
v(s)

}
(A.9)

where F is constant minimum and F is constant maximum EM force, while
the coefficients x1 and y1 denote maximum and minimum power limits. An
illustration of the modelled and measured force limits is given in Fig. 5.
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Figure 6: Map of maximum dynamic speed limits, a simple scenario.

The maximum speed limit is computed as the minimum between the max-
imum legal speed limit, vlg

max, and maximum dynamic speed limit that is
modelled as a sum of sigmoidal functions

vmax(s, t) = min
(

vlg
max(s),

∑
i

ai(s)
1 + ebi(s)t+ci(s)

)
, (A.10)

using traffic information. The proposed model for maximum dynamic speed
limit gives the flexibility to model flat regions, as well as steep and shallow
transitions. Here, ai(s), bi(s) and ci(s) are distance dependant coefficients.
Our analyses showed that (A.10) is able to model many realistic scenarios,
but the proposed method can identically be applied for other functions, as
long as the smoothness of the NLP (A.6) is preserved.

5 Case study and results
In this section, optimal planning of a driving mission is investigated for a
particular case study. An EV is driving in a 100 km long hilly terrain, as
illustrated in Fig. 6.3(b), subject to a legal speed limit of 90 km/h. For ped-
agogical purposes, a simple scenario is considered with a single traffic jam,
occurring at about 35 km, see Fig. 6. The traffic jam imposes dynamic speed
limits, which depend on the time of the day, may constrain EV speed down
to 30 km/h. Vehicle and simulation parameters are given in Table 1.

The resulting NLP (A.6) is discretized using the forward Euler method
with a sampling interval of 400 m. It is then solved in Matlab with the solver
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Table 1: Simulation parameters
Gravitational acceleration g = 9.81 m/s2

Air density ρ = 1.29 kg/m3

Vehicle frontal area Af = 10 m2

Rolling resistance coefficient cr = 0.006
Vehicle mass m = 40 000 kg
Aerodynamic drag coefficient cd = 0.5
Wheel radius rw = 0.50 m
Final gear ratio rfg = 3
Cruising set speed vcru = 75 km/h
Route length 100 km
Number of samples N = 250

IPOPT using the open source optimisation tool CasADi [28]. To alleviate
computational complexity due to nonlinearity in terms of the longitudinal
velocity in (A.3), kinetic energy, E(s), is used instead of longitudinal velocity,
as proposed in [27], using the one-to-one relation

E(s) = mv2(s)
2 . (A.11)

The NLP is warm-started by providing an initial guess, further detailed in
Appendix 1.

5.1 Choosing penalty factor for travel time
Penalising total travel time in (A.6a) strongly influences the electrical energy
consumption. To investigate this, problem (A.6) is solved for a wide range of
the time penalty factor, where the mission start time is allowed to vary within
half-hour time intervals starting from 6:30. Fig. 7 shows a contour plot of
upper bound on each half-hour mission start time for a given combination of
the consumed electrical energy and total travel time. It is observed that there
is a trade-off between the electrical energy consumption and travel time, i.e. by
increasing the penalty factor, the travel time decreases, but it leads to higher
electricity use. Unsurprisingly, the curves of electricity use versus travel time
overlap for the start time intervals of 6:30-7:00 and 9:00-9:30, since the vehicle
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Figure 7: Contour plot of upper bound on each half-hour start time interval for a
given pair of travel time and electricity use.

never encounters the traffic jam in either cases. The demonstrated profile in
Fig. 7, provides promising information for e.g. logistics service managers, who
have wide range of choices to customise the vehicle’s mission. In this profile,
the region A corresponds to λt = 0, i.e. the most energy efficient driving. By
letting the penalty factor be negative, it is possible to further increase travel
time, which will actually cause increase in energy consumption. This implies
that there is a low speed threshold, here about 35 km/h, below which the
benefit of reduced air drag is negated by the increased time of accumulating
powertrain losses.

Region B in Fig. 7 corresponds to a positive penalty factor that results in
keeping an average cruising speed of about vcru = 75 km/h when traffic jam
is avoided. For the remaining results in this paper, we use the time penalty
factor that enables operation in region B. Optimal time trajectory for the
region B, for each interval of the mission start time, is depicted in Fig. 8. It is
observed that by applying the proposed algorithm, the vehicle tries to avoid
the low speed area. The gray areas correspond to the infeasible time regions.
The travel distance in Fig. 8 is divided into three segments; (1): before traffic
congestion, (2): during traffic congestion and (3): after traffic congestion. The
mean optimal speed values per each distance segment and mission start time
interval together with electrical energy use and travel time are given in Table
2. For instance, by comparing the results of the intervals 6:30-7:00 and 7:30-
8:00, travel time is reduced by 5.5%, when the mission starts at 6:30 instead
of 8:00.

As an example, optimal longitudinal velocity profiles for the start time
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Table 2: Mean optimal speed for given road segment and time interval together
with electricity use and travel time, region B.
Start time

interval
v1

[km/h]
v2

[km/h]
v3

[km/h]
Elec.
[kWh]

Travel
time [h]

6:30-7:00 73.07 74.00 73.08 102.99 1.37
7:00-7:30 75.34 55.75 73.08 103.09 1.38
7:30-8:00 72.92 40.33 73.08 102.22 1.45
8:00-8:30 70.93 45.27 73.08 101.64 1.44
8:30-9:00 72.93 71.64 73.08 102.86 1.38
9:00-9:30 73.07 74.00 73.08 102.99 1.37

intervals of 6:30-7:00 and 7:00-7:30 are shown in Fig. 9, together with their
corresponding guess velocity profiles. It is observed that for the interval of
7:00-7:30 the vehicle speeds up in the first distance segment compared to
the interval of 6:30-7:00 to avoid the traffic congestion. Optimal EM force
and braking force trajectories are depicted in Fig. 6.10(a). Also, optimal
force-speed operating points are given in Fig. 6.10(b). Note that Fig. 9 and
Fig. 6.10(a) are shown for zoomed distance segment of 20 km-60 km.

6 Conclusion
In this paper, an NLP is formulated in order to improve the transport efficiency
for an EV driving in a hilly terrain, by optimising the velocity profile and
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mission start time. To alleviate the computational complexity, non-smooth
EM force and dynamic speed limits are modeled by smooth functions. The
mission start time is allowed to vary over half-hour intervals starting from
6:30. For pedagogical purposes a scenario with a single traffic jam is studied.
According to the simulation results, the proposed algorithm can find a possible
solution such that the vehicle avoids the traffic jam.

1 Initial guess for warm-starting
An initial guess of speed limits

vg
min(s, t) = max

{
vlg

min(s), vdyn
min(s, t)

}
, (A.12)

vg
max(s, t) = min

{
vlg

max(s), vdyn
max(s, t)

}
, (A.13)

are obtained by considering legal speed limits of the road, vlg
min(s) and vlg

max(s),
and dynamic speed limits, vdyn

min(s, t) and vdyn
max(s, t), for a given pair of travel

distance and travel time. To initialize the problem (A.6), a velocity profile,
vg(s, t) ∈ [vg

min(s, t), vg
max(s, t)], can be derived as a guess by filtering cruising

speed, vcru ∈ [vlg
min(s), vlg

max(s)], where the cruising speed can be set manually
by driver or automatically by a telemetry system. To compute vg(s), the rated
power of EM and legal/dynamic limits on speed are taken into consideration
in filtering the cruise speed [22], i.e. the vehicle will try to maintain vcru unless
EM and/or speed limit is reached.

Let

FWmax(v) = Fmax(v)− Fair(v)− Fα(s) (A.14)

represent the maximum EM force to be delivered at the wheels, for the vehicle
driving at the speed v. The guess longitudinal velocity, vg(s), and travel time,
tg(s), are computed in discrete space domain using the forward Euler method
as in Algorithm 1. In this algorithm, t0g is a guess for the travel time at
the first position, N is number of samples, amax is the maximum allowed
acceleration within a comfort zone, and ∆s is the sampling interval.
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Algorithm 1 Initial guess for warm-starting.
1: t0

g ∈ [tmin
0 , tmax

0 ]
2: v0

g = vcru

3: for k = 1, . . . , N do

4: vk
g ← vk−1

g + ∆s
vk−1

g
min

{
amax,

FWmax(vk−1
g )

m

}
5: vk

g ← min
{

vcru, vk
g}

6: tk
g ← tk-1

g + ∆s
vk

g

7: vk
g ← min

{
vk

g , vdyn
max(s, tk

g)}
8: tk

g ← tk-1
g + ∆s

vk
g

9: end
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1 Introduction

Abstract

This paper presents a computationally efficient algorithm for
eco-driving along horizons of over 100 km. The eco-driving
problem is formulated as a bi-level program, where the bottom
level is solved offline, pre-optimising gear as a function of lon-
gitudinal velocity (kinetic energy) and acceleration. The top
level is solved online, optimising a nonlinear dynamic program
with travel time, kinetic energy and acceleration as state vari-
ables. To further reduce computational effort, the travel time
is adjoined to the objective by applying necessary Pontryagin’s
Maximum Principle conditions, and the nonlinear program is
solved using real-time iteration sequential quadratic program-
ming scheme in a model predictive control framework. Com-
pared to average driver’s driving cycle, the energy savings of
using the proposed algorithm is up to 11.60 %.

1 Introduction
Excessive energy consumption of vehicles is recently being regarded as a cru-
cial concern for automotive industry leaders and transport service providers
due to economic, ecological and environmental issues. For instance, the Or-
ganisation for Economic Co-operation and Development (OECD) forecasts a
rapid growth in transport demand over the coming years, which may lead to
60 % increase in worldwide transport CO2 emissions by 2050, due to increase
in fossil fuel consumption [1]. One effective way to mitigate destructive con-
sequences from ever growing energy consumption by vehicles is to improve
transport efficiency. The transport efficiency can also be characterised as
tank-to-meter efficiency, referred to as the conversion of energy stored in fuel
into potential and kinetic energy required for displacement, and accompanied
losses.

Eco-driving has been concerned widely as an approach for increasing the
tank-to-meter efficiency by optimising velocity profile when considering road
information and traffic flow [2]–[6]. When driving in a hilly terrain, it is
preferable to vary the vehicle speed over a narrow interval while keeping the
maximum allowed travel time, i.e., speeding up when driving downhill and
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decreasing speed when climbing uphill, to have less energy waste at braking
pads compared to a constant speed driving [7]. Implementing this behaviour
over complex road topographies is generally achieved by model-based optimal
control methods that maximise energy efficiency by optimally coordinating
the energy use.

Dynamic programming (DP) [8] is the most commonly used algorithm to
optimise the velocity profile of vehicles due to its potential to tackle non-
convex, nonlinear and mixed-integer optimisation problems [9]–[14]. Fuel-
optimal look-ahead control strategies have been proposed in [9] and [10] using
DP, where in addition to optimising velocity, optimal gear shifting of conven-
tional trucks is also investigated. Furthermore, a DP-based method is applied
in [11] to minimise the energy consumption in fully electric vehicles (EVs) by
optimising vehicle speed on short-range trips, e.g. driving between two consec-
utive traffic lights. A combined energy management and eco-driving approach
using discrete DP is devised in [12] for hybrid electric vehicles (HEVs) driving
over limited horizons, where the velocity profile is allowed to be optimised to
further enhance fuel efficiency. Despite the promising contributions in solving
optimal control problems (OCPs), DP-based methods suffer from the curse
of dimensionality, which denotes to a fact that computational time increases
exponentially with the number of state variables and control signals [8]. Sev-
eral ways have been taken to decrease computational effort, for example by
limiting the look-ahead horizon of cruise controllers for HEVs. At the current
state, real-time capable DP-based control can only be applied for short pre-
diction horizon scenarios of HEVs [13]. Other approaches focus on simplifying
the powertrain model, by e.g. using a simplified internal combustion engine
(ICE) model or discarding system states, such as travel time, ICE on/off and
gear [14].

For high-dimensional optimisation problems, e.g. optimal control of HEVs
with more energy states, several alternative approaches have been proposed.
In [15] a mixed-integer quadratic program (MIQP) [16] has been applied for
power allocation of HEVs. A way to diminish computational complexity of
the high-dimensional problems is adjoining system dynamics to the cost func-
tion and neglecting constraints on state variables, as shown in [17]–[19]. In
[19] Pontryagin’s Maximum Principle (PMP) [20], [21] has been applied to
optimise vehicle speed, gear selection and energy use of HEVs, where integer
state variables have been neglected. Also, optimal speed and gear selection
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of vehicles driving on highways have been addressed in [22] under varying
parameters. Furthermore, in [23], [24] minimisation of energy consumption
using PMP and considering varying speed requirements has been studied. Al-
though PMP-based methods are computationally efficient for optimal velocity
problems over long look-ahead horizons, they do not provide the same com-
putational advantage for problems where state variables often activate their
bounds. This is especially relevant for single shooting methods used for solving
two-point boundary value problems (2PBVPs), as in e.g. [25].

Another portion of the conducted research benefits from the combination
of DP and other methods. Such approaches have been proposed by [26]–
[29], where real-valued decisions, e.g., planing optimal velocity, are made by
sequential convex optimisation, while integer decisions are taken by DP. These
strategies have also been shown to be effective when considering surrounding
traffic [28], or cooperative energy management of multiple vehicles [26], [29].
In [30] a PMP-DP method has been proposed to solve the optimal control of
vehicle speed, battery energy, gear selection and ICE on/off state. However,
the computational effort of the control algorithms is still highly susceptible to
long horizon lengths and high update frequencies.

High computational complexity may not be crucial when the eco-driving
problem is implemented offline, since the problem solving is generally allowed
to take a considerable amount of time. However, the offline implementa-
tion has drawbacks in situations where disturbances and/or constraints, for
e.g. traffic situation, change unpredictably and the vehicle is no longer able
to exactly follow the planned solution. Thus, the synergy among different
optimisation methods is generally performed by splitting the problem into
sub-problems arranged into multi-level or bi-level control architectures, where
different tasks, for e.g. disturbance rejection, are delegated to distinct lay-
ers based on horizon length, time constants, sampling interval and updat-
ing frequency. To this end, multi-level and bi-level model predictive control
(MPC) algorithms have been proposed for conventional vehicles (CVs), [31],
and HEVs, [32]–[35], respectively. The multi-level architectures allow solving
computationally intensive sub-problems, e.g. mixed-integer programs. When
solving such programs in an MPC fashion, a certain reference or a target state
are tracked, typically over look-ahead horizons of up to several of kilometers.
Even though such horizons may appear long, there are problems that are
naturally defined for even longer horizons.
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Problems with very long look-ahead horizons, in the order of hundreds of
kilometres, are typically addressed in electrified vehicles or logistics [36]. In the
case of electrified vehicles, a target battery state of charge may be provided
at charging locations along the route. For the logistics case, a target state
over the long horizon is the travel time, which is often given at the end of
the route by a logistics planner. Within the multi-level control architecture
mentioned earlier, these problems are delegated to the highest supervisory
level, generating reference travel time and battery state of charge trajectories
over hundreds of kilometres. Early results on developing online implementable
controllers that operate over long horizons, hereafter referred to as the eco-
driving supervisors, have been published in our previous work for the case of
CV, see [37].

In this paper, the eco-driving supervisor designed in [37] is generalised to
both CVs and EVs. The purpose of the eco-driving supervisor is to generate
optimal reference trajectories for the entire route, or for look-ahead horizons
that may stretch over hundreds of kilometres, using road and traffic informa-
tion compiled from look-ahead data and previous measurements. To do so,
an online-capable algorithm is developed in an MPC framework that has the
ability to anticipate future events and react to disturbances. For solving the
eco-driving supervision problem online, reducing the computational complex-
ity is the main concern, to allow the online solution to be obtained within the
update frequency of real-time execution. Furthermore, having small compu-
tation time can strongly enhance the optimality, since the suggested optimal
state of vehicle can be updated more frequently. Accordingly, the algorithm’s
computational effort is decreased in three steps: 1) a problem decomposition
into two sub-problems, where velocity and travel-time trajectory are optimised
online and gear shifting strategy is optimised offline; 2) a combination of an
indirect PMP solution and a direct nonlinear programming for reducing the
number of states in the online optimisation sub problem; 3) a real-time it-
eration (RTI) sequential quadratic programming (SQP) [38], which allows a
single quadratic program (QP) to be solved in an MPC manner [39].

The outline of the paper is as follows. In Section 2, dynamic model of vehicle
is presented. In Section 3, the energy minimisation problem is formulated.
Section 4 describes the computationally efficient algorithm. In Section 5 the
proposed algorithm is applied to a CV and an EV. In Section 6, the simulation
results are demonstrated. Finally, Section 7 concludes the paper.
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2 Physical Modelling
This section addresses vehicle dynamics, i.e. travel time and longitudinal
vehicle dynamics. Furthermore, static relations are given that translate torque
and rotational speed of actuator to traction force and longitudinal velocity.
Finally, lower bounds and upper bounds on longitudinal velocity, traction
force and acceleration are presented.

2.1 Travel time and longitudinal dynamics

According to Newton’s law of motion, preliminary governing equations of a
point mass vehicle model are

ṡ(t) = v(t) (B.1)
m v̇(t) = F (t) + Fbrk(t)− Fair(v)− Fα(s) (B.2)

where m is total lumped mass of the vehicle, t is travel time, s is travelled
distance, v is longitudinal velocity, F is traction force at the wheel side of the
vehicle generated by the actuator, and Fbrk is a non-positive force that includes
braking by the service brakes, a retarder, a compression release engine brake
and/or an exhaust pressure governor. For the case of a conventional vehicle,
more details on the braking force will be discussed later, in Section 5.1. Note
that the travelled distance and longitudinal velocity are functions of travel
time in (B.2). However, the explicit dependence is not shown for brevity,
when these signals are input arguments to functions, such as Fα(s(t)) and
Fair(v(t)). The nominal aerodynamic drag, Fair, and resistive forces that
depend on road gradient α, Fα(s), are defined as

Fair(v) = ρacdAfv
2

2 , (B.3)

Fα(s) = mg (sin(α(s)) + cr cos(α(s))) , (B.4)

where ρa is air density, cd is aerodynamic drag coefficient, Af is vehicle frontal
area, g is the gravitational acceleration, and cr is rolling resistance coefficient.
The road gradient can be directly obtained from a standard global positioning
system (GPS).

The vehicle longitudinal dynamics (B.1) and (B.2), are nonlinear due to
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the quadratic dependency of longitudinal velocity in the aerodynamical drag
function in (B.3) and the road gradient that can be an arbitrary nonlinear
function of distance in (B.4). Such nonlinearities may increase computational
complexity. To overcome this issue, it is possible to modify (B.1) and (B.2)
by changing independent variables. Thus, distance s is used as independent
variable instead of time t in (B.1), i.e. decisions are planned with respect to
s, as presented in [40]–[43]. Subsequently, for a given road topography, the
function Fα now becomes a fixed trajectory for the entire route. In addition,
the nonlinearity in (B.3) can be removed by a change of state variable v to
kinetic energy,

E(s) = mv2(s)
2 (B.5)

where E represents the kinetic energy of the vehicle. These transformations
are non-approximate as long as the studied vehicle does not stop or change
direction of its movement. Also, to study variations on speed and acceleration
of the driving vehicle, we introduce acceleration, a, as an additional state
variable. The change of acceleration in space coordinates, which resembles
jerk, j, now becomes the input signal to the vehicle system. The resulting
vehicle dynamics model becomes

t′(s) =
√ m

2E(s) (B.6)

E′(s) = ma(s) (B.7)
a′(s) = j(s) (B.8)

where t′ and a′ are used as short hand notations for dt/ds and da/ds, respec-
tively. The relation E′ = mvv′ is the product of mass and vehicle acceleration,
and

a(s) = 1
m (−caE(s) + F (s) + Fbrk(s)− Fα(s)) (B.9)

where ca = ρacdAf/m, gathers the drag related coefficients.
It can be noticed that (B.6) is still nonlinear with respect to E. More

information on how to tackle the nonlinearity in (B.6) is presented in Section
4.
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Transmission

ActuatorStorage

(ω, M)

Figure 1: Schematic diagram of the studied powertrain. The powertrain consists of
energy storage unit, actuator and transmission system, which transfers
shaft torque, M , with rotating speed ω.

Throughout this paper, all constants, which are not dependent on s are
shown in upright letters, e.g. m, Af, cd, ρa do not depend on s. Also, all the
states and control inputs are trajectories in terms of s, e.g. t(s) and E(s) are
the trajectories dependent on s, where in several places the dependency is not
displayed for simplicity.

2.2 Vehicle powertrain
A schematic diagram of the considered powertrain is illustrated in Fig. 1. The
powertrain consists of an energy storage unit, an actuator, e.g. an ICE or an
electric machine (EM), and a transmission system. The torque and speed at
the shaft between the actuator and transmission are denoted by M and ω,
respectively.

The transmission system is modelled considering the transmission and final
gear ratios as

v(s) = ω(s)R(γ), F (s) = M(s)
R(γ) , (B.10)

where γ denotes selected gear, and

R(γ) = rw

rtg(γ)rfg
(B.11)
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where rw is the wheel radius, rtg and rfg are transmission and final gear ratios,
respectively.

The traction force is bounded

F (s) ∈ [Fγmin(E), Fγmax(E)], (B.12)

where

Fγmin(E) = min
γ

Fmin(E, γ), (B.13)

Fγmax(E) = max
γ

Fmax(E, γ). (B.14)

The functions Fmin(E, γ) and Fmax(E, γ) are the traction force limits for a
given pair of kinetic energy (longitudinal velocity) and gear.

In turn, the acceleration limits,

a(s) ∈ [amin(E), amax(E)],

can be derived using (B.9) as a function of kinetic energy (longitudinal veloc-
ity) and considering the limits on traction force, as

amin(E) = max
{

a,
Fγmin(E)− caE + Fbrk − Fα

m

}
(B.15)

amax(E) = min
{

a,
Fγmax(E)− caE − Fα

m

}
(B.16)

where a is the minimum and a is the maximum allowed acceleration within a
comfort zone and Fbrk denotes constant minimum total braking force. Here,
amin and amax are not necessarily smooth functions, as Fγmin and Fγmax may
not be smooth functions. This will be discussed in more details in Section 5.

In order to deliver a certain traction force, the actuator draws power from
the energy storage unit. Let Pw(v, F, γ) denote the drawn power, which in
the case of a combustion engine is a chemical, fossil fuel power, and in the
case of an electric machine, it is an electric power. Explicit representations of
the internal power in terms of the kinetic energy (longitudinal velocity) and
traction force will be provided later, in Section 5.
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3 Problem Statement
This section formulates the eco-driving OCP, which aims at planning an op-
timal velocity trajectory for the entire route such that the total energy con-
sumption is minimised and the travel time is upper bounded by the target
time given by a logistics planner.

3.1 Performance function
The performance function of the OCP is formulated as∫ sf

0

(
cegPw(v, F, γ)

v(s) + w1a2(s) + w2j2(s)
)

ds (B.17)

that incorporates total energy consumption by integrating the internal power
drawn from the storage unit, and the driver’s discomfort via the acceleration
and jerk. Here, ceg denotes the price of energy storage, and w1 and w2 are
penalty factors associated with the acceleration and jerk. The division of the
internal power with speed in (B.17) derives from the time to space transfor-
mation, ∫

Pw(v, F, γ)dt =
∫

Pw(v, F, γ)/v(s) ds.

3.2 Speed limits and travel time
In order to increase feasibility in realistic driving situations, we consider speed
limits that include not only legal, but also dynamic speed limits using available
information about the road and traffic. Surrounding traffic can impose such
dynamic constraints on the vehicle speed due to presence of e.g. traffic lights,
intersections, ramps and junctions. Total speed limits are computed as

vmin(s) = min
{

vlegal
min (s), vfl(s)

}
, (B.18)

vmax(s) = min
{

vlegal
max (s), vdyn

max(s)
}

, (B.19)

where vlegal
min and vlegal

max are legal speed limits, vdyn
max is maximum dynamic speed

limit, and vfl is a filtered speed that will be discussed later in this section. The
legal and dynamic speed limits can be provided by new modern systems, e.g.
e-horizon technologies [44]. An illustration of the speed limits are shown in
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Figure 2: Examples of maximum legal and dynamic speed limits together with
minimum allowed speed limit and filtered speed trajectory, vfl. For cal-
culating vfl maximum power (acceleration) capability of the actuator has
been considered.

Fig. 2, where the legal speed limits can generally change abruptly for different
segments of the driving road, whereas the maximum dynamic speed limit vary
smoothly in terms of travel distance. To avoid singularity in (B.6), the vehicle
speed is not allowed to drop to zero. However, with the use of variable scaling,
very small speed values are acceptable, and the speed may be rounded to zero
after the optimisation is finished. This could be useful when short duration
traffic stops are to be considered. For longer stops, it could be more convenient
to split the trip into two distinct trips, and optimise each individually [45].

To compute the upper bound on travel time, tf, it is possible to obtain the
velocity profile, vfl(s) ∈ [vmin(s), vmax(s)], as the average driver’s driving cycle,
by filtering cruising speed, vcru ∈ [vmin(s), vmax(s)]. The logistics planner may
send vcru via a telemetry system, or it can be set manually by the driver. The
rated power of the actuator and road/traffic limits on speed are taken into
consideration in the cruise speed filtering [26], [27], [37]. When deriving vfl,
it is assumed that the vehicle will try to maintain vcru unless instantaneous
dynamic speed limit and/or actuator limit are reached.

vfl(s) = min
{

vdyn
max, vcru,

∫ s

0

amax(vfl)
vfl(σ) dσ

}
(B.20)
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By computing maximum arrival time as

tf =
∫ sf

0

ds

vfl(s) , (B.21)

where sf is the final position at the end of the route, a constraint can be
imposed

t(sf) ≤ tf (B.22)

that requires finishing the route in the same time or sooner than what would
be required when driving with vfl.

3.3 MPC for minimising energy consumption

The problem (B.17) is optimised in an MPC framework with a prediction
horizon of length sH, aiming at anticipating future events and reacting to
disturbances. The main goal of this paper is to develop a computationally
efficient algorithm that allows horizons that cover the entire route. However,
as computational resources are always limited, we impose an upper bound,
sHmax, hopefully in the range of hundreds of kilometres. The optimisation
problem can then be solved in a moving horizon MPC (MHMPC) framework if
sHmax < sf, or in a shrinking horizon MPC (SHMPC) framework if sHmax ≥ sf.
The optimisation variables are predicted at distance samples s ∈ [ζ, ζ + sH],
given information of the actual vehicle’s states at ζ. Thus, the actual horizon
length can be computed as

sH(ζ) = min{sHmax, sf − ζ}. (B.23)

The problem can now be summarised as follows

min
j,Fbrk,γ

∫ ζ+sH(ζ)

ζ

(
cegPw(E, F, γ)√

2E(s|ζ)
m

+ w1a2(s|ζ) + w2j2(s|ζ)
)

ds,

(B.24a)

subject to:
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t′(s|ζ) =
√ m

2E(s|ζ) (B.24b)

E′(s|ζ) = ma(s|ζ) (B.24c)
a′(s|ζ) = j(s|ζ) (B.24d)
F (s|ζ) = ma(s|ζ) + caE(s|ζ)− Fbrk(s|ζ) + Fα(s) (B.24e)

E(s|ζ) ∈ m
2 [v2

min(s|ζ), v2
max(s|ζ)] (B.24f)

a(s|ζ) ∈ [amin(E), amax(E)] (B.24g)
j(s|ζ) ∈ [j, j] (B.24h)
Fbrk(s|ζ) ∈ [Fbrk, 0] (B.24i)
t(ζ|ζ) = t0(ζ), E(ζ|ζ) = E0(ζ), a(ζ|ζ) = a0(ζ) (B.24j)
t(ζ + sH|ζ) ≤ tH(ζ) (B.24k)
γ(s|ζ) ∈ {1, 2, . . . ,γmax} (B.24l)

where j is the minimum and j is the maximum allowed jerk within a comfort
zone, t0, E0 and a0 are the values of the system states at instance ζ, and
γmax is the highest gear. The constraints (B.24b)-(B.24l) are enforced for all
s ∈ [ζ, ζ + sH(ζ)] and the problem is re-evaluated for all ζ ∈ [0, sf]. The max-
imum allowed travel time over the prediction horizon, tH, is computed as in
(B.21) for the distance sH. The problem (B.24) is a non-convex, mixed-integer
and dynamic nonlinear program, where t, E and a are real-valued state vari-
ables, j and Fbrk are real-valued control inputs, γ is an integer control input
and F is an output variable. Although from a control point of view j is the
control signal, in practice, a is applied to the vehicle. When solving such
computationally complex problem online, reducing the computational time is
the major bottleneck, since the online solution must be at least within the up-
date frequency of real-time execution. Thus, we propose several reformulation
steps in the following that break down the problem (B.24) into optimisation
sub problems, which is solved with significantly reduced computational com-
plexity compared to the original problem.

For the sake of simplicity, the dependence on ζ will not be shown in most
following parts of the paper and the method is explained via a single MPC
update, e.g. the one with ζ = 0.
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4 Computationally Efficient Algorithm
This section proposes three reformulation steps for reducing computational
complexity of the problem (B.24). These steps are: 1) formulating a bi-
level optimisation program that allows decoupling the integer variable, i.e.
gear, from a nonlinear optimisation program (NLP); 2) adjoining nonlinear
dynamics of travel time to the objective using necessary PMP conditions for
optimality; 3) Removing a loop on finding optimal time costate and applying
RTI SQP scheme.

4.1 Bi-level programming and gear optimisation

The mixed-integer problem (B.24) can be reformulated as a bi-level program:

min
j,Fbrk

∫ sH

0

(
cegPw(E, F, γ∗)√

2E(s)
m

+ w1a2(s) + w2j2(s)
)

ds (B.25a)

subject to:(B.24b)-(B.24k)
γ∗(s) = arg min

γ
Pw(E, F, γ) (B.25b)

subject to: γ(s) ∈ {1, 2, ...,γmax} (B.25c)
F (s) ∈ [Fγmin(E), Fγmax(E)] (B.25d)

where the gear optimisation resides only in the bottom level program, while
all the system dynamics reside in the top level program. Static modelling
of the actuator and transmission system allows separating the bottom level
and solving it offline, where v (or E) and F are regarded as parameters, and
optimal gear is computed as a function of these parameters. To this end, the
bottom level can be solved as

f∗
γ (E, F ) = arg min

γ
Pw(E, F, γ) (B.26a)

subject to: γ ∈ {1, 2, ...,γmax} (B.26b)
F ∈ F(E) = [Fγmin(E), Fγmax(E)] (B.26c)

E ∈ E(γ) = m[ω2
idle,ω2

max]R2(γ)
2 (B.26d)
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where f∗
γ (E, F ) is a two-dimensional function describing the optimal gear

choices for all traction force versus speed (kinetic energy) combinations, E
and F are the feasible sets for kinetic energy and traction force respectively,
and ωidle and ωmax are rotational speed limits. By replacing the optimal gear
with the parametric function, the internal power can be written as

Pγ(E, F ) = Pw(E, F, f∗
γ (E, F )), (B.27)

indicating power consumption when gear is optimally chosen. Note that
for CV case study the offline-optimised gear selection algorithm is extended,
which covers the negative force area originating from negative additional force.
More details will be given later in Section 5.

4.2 Necessary PMP conditions for optimality
In the second step of the algorithm, the problem (B.25) is reformulated, which
is facilitated by the necessary PMP conditions for optimality. The Hamilto-
nian is defined as

H(·) = cegPγ(E, F )
√ m

2E(s) + w1a2(s) + w2j2(s)+

+ λt(s)
√ m

2E(s) + λE(s)ma(s) + λa(s)j(s).
(B.28)

where the symbol · is a compact notation for a function of multiple variables.
Here, λt, λE and λa denote the costates of travel time, kinetic energy and
acceleration, respectively. It can be observed that the Hamiltonian is not an
explicit function of travel time, thus the optimal time costate, λ∗

t , i.e. the
value for λt that satisfies the maximum travel time constraint (B.24k), is a
constant value. Hence

λ′∗
t (s) = −

(
∂H(·)

∂t

)∗

= 0. (B.29)

Furthermore, the travel time is a strictly monotonically increasing function
that may activate constraint (B.24k) only at the final instance. Consequently,
if λ∗

t is known, it will be possible to remove the nonlinear constraint on travel
time (B.25) and adjoin the product of λ∗

t (s) and the nonlinear function
√

m
2E(s)
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to the objective function. This implies that the dynamic OCP can yet again
be formulated as a bi-level program

min
λt

∫ sH

0

(
cegPγ(E∗(λt, s), F ∗(λt, s)) + λt√

2E∗(λt,s)
m

+ w1a∗2(λt, s) + w2j∗2(λt, s)
)

ds

(B.30a)

subject to:

t′∗(λt, s) =
√ m

2E∗(λt, s) (B.30b)

E′∗(λt, s) = ma∗(λt, s) (B.30c)
a′∗(λt, s) = j∗(λt, s) (B.30d)
t∗(λt, 0) = t0, t∗(λt, sH) ≤ tH (B.30e)
[j∗(λt, s), F ∗

brk(λt, s), F ∗(λt, s)] = arg min
j,Fbrk∫ sH

0

(
cegPγ(E, F ) + λt√

2E(s)
m

+ w1a2(s) + w2j2(s)
)

ds
(B.30f)

subject to: (B.24c)-(B.24i), E(0) = E0, a(0) = a0

where all constraints involving travel time have been moved to the top level,
while the bottom level, (B.30f), generates optimal control trajectories param-
eterised in λt. Similarly as before, the goal is to separate the two optimisation
levels. One way to do this is by trying different values for λt and then using
search methods, e.g. Newton or bisection, to find λ∗

t that minimises the top
level’s cost.

By assuming that problem (B.30f) is an NLP that can be solved with SQP,
the procedure for solving the mixed-integer problem (B.24) will consist of
three nested loops as illustrated in Fig. 3a. The outermost loop updates the
MPC horizon, the middle loop finds the optimal value for λt and the innermost
loop sequentially solves a QP in order to find the solution of problem (B.30f)
for a given value of λt. The procedure is still computationally inefficient, as
it requires solving multiple QPs for given multiple λt values in each MPC
update. Our goal is to eliminate the inner most loops and for a given λt, solve
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Figure 3: Flowchart of the proposed algorithm to solve NLP in MPC framework.

only a single QP in each MPC update, as illustrated in Fig 3b.

4.3 Updating the time costate over the MPC loop
To eliminate the loop on finding λ∗

t , it is considered that the optimal energy
consumption corresponds in general to driving slow, so it can be assumed
that the vehicle will use the entire travel time, i.e. t∗(λt, sH) ≈ tH. Hence,
the objective of the top level program in (B.30) is transformed to minimising
maximum travel time difference, as

min
λt
||t∗(λt, sH|ζ)− tH(ζ)|| (B.31)
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where || · || may indicate any norm.
For the case that the problem (B.30) is solved in SHMPC framework, the

final time instance and the final point of the horizon are fixed regardless of
the update instance ζ, i.e. tH(ζ) = tf and ζ + sH(ζ) = sf, ∀ζ.

Lemma 1: If predicted disturbances do not change and there is no miss-
match between the control and plant model, then for an SHMPC implementa-
tion of problem (B.30) and for a given λt, it holds,

t∗(λt, sH|ζ) = t∗(λt, sH|ζ + δζ), ∀δζ ∈ [0, sf − ζ], (B.32)

i.e. the optimal travel time at the end of the horizon does not change for
different SHMPC updates.

Proof. The proof follows directly from Bellman’s principle of optimality, i.e.
any tail of an optimal trajectory is an optimal solution as well [8].

For an MHMPC, Lemma 1 does not hold even if disturbances are predicted
exactly and there is no model miss-match. This is because new information
is added as the prediction horizon moves forward at each MPC update. How-
ever, if the prediction horizon is much longer than the interval between two
consecutive updates, then for different ζ, it can be assumed

t∗(λt, sH|ζ)− tH(ζ) ≈ t∗(λt, sH|ζ+)− tH(ζ+) (B.33)

where ζ+ is the instance of the MHMPC update following that at ζ. Fig. 4
demonstrates the overlapped curves of the final time difference versus the time
costate for a CV and an EV, where ζ = 0 m and ζ+ = 300 m. Thus, it is also
possible for an MHMPC to update the time costate over the MPC loop.

Problem (B.31) is then solved by a derivative free Newton method, where
the Newton iterates are spread across the MPC updates without waiting for a
full convergence, i.e. by performing one Netwon step per update. A flowchart
of the proposed algorithm is depicted in Fig. 3b, while more details on the
Newton method is provided in Appendix 1.

4.4 Real-time iterations SQP over the MPC loop
For a given λt it remains to solve problem (B.30f). It will be shown later, in
Section 5, that for the case of conventional and electric vehicle powertrians,
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Figure 4: Difference between calculated time at the end of horizon and the desired
maximum time for varying time costate using MHMPC scheme, where
ζ = 0 m and ζ+ = 300 m. Overlap of the curves for different ζ values
shows that λt can be evaluated only once per each MPC update, rather
than waiting for a full convergence.

problem (B.30f) is indeed a smooth NLP that can be solved by SQP. However,
instead of sequentially solving a QP until linearization error is equal to zero,
it is computationally efficient to spread the SQP over MPC updates, which
is provided by RTI. The idea is to solve only a single QP per MPC update,
without waiting for a full convergence. The obtained solution is possibly sub-
optimal, but due to the contractivity of the RTI scheme as shown in [46], the
real-time iterates quickly approach the optimal solution during the runtime of
the process. Alternative algorithm for real-time solving of the NLPs has been
presented in [47].

As the SQP is stopped prematurely, it is important to show that the ob-
tained solution by solving a single QP is feasible in the original NLP. Fea-
sibility can be guaranteed if the domain of the QP, obtained by linearizing
the nonlinear constraints in problem (B.30f), is an inner approximation of the
feasible set of the NLP (B.30f). This is indeed the case for conventional and
electric vehicle powertrians, which will be shown in Section 5.
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5 Application to CV and EV

This section proposes several steps that show how the computationally efficient
algorithm proposed in Section 4 is applied to a CV and an EV.

5.1 Conventional vehicle

A conventional powertrain includes an ICE to transform chemical fuel energy
to mechanical propulsion energy through a multiple-gear transmission.

A static fuel mass rate map for a given pair of rotational speed and engine
torque is obtained by gathering steady-state data from a dynamic simulation
model of a diesel engine, presented in [48]. Subsequently, efficiency map and
torque limits are derived, see Fig. 5. According to the efficiency isolines, it is
desirable to avoid operating the ICE at low speed and torque, where efficiency
is low.

Fig. 5 also illustrates a negative torque limit for an additional braking sys-
tem, including a retarder, a compression release engine brake and/or an ex-
haust pressure governor. The additional braking is preferred over the service
braking in order to reduce wear and avoid lock up of the braking pads. Using
(B.10), the negative torque is translated to negative force on the wheel side
as

Fbrk = FA + FS, (B.34)

where FS and FA are forces by the service brakes and the additional braking
system. The minimum negative additional force limit for a given kinetic energy
is

FAmin(E) = min
γ

FγA(E, γ) (B.35)

where FγA denotes the minimum negative additional force for each gear. The
lower bound on the traction force is zero, i.e. Fγmin(E) = 0.

The two-dimensional fuel mass rate map of the ICE translates to a three-
dimensional map on the wheels side. This three-dimensional map, denoted
as µw(E, F, γ), can be expressed in terms of kinetic energy, traction force
and gear using (B.5) and (B.10). Subsequently, a map, which represents the
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Figure 5: Steady-state efficiency map and maximum torque limit of the ICE. The
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braking system that includes a retarder, an exhaust pressure governor
and/or a compression release engine brake.

parametric internal power function, Pw(E, F, γ), can be derived as

Pw(E, F, γ) = µw(E, F, γ)Qlhv (B.36)

where Qlhv is diesel heating value.
The bi-level program (B.25), can be extended for a CV case study, including

the negative force region, which originates from the summation of negative
additional force and service braking force, as

min
j,Fbrk

∫ sH

0

(
cegPw(E, F, γ∗)√

2E(s)
m

+ w1a2(s) + w2j2(s)
)

ds (B.37a)

subject to: (B.24b)-(B.24k)

γ∗(s) =


arg minγ Pw(E, F, γ), if F + Fbrk ≥ 0.

arg maxγ FγA(E, γ), if FAmin(E) ≤ F + Fbrk < 0
arg minγ FγA(E, γ), if Fbrk ≤ F + Fbrk < FAmin(E)

(B.37b)
subject to: γ(s) ∈ {1, 2, ...,γmax} (B.37c)

F (s) + Fbrk(s) ∈ [Fbrk, Fγmax(E)] (B.37d)
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Figure 6: Offline-optimised gear map together with maximum traction force and
minimum negative additional force. In the positive force region, the op-
timal selected gear is the one that minimises fuel consumption, which
for the studied powertrain coincides with the highest feasible gear. In
the negative force region, if the total force is lower than the minimum
negative additional force, the lowest possible gear is selected, since it
provides the most possible negative additional force. The remaining de-
manded negative force is covered by the service brakes. However, if the
total force is higher than the minimum negative additional force, to avoid
unnecessary down-shifting, the highest possible gear is selected.

Note that the traction force, F , and the total braking force, Fbrk, cannot have
non-zero values simultaneously, i.e. it is not the case that F > 0 and Fbrk < 0
at the same time.

To approach the offline-optimal gear selection problem (B.37), it is possible
to grid the feasible sets of kinetic energy and total force, i.e. F + Fbrk. To
this end, in the positive force region, for any feasible combination of longi-
tudinal velocity (kinetic energy) and traction force, the optimal gear is the
one that minimises energy consumption. In the negative force region, if the
total demanded force is higher than the minimum negative additional force,
the highest possible gear is selected, which avoids unnecessary down-shifting.
However, if total demanded force is lower than the minimum negative addi-
tional force, the lowest possible gear is selected, since it provides the most
possible negative additional force, see Fig. 6. The remaining demanded neg-
ative force is covered by the service brakes.

The optimal brake specific fuel consumption (BSFC) map and maximum
traction force curve are depicted in Fig. 7. The optimal BSFC refers to the
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Figure 7: Offline-optimised BSFC map together with original and approximate
maximum traction force as well as minimum negative additional force.
The approximate limit is an inner approximation for the longitudinal ve-
locities above 8 km/h.

minimum burnt fuel, which is obtained by optimising the internal power in
(B.27).

The internal power drawn from fuel using (B.27), is approximated by the
following expression

Pγ(v, F ) ≈ pe0 + pe1v3(s) + pe2v(s)F (s) (B.38)

with pe0, pe1, pe2 ≥ 0. During a single driving mission, the parameters pe0, pe1
and pe2 are assumed constant, otherwise we will need to apply robust control
methods to tackle possible uncertainties.

As illustrated in Fig. 8, for the studied engine model it is sufficient to
use a first order term in F , although it is possible to include higher order
terms as well, without significant increase in computational effort. Similar
expressions for model abstraction of fuel mass rate are exploited in [26] and
several references therein. Using (B.5) and (B.38), the stage cost (B.30f)
transforms into

VCV(·, λt) ≈
ceg(pe0 + λ∗

t )
√

m√
2E(s)

+ 2pe1
m E(s)+

+ pe2F (s) + w1a2(s) + w2j2(s)
(B.39)
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which is a convex second order cone function in terms of E, a, j, F and Fbrk.
The maximum traction force limit, see Fig. 7, is approximated by

Fγmax(E) ≈ min
{

F , y0 + y1
√

m√
2E(s)

}
(B.40)

where F is the maximum constant traction force, and y1 resembles the max-
imum engine power, as it can be alternatively written as a division of power
with vehicle speed. The coefficients y0 and y1 are obtained by solving a linear
program, see Appendix 2 for details. The approximated force limit (B.40)
is an inner approximation of the original force for speeds above 8 km/h, see
Fig. 7, which is acceptable for the highway scenarios investigated in this paper.

The problem (B.30) with the stage cost (B.39) is non-convex nonlinear
program, because of the nonlinear term y1/

√
E(s) in (B.40). Due to the sign

of y1 ≥ 0, this term is a convex function (a convex problem, though, requires
a concave function here). It is possible to transform (B.30) to a convex second
order cone program (SOCP) by linearizing the maximum force limit in (B.40).
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Figure 9: Steady-state efficiency map of EM together with shaft torque limits.

Note that linearizing any convex function about any trajectory, is always
an inner approximation. Since the inner approximation is conservative, it is
guaranteed that despite possibly being sub-optimal, all obtained solutions (if
such solutions exist) are also feasible in the original non-convex problem. For
more details, see Appendix 3.

5.2 Fully electric vehicle

In the fully electric powertrain, the EM converts electricity to mechanical
power in motoring mode, whereas it converts mechanical power to electricity
in generating mode of operation. In the generating mode, the energy is recu-
perated and stored in the electric battery, when decreasing kinetic energy by
braking or decreasing potential energy while rolling downhill. Note that the
electric powertrain is assumed to have a single-gear transmission system.

For a given pair of rotational speed and torque, EM efficiency map is shown
in Fig. 9, using static internal electric battery power. In Fig. 9, positive and
negative torque regions correspond to the motoring and the generating modes
of operation, respectively.

It is assumed that a single-gear transmission system conveys the power
from the battery to the wheels. Therefore, there is no need for offline gear
optimisation, i.e. Pγ(v, F ) = Pw(v, F, γ).

The internal power drawn from the electric battery is approximated by the
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following expression

Pγ(v, F ) ≈ pm0 + pm1v3(s) + pm2v(s)F (s)+
+ pm3v(s)F 2(s)

(B.41)

with pm0, pm1, pm2, pm3 ≥ 0. Fig. 10 demonstrates that the approximated
model describes well the original internal battery power.

Using (B.5), (B.9) and (B.41), the stage cost (B.30f) transforms into

VEV(·, λt) ≈
ceg(pm0 + λ∗

t )
√

m√
2E(s)

+ 2pm1
m E(s) + pm2F (s)+

+ pm2F 2(s) + w1a2(s) + w2j2(s).
(B.42)

The traction force limits, see Fig. 11, are approximated by

Fγmin(E) ≈ max
{

F , x0 + x1
√

m√
2E(s)

}
(B.43)

Fγmax(E) ≈ min
{

F , y0 + y1
√

m√
2E(s)

}
(B.44)

where F and F are constant traction force limits. The coefficients x0 and
x1, similar to the y0 and y1, are the solution of the linear program given in
Appendix 2.

According to the signs of x1 ≤ 0 and y1 ≥ 0, the term x1/
√

E(s) is a concave
function and y1/

√
E(s) is a convex function. Thus, the area between the two

force limits (B.43) and (B.44) include a concave force set, which leads the prob-
lem (B.30) with the stage cost (B.42) to be a non-convex nonlinear program.
By linearizing the force limits, the problem (B.30) with the stage cost (B.42)
can be formulated as a convex SOCP, see Appendix 3. Note that linearizing
any convex function about any trajectory, is always an inner approximation,
and linearizing any concave function about any trajectory, results in an outer
approximation. Furthermore, the approximations are conservative, therefore,
all obtained solutions are inside the feasible force area, see Fig. 11, and also
feasible in the original non-convex problem.
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Table 1: Simulation parameters
Gravitational acceleration g = 9.81 m/s2

Air density ρ = 1.29 kg/m3

Vehicle frontal area Af = 10 m2

Rolling resistance coefficient cr = 0.006
Vehicle mass m = 40 000 kg
Aerodynamic drag coefficient cd = 0.5
Wheel radius rw = 0.50 m
Final gear ratio rfg = 3
Cruising set speed vcru = 80 km/h
Route length 118 km
Number of samples N = 500
Fuel cost cf

eg = 1.51 EUR/litre
Electricity cost ce

eg = 0.18 EUR/kWh
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6 Results
In this paper, simulations are carried out for the CV and the EV over the
118 km long road from Södertälje to Norrköping in Sweden, which is the same
route as considered in [49]. The problems (B.66) and (B.70) are discretized
using the forward Euler method. The problems are solved in an SHMPC
framework, i.e. sHmax ≥ sf, where travel time at the final position (end of the
route) is upper bounded by tf, using (B.21). The simulation parameters are
given in Table 1.

Within the simulations we investigate: (1) sensitivity analysis to evaluate
the impact of sampling interval on the solution of the proposed algorithm; (2)
how optimisation cost and optimal speed profile change for different discomfort
penalties; (3) convergence properties of the algorithm; (4) computation time
as a function of the number of samples in the horizon.

6.1 Sampling interval impact on total cost
To investigate the sampling interval’s impact on the total cost (B.25a), we
calculate normalised relative cost error for varying number of samples, as

relerror = costN
tot − cost1200

tot
cost1200

tot
, (B.45)

for N ∈ [200, 1200] samples, where costN
tot and cost1200

tot are the total cost
calculated for a sampling number of N and 1200, respectively. Note that the
obtained total cost value for the finest mesh, i.e. with N = 1200, is the most
accurate among the investigated meshes. It is observed in Fig. 12 that the
normalised relative cost error is less than 0.5 % for number of samples equal
to or greater than 500. Thus, in the rest of the investigations we choose the
number of samples equal to 500, i.e. the sampling interval is kept at 238 m as
the finer mesh for most of the simulations, unless stated otherwise.

6.2 Energy consumption vs. drivability
To study the cost components, i.e. energy cost and the cost due to penalising
discomfort, we compare three case studies: Casefl corresponds to a case with
the filtered speed, vfl, which corresponds to the average driver’s driving cycle.
For this case, the stage costs, (B.66) and (B.70) are calculated using (B.5),
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Figure 13: Energy cost investigation for different jerk penalty factors. For the large
penalty factors, RMS jerk is saturated.

(B.7) and (B.8). In Case 1, i.e. performance drive, the jerk penalty term in
(B.66) and (B.70) is kept to zero; and in Case 2, i.e. comfortable drive, non-
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(a) Operating force-speed points of the CV and optimal gear
as a contour map.
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Figure 15: Optimal longitudinal forces vs. vehicle speed for Case 2, i.e. when jerk
is penalised.

zero jerk penalty factor is used in (B.66) and (B.70). As an index to measure
drivability, the root mean square (RMS) value of jerk

jRMS =

√
1
sf

∫ sf

0
j2(s)ds (B.46)

is used. Note that we have observed the smooth speed profile could be achieved
by only penalising jerk, thus the penalty coefficient on the acceleration, w1,
is always kept to be zero for all three cases.

There is a trade-off between the energy cost and comfort, i.e. lower values of
RMS jerk yield higher energy cost, see Fig. 1.13(a) and Fig. 1.13(b) for such
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Figure 16: Optimal gear profiles of CV for Case 2, i.e. which corresponds to com-
fortable drive. The most frequent selected gear is γ = 14.

trade-off for the CV and the EV respectively. Thus, vehicle manufacturers
have wide range of choice to customise the vehicle’s performance for a desired
energy use and comfort. Note that RMS jerk saturates for large jerk penalty
factors. Hereafter, the jerk penalty term in Case 2 is selected in a way that
the RMS jerk is equal to 0.0027 m/s3 for the CV and the EV.

Optimal longitudinal velocity, acceleration and jerk profiles of Case 1 and
Case 2 for the CV and the EV are demonstrated in Fig. 14. The velocity
profiles without discomfort penalty, i.e. Case 1, are saw-tooth shaped and
leads to more aggressive way of driving, however, the latter case provides
smoother and more comfortable driving, see Fig. 1.14(a) and Fig. 1.14(b).
Note that in addition to the RMS jerk, the RMS acceleration is also reduced
in Case 2 compared to Case 1 for the CV and the EV, whereas the acceleration
is not penalised in either cases, see Fig. 1.14(c), Fig. 1.14(d), 1.14(e) and
Fig. 1.14(f).

Optimal traction and braking force points for the Case 2, i.e. comfortable
drive, of CV and EV are shown in Fig. 15. Also, according to the optimal gear

B33



Paper B

020406080100

Prediction horizon length [km]

0

0.002

0.004

0.006

0.008

0.01

0.012

T
im

e 
co

st
at

e 
[E

U
R

/s
]

CV

EV

Figure 17: Travel time costate vs. prediction horizon length. The costate converges
after few MPC updates, even after disturbance is introduced (at horizon
length of 85 km) by suddenly increasing maximum travel time, e.g. due
to traffic congestion.

map in Fig. 6, for a pair of total force and longitudinal velocity, the optimal
gear is chosen. The optimised gear trajectory and distribution are shown in
Fig. 16, where the most frequently selected gear is γ = 14. We have observed
similar results for Case 1 as well.

The cost results of the whole driving mission and their corresponding RMS
jerk values for all three case studies of the CV and the EV are given in Table
2.

For the CV, the most fuel-efficient case is Case 1. There is a benefit of
11.60 % to optimize the velocity profile compared to the Casefl, whereas the
discomfort of the performance drive is accepted. Furthermore, the results
show 7.92 % reduction in total cost of Case 2 compared to the Casefl, despite
having 1.30% increase in fuel consumption compared to Case 1. As it has
been expected, the proposed algorithm minimises the braking at the pads, i.e.
the braking in Case 1 and Case 2 is significantly reduced compared to Casefl.

For the EV, Case 1 provides 6.71% reduction of the total energy cost com-
pared to Casefl and the total cost benefit of Case 2 is 5.87% compared to
Casefl. The comfortable drive, i.e. Case 2, leads to 0.20% increase in electric-
ity usage compared to the performance drive, i.e. Case 1. The RMS jerk in
Case 2 is reduced by 29% compared to Casefl, i.e. the RMS jerk is reduced
from 0.0038 m/s3 to 0.0027 m/s3.
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Table 2: Simulation results, energy consumption vs. drivability
CV

Variable Casefl Case 1 Case 2
Fuel cost [EUR] 65.33 59.72 60.50

Drivability cost [EUR] 2.23 0 1.71
Total cost [EUR] 67.56 59.72 62.21
Improvement [%] - 11.60 7.92

jRMS [m/s3] 0.0026 0.0062 0.0027
||Fbrk|| [kN] 49.46 35.27 34.07

EV
Variable Casefl Case 1 Case 2

Electricity cost [EUR] 24.55 24.47 24.52
Drivability cost [EUR] 1.68 0 0.56

Total cost [EUR] 26.23 24.47 24.69
Improvement [%] - 6.71 5.87

jRMS [m/s3] 0.0038 0.0108 0.0027
||Fbrk + min(F, 0)|| [kN] 49.15 34.25 40.94

6.3 Algorithm convergence

The convergence curve of the time costate versus shrinking prediction horizon
length is shown in Fig. 17. According to the algorithm given in Appendix 1, the
time costate is updated once per each MPC stage rather than waiting for the
full costate convergence. It can be observed that after few initial MPC stages,
the time costate converges to its optimum value. The disturbance rejection
properties of the algorithm are verified in Fig. 17. At the prediction horizon of
85 km, maximum travel time changes due to e.g. traffic congestion. It can be
seen in Fig. 17 that the travel time costate converges to its new value, which
leads the vehicle to arrive to the final position within the updated maximum
travel time.

The convergence profile of the SQP algorithm is depicted in Fig. 18, where
the algorithm converges to an optimum obtained by solving (B.30) in 5 iter-
ations for both CV and EV case studies. Note that the cost value drops to
within 0.4% from the optimum value in the first iteration. We exploit this
behaviour through RTI in SHMPC framework, where only one QP is solved
in each MPC update rather than waiting for the full SQP convergence, since
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Figure 18: SQP convergence profile. The cost value drops to within 0.4% from
optimum value in the first iteration. In iteration 0 the cost value is cal-
culated when the vehicle is driving with the initial estimated trajectory,
vfl.

the cost value in the first iteration is very close to the local optimum. Note
that the cost value in iteration 0 is calculated when the vehicle is driving with
the initial estimated trajectory, vfl.

6.4 Computation time

The computation time profile for various sampling intervals is depicted in
Fig. 19, where each QP in the SQP scheme is solved using HPIPM, known as
a high-performance tool for solving QPs [50]. Here, the entire route, 118 km,
is considered as the prediction horizon. The optimisation was run on a laptop
PC with 6600K CPU at 2.81GHz and 16GB RAM. The trend is that as the
number of samples increases, the computation time also increases. For real-
time applications, it is preferable to have small sampling interval, however
the information on the topography should not be lost. In subsections 6.2 and
6.3, the number of samples is kept to 500 and the corresponding computation
time for solving the problems (B.66) and (B.70) is less than 20ms, which is
considerably low value for a horizon of 118 km with the sampling interval of
238 m.
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Figure 19: Computation time vs. prediction horizon length using HPIPM for var-
ious resolutions of the prediction horizon. The computation time in-
creases linearly with the number of samples.

7 Conclusion

In this paper a computationally efficient algorithm is proposed for eco-driving
over long look-ahead horizons. To this end, a bi-level program is formulated,
where integer variable, i.e. gear, is decoupled from the real-valued variables.
In the bottom level, the optimal gear map is derived in a way that the total
energy consumption is minimised. In the top level, the remaining online im-
plementable NLP is formulated. To provide more comfortable way of driving,
acceleration and jerk of the vehicle are penalised in the top level’s objective.
In the NLP, the dynamics on travel time is adjoined to the objective function,
using the necessary PMP conditions for optimality, since: 1) the Hamilto-
nian is not an explicit function of the travel time; 2) the travel time is strictly
monotonically increasing function; and 3) the constraint on final time may ac-
tivate at the final instance. The NLP is solved by applying RIT SQP scheme
in MPC framework, i.e. the time costate and the linearization trajectory are
updated once per each MPC update. The proposed algorithm is applied to a
CV and an EV using SHMPC framework.

According to the simulation results, there is a trade-off between cost and
comfort, i.e. driving comfortably is more expensive compared to the perfor-
mance drive. The energy increase because of penalising the driver’s discomfort
is 1.30% and 0.20% for the CV and EV, respectively, where the RMS jerk is
kept to 0.0027 m/s3. Also, by using the proposed algorithm, the total cost is
reduced up to 11.60% and 7.92% for the CV and EV, respectively, compared
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to the average driver’s driving cycle. The computation time for the hori-
zon of 118 km is 20 ms, the sampling interval is equal to 238 m. For on-line
applications, the small computation time can enhance the optimality, since
the suggested optimal state of vehicle can be updated more frequently. Also,
in off-line analysis the small computation time can be applied to multi-path
problems, where the optimal path of the driving vehicle in terms of energy
consumption can be obtained within a small amount of time. The presented
algorithm in this paper can also be applied to HEVs as well, where the battery
discharge trajectory is generated by the eco-driving supervisor and delivered
to lower control layers to charge depleting or charge sustaining operation.

1 Newton method for finding optimal time costate
In this paper, a modified Newton method is applied to find the λ∗

t . Let

f(λt|ζ) = t∗(λt, sH|ζ)− tH(ζ). (B.47)

The rule for updating λt is

λt(ζ+) = λt(ζ)− f(λt|ζ)
f̃ ′(λt|ζ)

(B.48)

with

f̃
′
(λt|ζ) = min

λt

{
f

′
(λt|ζ), f

′

max

}
, (B.49)

f
′
(λt|ζ) = f(λt|ζ)− f(λt|ζ+)

λt(ζ)− λt(ζ+) , (B.50)

f
′

max = fmax − fmin

λmin
t − λmax

t
(B.51)

where λmin
t = 0EUR/s is the minimum and λmax

t is the maximum time costate.
Also, fmin and fmax are

fmin = t∗(λmax
t , sH|ζ)− tH(ζ), (B.52)

fmax = t∗(λmin
t , sH|ζ)− tH(ζ). (B.53)

To speed up the convergence to λ∗
t in (B.48), it is possible to warm start the
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algorithm by initialising λt at two consecutive instances ζ = 0 and ζ = 0+, as

λt(0) = λmin
t − fmax

f ′
max

(B.54)

λt(0+) = λt(0)− f(λt|0)
f ′

max
. (B.55)

where λt(0) is simply the intersection point of f(λt|0) = 0 with a line con-
necting the two points (λmin

t , fmax) and (λmax
t , fmin).

2 Inner approximation of traction force limits

To approximate the force limits as inner approximations of the original non-
linear and non-smooth limits, a linear program is solved as:

J = min
x

(
fT x

)
subject to
Ax ≤ b (B.56)

such that the area between actual force limits and their approximations is
minimised. Therefore, the area between the approximated force limit and the
line F = 0 is maximised. To this end, for the minimum force limit

J = min
x

∫ vmax

v0

(x0 + x1

v
)dv (B.57)

and for the maximum force limit

J = min
x

∫ vmax

v0

−(y0 + y1
v

)dv. (B.58)

Thus,

A =
[
1 1

v

]
, (B.59)
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for the minimum force limit, f, b, x are defined as

f = −
[

vmax − v0
ln(vmax)− ln(v0)

]
, b = Fγmin(v), x =

[
x0
x1

]
(B.60)

and for the maximum force limit as

f =
[

vmax − v0
ln(vmax)− ln(v0)

]
, b = Fγmax(v), x =

[
y0
y1

]
. (B.61)

The vehicle speed, v, is allowed to vary between two limits

v ∈ [v0, vmax]

where for CV v0=8 km/h and for EV v0=55 km/h, and vmax is the maximum
reachable speed by the vehicle. In this formulation, the idea is to minimize
the area between the original force limit and the inner approximation.

3 Full statement of convex optimal energy
consumption program

Here, the full statement of convex optimal energy consumption problem is
given for CV and EV case studies. To this end, the nonlinear term f(E) =
1/
√

E(s) in (B.40) is linearized about a trajectory Ê(s),

f lin(E, Ê) ≈ f(Ê) + df(E)
dE

∣∣∣∣
Ê

(E(s)− Ê(s)). (B.62)

Thus, (B.40) is transformed into

F lin
γmax(E) = min

{
F , y0 + y1

√
m

2 f lin(E, Ê)
}

(B.63)

and by using (B.16),

alin
max(E) = min

{
a,

F lin
γmax(E)− caE − Fα

m

}
. (B.64)
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3 Full statement of convex optimal energy consumption program

Also by having F lin
γmin(E) = 0 for the CV case study,

alin
min(E) = max

{
a,
−caE + Fbrk − Fα

m

}
. (B.65)

The convex dynamic optimisation problem for the CV case study is now
formulated as

min
j,Fbrk

∫ sH

0
VCV(·, λt, Ê)ds (B.66a)

subject to:
E′(s) = ma(s) (B.66b)
a′(s) = j(s) (B.66c)
F (s) = ma(s) + caE(s)− Fbrk(s) + Fα(s) (B.66d)

E(s) ∈ m
2 [v2

min(s), v2
max(s)] (B.66e)

a(s) ∈ [alin
min(E), alin

max(E)] (B.66f)
j(s) ∈ [j, j] (B.66g)
Fbrk(s) ∈ [Fbrk, 0] (B.66h)
E(0) = E0, a(0) = a0 (B.66i)

After each SQP iteration, which occurs at each distance step forward, the
trajectory about which that the problem is linearized is updated by moving
towards the direction of the current optimal solution, i.e.

Ê(i+1)(k) = Ê(i)(k) + β(E∗(i)(k)− Ê(i)(k)). (B.67)

where β is the step size that regulates the convergence rate.
For the EV case study, (B.43) is transformed into

F lin
γmin(E) = max

{
F , f lin(E, Ê)

}
(B.68)

using the linearized function, f lin(E, Ê). Therefore, by using (B.16)

alin
min(E) = max

{
a,

F lin
γmin(E)− caE − Fα

m

}
. (B.69)
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Note that the maximum traction force limit for EV is approximated by
(B.40). Accordingly, the maximum linearized acceleration is calculated by
(B.64).

The convex dynamic optimisation problem for the EV case study is formu-
lated as

min
j,Fbrk

∫ sH

0
VEV(·, λt, Ê)ds (B.70a)

subject to: (B.66b)-(B.66i). (B.70b)
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1 Introduction

Abstract

This paper addresses eco-driving of an electric vehicle driv-
ing in a hilly terrain under stochastic wind speed uncertainty.
The eco-driving problem has been formulated as an optimi-
sation problem, subject to road and traffic information. To
enhance the computational efficiency, the dimension of the
formulated problem has been reduced by appending trip time
dynamics to the problem objective, which is facilitated by nec-
essary Pontryagin’s Maximum Principle conditions. To cope
with the wind speed uncertainty, stochastic dynamic program-
ming has been applied to solve the problem. Moreover, soft
constraints on speed limits (kinetic energy) have been consid-
ered in the problem by enforcing sharp penalties in the objec-
tive. To benchmark the results, a deterministic controller has
also been obtained with the aim of investigating possible con-
straints violations due to the wind speed uncertainty. For the
proposed stochastic controller the optimised speed trajectories
always remain within the limits and the violation on the trip
time limit is only 8%. On the other hand, the speed and trip
time constraints violations for the deterministic controller are
21% and 25%, respectively.

1 Introduction
Electrification of the powertrain is gaining in popularity by vehicle manufac-
turers worldwide, due to its numerous advantages over conventional power-
train, such as higher energy efficiency, zero local emissions, reduced operating
and maintenance costs and lower level of noise [1]. These advantageous factors
as well as recent advances in battery technology substantially contribute to
the development of more sustainable transportation system, especially with
presence of renewable power generation systems and less dependency on oil
and fossil fuels [2].

To improve the transportation sustainability, there exist considerable issues
that are associated with growth and market penetration of electric vehicles
(EVs), namely high initial investments, limited charging infrastructure, long
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recharging periods and most notably the vehicle’s range limit [1], [3]. Also,
imprecise range estimation is another concern that causes the customers or
drivers to lose their trust in the displayed range value, and builds up an
anxiety of not reaching their destination. This in turn, leads to retention of
about 20 % of battery capacity as a safety margin by the drivers [4]. Thus,
it is essential to not only increase the range and battery capacity, but also
enhance the accuracy of range predictions and energy efficiency of the driving
vehicle [5], [6].

Aiming at achieving more accurate range estimation and relieve the anxi-
ety, more realistic conditions have been considered in energy cost models, e.g.
battery aging, efficiency model, auxiliary power, road topography and traffic
information [7], [8]. In [7] an estimation method has been developed, by pro-
viding appropriate information through in-vehicle information systems. In [8]
a refined battery state of charge (SoC) estimation algorithm has been devised
that yields an enhanced range estimation.

Increasing the vehicular energy efficiency has also been identified as an-
other approach that considerably influences the transportation sustainability
development. Thus, it is possible to follow the principles of energy-efficient
driving, referred to as eco-driving [9], [10], by optimally planning the velocity
profile of the vehicle, subject to road and traffic flow information. The traffic
situation can be translated into dynamic speed limits, which indirectly reflect
the speed drop due to the presence of e.g. intersections, traffic lights, junc-
tions and ramps [11], [12]. The optimal velocity usually varies, when driving
in a hilly terrain. In other words, the vehicle accelerates when climbing up-
hill, and increases its speed when driving downhill, thus reducing the waste of
non-recuperable energy compared to driving with constant speed [13]. To im-
plement this behaviour over complex topographies, advanced control strategies
can be applied [14]. Majority of these control strategies can be summarised
into: dynamic programming (DP) [15]–[18], Pontryagin’s Maximum Princi-
ple (PMP) [19], [20], a combination of DP and other methods [21], [22], and
multi-level control algorithms [23]–[25].

The major portion of the research being conducted so far, addresses de-
terministic analysis of the vehicle energy usage. However, the nature of the
vehicle driving is stochastic and subject to a vast number of factors that bring
uncertainty to the system [1]. In [26] authors identify weather conditions such
as wind and temperature as the influencing factors. Furthermore, it is known
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that the relative change in energy consumption of EVs due to the environ-
mental factor is much greater than conventional vehicles, because of the EVs’
high energy efficiency [27], [28]. Thus, it is crucial to consider the weather
conditions in designing the energy-efficient driving of vehicles, especially EVs.

In this paper, eco-driving of an EV has been presented by formulating an
optimisation problem under stochastic wind speed uncertainty. Also, with the
aim of increasing feasibility in realistic driving situations, the legal and dy-
namic speed limits have been considered in the problem formulation, using the
road and traffic information. The dimension of the formulated problem has
been reduced by adjoining the trip time dynamics to the objective. This can
considerably boost the computational efficiency. Furthermore, to cope with
the stochastic wind disturbance, stochastic dynamic programming (SDP) has
been applied to find the global optimum of the problem. To approach the SDP
method, the problem in continuous spatial domain has been discretized, and
the feasible sets of state variable (kinetic energy) and control input (traction
acceleration) are gridded. Moreover, soft constraints on speed limits (kinetic
energy) have been imposed to the problem by including sharp penalties to the
objective, in order to study potential constraints violations. To this end, a
deterministic controller and a stochastic controller have been obtained. The
deterministic controller has been derived by considering a deterministic (aver-
age) wind speed, whereas for the stochastic controller, the wind speed can have
a value from a bounded and discretized normal distribution. Both controllers
have been evaluated later on stochastic wind profiles.

This paper is organised as follows: Section 2 addresses the vehicle modelling.
In Section 3, the optimal energy consumption problem has been formulated.
Section 4 describes the algorithm applied to solve the formulated problem.
Section 5 is about the case studies and simulation results. Finally, Section 6
concludes the paper.

2 Vehicle modelling

In this section, trip time, longitudinal dynamics and powertrain dynamics of
an EV are presented. Also, the static equations that translate the electric
machine’s rotational speed and torque into longitudinal velocity and traction
acceleration are given.
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2.1 Longitudinal dynamics

Consider a vehicle driving on a planned route in a hilly terrain with no stop or
direction change of the vehicle’s movement. Thus, it is valid to choose travel
distance, s, as an independent variable, i.e. decisions are taken with respect
to s. The dynamics on trip time is

t′(s) = 1
v(s) , (C.1)

where v is longitudinal velocity.
Originating from the Newton’s law of motion, the longitudinal dynamics of

the EV considered as a lumped mass is

E′(s) = at(s)− aα(s)− aair(E(s), vw(s)), (C.2)

where vw is wind speed, and E′ = dE/ds is the space derivative of kinetic
energy of a unit mass, E, defined as

E(s) = 1
2v2(s). (C.3)

Also, at is traction acceleration at the wheel side of the vehicle generated
by the EM, and aα and aair are the accelerations associated with roll and
aerodynamic drags, respectively. They are defined as

aα(s) = g (sin(α(s)) + cr cos(α(s))) , (C.4)

aair(E(s), vw(s)) = ρacdAf

2m (
√

2E(s)− vw(s))2, (C.5)

where g is the gravitational acceleration, α is road gradient, cr is rolling resis-
tance coefficient, ρa is air density, cd is nominal aerodynamic drag coefficient,
Af is frontal area of the vehicle, and m is total lumped mass of the vehicle.
Note that all constants, i.e. non-dependent on s, are displayed in upright
letters throughout this paper. Also, in several places of the paper, the de-
pendency of the variables that are trajectories in terms of s is not shown for
simplicity.
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(𝑣, 𝑎t)

Figure 1: A schematic diagram of an electric powertrain, which includes energy
storage unit, i.e. electric battery, electric machine and transmission. The
transmission system transfers shaft torque, M , with rotating speed ω, to
the wheels with longitudinal speed v and traction acceleration at [12].

2.2 Powertrain dynamics

A schematic diagram of the electric powertrain is depicted in Fig. 1. The
powertrain includes an energy storage unit, i.e. electric battery, an electric
machine (EM) and a transmission. The EM’s torque and rotational speed are
denoted by M and ω, respectively. The EM is modelled with static relations
based on steady state measurements. Accordingly, the steady-state efficiency
map of the EM for a given pair of rotational speed and torque is demonstrated
in Fig. 2. Within this map, positive and negative torque regions indicate the
motoring and the generating modes of operation, respectively. This map has
been derived in our earlier work [12]. To provide a certain traction acceleration
at the wheels, the EM draws electric power Pb from the storage unit (electric
battery). The electric battery power Pb can therefore be written as a function
of longitudinal velocity (kinetic energy) and traction acceleration.

The EM torque and rotational speed are translated to traction acceleration
and longitudinal velocity respectively, via the transmission system with solely
a final gear ratio and wheel radius, using the static equations

at(s) = M(s)
mR

, v(s) = ω(s)R, R = rw

rfg
(C.6)

where rw is wheel radius and rfg is final gear ratio respectively.
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Figure 2: Steady-state efficiency map and torque limits of the electric machine [12].

3 Problem formulation
This section addresses the formulation of an optimisation problem, which aims
at optimal velocity planning for the vehicle’s entire mission and preserving the
trip time within a bound, under the uncertainty of wind speed.

3.1 Objective function
Objective of the formulated problem is to minimise total energy consumption,
as ∫ sf

s0

Pb(v, at)
v

ds, (C.7)

where the division of the battery power with speed in (C.7) derives directly
from the time to space transformation, i.e.∫

Pb(v, at)dt =
∫

Pb(v, at)
v

ds.

3.2 Constraints on longitudinal velocity and traction
acceleration

In the problem formulation, we incorporate both legal and dynamic speed
limits using the road and traffic information, in order to increase credibility
in realistic driving conditions. Such dynamic speed limits can be set due to
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the speed drops in different situations, e.g. traffic lights, intersections, ramps
and junctions. Thus, total speed limits are computed as

vmin(s) = min
{

vlegal
min (s), vdyn

max(s)
}

, (C.8)

vmax(s) = min
{

vlegal
max (s), vdyn

max(s)
}

, (C.9)

where vlegal
min and vlegal

max are legal speed limits, and vdyn
max is maximum dynamic

speed limit. The legal and dynamic speed limits can be communicated to the
driving vehicle by new modern intelligent speed assistant (ISA) systems, e.g.
e-horizon technologies [29]. The traffic constraints’ influence on trip time and
vehicular energy efficiency has been studied in [12].

The traction acceleration limits are modelled as piecewise functions

amin
t (E) ≈ max

{
at, p0 + p1√

2E(s)

}
(C.10)

amax
t (E) ≈ min

{
at, q0 + q1√

2E(s)

}
(C.11)

where at and at are constant minimum and maximum traction acceleration
limits, respectively. The coefficients p1 and q1 represent maximum and mini-
mum power limits, respectively.

3.3 Energy minimisation problem
Using the relation (C.3) between longitudinal velocity and unit mass kinetic
energy, the optimal energy consumption problem is summarised as

π∗(E, s) = arg min
at(s)

∫ sf

s0

Pb(E, at)√
2E(s)

ds (C.12a)

subject to:

t′(s) = 1√
2E(s)

(C.12b)

E′(s) = at(s)− aα(s)− aair(E, vw) (C.12c)

E(s) ∈ 1
2 [v2

min(s), v2
max(s)] (C.12d)

at(s) ∈ [amin
t (E), amax

t (E)] (C.12e)
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t(0) = t0, E(0) = E0 (C.12f)
t(sf) ≤ tf (C.12g)

where π∗(E, s) is the optimal policy for a given pair of unit mass kinetic energy
and distance, s0 and sf are initial and final vehicle’s positions respectively, t0
and tf are initial and maximum allowed trip times respectively, E0 is initial
unit mass kinetic energy, Emin and Emax are the unit mass kinetic energy
limits, and amin

t (E) and amax
t (E) are traction acceleration limits. The wind

speed vw is modelled as an uncertain variable that is normally distributed, i.e.
vw ∼ N (µ, σ), with unbounded probability density function

f(vw) = 1
σ
√

2π
e− 1

2 ( vw−µ
σ )2

, (C.13)

where µ is the mean or expected value and σ is standard deviation of the
distribution. The constraints (C.12b)-(C.12e) are enforced for all s ∈ [s0, sf].
The signs of p1 ≤ 0 and q1 ≥ 0 lead the functions p1/

√
2E(s) and q1/

√
2E(s)

to be concave and convex respectively. Accordingly, the area between the two
acceleration limits (C.10) and (C.11) is a concave set. Thus, the problem
(C.12) is a non-convex nonlinear and stochastic program. This problem has
two state variables, t and E, one control input, at, and a stochastic disturbance
vw. We apply SDP method to solve this problem.

4 Energy optimal algorithm
This section addresses two reformulation steps in order to reduce computa-
tional complexity of the problem (C.12), and to make it possible to apply the
SDP method while incorporating the wind speed uncertainty. Then, the SDP
algorithm has been explained. The two reformulation steps are:

1. Necessary PMP conditions of optimality: This step aims at re-
ducing the dimension of the problem (C.12), which is done by adjoining
the product of the trip time dynamics (C.12b) and optimal time costate
to stage cost function.

2. Problem discretization with soft-constrained kinetic energy lim-
its: In this step, the problem (C.12) in continuous spatial domain is
discretized, then the SDP algorithm can be applied to find the global
optimum of the problem. Also, the hard constraints on the kinetic en-

C10



4 Energy optimal algorithm

ergy limits (C.12d) are softened by including sharp penalties for the
constraints violations to the objective. The incentive for such transfor-
mation in the kinetic energy limits is to investigate possible constraint
violations on kinetic energy due to the wind speed uncertainty. This will
be discussed later in Section 5.

4.1 Necessary PMP conditions of optimality

Here, the problem (C.12) is reformulated by following the necessary PMP
conditions for optimality [19]. The Hamiltonian for (C.12) is defined as

H(·) = λt(s) + Pb(E, at)√
2E(s)

+

λE(s)
(

at(s)− aα(s)− aair(E, vw)
)

,

(C.14)

where the symbol · is a compact notation representing multiple variables of the
Hamiltonian function, λt is the costate of trip time, and λE is the costate of
unit mass kinetic energy. It is obvious that the Hamiltonian is not an explicit
function of trip time. Thus, according to the necessary PMP conditions for
optimality

λ′
t
∗(s) = −

(
∂H(·)

∂t

)∗

= 0, (C.15)

where optimal costate λ∗
t is a constant value. The optimal costate refers to

a value for which the maximum trip time constraint (C.12g) is satisfied. In
addition, the constraint (C.12g) may only be activated at the final instance
of the driving road, since the trip time (C.12b) is a strictly monotonically
increasing function. Note that the maximum trip time limit can be violated
at the final instance because of the wind speed uncertainty. This will be dis-
cussed later in the Section 5. Thus, considering λ∗

t to be known, the nonlinear
constraint on trip time (C.12b) is removed, and instead the objective function
(C.12a) is replaced with

min
π(E,s)

∫ sf

s0

λ∗
t (s) + Pb(E, at)√

2E(s)
ds. (C.16)
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It is possible to compute the value of λ∗
t by numerically solving a two point

boundary value problem (TPBVP). To approach this, one can consider that
the energy minimisation problem is associated with driving slow, i.e the vehicle
would spend the maximum allowed trip time tf. Thus, t∗(λt, sf) ≈ tf, where t∗

represents the optimised trip time. Accordingly, different values can be tried
for λt followed by applying a search method, e.g. Newton [24] or bisection [23],
in order to minimise the objective

min
λt
||t∗(λt, sf)− tf|| (C.17)

where || · || indicates any norm.

4.2 Problem discretization with soft-constrained kinetic
energy limits

Using the first order Euler method with a sampling interval of h meters, the
discretized optimisation problem with distance samples s = kh, k = 0, . . . , N,
is summarised as

π∗(E, k) = arg min
at(s)

λ∗
t√

2E(N)
+

N−1∑
k=0

λ∗
t + Pb(E, at)√

2E(k)

+ w1

(
max

{
1
2v2

min(k)− E(k), 0
})

+

+ w2

(
max

{
E(k)− 1

2v2
max(k), 0

}) (C.18a)

subject to:

E(k + 1) =
(

at(k)− aα(k)− aair(E, vw)
)

h + E(k) (C.18b)

at(k) ∈ [amin
t (E), amax

t (E)] (C.18c)
E(0) = E0 (C.18d)

where N is number of samples, h is sampling interval and w1 and w2 are the
penalty factors, respectively for the lower and upper constraints violations
on kinetic energy. Note that the target cost λ∗

t /
√

2E(N) is only applicable
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to the trip time. The constraints (C.18b)-(C.18d) are imposed for all k ∈
[0, . . . , N]. Also notice that the normal distribution of wind speed is bounded,
and discretized in (C.18).

To approach the SDP algorithm, the feasible sets of the state variable (ki-
netic energy), E , and control input (traction acceleration), A, are gridded
as

E ∈ E = {e1, e2, . . . , en}, (C.19)
at ∈ A = {at,1, at,2, . . . , at,m}. (C.20)

Using the SDP method, the problem (C.18) has been broken down into a
sequence of decision steps over s. According to the Proposition 1.1 stated in
Appendix 1, the value function Vk and optimal policy map π∗ at any state
E for the instances k = N− 1, . . . , 1 are calculated by proceeding backwards,
using the recursive equation (C.21b). Also, the value function at final in-
stance VN includes the target cost λt/

√
2E(N). Note that the optimal policy

refers to a deterministic controller (DC) if the wind speed is a fixed value,
or a stochastic controller (SC) if the wind speed is a variable chosen from
the bounded and discretized normal distribution. For obtaining the DC, the
expected value and actual value are equal in (C.21b), due to the fixed wind
speed value. The optimal control (traction acceleration) values are retrieved
from the optimal policy map, proceeding forward by rolling out the dynamical
equation (C.18b), starting from the initial kinetic energy value E0.

5 Results
In this section, simulations are carried out for the EV driving in a 7 km long
road with a hilly terrain. Within the simulations, we investigate possible
constraint violations on speed (kinetic energy) limits and maximum trip time
for the DC and SC. The energy consumption and average trip time for both
controllers are equal and fixed. Vehicle and simulation parameters are given
in Table 1.

The DC has been obtained, where the wind speed always has a fixed value of
5 m/s. However, the SC has been calculated in a way that the wind speed can
take the values between 0 to 10, i.e. vw ∈ {0, 1, . . . , 10}, which are normally
distributed with µ = 5 m/s and σ = 2, see Fig. 3.
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Table 1: Simulation parameters
Gravitational acceleration g = 9.81 m/s2

Air density ρ = 1.29 kg/m3

Vehicle frontal area Af = 10 m2

Rolling resistance coefficient cr = 0.006
Vehicle mass m = 40 000 kg
Aerodynamic drag coefficient cd = 0.5
Wheel radius rw = 0.50 m
Final gear ratio rfg = 3
Route length 7 km
Sampling interval h = 100 m
Penalty factors w1 = w2 = 80

0 1 2 3 4 5 6 7 8 9 10

Wind speed [m/s]

0

0.05

0.1

0.15

0.2

P
ro

b
ab

il
it

y

Figure 3: Bounded and discretized normal distribution of wind speed with µ =
5 m/s and σ = 2.

In order to evaluate the performance of both controllers in the face of wind
uncertainty, 100 random sequences of wind speed sampled from its distribu-
tion with µ = 5 m/s and σ = 2 have been generated for the entire driving
road. Thus, the speed trajectory and trip time that are corresponding to each
sequence can be calculated, using the recovered optimal control values from
each controller’s optimal policy map.

For a given combination of longitudinal velocity (kinetic energy) and travel
distance, the value functions for the DC and SC are depicted in Fig. 4. Also,
optimal policy for the controllers are demonstrated in Fig. 4. It is noticed
that the optimal traction acceleration for low speed areas has usually positive
values, and for high speed areas it is vice versa. The energy consumption,
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Figure 4: Value function (top row) and optimal policy (bottom row) for a given pair of
longitudinal velocity and travel distance.

average trip time and time costate for this scenario have been reported in
Table 2. The bisection method has been applied for finding λ∗

t , where the
algorithm’s stopping criterion is (C.17).

Optimal longitudinal velocity trajectory corresponding to each wind speed
sequence is shown in Fig. 5 for the controllers. It is observed that for the
DC, 21% of the optimised speed trajectories violate the speed limits, while
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Table 2: Time costate, average trip time and energy consumption
Variable Det. control Sto. control
λ∗

t [kW] 39.5 62.75
Average trip time [s] 336 336

Eng. consumption [kWh] 6.29 6.29

the system with SC is always robust against the wind speed changes, and
the speed trajectories stay within the bounds. The SC also reduces optimal
speed variations, while there are larger speed variations provided by DC. Also,
the histograms demonstrating the trip times associated with the wind speed
sequences are given in Fig. 6 for the controllers. Similar to the speed limits,
the maximum allowed trip time, i.e. tf = 336 s, is violated 25% of all for the
DC, whereas for the SC this percentage is simply 8%. These behaviours in
speed limits and trip time are reasonable, since the stochasticity in the wind
speed has been already taken into account, when obtaining the SC, however,
the wind speed is fixed in the DC’s design.

6 Conclusion
In this paper, eco-driving of an electric vehicle, under wind speed uncertainty
and driving in a hilly terrain, is formulated as an optimisation problem. In
the problem formulation, the legal and dynamic speed limits are incorpo-
rated, which enhance the credibility in realistic driving conditions. Also, the
problem is reformulated by adjoining trip time dynamics to the problem ob-
jective, having insights from necessary PMP conditions for optimality. This
reduces the dimension of the optimisation problem, which reduces compu-
tational complexity. Furthermore, to deal with the wind speed uncertainty,
stochastic dynamic programming is employed to solve the problem. More-
over, soft constraints on speed limits (kinetic energy) are considered in the
problem by imposing sharp penalties in the problem objective. To study po-
tential constraints violations on speed limits and trip time, a deterministic
controller and a stochastic controller are designed. For a fixed energy con-
sumption and average trip time, the constraint violation on speed due to the
wind speed uncertainty is 21% for the deterministic controller, whereas the
stochastic controller is robust against such violations. Also, the percentage of
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Figure 5: Optimal longitudinal velocity trajectories associated with each wind speed se-
quence.

violated maximum allowed trip time is 25% for the deterministic controller,
however, this value for the stochastic controller is simply 8%. Such behaviour
on the speed and trip time constraints violations correspond to the fact that
within the deterministic controller’s design, the wind speed has a fixed value,
while in the stochastic controller wind speed can be taken from a vector of
normally distributed values.
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Figure 6: Histogram of trip times corresponding to wind speed sequences.

sults for this project.

1 Stochastic dynamic programming

SDP [30] lies on the principle of optimality, i.e. any tail of an optimal tra-
jectory is an optimal solution as well [15]. The procedure is to break the
optimization problem into a sequence of simpler sub-problems, and derive a
policy that optimally acts in the face of stochasticity, as it is explained in the
following proposition from [30].

Proposition 1.1. For the problem (C.18), the last step of following algorithm
computes the optimal cost V0(E0) for each initial state E0. This algorithm
continues backward in distance from instance N-1 to instance 0, as

VN (E(N)) = λth√
2E(N)

, (C.21a)

Vk(E(k)) = min
at(k)∈A

E
vw(k)

{
gk

(
E(k), at(k), vw(k)

)
+

+ Vk+1

(
fk

(
E(k), at(k), vw(k)

))}
,

k = N− 1, . . . , 1, 0,

(C.21b)
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where gk is the running cost at instance k defined as

gk =
h

(
λt + Pb

(
E(k), at(k)

))
√

2E(k)
,

and fk is a function describing the state dynamics at instance k defined as

fk =
(

at(k)− aα(k)− aair(
√

2E(k), vw(k))
)

h + E(k).

Note that the expectation E is calculated with respect to probability distri-
bution of vw. Furthermore, the policy π∗(E, k) = {µ∗

0(E), . . . , µ∗
N−1(E)} is

optimal if for each E and k, a∗
t (k) = µ∗

k(E) minimises the right hand side of
(C.21b) [30].

References
[1] S. Pelletier, O. Jabali, and G. Laporte, “The electric vehicle routing

problem with energy consumption uncertainty,” Transportation Research
Part B: Methodological, vol. 126, pp. 225–255, 2019.

[2] Z. Yi and P. H. Bauer, “Optimal stochastic eco-routing solutions for
electric vehicles,” IEEE Transactions on Intelligent Transportation Sys-
tems, vol. 19, no. 12, pp. 3807–3817, 2018.

[3] A. Ahmadi, P. H. Bauer, and Y.-F. Huang, “Estimating environmental
parameters in connected electric powertrains using set-membership fil-
tering,” in 2020 IEEE 91st Vehicular Technology Conference (VTC2020-
Spring), IEEE, 2020, pp. 1–5.

[4] S. Sautermeister, M. Falk, B. Bäker, F. Gauterin, and M. Vaillant, “In-
fluence of measurement and prediction uncertainties on range estimation
for electric vehicles,” IEEE Transactions on Intelligent Transportation
Systems, vol. 19, no. 8, pp. 2615–2626, 2017.

[5] A. Bouscayrol, D. Hissel, R. Trigui, and A. Emadi, “Guest editorial
special section on advanced transportation systems,” IEEE Transactions
on Vehicular Technology, vol. 60, no. 9, pp. 4102–4105, 2011.

C19



Paper C

[6] A. Khaligh, M. Krishnamurthy, and Z. Nie, “Special section on sustain-
able transportation systems,” IEEE Transactions on Vehicular Technol-
ogy, vol. 61, no. 8, pp. 3362–3364, 2012.

[7] M. Eisel, I. Nastjuk, and L. M. Kolbe, “Understanding the influence of
in-vehicle information systems on range stress–insights from an electric
vehicle field experiment,” Transportation research part F: traffic psy-
chology and behaviour, vol. 43, pp. 199–211, 2016.

[8] V. R. Tannahill, D. Sutanto, K. M. Muttaqi, and M. A. Masrur, “Future
vision for reduction of range anxiety by using an improved state of charge
estimation algorithm for electric vehicle batteries implemented with low-
cost microcontrollers,” IET Electrical Systems in Transportation, vol. 5,
no. 1, pp. 24–32, 2014.

[9] M. Vajedi and N. L. Azad, “Ecological adaptive cruise controller for
plug-in hybrid electric vehicles using nonlinear model predictive con-
trol,” IEEE Transactions on Intelligent Transportation Systems, vol. 17,
no. 1, pp. 113–122, 2015.

[10] J. Felipe, J. C. Amarillo, J. E. Naranjo, F. Serradilla, and A. Diaz,
“Energy consumption estimation in electric vehicles considering driv-
ing style,” in 2015 IEEE 18th international conference on intelligent
transportation systems, IEEE, 2015, pp. 101–106.

[11] R. Basso, P. Lindroth, B. Kulcsár, and B. Egardt, “Traffic aware elec-
tric vehicle routing,” in 2016 IEEE 19th International Conference on
Intelligent Transportation Systems (ITSC), IEEE, 2016, pp. 416–421.

[12] A. Hamednia, N. Murgovski, and J. Fredriksson, “Time optimal and
eco-driving mission planning under traffic constraints,” in Intelligent
Transportation Systems (ITSC), Rhodos, Greece, 2020.

[13] J. N. Barkenbus, “Eco-driving: An overlooked climate change initiative,”
Energy Policy, vol. 38, no. 2, pp. 762–769, 2010.

[14] A. Sciarretta, G. D. Nunzio, and L. L. Ojeda, “Optimal ecodriving con-
trol: Energy-efficient driving of road vehicles as an optimal control prob-
lem,” IEEE Control Systems Magazine, vol. 35, no. 5, pp. 71–90, 2015.

[15] R. Bellman, Dynamic Programming. New Jersey: Princeton Univ Pr,
1957.

C20



References

[16] E. Hellström, J. Åslund, and L. Nielsen, “Design of an efficient algo-
rithm for fuel-optimal look-ahead control,” Control Engineering Prac-
tice, vol. 18, no. 11, pp. 1318–1327, 2010.

[17] H.-G. Wahl, K.-L. Bauer, F. Gauterin, and M. Holzäpfel, “A real-time
capable enhanced dynamic programming approach for predictive op-
timal cruise control in hybrid electric vehicles,” in 16th International
IEEE Conference on Intelligent Transportation Systems (ITSC 2013),
IEEE, 2013, pp. 1662–1667.

[18] G. Heppeler, M. Sonntag, U. Wohlhaupter, and O. Sawodny, “Predictive
planning of optimal velocity and state of charge trajectories for hybrid
electric vehicles,” Control Engineering Practice, vol. 61, pp. 229–243,
2016.

[19] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F.
Mishchenko, The Mathematical Theory of Optimal Processes. Interscience
Publishers, 1962.

[20] M. Held, “Fuel-efficient look-ahead control for heavy-duty vehicles with
varying velocity demands,” Ph.D. dissertation, KTH Royal Institute of
Technology, 2020.

[21] N. Murgovski, B. Egardt, and M. Nilsson, “Cooperative energy man-
agement of automated vehicles,” Control Engineering Practice, vol. 57,
pp. 84–98, 2016.

[22] S. Uebel, N. Murgovski, C. Tempelhahn, and B. Bäker, “Optimal en-
ergy management and velocity control of hybrid electric vehicles,” IEEE
Transactions on Vehicular Technology, vol. 67, no. 1, pp. 327–337, 2017.

[23] A. Hamednia, N. Murgovski, and J. Fredriksson, “Predictive velocity
control in a hilly terrain over a long look-ahead horizon,” IFAC-PapersOnLine,
vol. 51, no. 31, pp. 485–492, 2018.

[24] A. Hamednia, N. K. Sharma, N. Murgovski, and J. Fredriksson, “Com-
putationally efficient algorithm for eco-driving over long look-ahead hori-
zons,” IEEE Transactions on Intelligent Transportation Systems, 2021.

[25] L. Guo, B. Gao, Y. Gao, and H. Chen, “Optimal energy management
for HEVs in eco-driving applications using bi-level MPC,” IEEE Trans-
actions on Intelligent Transportation Systems, vol. 18, no. 8, pp. 2153–
2162, 2016.

C21



Paper C

[26] Z. Yi and P. H. Bauer, “Effects of environmental factors on electric vehi-
cle energy consumption: A sensitivity analysis,” IET Electrical Systems
in Transportation, vol. 7, no. 1, pp. 3–13, 2016.

[27] ——, “Optimal speed profiles for sustainable driving of electric vehicles,”
in 2015 IEEE Vehicle Power and Propulsion Conference (VPPC), IEEE,
2015, pp. 1–6.

[28] B. Bilgin, P. Magne, P. Malysz, et al., “Making the case for electrified
transportation,” IEEE Transactions on Transportation Electrification,
vol. 1, no. 1, pp. 4–17, 2015.

[29] O. Lindgärde, M. Söderman, A. Tenstam, and L. Feng, “Optimal com-
plete vehicle control for fuel efficiency,” Transportation Research Proce-
dia, vol. 14, pp. 1087–1096, 2016.

[30] D. P. Bertsekas, Dynamic programming and optimal control, 2. Athena
scientific Belmont, MA, 1995, vol. 1.

C22



PAPERD
Optimal thermal management, charging, and eco-driving of

battery electric vehicles

Ahad Hamednia, Nikolce Murgovski, Jonas Fredriksson, Jimmy Forsman,
Mitra Pourabdollah, and Viktor Larsson

Re-submitted the revised version to IEEE Transactions on Vehicular
Technology in Oct 2022



The layout has been revised.



References

Abstract

This paper addresses optimal battery thermal management
(TM), charging, and eco-driving of a battery electric vehicle
(BEV) with the goal of improving its grid-to-meter energy ef-
ficiency. Thus, an optimization problem is formulated, aiming
at finding the optimal trade-off between trip time and charg-
ing cost. The formulated problem is then transformed into
a hybrid dynamical system, where the dynamics in driving
and charging modes are modeled with different functions and
with different state and control vectors. Moreover, to improve
computational efficiency, we propose modeling the driving dy-
namics in a spatial domain, where decisions are made along
the traveled distance. Charging dynamics are modeled in a
temporal domain, where decisions are made along a normal-
ized charging time. The actual charging time is modeled as
a scalar variable that is optimized simultaneously with the
optimal state and control trajectories, for both charging and
driving modes. The performance of the proposed algorithm
is assessed over a road with a hilly terrain, where two charg-
ing possibilities are considered along the driving route and the
battery is soaked to the ambient before departure. According
to the results, trip time including driving and charging times,
is reduced by 44 %, compared to a case without active heat-
ing/cooling of the battery.

ELECTRIC vehicles (EVs) have recently emerged as a viable technol-
ogy to fulfill the increasingly stringent legislation against greenhouse

gas emissions, and to counteract the drawbacks associated with combustion
engine vehicles, such as air pollution, climate change, high operating and
maintenance costs, and high oil prices [1], [2]. These issues as well as recent
advances in battery technology propel vehicle manufacturers towards electro-
mobility, aiming at developing more sustainable vehicles [3], [4]. However,
electromobility must confront several issues hindering the widespread use of
EVs. Among them, the limited electric range of EVs is a major concern, which
emphasizes the significance of reducing total energy consumption [5]. Also,
lithium-ion (Li-ion) batteries, as a dominant cell chemistry in the market, are
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highly temperature sensitive, i.e. Li-ions have reduced performance at sub-
zero and very high temperatures, e.g. 45 ◦C − 60 ◦C [6]. Thus, developing
a suitable battery thermal management (TM) for the electric powertrain is
another hindrance to ponder on.

One promising way to reduce the EVs’ total energy consumption is by im-
proving grid-to-meter efficiency, referred to as the conversion of electrical en-
ergy drawn from the electrical grid into kinetic and potential energies required
for the vehicle’s movement, and accompanied losses. To do so, a suggested
way in the literature is to follow the principles of eco-driving, [7]. Eco-driving
can be achieved by optimizing the velocity profile of the vehicle given the road
conditions and traffic situation. In case of driving in a hilly terrain, the op-
timal speed has a varying behaviour, where the vehicle typically decelerates
when climbing uphill, and accelerates when rolling downhill. This reduces
non-recuperable energy waste at the braking pads, compared to driving with
a constant speed [8]. To obtain an eco-driving velocity profile over complex
road topographies, model-based optimal control strategies are employed to
optimally coordinate energy use, see e.g., [9]–[12]. Dynamic programming
(DP) [13] is a widely used approach in eco-driving applications [14]–[16] due
to its capability of solving mixed-integer, non-convex, and nonlinear optimiza-
tion problems. However, main drawback of the DP method is the curse of
dimensionality, i.e. computational time increases exponentially with the di-
mension of the optimal control problem (OCP). For high-dimensional OCPs,
it is possible to reduce computational complexity by adjoining system state
dynamics to the cost function and neglecting the state constraints [17], as
suggested by Pontryagin’s Maximum Principle (PMP) [18], [19]. In [20] PMP
is used for solving an OCP describing the driving mission with incorporated
real-world considerations, e.g. speed limits and safety. A PMP-DP method is
devised for optimal speed control and energy management of hybrid electric
vehicles (HEVs) in [21]. Nonlinear programming (NLP) is another approach
employed to investigate the eco-driving problem and trip time under various
traffic situations [22]. In this context, several strategies are proposed in [23]–
[29], aiming at improving computational efficiency. Different tasks, for e.g.
gear optimization or disturbance rejection, are assigned to distinct layers ac-
cording to time constants, updating frequency, horizon length, and sampling
interval. Also, eco-driving can be used within the model predictive control
(MPC) framework for heavy-duty platooning, as shown in [30]. Despite ex-
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tensive contributions to the topic of eco-driving, the conducted research does
not address the limited driving range of EVs.

Another challenge impeding the deployment of EVs is the development of
a battery management system that satisfies strict requirements on durability,
performance, and safety. At high battery temperatures, the battery perfor-
mance is deteriorated due to overexposure to heat, i.e. excessive battery
temperatures can create sparks, flames, bulge and bubbles, and lead to bat-
tery corrosion and even explosion [31]. This raises the importance of studying
battery life, as well as the energy efficiency, being especially relevant for heavy-
duty vehicles, where the battery temperature is increased due to frequent use
of fast charging [32]–[34]. At sub-zero temperatures, the electro-chemical pro-
cess is severely slowed due to an increase in internal impedance of the battery
cell. This leads to a drastic loss of the cell’s available power and energy [35].
Thus, it is essential to develop an adequate TM system, especially in places
where temperature drops to sub-zero values for a considerable period of time
in a year [36]–[41]. Within the TM system, several components, e.g. heat-
ing, ventilation, and air conditioning (HVAC) and high-voltage coolant heater
(HVCH), are utilised for controlling the battery pack’s temperature. As these
components draw power from the battery, it is pivotal to consider the TM
when optimizing the EV’s grid-to-meter energy efficiency. This increases the
awareness on total demanded power of the vehicle to achieve a more energy
efficient drive [42], [43]. Thus, various research efforts have been carried out
on developing a TM system based on optimal control techniques. In [44] a
DP algorithm is applied for the TM of an electrified vehicle parked outside
at low temperatures, and unplugged from the electrical grid. The algorithm’s
objective is to maximise the available energy in the battery pack prior to
vehicle departure, and minimise the cell degradation stemming from low tem-
peratures. Also, PMP is used in [45] to find an optimal compromise between
battery life expectancy and energy cost. Furthermore, several TM strategies
are developed within an MPC framework for achieving energy savings due to
optimal cooling/heating [6], [46]–[48]. Moreover, the TM is addressed in [42],
[49], where the vehicle speed profile is known a priori [49], or future speed
prediction is included into the energy efficiency improvement OCP [42]. Al-
though a vast portion of research has been carried out on TM systems, to
the best of our knowledge, the optimal coordination of eco-driving, TM, and
charging for a BEV has not been explored, especially for long driving missions
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where optimal trade-off has to be made between travel time, energy efficiency
and charging cost and trip time.

This paper considers a BEV over long-distance trips with a hilly terrain,
where the vehicle’s electric range is not sufficient to reach the destination. This
necessitates multiple intermediate (and terminal) charging options along the
driving route. In addition to the battery temperature, the maximum available
cell power is also dependent on the battery state of charge (SoC), i.e. as SoC
increases, charging power capability decreases and discharging power capabil-
ity increases. Furthermore, constraints on state variables and control inputs
as well as governing dynamics describing the vehicle’s behaviour in driving
and charging modes, generally differ. If not formulated with care, the optimal
control problem for optimizing eco-driving, charging, and TM may suffer sev-
eral computational issues. These include: (1) the time instants that belong to
the charging and driving modes are not known prior to the vehicle’s mission.
Thus, there is no explicit clue of using the state variables, control inputs, con-
straints, and governing dynamics of each mode; (2) the vehicle longitudinal
dynamics is nonlinear with respect to trip time, as the aerodynamic drag has
quadratic dependency to the vehicle speed. Also, the road slope can be an
arbitrary nonlinear function of distance. Furthermore, the speed limits can
have abrupt changes for some segments of the road. Accordingly, the speed
limits may be non-smooth and non-differentiable functions of travel distance.

To overcome above-mentioned computational drawbacks and achieve opti-
mal TM, charging, and eco-driving, we propose an optimization problem for-
mulated as a hybrid dynamical system. Within the problem formulation, the
dynamics in driving and charging modes are modeled with different state and
control vectors, and with different functions. The driving dynamics are mod-
eled in a spatial domain, i.e. decisions are made along the traveled distance.
Also, charging dynamics are modeled in a temporal domain, i.e. decisions are
made along a normalized charging time. The actual charging time is optimized
together with the optimal state and control trajectories, for both charging and
driving modes. Within the problem formulation, multiple intermediate (and
terminal) charging possibilities are included along the route, to increase scal-
ability and feasibility of the developed algorithm in expressing more realistic
driving situations. Note that the developed algorithm is capable of addressing
both cold and hot ambient operations. However, here we have focused on the
impact of cold ambient temperatures on the energy efficiency and trip time,
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Figure 1: Schematic diagram of the studied electric powertrain, which consists of a bat-
tery, an EM, a transmission system, a thermal management system, and an on
board charger. The thermal management system includes HVCH and HVAC,
which are actively regulating the battery pack and cabin compartment temper-
atures. HVCH is used for heating and HVAC is used for cooling of the battery
and cabin.

when the battery is soaked to ambient before departure.
The rest of the paper is organized as follows. Section 1 addresses the overall

vehicle model including longitudinal dynamics and multi-domain powertrain
structure. Section 2 corresponds to the problem formulation in a temporal
domain. Section 3 proposes the hybrid dynamical system with the goal of
alleviating computational drawbacks. In Section 4 simulation results are pre-
sented. Finally, Section 5 concludes the paper and outlines the possible future
research directions.

1 Modeling

In this section, the dynamics of a BEV is addressed. A multi-domain configu-
ration of an electric powertrain is described, including powertrain components
connecting via electrical, thermal, and mechanical paths.
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Figure 2: Equivalent circuit of the battery pack, where Uoc is open circuit voltage, Rb is
internal resistance, Ib is battery discharge current and Ut is battery terminal
voltage

1.1 Vehicle as a Lumped Mass System

According to Newton’s law of motion, the longitudinal dynamics of the vehicle
is described by

v̇(t) = at(t)− aair(v(t))− aα(s(t)), (D.1)

where v is the vehicle’s speed, at is traction acceleration at the wheel side
of the vehicle, and aair and aα are the accelerations associated with air drag
(drag force normalized by vehicle mass), rolling resistance, and gravitational
load, respectively, as

aair(v(t)) = ρacdAfv
2(t)

2m
, (D.2)

aα(s(t)) = g
(

sin
(
α(s(t))) + cr cos(α(s(t))

))
, (D.3)

where ρa is air density, cd is aerodynamic drag coefficient, Af is the vehicle’s
frontal area, m is the vehicle’s total lumped mass, g is gravitational accelera-
tion, cr is rolling resistance coefficient, and α is road gradient.

The vehicle’s travelled distance, s, is given by integrating the vehicle speed:

(D.4)

where t is trip time.
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1.2 Multi-domain Powertrain Structure

Fig. 1 depicts the schematic diagram of the studied electric powertrain. The
powertrain consists of an electric machine (EM) as an actuator, a transmission
system and a battery for energy supply or storage. Apart from the propulsion
components the powertrain also consists of a thermal management system,
and an on board charger (OBC). As demonstrated in Fig. 1, the electric
power flow through an electrical path is bidirectional depending on operating
mode of the EM. Thus, the battery receives energy from the EM in generating
mode, or delivers energy to the EM in motoring mode. HVAC and HVCH are
the components used for the thermal management of cabin compartment and
battery pack, i.e. HVCH and HVAC are mainly used for heating and cooling,
respectively. The OBC is a device that is employed for regulating the flow
of electricity from the electrical grid to the battery, monitoring the charging
rate and for protection purposes. Note that the OBC is assumed to be ideal
in this paper.

Electrical Domain

The battery is modeled using an equivalent circuit shown in Fig. 2. The cir-
cuit includes a voltage source Uoc and an internal resistance Rb, which are
mainly influenced by SoC and battery temperature, respectively. The internal
resistance is generally proportional to the inverse of battery temperature [6].
Thus, the internal resistance has been modeled as a monotonically nonlin-
ear decreasing function of the battery temperature in this paper. Also, a
slight mismatch between the internal resistance while charging and discharg-
ing has been neglected here. Open-circuit voltage is commonly a nonlinear
monotonically increasing function of SoC, which is usually derived via offline
experiments at different battery aging stages and ambient temperatures. The
change of SoC, soc, is given by

˙soc(t) = − Pb(t)
CbUoc(soc(t)) , (D.5)

where Pb is battery power including internal resistive losses, and Cb is maxi-
mum capacity of the battery. Pb is positive when discharging, and is negative
while charging.
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A
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battery SoC & temperature

𝑵𝐜𝐡𝐠1 2

Figure 3: Studied scenario; a BEV is driving in a hilly terrain, where the vehicle starts
its mission from point A with a fully charged battery with sub-zero ambient
and initial battery temperatures. The indices 1, 2, and Nchg denote to the
intermediate (an terminal) charging stations.

Thermal Domain

An energy balance is used to describe the battery pack’s thermal dynam-
ics. Following the fundamental thermodynamic principle, a lumped-parameter
thermal model describing the dynamical variations of the battery pack’s tem-
perature is given by

Ṫb(t) = 1
cpmb

(
Qgen

pass(·) + Qact(P b
hvch(t), P b

hvac(t))

+ Qexh(Tb(t), Tamb(t), v(t))
)
,

(D.6)

where cp is specific heat capacity of the battery pack, mb is total battery
mass, the symbol · is a compact notation for a function of multiple variables,
Qgen

pass is the rate of generated heat by sources that passively affect the battery
temperature, Qact is the heat rate due to components that can actively adjust
the battery pack temperature, P b

hvch and P b
hvac are HVCH and HVAC powers,

respectively, and Qexh is the heat exchange rate among the battery pack,
ambient air and/or the chassis of the vehicle.

The passive generated heat includes: 1) irreversible ohmic Joule heat in-
duced by the battery internal resistive losses; and 2) heat Qed generated by
electric drivetrain (ED) power losses, including the excess heat from power
electronic devices and EM. For a given pair of vehicle speed and traction
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acceleration; the passive generated heat rate can be written as

Qgen
pass(·) = Rb(Tb(t)) P 2

b (t)
U2

oc(soc(t)) + Qed(v(t), at(t)). (D.7)

Note that the heat losses can generally originate from two types of conductive
and convective heat transfers. In this paper, the uneven conductive distri-
bution of the battery pack temperature associated with the diffusion is over-
looked to avoid increasing complexity of the thermal model. Thus, the core
and crust battery pack temperatures are assumed to be identical.

The active heat rate

Qact(P b
hvch(t), P b

hvac(t)) = ηhvchP b
hvch(t)− ηhvacP b

hvac(t) (D.8)

corresponds to the power conversion of the HVCH and HVAC systems, re-
spectively, with the battery pack’s heating with efficiency of ηhvch, and its
cooling with efficiency of ηhvac. Note that cabin temperature is not treated as
a dynamic state, but rather as a disturbance, irrespective if there is a cooling
or heating need for the cabin.

The convective heat exchange rate between the battery pack and ambient
air is modeled as

Qexh(Tb(t), t) = γ(v(t))(Tamb(t)− Tb(t)), (D.9)

where Tamb is ambient temperature, and γ is a speed dependent function
representing parasitic heat transfer between the battery and the ambient air,
i.e. if the battery temperature is higher than the ambient temperature, heat
is conveyed from the battery to the ambient air.

Mechanical Domain

The EM when operated in motoring mode, provides propulsive power, which is
delivered via the transmission system to the wheels through a mechanical path,
see Fig. 1. To do so, the EM torque and rotational speed are translated by the
transmission system to traction acceleration and vehicle speed, respectively.
Speed dependent bounds on EM torque are translated as limits on traction
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acceleration via

at(t) ∈ [amin(v(t)), amax(v(t))]. (D.10)

2 Problem Statement
Consider a BEV driving in a hilly terrain, as in Fig. 3. The trip starts from
point A with a cold initial battery temperature and a fully-charged battery,
where the ambient temperature is also low during the vehicle’s trip. As the
vehicle continues its drive, the battery depletes and its temperature may in-
crease due to the passive and/or active heating sources. The vehicle’s travelled
distance is greater than its range and intermediate (and terminal charging)
possibilities have to be considered along the driving route.

2.1 Bounds on Vehicle Speed, Battery Power and Grid Power

Using available information about the road and traffic situation, the vehicle
speed limits are defined as

v(t) ∈

[vmin(s(t)), vmax(s(t))], t ∈ Tdrv

{0}, t ∈ T i
chg

(D.11)

where 0 < vmin ≤ vmax, Tdrv and Tchg denote the sets of driving and charging
time instants, respectively, i ∈ I = {1, 2, . . . , Nchg} is charger index, and Nchg
is total number of charging stations along the route.

The speed limits include legal and dynamic speed limits that resemble re-
alistic driving situations. New modern technologies, e.g. e-horizon systems,
can provide the information about legal and dynamic speed limits and the
road slope [50]. The dynamic speed limits are enforced due to presence of e.g.
intersections, ramps, junctions and traffic lights. The legal speed limits may
have abrupt changes for different segments of the driving road, where such
variations can lead to computational issues that are discussed later in this
Section 2 and Section 3. Note that the vehicle speed is equal to zero when
the vehicle stops at the charging station.

For a given pair of battery temperature and SoC, the battery power limits
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Figure 4: Normalised absolute value of battery charge and discharge power limit
for a given combination of battery temperature and SoC.

corresponding to driving and charging modes for i ∈ I are given by

Pb(t) ∈

[P min
b,chg(soc(t), Tb(t)), P max

b,dchg(soc(t), Tb(t))], t ∈ Tdrv

[P min
b,chg(soc(t), Tb(t)), 0], t ∈ T i

chg
(D.12)

where P max
b,dchg > 0 and P min

b,chg < 0 are the battery discharge and charge power
limits, respectively. It can be deduced from (D.12) that the battery power
during driving can also be negative due to regenerative braking, referred to as
a mechanism that transforms the vehicle’s kinetic energy into electrical energy
to be stored in the battery. Note that the charging power limit may differ in
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driving and charging modes. Here, we assume that the same bound is applied,
for simplicity, and without loss of generality.

Normalised absolute values of the battery discharge and charge power lim-
its versus battery temperature and SoC are illustrated in Fig. 1.4(a) and
Fig. 1.4(b), respectively. These figures are derived from a vehicle original
equipment manufacturer (OEM) data to form a representative but generic
data set describing the battery power for a given pair of the battery temper-
ature and SoC. As shown in Fig. 1.4(a), the battery discharge power limit
is proportional to the battery temperature and SoC level. Also, the charge
power limit is proportional to the battery temperature and inverse of SoC
level, according to Fig. 1.4(b). For the studied battery, the desirable SoC
range for the discharge and charge power limits are about 25 % − 100 % and
0 %− 60 %, respectively. Also, the battery temperature window for attaining
high power availability is about 25 ◦C − 45 ◦C, when both charging and dis-
charging. Thus, for a cold battery it is generally favourable to perform battery
pre-conditioning, referred to as heating up a cold battery prior to charging in
order to charge the battery with a high power, thereby reducing the charging
time.

The power P i
grid provided by the ith charger is limited by

P i
grid(t) ∈

{0}, t ∈ Tdrv,

[0, P i,max
grid ], t ∈ T i

chg

(D.13)

where P i,max
grid is rated power of the ith charger. It is here assumed that grid

charging power is not supplied to the vehicle during the driving mode, al-
though the method presented later can directly be applied to the vehicles
driving on an electric road, e.g. when charging lanes are installed on the
road [51].

2.2 Objective Function

In order to achieve an optimal compromise between trip time and charging
cost, an optimization problem is formulated with the performance function J ,
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as

J(·) =
Nchg∑
i=1

(∫
t∈T i

chg

ci
eP i

grid(t)dt + ci
T max

(
0, ti

chg − ti
occ
))

+
∫

t∈T
ct,tripdt,

(D.14)

where the charging cost can be expressed as energy and/or time, depending
on the pricing plan of each charging station. Thus, J includes:

• Electrical energy supplied to the vehicle by chargers, as

Nchg∑
i=1

∫
t∈T i

chg

ci
eP i

grid(t)dt, (D.15)

where ce is currency per-kilowatt-hour charging electrical energy cost.
• The time based cost for occupying the charging spot, as

Nchg∑
i=1

ci
occ max

(
0, ti

chg − ti
occ
)
, (D.16)

where cocc is currency per-minute cost due to occupying the charger
for longer time than tocc ≥ 0, and tchg is a scalar variable representing
charging time.

• A penalty on total trip time, as∫
t∈T

ct,tripdt, (D.17)

where ct,trip is the penalty factor and T =
⋃

i∈I T i
chg
⋃
Tdrv. Note that

the trip time includes the charging time; thus, charging time may need
to be paid twice, due to a longer trip and/or occupying the charger.

2.3 Optimization Problem with Respect to Trip Time
For i ∈ I, the optimization problem can now be summarised, as

min
P b

hvch,P b
hvac,Pb,P i

grid,at,ti
chg

J(·) (D.18a)
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subject to: (D.11)-(D.13) and

Ṫb(t) = 1
cpmb

(
Qgen

pass(·) + Qact(P b
hvch(t), P b

hvac(t))

+ Qexh(Tb(t), Tamb(t), v(t))
)
, t ∈ T

(D.18b)

˙soc(t) = − Pb(t)
CbUoc(soc(t)) , t ∈ T (D.18c)

ṡ(t) = v(t), t ∈ Tdrv (D.18d)
v̇(t) = at(t)− aair(v(t))− aα(s(t)), t ∈ Tdrv (D.18e)

P i
grid(t) + Pb(t) = R(Tb(t)) P 2

b (t)
U2

oc(soc(t)) + Pprop(v(t), at(t))

+ P b
hvch(t) + P b

hvac(t) + P c
hvch(t) + Paux(t), t ∈ T

(D.18f)

s(t) = si
chg, t ∈ T i

chg (D.18g)
Tb(t) ∈ [T min

b (t), T max
b (t)], t ∈ T (D.18h)

soc(t) ∈ [socmin(t), socmax(t)], t ∈ T (D.18i)
P b

hvch(t) ∈ [0, P max
hvch − P c

hvch(t)], t ∈ T (D.18j)
P b

hvac(t) ∈ [0, P max
hvac ], t ∈ T (D.18k)

at(t) ∈ [amin(v(t)), amax(v(t))], t ∈ Tdrv (D.18l)
ti
chg ∈ [0, tmax

chg ] (D.18m)
Tb(0) = Tb0, soc(0) = soc0, s(0) = s0, v(0) = v0 (D.18n)
Tb(tf) ≥ Tbf, soc(tf) ≥ socf, s(tf) = sf (D.18o)

where Tb0 and Tbf are initial and final battery temperatures, respectively,
soc0 and socf are initial and final SoC values, respectively, s0 and sf are initial
and final travel distances, respectively, v0 is initial vehicle speed, Pprop is
propulsion power including the internal losses of the powertrain for a given
pair of vehicle speed and traction acceleration, Paux is given auxiliary load
demand, T min

b and T max
b are the bounds on battery temperature, socmin and

socmax are SoC limits, P max
hvch and P max

hvac are the maximum deliverable HVCH
and HVAC power values, respectively, schg is the charging position that is
known prior to starting the vehicle’s driving mission, tmax

chg is the maximum
allowed charging time, and P c

hvch is the HVCH power demand for heating the
cabin compartment. Note that the P c

hvch is assumed to be a function of the
known ambient temperature.
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driving mode

with respect to 𝑠
charging mode 
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𝑖 , 𝜏𝑖 = 1

𝒊

Figure 5: Schematic illustration of a hybrid dynamical system; driving mode, charging
mode, and transition between these two modes. During the driving mode de-
cisions are taken in terms of s, and in charging mode the decisions are planned
with respect to τ i, i ∈ I.

The full problem (D.18), including the formulations of both driving and
charging modes with respect to t is difficult to solve due to the following
reasons:

• The sets including charging mode and driving mode time instants, Tchg
and Tdrv, respectively, are unknown prior to the optimization. Thus,
imposing the right dynamics/values/bounds in (D.18) may require in-
troducing integer variables, which would make the problem intractable.

• The vehicle longitudinal dynamics (D.1) is nonlinear with respect to t,
as the aerodynamic drag is quadratically dependent to vehicle speed in
(D.2), the road gradient can be any arbitrary nonlinear function of t in
(D.3), and the speed limits (D.11) may also be non-smooth functions of s,
i.e. the speed limits can generally change abruptly for different segments
of the driving road. This may require additional integer variables, or
smoothing techniques.

The aforementioned issues can severely increase computational complexity.
Thus, we propose several reformulation steps in Section 3 that transform the
problem (D.18) into a hybrid dynamical system that can be solved in a minute
or less on a standard computer.
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3 Hybrid Dynamical System Formulation
In this section, the highlighted issues in Section 2 are resolved by exact refor-
mulations of driving and charging modes:

• Driving mode: During driving mode, s is chosen as an independent
variable instead of t, i.e. decisions are made with respect to s, as depicted
in Fig. 5. Such transformation is valid throughout the driving mode, as
the vehicle does not stop or change its direction of movement, i.e. v > 0.
Accordingly, for a certain road topography, the function aα becomes a
fixed trajectory covering the entire route. Also, the speed limits directly
turn into position dependent limits; thus, the sudden legal speed limit
change is no longer an issue. Furthermore, to remove the nonlinearity in
(D.2), kinetic energy of unit mass E with respect to s is selected instead
of v, as

E(s) = v2(s)
2 . (D.19)

Thus, the aerodynamic drag (D.2) becomes a linear function of unit mass
kinetic energy. Note that the decision making in the spatial coordinate is
promising, since the charging positions are given. Subsequently, driving
and charging distance instances are known prior to optimization.

• Charging mode: Despite fixed position of the vehicle at the charging
station, battery temperature and SoC will change during charging. Thus,
the battery temperature and SoC dynamics cannot be described with
respect to s for the charging mode. Instead, the decisions are planned
with respect to a variable τ i ∈ [0, 1], defined, as

τ i = t

ti
chg

, t ∈ T i
chg, i ∈ I. (D.20)

Following this selection of independent variables, problem (D.18) is trans-
formed into a hybrid dynamical system, see Fig. 5. Note that state variables,
control inputs and governing dynamics describing each mode may differ with
those from the other mode, which will be explained later in this Section. By
repeating the combination of driving and charging modes, it is possible to
investigate multiple charging scenarios along the vehicle’s trip. Hereafter, the
variables with subscripts or superscripts ‘drv’ or ‘chg’, are the previously intro-
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duced variables that now belong specifically to the driving mode or charging
mode, respectively.

3.1 Driving Mode: Dynamics and Performance Function

Governing dynamics during driving mode include the vehicle’s longitudinal
dynamics, and the dynamical variations of battery temperature and SoC. To
group the state variables and control inputs belonging to driving mode, it
is possible to introduce state and control vectors, respectively xdrv and udrv,
with respect to s, as

xdrv(s) =

 E(s)
socdrv(s)
T drv

b (s)

 , udrv(s) =


P b,drv

hvch (s)

P b,drv
hvac (s)

at(s)

 .

Accordingly, the relation between the time and space derivatives is given as

dxdrv(t)
dt

= v(s)dxdrv(s)
ds

, t ∈ Tdrv, s ∈ Sdrv, (D.21)

where Sdrv is a set including driving distance instances.
Following (D.21), the longitudinal dynamics (D.1) is now described in the

space coordinate s, as

dE(s)
ds

= at(s)− caE(s)− aα(s), (D.22)

where dE
ds = v dv

ds represents longitudinal acceleration in s domain, and the
coefficient ca = ρacdAf/m contains the air drag related factors.

Using the relations (D.19) and (D.21), the dynamical change of battery SoC
with respect to s is given by

dsocdrv(s)
ds

= − P drv
b (s)

CbUoc(socdrv(s))
√

2E(s)
. (D.23)

Similarly, the position dependent dynamical change of the battery pack
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temperature is given by

dT drv
b (s)
ds

= 1
cpmb

√
2E(s)

(
Qgen

pass(·) + Qact(P b,drv
hvch (s), P b,drv

hvac (s))

+ Qexh(T drv
b (s), Tamb(s), v(s))

)
.

(D.24)

The power balance equation (D.18f) can also be summarized throughout
the driving mode, as

P drv
b (s) = R(T drv

b (s))
(
P drv

b (s)
)2

U2
oc(socdrv(s)) + P drv

prop(v(s), at(s))

+ P b,drv
hvch (s) + P b,drv

hvac (s) + P c
hvch(s) + P drv

aux(s).
(D.25)

The governing dynamics during driving mode can be summarized as

dxdrv(s)
ds

= fdrv(xdrv(s), udrv(s), s),

where fdrv is a vector function including nonlinear scalar functions illustrating
each state variable’s dynamical change, according to (D.22)-(D.24). We also
define a vector xts

drv, as

xts
drv(s) =

[
socdrv(s)
T drv

b (s)

]
,

which will be used later for describing the transition between the modes.
The performance function during driving mode includes the penalty on trip

time, as

Jdrv(·) =
∫

s∈Sdrv

ct,trip√
2E(s)

ds, (D.26)

which is directly obtained from the trip time to travel distance transformation,
i.e.

∫
ct,tripdt =

∫
ct,trip/

√
2E(s) ds. The set Sdrv includes the driving distance

instances.
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3.2 Charging Mode: Dynamics and Performance Function

The governing dynamics during charging mode corresponds to the dynamical
changes of battery temperature and SoC. The state variables and control
inputs of charging mode for i ∈ I are stacked, respectively, in vectors xi

chg
and ui

chg, as

xi
chg(τ i) =

[
soci,chg(τ i)
T i,chg

b (τ i)

]
, ui

chg(τ i) =


P i,b,chg

hvch (τ i)

P i,b,chg
hvac (τ i)

P i
grid(τ i)

 , i ∈ I.

Also, the charging time associated with each charging station is considered
as a scalar variable, which is optimized simultaneously with the optimal state
and control trajectories of both driving and charging modes. According to
(D.5) and (D.20), the relation between the time derivative and the derivative
with respect to τ i ∈ [0, 1], i ∈ I, is

dxi
chg(t)
dt

= 1
ti
chg

dxi
chg(τ i)
dτ i

, t ∈ T i
chg, s(t) = si

chg. (D.27)

Following (D.27), the dynamical variation of battery SoC with respect to
τ i for i ∈ I is given by

dsoci,chg(τ i)
dτ i

= −
ti
chgP i,chg

b (τ i)
CbUoc(soci,chg(τ i)) . (D.28)

Similarly, the τ i dependent dynamical change of the battery pack temper-
ature for i ∈ I is given by

dT i,chg
b (τ i)
dτ i

=
ti
chg

cpmb

(
Qgen

pass(·) + Qact(P i,b,chg
hvch (τ i), P i,b,chg

hvac (τ i))

+ Qexh(T i,chg
b (τ i), Tamb(τ i))

)
,

(D.29)

using (D.5) and (D.20).
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For i ∈ I, the power balance equation (D.18f) during the charging modes is

P i
grid(τ i) + P i,chg

b (τ i) = R(T i,chg
b (τ i))

(
P i,chg

b (τ i)
)2

U2
oc(soci,chg(τ i))

+ P i,b,chg
hvch (τ i) + P i,b,chg

hvac (τ i) + P i,chg
aux (τ i).

(D.30)

Note that propulsion power is equal to zero during charging in (D.30). Also,
the power demand for heating the cabin compartment during charging is
assumed to be zero in (D.30), without loss of generality in the formulated
problem later in 3.3. Such assumption is reasonable for the case when the
driver/passengers stay outside the vehicle during charging.

The governing dynamics during charging mode for i ∈ I can be summarized
as

dxi
chg(τ i)
dτ i

= fchg(xi
chg(τ i), ui

chg(τ i), ti
chg, τ i),

where fchg is a vector function including nonlinear scalar functions describing
each state variable’s dynamical variation, according to (D.28) and (D.29).

The performance function associated with charging mode for i ∈ I, is the
compromise among charging energy cost, charging time and charger occupying
time cost, as

Jchg(·) =
Nchg∑
i=1

(
ti
chg

∫ 1

0

(
ct,trip + ci

eP i
grid(τ i)

)
dτ i

+ ci
occ max

(
0, ti

chg − ti
occ
))

.

(D.31)

3.3 Hybrid Dynamical System Formulation
The hybrid dynamical system’s formulation for i ∈ I, can now be summarized
as

min
udrv(s),ui

chg(τ i),ti
chg

Jdrv(·) + Jchg(·) (D.32a)

for τ i ∈ [0, 1] subject to:
dxdrv(s)

ds
= fdrv(xdrv(s), udrv(s), s), s ∈ Sdrv (D.32b)
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dxi
chg(τ i)
dτ i

= fchg(xi
chg(τ i), ui

chg(τ i), τ i), s ∈ si
chg (D.32c)

gdrv(xdrv(s), udrv(s), s) ≤ 0, s ∈ Sdrv (D.32d)
gchg(xi

chg(τ i), ui
chg(τ i), τ i) ≤ 0, s ∈ si

chg (D.32e)
xdrv(s) ∈ Xdrv(s), udrv(s) ∈ Udrv(s), s ∈ Sdrv (D.32f)
xi

chg(τ i) ∈ X i
chg(τ i), ui

chg(τ i) ∈ U i
chg(τ i), s ∈ si

chg (D.32g)
ti
chg ∈ [0, tmax

chg ] (D.32h)
xi

chg(0) = xts
drv(si

chg) (D.32i)

xts
drv(si+

chg) = xi
chg(1) (D.32j)

xdrv(s0) ∈ Xdrv0, xdrv(sf) ∈ Xdrvf (D.32k)

where ti
chg is treated as a design parameter, si+

chg is an instance where the ve-
hicle is leaving the charging station, tmax

chg is maximum allowed charging time,
gdrv and gchg denote the system general constraints, respectively during driv-
ing and charging modes, including the bounds on battery power and traction
acceleration, as

gdrv(·) =



P min
b,chg(socdrv(s), T drv

b (s))− P drv
b (s),

P drv
b (s)− P max

b,dchg(socdrv(s), T drv
b (s)),

amin(E(s))− at(s),

at(s)− amax(E(s))


(D.33a)

gchg(·) =
{

P min
b,chg(soci,chg(τ i)), T i,chg

b (τ i))− P i,chg
b (τ i).

}
(D.33b)

Also, Xdrv and Xchg denote the feasible sets of state variables, and Udrv and
Uchg represent the feasible sets of control inputs for each mode. Furthermore,
Xdrv0 and Xdrvf denote allowed initial states at s0, and target states at sf, re-
spectively. The constraints (D.32i) and (D.32j) denote the transition between
the modes. Thus, the battery temperature and SoC at the arrival of charging
station must be equal to the corresponding variables when charging begins.
Similarly, the battery temperature and SoC when charging is just finished
must be equal to the corresponding variables when the vehicle resumes its
drive.
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4 Results
In this section, we evaluate the performance of the proposed algorithm to
achieve optimal thermal management, eco-driving, and charging of a BEV in
the presence of existing constraints. The simulation setup is given in Sec-
tion 4.1.

4.1 Simulation Setup
The simulations are performed for a BEV over a 440 km long road with a
hilly terrain. The BEV starts its mission with 80 % SoC and cold battery,
where ambient temperature is also low during the vehicle’s entire mission, i.e.
Tb0(s0) = Tamb(s) = −10 ◦C, s ∈ [s0, sf]. Followed by the constant ambient
temperature, the HVCH power demand for heating the cabin compartment
during the vehicle’s driving mode is also a fixed value. As the driving distance
is greater than the vehicle’s electric range, one intermediate charging station
is visited at s = 240 km, and a terminal charging station is also considered
at the end of the route. The terminal battery SoC is set to be the same
percentage as the initial SoC, i.e. 80 %. Also, the rated grid power provided
by the chargers as well as the rated battery charging power are 150 kW. Note
that the time based cost for occupying the charging spot is not considered in
the studied scenario, i.e. cocc = 0. The vehicle and simulation parameters are
provided in Table 1.

The NLP (D.32) is discretized using the Runge-Kutta 4th order method [52],
with a distance sampling interval of 2 km. Subsequently, the discretized prob-
lem is solved in Matlab with the solver IPOPT, using the open source nonlinear
optimization tool CasADi [53]. IPOPT is an open-source tool used for solving
large-scale NLPs, by implementing an interior-point algorithm for continuous,
nonlinear, nonconvex, constrained optimization problems [54]. The optimiza-
tion was run on a laptop PC with 6600K CPU at 2.81GHz and 16GB RAM,
where the solving time is less than a minute.

4.2 Energy Efficiency versus Time
To investigate the trade-off between total charging energy cost versus trip
time, the Pareto frontier is derived, as shown in Fig. 6, where the total charg-
ing cost includes the electrical energy cost during the intermediate and termi-
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Table 1: Vehicle and Simulation Parameters
Gravitational acceleration g = 9.81 m/s2

Air density ρa = 1.29 kg/m3

Vehicle frontal area Af = 1.36 m2

Rolling resistance coefficient cr = 0.013
Total vehicle mass m = 2200 kg
Aerodynamic drag coefficient cd = 0.6
Maximum battery capacity Cp = 200 Ah
Specific heat capacity and battery mass product cpmb = 375 kJ/(K)
Route length 480 km
Distance sampling interval 2 km
Number of charging along the route Nchg = 2
Electrical energy cost while charging ce = 5 SEK/kWh
EM max power 350 kW
Max. battery power (discharging) P max

b,dchg = 350 kW
Min. battery power (charging) P min

b,chg = −150 kW
Charger rated power P max

grid = 150 kW
Auxiliary load Paux = 0.5 kW
HVCH power for heating cabin P c

hvch = 1.5 kW
HVCH power to heat rate efficiency ηhvch = 87 %
HVAC power to heat rate efficiency ηhvac = 87 %
Initial battery temperature Tb0 = −10 ◦C
Ambient temperature Tamb = −10 ◦C
Initial battery state of charge soc0 = 80 %
Terminal battery state of charge socf = 80 %
Minimum speed limit vmin = 65 km/h
Maximum speed limit vmax = 110 km/h

D25



Paper D

300 400 500

Trip time [min]

350

400

450

500

T
o

ta
l 
c
h

a
rg

in
g

e
n

e
rg

y
 c

o
s
t 

[S
E

K
] v

avg
=100km/h

t
chg

1
=15min

t
chg

2
=22min

A

B

Figure 6: Pareto frontier describing the trade-off between total charging energy cost ver-
sus trip time.

nal charging modes. Also, the trip time covers both the driving and charging
times. The driving time variations can be characterised as changing the vehi-
cle’s average speed. The demonstrated Pareto frontier provides a wide range
of choices for various types of car users to customise their trip. In Fig. 6,
point A denotes the vehicle’s most energy efficient trip, where ct,trip = 0. The
trip time can be increased further by letting ct,trip be negative, where this
leads to an increase in the energy cost. Thus, there is a low average speed
vavg threshold, here about vavg ≈ 70 km/h, below which the increased time of
accumulating auxiliary loads prevails the benefit of reduced air drag. Point
B in Fig. 6 corresponds to the trade-off between trip time and energy, where
vavg = 100 km/h.

In the remainder of the paper, we will only consider the vehicle’s operation
in point B. In this point, Case 1, i.e. with active heating/cooling, is com-
pared to Case 2, i.e. without active heating/cooling, to evaluate the impact
of battery pre-conditioning on the charging time and energy cost. Battery
pre-conditioning is characterized as bringing the battery temperature to (or
closer to) its desired range, where discharging/charging power availability is
increased considerably.
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Figure 7: Case 1; optimal trajectories versus travelled distance. The step changes
in battery temperature and SoC at s = 240 km and s = 440 km in (a) and
(b), denote the increase in the corresponding variables during charging
mode.

4.3 Case 1: Time Efficient Trip with Active Heating/Cooling

Here, the results are categorized into the optimal trajectories versus trav-
elled distance, and versus charging time during the intermediate and terminal
charging events. Total charging cost and trip time are given in Table 2.
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Table 2: Charging Cost versus Trip Time

Case Trip Time (Total Chg. Time) [min] Chg. Cost [SEK]
Case 1 294 (37) 453
Case 2 323 (66) 444

Optimal Trajectories versus Travelled Distance

Optimal vehicle speed profile together with the speed limits and road to-
pography are depicted in Fig. 1.7(a), where the zero speed values at travel
distances s = 240 km and s = 440 km indicates the vehicle stops at the
charging stations. The battery depletes gradually as the vehicle continues
its drive, where at the arrival of the charging stations at s = 240 km and
s = 440 km, the SoC levels are about 20 % and 15 %, respectively as demon-
strated in Fig. 1.7(b). The battery temperature increases primarily due to
only the passive heat generation resources, i.e. Joule heat and ED losses,
from s = 0 km to s = 205 km, according to Fig. 1.7(c). Later, the HVCH,
jointly with the passive heat resources, further raise the battery temperature
(from s = 205 km to s = 240 km, and from s = 435 km to s = 440 km).
Such battery temperature increase by the HVCH demonstrates the battery
pre-conditioning. As shown in Fig. 1.4(b), the charging battery power avail-
ability is high for low SoC and high battery temperature region. This leads
to a reduced charging time, but higher charging cost instead. Note that the
decreasing battery temperature from s = 240 km to s = 435 km is due to
an increased heat transfer to the ambient air, as the temperature difference
between the battery pack and ambient air is large for this distance segment.
In the intermediate and terminal charging stations, the battery is charged to
63 % and 80 % SoC levels, respectively. The propulsion power, battery dis-
charge power and its limit are shown in Fig. 1.7(e). The battery discharge
power limit has a step increase at s = 240 km, due to the steep rise in SoC
and battery temperature due to charging.

Intermediate Charging

During the intermediate charging, in addition to the SoC level increase, the
battery temperature also rises steadily, as shown in Fig. 1.8(a) and Fig. 1.8(b).
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Figure 8: Case 1; optimal trajectories associated with the vehicle’s intermediate
charging mode at s = 240 km.

The SoC level throughout the intermediate charging is always in a range with
high charging power availability. Also, HVCH stays on for about 2.5 min from
the beginning of charging, in order to further raise the battery temperature
above 20 ◦C. This allows charging with high power and for a short time period,
which is about 15 min here. Fig. 1.8(d) illustrates a 3D plot including grid
power as well as the absolute values of battery charging power and its limit
versus SoC and battery temperature values. The difference between the grid
power and battery power is due to the Joule heat losses and the HVCH power
demand for heating the battery pack.

Terminal Charging

The battery SoC and temperature during terminal charging at s = 440 km,
have similar behaviours as they had during the intermediate charging. In the
beginning of charging, initial battery SoC and temperature, respectively, are
about 15 % and 17 ◦C. HVCH stays on for about a minute from the beginning
of charging, and the battery temperature rises up to about 20 ◦C accordingly.
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Figure 9: Case 1; optimal trajectories associated with the vehicle’s terminal charg-
ing mode at s = 440 km.

Fig. 1.9(d) shows a 3D plot including grid power together with the absolute
values of battery charging power and its limit for a given combination of SoC
and battery temperature. As expected, the charging power availability drops
for high SoC values. The charging time is about 22 min.

4.4 Case 2: Time Efficient Trip without Active
Heating/Cooling

Similar to Section 4.3, the simulation results are summarized into the distance
based and time based trajectories. Here, the HVCH and HVAC are not used,
respectively for the battery heating and cooling throughout the vehicle’s entire
trip.

Optimal Trajectories versus Travelled Distance

Optimal vehicle speed profile as well as the speed limits and road topogra-
phy are depicted in Fig. 1.10(a). The battery depletion profile, shown in
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Fig. 1.10(b), follows a similar trend as the one in Case 1, since in both cases
in addition to the identical simulation parameters and the driving behaviour
are similar, i.e. vavg = 100km/h. The SoC levels at the arrival of the charging
stations at s = 240 km and s = 440 km, are respectively about 17 % and 15 %,
as depicted in Fig. 1.10(b). The battery temperature increase is simply due to
Joule heat and ED losses, according to Fig. 1.10(c), where at the arrival of the
intermediate and terminal charging stations, the battery temperature is 0 ◦C
and 5 ◦C, respectively. These battery temperature values are lower compared
to Case 1, as no active heating is applied in Case 2. In the intermediate and
terminal charging stations, the battery is charged to about 60 % and 80 % SoC
levels, respectively. The propulsion power together with the battery discharge
power and its limit are shown in Fig. 1.10(d), where the limit is generally
lower compared to the one in Case 1, due to the battery’s operation in the
lower temperature region.

Intermediate and Terminal Charging

During both intermediate and terminal charging periods, the battery tem-
perature and SoC increase monotonically, as demonstrated in Fig. 1.11(a)
and Fig. 1.11(b), and Fig. 1.12(a) and Fig. 1.12(b), respectively. Also, the
grid power together with the absolute values of battery charging power and
its limit versus battery temperature and SoC, are shown in Fig. 1.11(c) and
Fig. 1.12(c), respectively for the intermediate and terminal charging modes.
The charging power availability for Case 2 is lower compared to Case 1, which
leads to a higher charging time. According to the results reported in Table 2,
total charging time for Case 2 is 66 min, which is increased by 44 % compared
to the Case 1 with optimal battery pre-conditioning. Instead, the charging
cost is simply reduced by 2 %.

5 Discussion, Conclusion, and Future Work
In this paper, optimal TM, charging, and eco-driving problems are jointly
solved for a BEV over a long-distance trip. To do so, an optimization problem
in the form of a hybrid dynamical system is formulated, in which the objective
function includes total trip time (including driving and charging times) and
charging cost. The propose an algorithm that is capable of addressing both
cold and hot ambient operations, as in the TM system the components for
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(a) Road topography together with vehicle speed
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Figure 10: Case 2; optimal trajectories versus travelled distance in Case 2. The
step changes in battery temperature and SoC at s = 240 km and s =
440 km in (a) and (b), denote the increase in the corresponding variables
during charging mode.

both heating and cooling of the battery/cabin are incorporated. However, in
this paper we have focused on cold ambient operation, as the limited battery
power affects the optimal solution in terms of energy efficiency and charging
time. The vehicle’s drivability in terms of maximum acceleration capability is
another factor that is limited in the cold ambient operation. To enhance the
drivability, the battery can be pre-heated before the vehicle’s departure, using
the electrical grid power, as this may reduce the Joule heat losses throughout
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Figure 11: Case 2; optimal trajectories associated with the vehicle’s intermediate
charging mode at s = 240 km.

the trip and the need for pre-conditioning before fast charging. However, the
disadvantage is the leakage of thermal energy to the ambient. Furthermore,
it is often assumed in literature that the departure time is known when pre-
heating is performed before departure. This will not always be the case, as
not all car users plan far ahead. In general, pre-heating before departure may
be more beneficial only if it yields skipping the charging occasion along the
route, by less need for battery pre-conditioning and lower Joule heat losses.

The performance of the proposed algorithm is evaluated for a vehicle driving
on a route, along which two charging possibilities are considered. To study
the trade-off between trip time and charging energy cost, the Pareto frontier is
derived for different driving scenarios of the vehicle. According to the results,
trip time is reduced by 44 %, in case the optimal battery pre-conditioning is
applied to the vehicle. Low charging time, high charging power availability,
and the preservation of the vehicle’s potential range are the knock-on effects
of the battery pre-conditioning.

The proposed algorithm for eco-driving and TM of BEVs can also be ex-
tended in several ways, such as:
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Figure 12: Case 2; optimal trajectories associated with the vehicle’s intermediate
charging mode at s = 440 km.

1. A heat pump can be incorporated in the TM system to include heat-
ing/cooling the battery. In case of the battery cooling, the excess heat
from the battery can be transferred to the cabin compartment and/or
ambient air. Also, heat pumps are able to transfer the heat from ambient
air to the cabin.

2. It is possible to optimally select the charging stops, in a way to achieve
optimality in time, energy, or their trade-off.

3. An online-implementable algorithm can be developed based on the cur-
rent algorithm that is capable of reacting to potential disturbances, con-
sidering model-plant mismatches, and anticipating future events.

4. Performance of the control actions provided by the developed algorithm
can be verified, using a more detailed thermal model.
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1 Introduction

Abstract

This paper studies optimal thermal management (TM) and
charging of a battery electric vehicle (BEV) driving over long
distance trips. Here, the focus is on the potential benefits of
including a heat pump (HP) in the TM system for waste heat
recovery (WHR), and charging point planning, in a way to
achieve optimality in time, energy, or their trade-off. An opti-
mal control problem (OCP) is formulated, in which the objec-
tive function includes the energy delivered by the charger(s),
and total charging time including the actual charging time
and the detour time to and from the charging stop. To reduce
the computational complexity, the formulated problem is then
transformed into a hybrid dynamical system (HDS), where
charging dynamics are modelled in the domain of normalized
charging time. Driving dynamics can be modelled in either of
the trip time or travel distance domains, as the vehicle speed
is assumed to be known a priori, and the vehicle is only stop-
ping at charging locations. Within the HDS, a binary variable
is introduced for each charging location, in order to decide
to use or skip a charger. This problem is solved numerically,
and simulations are performed to evaluate the performance in
terms of energy efficiency and time. The simulation results
indicate that the time required for charging and total energy
consumption are reduced up to 30.6 % and 19.4 %, respectively,
by applying the proposed algorithm.

1 Introduction

R ECENTLY electric vehicles (EVs) have gained considerable attention
among researchers, manufacturer, and users, due to their advanced and

sustainable technologies for counteracting drawbacks by convectional vehicles,
for e.g. limited fuel resource, severe environmental impact, and high mainte-
nance and operating costs [1]. Accordingly, the EV market has grown rapidly
over the last few years, and several car companies have stated that they will
only produce electric vehicles in near future [2]. In particular, battery electric
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vehicles (BEVs) are identified as a promising choice for achieving the decar-
bonized light duty vehicle fleet. However, there still exist several challenges
impeding the widespread deployment of BEVs, mostly related to energy cost,
limited driving range, charging time, and thermal management. These issues
become even more important to consider when planning for long-distance
trips, i.e. exceeding the vehicle’s range [3].

Although the range can vary over a large distance window [4], still the ma-
jority of cost-effective BEV models fail to fully meet the range requirement of
long trips, highlighting the significance of reducing total energy consumption
as well as improving fast charging technology, for higher customer acceptance
of BEVs. Lately, a high-power fast charging technology has been introduced,
aiming at recharging a battery up to 80 % state of charge (SoC) within 15 min,
in order to provide more convenient long-trip experiences [5].

Apart from the charger’s rated power, the charging time is also highly influ-
enced by fast charging properties of the battery. This is mainly characterised
as the battery’s chemistry, SoC, temperature, and health state, which may
negatively affect the charging rate [6]. Thus, solutions associated with the
BEV’s fast charging are required to incorporate various aspects rather than
just focusing on increasing the maximum power provided by the charger [7],
[8].

One crucial factor that can significantly improve charging time, total energy
consumption, and passenger comfort, especially in harsh climates, is to develop
an adequate thermal management (TM) [9], [10]. Lithium-ion (Li-ion) batter-
ies, known as a widely used alternative in the market, are highly temperature
sensitive [11]. Excessive battery temperatures can cause corrosion and even
explosion by creating bubbles, bulge, sparks, and flames [12]. Furthermore,
at sub-zero Celsius temperatures, the battery performance is severely deterio-
rated due to a considerably slowed electro-chemical process within the battery
cells [13], [14]. This yields a severe reduction in the cell’s available power and
energy, thereby significantly increasing the charging time [15]. Moreover, to
minimize the total energy consumption of the vehicle, it is essential to incorpo-
rate the TM when optimising grid-to-meter energy efficiency of the BEV [16]–
[18]. In this context, several research works have been conducted, mainly by
formulating an optimal control problem (OCP) that can be solved by different
optimization tools.

Dynamic programming (DP) [19] is used in [20] for developing an algo-
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A

𝑵𝐜𝐡𝐠1 2

Figure 1: A BEV starts its trip from point A, and drives in a hilly terrain. The indices
1, 2,. . . represent the charging stations, and Nchg denotes the total number of
charging locations.

rithm for the TM of a vehicle that is unplugged from the electrical grid and
parked outside at a low ambient temperature. The goal within this study is
to find an optimal trade-off between contained energy in the battery pack,
and the cell degradation of being exposed to a cold weather. However, the
main disadvantage of the DP approach is expressed as curse of dimensionality,
which refers to exponential growth of computational time with the dimension
of the OCP. Accordingly, Pontryagin’s Maximum Principle (PMP) [21], [22],
with a potential of enhancing the computational efficiency, is applied as an
alternative strategy for maximising the expected battery life with minimum
energy consumed. Furthermore, several TM strategies have been proposed
using model predictive control (MPC) scheme for increasing the energy ef-
ficiency via optimal cooling/heating [23]–[25]. Moreover, the TM is studied
for vehicles with a given drive cycle [17], or with future speed prediction, to
be incorporated into the energy efficiency analysis [16]. In the context of the
TM of electrified vehicles, several research efforts have been carried out with
a focus on waste heat recovery (WHR), see In [26] and the references therein.
In [27], a multi-level WHR system with an improved heat transfer capacity is
developed, where the battery temperature is maintained within an appropri-
ate range. Also, a novel HP system is designed for electric buses in [28], where
the heating performance of the TM system is enhanced in cold environments.
Despite the contributions provided by developing numerous TM strategies for
vehicles, the technical literature lacks investigation on joint optimal charging
and TM over long trips, with a WHR ability and charge point planning.

As an extension to our earlier work [29], this paper addresses a BEV driving
on a road with a hilly terrain. The vehicle’s travelled distance is greater than
its range; there is thus a need for at least one charging stop along the route.
In this paper, the following goals are addressed:

E5



Paper E

• Develop an algorithm to achieve optimal charging and TM of a BEV on
long trips, capturing both driving and charging modes of the vehicle.

• Quantify the trade-off between charging time and energy efficiency.
• Investigate the benefits of including a heat pump (HP) in the TM system

for WHR.
• Plan the charging locations, in favour of obtaining optimality in time,

energy, or their trade-off.
To achieve the above-mentioned goals, an OCP is formulated for charging

and TM of a BEV. The objective of the OCP is to find the optimal com-
promise between the energy delivered by the charger(s), and total charging
time referred to as the actual charging time and the detour time to and from
the charging locations. Within the TM system, an HP is included for WHR
purposes, in addition to a high-voltage coolant heater (HVCH) for the heating
of battery/cabin, and heating, ventilation, and air conditioning (HVAC) for
the battery/cabin cooling. The driving dynamics can be described in either
of the space or trip time domains. However, charging dynamics is modelled in
terms a normalized charging time. Thus, the OCP transforms into a hybrid
dynamical system (HDS). Note that the actual charging time is treated as
a scalar variable, which is optimized simultaneously with the optimal state
and control trajectories that belong to the driving and charging modes. Also,
for each charging location a binary variable is defined to optimally plan the
charging stops, in favour of further optimising the energy efficiency and/or
trip time. Such formulation procedure turns the HDS into a mixed-integer
optimisation problem.

The rest of the paper is outlined as follows. In Section 2, electrical and ther-
mal modelling of the electric powertrain are addressed. Section 3 illustrates
the constrains on the battery and grid power values. In Section 4, the HDS is
formulated, covering the vehicle’s operation during both driving and charging
modes. In Section 5 simulation results are presented. Section 6 discuses the
obtained results. Finally, Section 7 includes conclusion of the paper and the
suggestions regarding the possible future research directions.

2 Modelling
This section addresses the vehicle driving mission and a multi-domain con-
figuration of an electric powertrain, describing connection of the powertrain
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components via electrical, thermal, and mechanical paths.

2.1 Vehicle driving mission
Consider a BEV that starts its trip from point A, and drives in a hilly terrain,
as depicted in Fig. 1. As the vehicle moves forward, the battery is depleted.
The battery temperature may be adjusted by different heating/cooling sources
within the powertrain. Along the driving route, multiple charging possibilities
are considered, as the vehicle’s trip length is greater than its range. In realistic
driving situations it is preferable to plan the charging stops, to achieve optimal
trip time and/or charging cost.

In this paper, we assume the vehicle speed to be known a priori, in which
the vehicle stops only during charging (and not during driving). This allows
to identically formulate the driving dynamics, in either of space or trip time
domains, without adding any complexity to the algorithm developed later in
Section 4. Here, we freely choose the spatial domain to associate the system
trajectories with space-defined events, such as speed limits and charging lo-
cations. Thus, the vehicle’s driving time, t, is calculated by integrating the
vehicle speed, as

t(s) =
∫ s

0

dx

v(x) , (E.1)

where s and v denote travelled distance and the vehicle speed, respectively.
The formulation of charging dynamics is postponed to Section 4.

2.2 Multi-domain Powertrain Configuration
Schematic diagram of the studied electric powertrain is demonstrated in Fig. 2.
The powertrain includes propulsion components, i.e. a battery for energy sup-
ply/storage, an electric machine (EM), and a transmission system. In addition
to the propulsion components, the powertrain is equipped with an on board
charger (OBC), as a device to regulate the electricity flow from the electri-
cal grid to the battery, monitor charge rate, and protect the battery from
over-current charging. Furthermore, the electric powertrain includes a ther-
mal management system, comprising HVAC, HVCH, and HP. The HVAC and
HVCH are mainly used, respectively for cooling and heating of the battery
pack and cabin compartment. Also, an HP is generally employed for trans-
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ferring heat from heat source at low temperature, i.e. the battery, to heat
sink at higher temperature, for e.g. the cabin compartment and/or ambient
air. To achieve this, work is required, as heat cannot spontaneously flow from
a colder place to a warmer location, according to the second law of thermo-
dynamics [30]. As depicted in Fig. 2, the operating principle of HPs can be
summarized into a refrigeration cycle, which consists of five major compo-
nents: evaporator, compressor, condenser, expansion valve, and a refrigerant.
Thus, the evaporator absorbs heat from the battery pack and turns the re-
frigerant from liquid mode into a low-pressure gas that is delivered to the
compressor. Then the compressor pressurises the gas and dispatches it to the
condenser. Later, the condenser cools down the hot gas, turns it into a liquid,
and expels the extracted heat from the refrigerant to the cabin compartment
and/or ambient air. Finally, the high-pressure liquid refrigerant departed from
the condenser becomes a low-pressure liquid by passing through the expansion
valve; and the cycle starts over again. The merit of an HP is specified by a
parameter called the coefficient of performance (CoP), defined as a ratio of
useful heating provided (for the cabin compartment) to the net work required,
as

cop(Tb(s), Php(s)) =
Qb

hp(Tb(s)) + Php(s)
Php(s) , (E.2)

where Tb is the battery pack’s temperature, Php is the rate of the net work
put into the cycle, and Qb

hp is rate of the heat removed from the battery pack
and electric drivetrain (ED). Hereafter, Php is called HP power. The three
domains of the powertrain configuration are elaborated in Sections 2.2-2.2.

Electrical Domain

Depending on the EM’s operating mode, i.e. generating or motoring, the
electric power flow through the electrical path is bidirectional, as shown in
Fig. 2. Accordingly, electrical energy is charged to the battery during the
generating mode, or supplied to the EM during the motoring mode. The
battery is modelled using an equivalent circuit, which includes a voltage source
Uoc, known as open-circuit voltage, and an internal resistance Rb. The open-
circuit voltage is usually proportional to the battery SoC. Also, as the battery
temperature is raised, the ions inside the battery cells get more energized,
which results in a reduced resistance against the ions’ displacement. Thus, the
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Figure 2: Schematic diagram of the studied electric powertrain, which consists of propul-
sion components, i.e. a battery, an EM, and a transmission system, on board
charger, and a thermal management system. The thermal management system
consists of HVCH, HVAC, and a heat pump, which are used for actively ad-
justing the battery pack and cabin compartment temperatures.

internal resistance is commonly a nonlinear monotonically decreasing function
of the battery temperature [23]. Note that the slight mismatch between the
internal resistance while charging and discharging is overlooked in this paper.
The battery SoC dynamics is calculated by

soc′(s) = − Pb(s)
CbUoc(soc(s))v(s) , (E.3)

where Pb is battery power, including internal resistive losses, and Cb is max-
imum capacity of the battery pack. Pb is negative while charging, and is
positive when discharging. Note that throughout this paper, x′ represents the
space derivative of an arbitrary variable x, i.e. x′ = dx/ds.
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(b) Battery charge power limit.

Figure 3: Normalised absolute value of discharge and charge power bounds versus
battery temperature and SoC for the studied battery in this paper.

Thermal Domain

According to the fundamental thermodynamic principle [30], the changing rate
of the battery pack’s temperature Tb is modelled using a lumped-parameter
thermal model, as

T ′
b(s) = 1

cpmbv(s)
(
Qpass(·) + Qact(·) + Qexh(·)

)
, (E.4)

where cp and mb are the battery pack’s specific heat capacity and total mass,
respectively, Qpass is the rate of induced heat by passive heat sources affecting
the battery temperature, Qact is the active heat rate from or removed by
components, e.g. HVAC, HVCH, and HP, that can actively affect the battery
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pack temperature, Qexh is rate of the heat exchanged among the battery
pack, ambient air and/or the chassis of the vehicle, and the symbol · is a
compact notation used for expressing multiple variables of a function. Note
that the nonuniform distribution of the battery pack temperature due to the
heat diffusion is neglected in this paper, which reduces the complexity of the
thermal model. Accordingly, crust and core battery pack temperatures are
assumed to be identical.

The passive heat generation rate

Qpass(soc(s), Tb(s), v(s), at(s)) =

Rb(Tb(s)) P 2
b (s)

U2
oc(soc(s)) + Qed(v(s), at(s)),

(E.5)

includes: 1) the produced heat due to the battery internal resistive losses,
referred to as irreversible ohmic Joule heat; and 2) the heat produced by the
ED power losses, Qed, which is dependent on the vehicle speed and traction
acceleration at.

The active heat generation rate

Qact(P b
hvch(s), P b

hvac(s), Php(s)) = ηhvchP b
hvch(s)

− ηhvacP b
hvac(s)−Qhp(s).

(E.6)

includes: 1) HVCH power conversion for heating the battery pack, P b
hvch, with

efficiency of ηhvch, HVAC power conversion for cooling the battery pack, P b
hvac,

with efficiency of ηhvac, and rate of the heat removed from the battery pack
by HP.

The convective heat exchange rate between the battery pack and ambient air
depends on the ambient temperature Tamb, battery temperature, and vehicle
speed, as

Qexh(Tamb(s), Tb(s), v(s)) = γ(v(s))(Tamb(s)− Tb(s)), (E.7)

where γ > 0 is a speed dependent coefficient of heat exchange.

Mechanical Domain

Similar to the electrical path, the mechanical path is also bidirectional, as de-
picted in Fig. 2. The EM when operated in motoring mode, provides propul-
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sion power, which is delivered to the wheels through the mechanical path via
the transmission system. Thus, the EM rotational speed and output torque
are translated by the transmission system into vehicle speed and traction ac-
celeration, respectively. Furthermore, the EM when operated in generating
mode, transforms the vehicle’s kinetic energy at the wheels via the mechanical
path into electrical energy to be stored in the battery.

3 Bounds on Battery and Grid Power Values

The bounds on available battery power during discharging and charging are
formulated as functions of battery temperature and SoC as

Pb(s) ∈

[P min
b,chg(soc(s), Tb(s)), P max

b,dchg(soc(s), Tb(s))], s ∈ Sdrv

[ζiP
min
b,chg(soc(s), Tb(s)), 0], s ∈ Si

chg
(E.8)

where P max
b,dchg > 0 and P min

b,chg < 0 are the bounds on the battery discharge and
charge power, respectively, i ∈ I = {1, 2, . . . , Nchg} is charger index, Nchg is
total number of charging locations along the driving route, and Sdrv and Schg
represent sets of driving and charging distance instances, respectively. Also,
ζ ∈ Z = {0, 1} is a binary variable defined for each charging location, in order
to decide whether to skip the charger, i.e. ζ = 0, or use it, i.e. ζ = 1. Note that
P min

b,chg may differ in driving and charging modes, whereas it is here assumed
that the same bound is imposed for simplicity, and without loss of generality.
The negative power limit during driving is due to regenerative braking, within
which the kinetic energy at the wheels is transformed into electrical energy to
be stored in the battery. As demonstrated in Fig. 1.3(a), the studied battery
discharge power limit is proportional to both the battery temperature and
SoC level. However, the battery charge power limit is proportional to the
battery temperature and inverse of SoC level, as depicted in Fig. 1.3(b).

For i ∈ I and ζ ∈ Z, the bound on the ith charger’s provided power is given
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by

P i
grid(s) ∈

{0}, s ∈ Sdrv,

[0, ζiP
i,max
grid ], s ∈ Si

chg

(E.9)

where P i,max
grid is rated power of the ith charger. Although it is assumed that

the vehicle power demand is not supplied by the grid power during the driving
mode, it is possible to do so on a road with charging lanes installed [31], by
directly applying a method developed earlier in [29] in combination with the
method provided later in Section 4.

Considering the battery and grid power limits (E.8) and (E.9), the power
balance equation can be written as

P i
grid(s) + Pb(s) = R(Tb(s)) P 2

b (s)
U2

oc(soc(s)) + Pprop(v(s), at(s))

+ P b
hvch(s) + P b

hvac(s) + P c
hvch(Tamb(s)) + Php(s) + Paux(s),

(E.10)

where Pprop is propulsion power including the internal powertrain losses, P c
hvch

is the HVCH power consumed for heating the cabin compartment, and Paux
is auxiliary power demand used for lights, infotainment, etc.

System state variables and control inputs can be stacked into state and
control vectors, respectively x and u, as

x(s) =
[
soc(s)
Tb(s)

]
, u(s) =


P b

hvch(s)

P b
hvac(s)

P hp
b (s)

Pgrid(s)

 . (E.11)

Thus, according to (E.3) and (E.4), the governing dynamics describing the
battery SoC and temperature variations in the spatial domain can be summa-
rized as

dx(s)
ds

= 1
v(s)h(x(s), u(s), s), (E.12)

with h defined as a vector function.
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4 Problem Statement

Despite the vehicle’s fixed position at the charging stop, there will still be dy-
namical variations in the battery temperature and SoC while charging. Thus,
to find the optimal trade-off between time and energy cost during both the
driving and charging modes, it is not possible to formulate a single optimi-
sation problem, within which decisions are always made with respect to s.
Subsequently, we propose modelling of the charging dynamics in a tempo-
ral domain, where decisions are planned along a normalized charging time,
τ i ∈ [0, 1], defined, as

τ i = t

ti
chg

, t ∈ T i
chg, i ∈ I, (E.13)

where t is trip time, and T i
chg and ti

chg denote respectively a set of charging
time instants and charging time, at the ith charging station. Thus, with
choosing a distinct independent variable describing each mode, i.e. s for the
driving mode and τ i for the charging modes, as well as considering the binary
variable ζ, a mixed-integer HDS can be formulated. A demonstration of the
HDS including the driving and charging modes as well as transition between
the modes is shown in Fig. 4, where by repeating such combination, it is
possible to incorporate multiple charging locations within the system.

Following (E.13) and the derivative chain rule, the relation between the
space derivative and the derivative with respect to τ i ∈ [0, 1], i ∈ I is given
by

dx
ds

= dx
dτ

1
tchgv(s) , (E.14)

where 1
tchgv(s) = dτ

dt
dt
ds . Hereafter, the variables notated with subscripts/superscripts

‘drv’ or ‘chg’, correspond to the previously introduced variables that now be-
long specifically to the driving mode or charging mode, respectively. Note that
the charging cost can be defined as the cost of electrical energy provided by
the charger and/or the time spent for occupying the charging spot, depending
on the pricing policy of a charger.
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driving mode

with respect to 𝑠
charging mode 

with respect to 𝜏

altitude

𝑠

A

𝜏

transition between 
the modes

s = 𝑠chg
𝑖 , 𝜏𝑖 = 0

𝑠 = 𝑠chg
𝑖 , 𝜏𝑖 = 1

𝒊

Figure 4: Hybrid dynamical system demonstration including driving mode, charging
mode and transition between these two modes. During the driving and charg-
ing modes decisions are planned with respect to s and τ i, i ∈ I, respectively.

4.1 Objective Function

The objective function of the optimisation problem is defined as

J(·) =
Nchg∑
i=1

(∫ 1

0
ci

eP i
grid(τ i)dτ i + ct,chgti

chg

+ ci
occ max

(
0, ti

chg − ti
occ
)

+ cζζi

)
,

(E.15)

where J includes

• A charger’s supplied electrical energy to the vehicle, where ce denotes
currency per-kilowatt-hour cost of the charged energy.

• A penalty on charging time with ct,chg as the penalty coefficient.
• A cost of occupying the charger for longer time than tocc ≥ 0, where cocc

is currency per-minute cost, and a scalar variable tchg represents the
charging time. Note that with non-zero value of cT, the charging time
is penalized twice, due to an occupied charger and/or a longer charging
time.

• Detour cost by penalising the number of the charging occasions, where
cζ is the penalty factor.
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4.2 Mixed-integer Hybrid Dynamical System Formulation

Using (E.12) and (E.14), the mixed-integer HDS formulation for i ∈ I, τ i ∈
[0, 1], and ζ ∈ Z can now be summarized as

min
udrv(s),ui

chg(τ i),ti
chg,ζi

J(·) (E.16a)

subject to:
dxdrv(s)

ds
= 1

v(s)h(xdrv(s), udrv(s), s), s ∈ Sdrv (E.16b)

dxi
chg(τ i)
dτ i

= ti
chgh(xi

chg(τ i), ui
chg(τ i), τ i), s ∈ si

chg (E.16c)

gdrv(xdrv(s), udrv(s), s) ≤ 0, s ∈ Sdrv (E.16d)
gchg(xi

chg(τ i), ui
chg(τ i), τ i) ≤ 0, s ∈ si

chg (E.16e)
xdrv(s) ∈ Xdrv(s), udrv(s) ∈ Udrv(s), s ∈ Sdrv (E.16f)
xi

chg(τ i) ∈ X i
chg(τ i), ui

chg(τ i) ∈ U i
chg(τ i), s ∈ si

chg (E.16g)
ti
chg ∈ [0, tmax

chg ] (E.16h)
xi

chg(0) = xdrv(si
chg)− ζixdetour (E.16i)

xdrv(si+

chg) = xi
chg(1)− ζixdetour (E.16j)

xdrv(s0) ∈ Xdrv0, xdrv(sf) ∈ Xdrvf (E.16k)

where ti
chg and ζi are considered as design parameters, s0 and sf denote initial

and final vehicle position, respectively, tmax
chg is maximum allowed charging

time, gdrv and gchg represent the battery power limits (E.8) during driving
and charging modes, respectively, and si+

chg is an instance denoting the vehicle’s
position when charging is done and the vehicle is leaving the charging station.
Also, Xdrv and Udrv are the feasible sets of states and control inputs for the
driving mode, and Xchg and Uchg are the corresponding feasible sets for the
charging mode. Furthermore, Xdrv0 and Xdrvf denote allowed initial and target
states, respectively. Moreover, xdetour corresponds to the change in battery
temperature and SoC during the detour periods. The constraints (E.16i) and
(E.16j) represent the transition between the modes. Accordingly, the battery
temperature and SoC in the beginning of charging event must be equal to
the corresponding variables at the arrival of charging station. Similarly, the
battery temperature and SoC when the vehicle resumes its drive after charging
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Figure 5: Vehicle drive cycle including the vehicle speed and propulsion power trajecto-
ries. Dashed vertical lines indicate available charging locations.

must be equal to the corresponding variables at the end of the charging event.
The problem (E.16) is a mixed-integer nonlinear program (MINLP), due to the
binary variable ζ and nonlinear relations in the constraints and cost function.

5 Results
In this section, simulation results are provided for the BEV demonstrated
in Fig. 1. Within the simulations, we investigate the benefits of including a
heat pump in the TM system. Also, we concern the charge point planning,
in favour of achieving an optimal compromise between time and energy cost.
The simulation setup and the results are given in Section 5.1 and Sections 5.2
to 5.5, respectively.

5.1 Simulation Setup
As depicted in Fig. 5, the simulations are conducted on a 400 km long drive
cycle, which is based on real-world measurements. Three available charging
locations along the driving route are marked by dashed vertical lines. The used
charging stops are indicated with a solid vertical line hereafter. The vehicle
starts its drive with a battery soaked in the ambient temperature, i.e. Tb0 =
Tamb. Also, cabin climate and auxiliary load demand are supplied during
both the driving and charging modes. Furthermore, the cost for occupying
the charging spot is assumed to be zero, i.e. cT = 0. The results shown in the
remainder of the paper use those vehicle and simulation parameters reported
in Table 1, unless stated otherwise.

The MINLP (E.16) is discretised with a distance sampling interval of 4 km,
using the Runge-Kutta 4th order method [32]. The discretised problem is

E17



Paper E

Table 1: Vehicle and Simulation Parameters
Maximum battery capacity Cb = 195 Ah
Product of specific heat and battery mass cpmb = 375 kJ/(K)
Route length 400 km
Distance sampling interval 4 km
Number of charging along the route Nchg = 3
Detour time for each charging stop td = 300 s
Detour energy for each charging stop Ed = 450 Wh
Electrical energy cost while charging ce = 8.7 SEK/kWh
Charger rated power P max

grid = 200 kW
Auxiliary load Paux = 0.5 kW
Maximum HVCH power P max

hvch = 7 kW
Maximum HVAC power P max

hvac = 3 kW
Maximum HP power P max

hp = {0, 1, 3}kW
HVCH power to heat rate efficiency ηhvch = 87 %
Ambient temperature Tamb = {−10, 0, 10}◦C
Initial battery temperature Tb0 = Tamb
Initial battery state of charge soc0 = 90 %
Terminal battery state of charge socf = 10 %

solved with the solver BONMIN, using the open source nonlinear optimisation
tool CasADi [33] in Matlab.

5.2 Time vs. Energy Efficiency

For different HP power limits and ambient temperatures, the Pareto fron-
tiers are derived describing the trade-off between total charged energy versus
combined charging and detour time, as depicted in Fig. 6. The HP is ei-
ther disabled, or activated with maximum power of 1 kW or 3 kW, hereafter
referred to as smaller HP or larger HP, respectively. To obtain the Pareto
graphs, the time cost ct,chg is varied over a large span to obtain solutions that
vary respectively from energy optimal to time optimal.
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Figure 6: Pareto frontier describing the trade-off between total charging energy
versus time including charging and detour times for various ambient tem-
peratures and heat pump power limits.
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Table 2: Energy reduced solution at different ambient temperatures
-10 ◦C ambient temperature

Variable HP disabled smaller HP larger HP
Energy (at 28 min) [kWh] 38.4 34.1 32.7

Reduction [%] - 11.1 14.9
0 ◦C ambient temperature

Variable HP disabled smaller HP larger HP
Energy (at 22 min) [kWh] 31.3 25.2 25.2

Reduction [%] - 19.4 19.4
10 ◦C ambient temperature

Variable HP disabled smaller HP larger HP
Energy (at 16 min) [kWh] 28.0 22.3 22.3

Reduction [%] - 18.4 18.4

5.3 Energy Optimal Trip
From the Pareto frontiers shown in Fig. 1.6(a)-Fig. 1.6(c), it is observable
that activating HP generally leads to a reduced energy consumption. For
instance, at −10 ◦C ambient temperature and 28 min of combined charging
and detour time, the charger(s) delivered energy is decreased by 11 % for the
1 kW limited HP and 15 % for the larger HP, compared to the similar scenario
but with the HP disabled. Such energy reduction is due to the HP being used
to move the heat from the battery loop into the cabin compartment, thus
reducing the need for the HVCH to be used for cabin heating. The detailed
results of charged energy together with the energy reduction percentage for
different ambient temperatures and HP power limits are given in Table 2.
Furthermore, at a given ambient temperature, the number of charging stops
may change for different HP maximum power values. Also, it is observed
that a more powerful HP is more beneficial compared to the smaller HP, at
low ambient temperatures. However, at high ambient temperature there is no
noticeable advantage of using the larger HP rather than the smaller HP. This
will be discussed in more details later in Section 5.5.

According to Fig. 1.6(a), we look more closely at the energy optimal cases
at −10 ◦C ambient temperature, as:

• Case A: energy optimal solution with HP disabled
• Case B: energy optimal solution with 1 kW HP power limit
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• Case C: energy optimal solution with 3 kW HP power limit

Case A

States and control inputs trajectories versus travelled distance and charging
time are depicted in Fig. 7, where the power is normalised with the maximum
HVCH power. In this case, it is optimal to select two charging occasions
(i = 2, 3) along the trip. The battery temperature increases significantly
over the course of the trip and levels out between 25 ◦C and 30 ◦C at the
destination, whereas no active battery heating is done with the HVCH. Such
battery temperature increase is only due to the passively generated heat, which
is mainly kept within the battery pack, and not pumped to the cabin by HP.
Active cooling by HVAC is not used in this case, since the battery is kept below
the maximum allowed temperature of 40 ◦C, by just exchanging the heat to
the ambient air. The battery discharge power limit is kept at reasonable levels,
as shown in Fig. 1.7(b), which is due to the overall high battery temperature
throughout the trip.

Case B

States and control inputs trajectories versus travelled distance and charging
time are shown in Fig. 8. The solution for Case B also involves charging twice
(i = 2, 3). This implies that the cost associated with the detour of stopping
twice is less than the cost of stopping once at charger i = 2. Performing only
a single charging stop would in this case mean charging in a high SoC region
with reduced charging speed at the second charging location. This leads to a
longer charging time and more energy spent on maintaining cabin climate and
supplying auxiliary load. The HP is switched off right before each charging
stop and stays off during a portion of the charging period, as demonstrated
in Fig. 1.8(c), Fig. 1.8(f), and Fig. 1.8(i). This means that the Joule and ED
losses are prioritised for battery heating right before and in the beginning of
the charging periods. The HVCH is not used at all for battery heating in this
case in order to minimise unnecessary heat losses to the ambient environment.

Case C

Fig. 9 demonstrates states and control inputs trajectories versus travelled
distance and charging time. Changing the HP maximum power from 1 kW
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Table 3: Time optimal solution at different ambient temperatures
-10 ◦C ambient temperature

Variable HP disabled smaller HP larger HP
Time [min] 25.9 24.2 23.5

Reduction [%] - 6.5 9.2
0 ◦C ambient temperature

Variable HP disabled smaller HP larger HP
Time [min] 22.3 15.5 15.5

Reduction [%] - 30.6 30.6
10 ◦C ambient temperature

Variable HP disabled smaller HP larger HP
Time [min] 15.8 14.2 14.2

Reduction [%] - 10.1 10.1

to 3 kW can considerably influence the energy optimal solution. Accordingly,
only one charging stop is performed during the whole trip. Also, HVCH is
used for battery heating before the charging stop and several minutes at the
beginning of the charging period. As only the HP is used for cabin heating
after the charging stop, the battery temperature is kept low and even drops
below 0 ◦C when approaching the destination. This combined with low SoC
from the last 50 km of the trip, results in a limited discharge power availability,
which is a challenge for more aggressive driven cycles.

5.4 Time Optimal Trip
Looking more closely at the time optimal solutions for different ambient tem-
peratures illustrated in Fig. 1.6(a)-Fig. 1.6(c), reveals that the HP allows for
shorter combined charging and detour time, compared to the case with HP
disabled. For instance, the observed time reduction at −10 °C ambient tem-
perature is 6.5 % and 9.2 % for the smaller and larger HP cases, respectively.
Such time reduction is primarily due to a more efficient cabin heating during
driving, leading to an improved grid-to-wheel efficiency; and thus reducing
the amount of energy required to be supplied at a given charging stop. Fur-
thermore, it may be infeasible to finish the trip with just one charging stop
with the HP disabled. However, the number of charging stops can generally
be reduced by having HP activated, which yields a lower total detour time.
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Figure 9: Case C: Energy optimal case with 3 kW heat pump power limit.

The detailed results about combined charging and detour time for different
ambient temperatures and HP power limits are reported in Table 3. In the
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following Section 5.3, the results of Case E, i.e. time optimal solution with
1 kW HP power limit at −10 ◦C ambient temperature, are demonstrated.

Case E

States and control inputs trajectories versus travelled distance and charging
time are shown in Fig. 1.10(a)-Fig. 1.10(j). Similar to the energy optimal Case
B, two charging stops are also performed in the time optimal Case E. However,
in contrast to the energy optimal case, the battery is pre-heated before the
charging stops, to the point with optimal temperature, i.e. ≈ 25 ◦C, for fast
charging. During charging, the use of HVCH at full power for battery heating
and only HP for cabin heating at the same time is an effort to maximise the
amount of heat possible to be within the battery pack. This implies that,
the HP frees up the HVCH for maximum battery heating, while maintaining
cabin heating demand.

5.5 Charged Energy vs. Ambient Temperature
Fig. 1.11(a) illustrates the charger(s) delivered energy versus ambient temper-
ature values for different HP maximum power limits, and with the time cost
fixed at 40 SEK/h, which corresponds to point D in Fig. 1.6(a). In Fig. 1.11(a),
number of charging stops for a given HP power limit and ambient tempera-
ture is also given. Accordingly, at high ambient temperatures between 7 ◦C
and 21 ◦C, both the HP enabled and disabled cases are able to complete the
trip with one late charging stop, i.e. (i = 3). However, the HP enabled cases
demand between 6 % to 18 % less energy from the charger compared to the
HP disabled case, as depicted in Fig. 1.11(b). At 6 ◦C, two charging stops
are needed for the HP disabled case to complete the trip. Thus, a jump in
energy reduction of about 19.5 % for the HP enabled cases is observed, which
is due to the increased detour energy and time associated with stopping twice
(i = 2, 3). As the ambient temperature is reduced further, the energy differ-
ence between the smaller and larger HP cases is more noticeable. This is due
to a combination of high cabin heating demand and reduced CoP at low bat-
tery temperatures, resulting in the need for more than 1 kW of HP compressor
power to maintain the cabin climate. Thus, the more limited power case has
to supplement cabin heating with the HVCH, while the other case is able to
supplement less or not at all by the HVCH. Once the ambient temperature is
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Figure 11: Comparison of energy delivered by charger(s) over ambient tempera-
ture.

dropped to −5 ◦C and −6 ◦C, the smaller and larger HP cases, respectively,
start switching to perform one early stop at the second charge location (i = 2).
When this switch occurs, the energy reduction percentage drops, even though
the detour time or detour energy has not changed. This is due to the low
charging power in the high SoC region, which leads to a longer charging time;
and accordingly an increased energy demand by the auxiliary and TM system
components. With the temperature reduced to −11 ◦C, the smaller HP case
starts to perform two charging stops, the same way as the HP disabled case.
Such switch occurs for the 3 kW limit case at −15 ◦C.

6 Discussion
Here the benefits of including HP in the TM system and optimally planning
the charging points are discussed.

6.1 Improved Energy Efficiency and Trip Time by a Heat
Pump

According to the results given in Section 5, the reduction in terms of both en-
ergy consumption as well as combined charging and detour time is significant,
when an HP is considered in the TM system of BEVs for waste heat recovery.
Although the improvement varies noticeably with ambient temperature, as
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7 Conclusion and Future Work

long as there is a heating demand for the cabin compartment, the case with
an HP activated has better performance compared to the one without. This
is true even when the HP compressor power is limited, especially in milder
climates.

Using an HP in the TM system may be less advantageous in cases where the
waste heat available within the battery pack is limited, or there are constraints
on discharge power capability of the battery at low SoC and temperature
regions.

6.2 Effects of Charge Point Optimisation
Optimal charge point planning allows for a holistic solution of a long trip in
a BEV in terms of energy consumption and total trip time. At warmer am-
bient temperatures, i.e. Tamb ≥ 0 ◦C, minimum possible number of charging
stops is favourable, regardless of priorities in terms of time or energy, sug-
gested by Fig. 1.6(b) and Fig. 1.6(c). On the other hand, at colder ambient
temperatures, e.g. Tamb = −10 ◦C, two charging stops are identified to be
energy and/or time optimal for HP disabled and smaller HP, as shown in
Fig. 1.6(a). This implies that the increased consumption due to higher de-
mand for cabin heating outweighs the energy and time cost associated with
stopping frequently. Thus, there is a merit to the strategy of initially driving
as far as possible to a stop, in which charging is performed enough to make it
to the next charging station. However, as demonstrated by the trade-off be-
tween the two extremes, energy and time optimal, with the 1 kW limit, there
are cases where that strategy is not the optimal solution. For e.g. in Case D
only one charging stop is performed, where the optimal strategy suggests to
minimise the detour energy and time by reducing the number of stops.

7 Conclusion and Future Work
In this paper, a mixed-integer nonlinear optimisation problem is formulated
for optimal thermal management and charging of a BEV, in order to cap-
ture its long trip including both driving and charging. Within this problem,
Pareto frontiers describing the trade-off between energy efficiency and time
are derived versus different features, e.g. a heat pump, charging stops, and
ambient temperature. Such graphs provide wide range of choices for car man-
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ufacturers as well as grid service providers to gain more insight into design and
development of TM and charging systems. Furthermore, various car users can
customise their trip according to the information given within these graphs.
According to the obtained results, energy consumption and the time needed
for charging are reduced by up to 19.4 % and 30.6 %, respectively, by includ-
ing an HP in the TM system. By including optimal charge point planning in
the form of binary decision variables, the solution depends on factors such as
the priority between time and energy, the availability of an HP, and ambient
temperature.

The current study can readily be extended by the inclusion of speed optimi-
sation in favour of an energy efficient driving, so called eco-driving, where the
vehicle’s longitudinal dynamics is required to be incorporated in the problem
formulation, in addition to the dynamics on battery temperature and SoC.
Note that similar analysis has been conducted in [29], but without charge
point planning and without an HP. Thus, a nonuniform sampling could be
introduced, or speed could be optimized in a separate level. With such exten-
sion in the developed algorithm, the solution would represent a more complete
route optimisation, aiming at enhancing energy and/or time efficiency. For
instance, the short charging periods at the second location in Case B and Case
E may be avoided if the vehicle eco-drives, leading to a direct reduction in
time and energy.

In order to implement the proposed algorithm online in a vehicle, it is crucial
to reduce the computational burden. To do so, the knowledge gained by the
current results is highly beneficial. For instance, in case of active battery
pre-heating, the solution always involves running the HVCH at maximum
power for some period right before the charging stop and at the beginning of
the charging interval. According to such knowledge, one effort may be to re-
formulate the problem to control the average power or energy used for battery
heating instead. This may allow for significant reduction in discretised samples
to imitate the non-simplified system behaviour, with a small or non-existent
loss in optimality.
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