
Towards data-driven additive manufacturing processes

Downloaded from: https://research.chalmers.se, 2024-03-20 10:00 UTC

Citation for the original published paper (version of record):
Gulisano, V., Papatriantafilou, M., Chen, Z. et al (2022). Towards data-driven additive manufacturing
processes. Middleware 2022 Industrial Track - Proceedings of the 23rd International Middleware
Conference Industrial Track, Part of Middleware 2022: 43-49.
http://dx.doi.org/10.1145/3564695.3564778

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

Towards Data-Driven Additive Manufacturing Processes
Vincenzo Gulisano, Marina Papatriantafilou

Chalmers University of Technology
{vincenzo.gulisano,ptrianta}@chalmers.se

Zhuoer Chen, Eduard Hryha, Lars Nyborg
Centre for Additive Manufacture-Metal (CAM2)

Chalmers University of Technology
{zhuoer.chen,hryha,lars.nyborg}@chalmers.se

ABSTRACT
Additive Manufacturing (AM), or 3D printing, is a potential game-
changer in medical and aerospatial sectors, among others. AM
enables rapid prototyping (allowing development/manufacturing
of advanced components in a matter of days), weight reduction,
mass customization, and on-demand manufacturing to reduce in-
ventory costs. At present, though, AM has been showcased in many
pilot studies but has not reached broad industrial application. On-
line monitoring and data-driven decision-making are needed to go
beyond existing offline and manual approaches.

We aim at advancing the state-of-the-art by introducing the
STRATA framework. While providing APIs tailored to AM printing
processes, STRATA leverages common processing paradigms such
as stream processing and key-value stores, enabling both scalable
analysis and portability. As we show with a real-world use case,
STRATA can support online analysis with sub-second latency for
custom data pipelines monitoring several processes in parallel.

CCS CONCEPTS
• Applied computing → Computer-aided manufacturing; • Com-
puting methodologies → Machine learning approaches; • Infor-
mation systems → Online analytical processing engines.

KEYWORDS
Additive Manufacturing, Powder Bed Fusion - Laser Beam, Stream
Processing, Big Data

ACM Reference Format:
Vincenzo Gulisano, Marina Papatriantafilou and Zhuoer Chen, Eduard
Hryha, Lars Nyborg. 2022. Towards Data-Driven Additive Manufactur-
ing Processes. In 23rd International Middleware Conference (Middleware ’22
Industrial Track), November 7–11, 2022, Quebec, QC, Canada. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3564695.3564778

1 INTRODUCTION
Additive Manufacturing (AM), or 3D printing, refers to a large
family of technologies that can revolutionize industrial processes
like the biomedical and aerospace ones. Among other benefits, AM
offers rapid prototyping (to study/create new objects in a few days),
weight reduction, mass-customization of part geometry, and on-
demand manufacturing to reduce inventory cost [5, 26].

Middleware 2022, November 7 – 11, 2022, Québec City, Québec, Canada
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9917-3/22/11.
https://doi.org/10.1145/3564695.3564778

A particular type of AM technology, focus of this work, is Powder
Bed Fusion - Laser Beam (PBF-LB). PBF-LB creates complex-shaped
parts from metal powders (e.g., titanium, nickel, and aluminum
alloys) with mechanical properties that are comparable to wrought
counterparts. A PBF-LB machine fuses consecutive thin layers of
powder particles spread on a flat build platform. Each layer is melted
by the laser beam according to the 2D slices of a 3D object. The
typical thickness of a powder layer is 20-100 µm, and the laser beam
is typically 100 µm in diameter, allowing to manufacture highly
intricate features not achievable through e.g., casting.

As PBF-LB matures into industrialization, there are increasing
demands on the quality assurance of PBF-LB-produced parts. Qual-
ity assurance challenges stem from the various sources of variations
that can cause quality issues [4]. The state-of-art quality control of
PBF-LB products relies on historical data (e.g., porosity levels, me-
chanical properties, fatigue strength) collected through experiments
for a certain combination of process parameters, material, powder
batch, and machine. Such practices are expensive and often not
sufficient for ensuring quality, because of process/product-specific
factors such as the state of the feedstock powder, the maintenance
of the machine and the part’s location in the build chamber [4, 10].

Online sensing devices that measure the process signatures
during the build with high spatial and temporal resolutions have
been developed over the years to provide traceability of individual
parts [7]. The large volume of fine-grain data (up to hundreds of
GBs per build) is at disposal of AM system experts (or experts, in
short) for the identification of quality issues and further optimiza-
tion of the process. However, to make proper use of such sensing
devices on an industrial scale, a data-driven approach is needed to
automate the analysis and store relevant data for future references
of the products, eventually enabling feedback loop control. Most of
the analysis is still manual, batch-based, and run upon completion
of a printing process, with experts deciding if a printed piece is to
be kept and how to adjust future printing processes based on their
expertise and the newly acquired data. Ideally, truly data-driven
quality assurance should allow to:

(1) Make timely decisions so that a printing process showing signs
of defects is re-configured or terminated as soon as possible,
saving energy, material, time, and thus being more sustainable.

(2) Monitor a process by integrating/fusing information from the
current process as well as past ones.

(3) Offer experts with complex analysis semantics that scale.

We show that data pipelines that rely on the stream process-
ing paradigm, combined with a key-value store, can address these
challenges. Towards the definition of a general framework, we in-
troduce the STRATA prototype and, with a real-world use case,
show it can support online analysis with sub-second latency for
custom data pipelines monitoring several processes in parallel.

43

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3564695.3564778
https://doi.org/10.1145/3564695.3564778
https://creativecommons.org/licenses/by/4.0/

Middleware 2022, November 7 – 11, 2022, Québec City, Québec, Canada Vincenzo Gulisano, Marina Papatriantafilou and Zhuoer Chen, Eduard Hryha, Lars Nyborg

Organization: § 2 introduces preliminaries about the stream pro-
cessing paradigm, § 3 covers our problem formulation, § 4 overviews
STRATA and its API, § 5 presents our use-case and subsequent eval-
uation (intended both to exemplify how STRATA can support the
applications, as well as to provide a first assessment of its perfor-
mance), § 6 discusses related work, and § 7 concludes the paper.

2 PRELIMINARIES (STREAM PROCESSING)
Stream processing continuous queries (or simply queries) are Di-
rectedAcyclic Graphs of operators that transform unbounded streams
of tuples (see § 5 for a sample query). Tuples have two attributes: the
metadata carries the timestamp 𝜏 and other sub-attributes, while
the payload carries key-value sub-attributes. The timestamp 𝑡 .𝜏 is
the event time set by the source/operator upon creation of tuple 𝑡 .
A tuple’s combined notation is ⟨𝜏, . . . , [𝑘1:𝑣1, 𝑘2:𝑣2, . . .]⟩.

Queries are run by Stream Processing Engines (SPEs). When a
query is deployed, Sources forward data to it while Sinks deliver its
results to users. Acknowledging that SPEs let users define custom
operators, they usually provide a common set of native operators,
including both stateless operators – which process tuples one by
one – and stateful operators – whose outputs depend on multiple
input tuples. Common stateless native operators [1, 3, 12] are:
• Map: which produces an arbitrary number of output tuples for
each input tuple by selecting one or more of the input tuples’
sub-attributes, optionally applying functions to them.

• Filter: which is used to decide whether a certain tuple should be
forwarded or discarded based on a condition.

Common stateful native operators [1, 3, 12] are:
• Aggregate: which maintains a window of size WS and advance
WA of the most recent input tuples and aggregates them (e.g.,
with functions such as max, min, or sum) possibly defining a
set of group-by (GB) sub-attributes to aggregate together only
tuples sharing the same value for such sub-attributes. For each
GB value, windows cover periods [ℓ𝑊𝐴, ℓ𝑊𝐴+𝑊𝑆), with ℓ ∈ N.

• Join: which defines a left (𝐿) and a right (𝑅) input stream, and
produces a tuple combining the sub-attributes of tuples 𝑡𝐿 ∈ 𝐿

and 𝑡𝑅 ∈ 𝑅 for each pair ⟨𝑡𝐿, 𝑡𝑅⟩ satisfying a predicate 𝑃 and so
that |𝑡𝐿 .𝜏 − 𝑡𝑅 .𝜏 | ≤ WS. If an optional set of GB sub-attributes is
defined, 𝑃 is checked only for pairs sharing the same GB values.
Note that two key advantages of composing a query by relying

on native operators are (1) that such query can seamlessly leverage
the APIs SPEsmake available to boost performance through parallel,
distributed, and elastic execution, and (2) portability, since most
SPEs offer similar stateless/stateful operators [14, 15].

3 PROBLEM DEFINITION
PBF-LB printing processes usually involve two parties, the PBF-LB
machine and the expert (Figure 1A). The latter submits a printing
job, collects the printed parts as well as any available data, and,
finally, analyzes the piece and/or data to decide whether to keep
or not the parts, also using the newly acquired data/knowledge for
future printing jobs. Such a setup has two main downsides. First,
the expert becomes aware of defects or other reasons to discard a
piece only upon completion of a printing process. Hence, even if
signs of such a defect could have been sensed earlier, this inevitably

Data
Processing
Pipeline
(Online)

Expert

- Deploys data collection and
processing pipelines ()
- Generates data processing results
and alerts ()

Forwards sensed data from
printing processes ()

- Creates printing processes ()
- Delivers product / sensed data ()

PBF-LB machine
Expert

PBF-LB machine

- Creates/Modifies/Terminates
printing processes ()
- Delivers product / sensed data ()

A

B

Offline/ad-hoc
analysis

Figure 1: Existing Quality Assurance (A) and Quality Assur-
ance envisioned by data-driven AMmanufacturing (B).

results in a waste of expensive resources. Second, this setup leads to
experts resorting to manual and non-automated procedures for data
analysis and knowledge extraction, with poor knowledge sharing
across printing jobs and experts.

Our goal is to promote the shift shown in Figure 1B. In this
case, the expert is still responsible for submitting each printing job,
but can also submit custom data pipelines. The latter retrieve live
data from the PBF-LB machine, analyze it on the fly, and report
live information to the user that, manually or relying on dedicated
tools/scripts, can thus decide whether to continue, re-adjust, or
terminate an ongoing process. For simplicity, from now on we use
the term expert to refer both to the user as well as the scripts/tools
(s)he uses to coordinate the PBF-LBmachine and the data processing
layer. The challenges/requirements to realize such a shift include:

(1) Rich semantics and intermixing of at-rest and streaming
data Experts usually rely on a wide range of analysis steps,
from simple filtering to approximation and ML tasks. For some
of the complex analysis tasks, information from previous jobs
needs to be matched with the one from the running ones (and
similarly, live information needs to be maintained and later
shared with other jobs). Note that parts of a given data pipeline
can be shared by different experts and/or across jobs.

(2) Low latency analysis Latency usually expresses the time in-
terval between the output of a result and the time when all the
data that led to such a result were made available to the data
handling system [8, 24, 28]. The need for low-latency analysis
stems from the need to reduce the material, time, and energy
wasted from the moment all the data indicating a defect are
made available to the data pipeline. Note that in certain cases, as
also shown in § 5, there might be strict QoS deadlines indicating
the maximum latency tolerated in producing a certain result.

(3) High throughput analysisAmanufacturing facility can count
on many PBF-LB machines, each sensing data at a different time
granularity and producing varying data volumes. The proposed
architecture should thus support high-throughput analysis in
terms of tuples it can ingest per time unit [8, 24, 28].

44

Towards Data-Driven Additive Manufacturing Processes Middleware 2022, November 7 – 11, 2022, Québec City, Québec, Canada

Raw Data
Collector

Raw Data
Connector

Event
Monitor

Event Connector

Event
Aggregator

SPEPublish/Subscribe Publish/Subscribe

Key-Value Store

SPESPE

Figure 2: Overview of STRATA’s architecture

4 THE STRATA FRAMEWORK
Figure 2 shows STRATA’s architecture. In the following, we describe
each module, its API, and the implementation details.
Key-Value Store: As discussed in § 3, in-situ monitoring for data-
driven PBF-LB processes builds both on live data as well as data-at-
rest. To accommodate such a need, this module offers a key/value
store that is accessible by all the other modules.
Raw Data Collector: To account for the heterogeneous sensing
units of PBF-LB machines, this module defines data-specific col-
lectors (e.g., for Optical Tomography images, see § 5) to gather
information/printing parameters of jobs submitted to a machine.
Raw Data Connector: a publish/subscribe module to share raw
data from the PBF-LB machine with the next processing module.
Event Monitor: is the module for inspecting each layer individu-
ally and detecting relevant events.
Event Connector: a publish/subscribe module that exposes indi-
vidual events to the following module.
Event Aggregator: this module allows to aggregate relevant events
both within and across layers. Across layers, events are automat-
ically grouped by STRATA based on the specimen they refer to.
Events produced by this layer are delivered to the expert.

Note that a common practice in PBF-LB processes is to print
several specimens within a single job to maximize the usage of
the available printing volume within each process. In such a case,
layer portions that refer to different specimens could be analyzed
in a pipelined/parallel fashion. Such a disjoint analysis could also
make sense for a single specimen if some parts of it are more sen-
sitive to defects than others. To account for this possibility, and
to support low-latency/high-throughput analysis through paral-
lelism, STRATA’s API offers methods to express which parts of a
layer/specimen could be processed independently.

The Raw Data Collector and the Event Monitor modules have
been designed as separate modules so that multiple event detection
methods can be continuously deployed, run (potentially in parallel),
and decommissioned. A similar motivation holds for separating the
Event Monitor and Event Aggregator modules. Because of these
choices, distinct pipelines from one or more users can overlap.

Table 1 presents STRATA’s API. Parameters in squared brackets
are optional. We refer the readers to § 5 for a complete example.

Implementation. STRATA relies on an SPE for data analysis and a
pub/sub infrastructure for data exchange (Figure 2). The chosen SPE
is Liebre [18], a lightweight SPE for scale-up servers [14], commonly
used for AM in-situ monitoring [7]. Pub/sub connectors run in
Apache Kafka [2] while the key-value store runs in RocksDB [27].

When it comes to the APIs implementation, each data collector
instantiated via addSource runs as a Source within the underlying
SPE. All other analysis methods rely on the composition of native

Module API Method / Schema of the output stream

Key-Value Store store(𝑘,𝑣)/get(𝑘,𝑣)
Used to persist/retrieve data at-rest. Can be invoked by all other API methods.

Raw Data Collector addSource(𝑠𝑟𝑐, 𝑠𝑜𝑢𝑡) ⟨𝜏, 𝑗𝑜𝑏, 𝑙𝑎𝑦𝑒𝑟, [𝑘1:𝑣1, 𝑘2:𝑣2, . . .] ⟩
Adds a Source whose resulting stream 𝑠𝑜𝑢𝑡 carries tuples with timestamp (𝜏)
and unique identifiers for the current printing job (𝑗𝑜𝑏) and the layer to which
the data refers to (𝑙𝑎𝑦𝑒𝑟) in their metadata sub-attributes, and an arbitrary
set of sensor-specific key value pairs 𝑘𝑖 :𝑣𝑖 in their payload.

Event Monitor fuse(𝑠𝑖𝑛1,𝑠𝑖𝑛2,𝑠𝑜𝑢𝑡,[𝑊𝑆,𝑊𝐴],[𝐺𝐵])
⟨𝜏, 𝑗𝑜𝑏, 𝑙𝑎𝑦𝑒𝑟, [𝑘1:𝑣1, 𝑘2:𝑣2, . . .] ⟩

The method assumes 𝑠𝑖𝑛1 and 𝑠𝑖𝑛2 are streams generated by a Source or re-
sulting from an invocation of the fuse method. It then fuses tuples from such
streams that have the same 𝑗𝑜𝑏 and 𝑙𝑎𝑦𝑒𝑟 sub-attributes. If parameters Win-
dow Size (𝑊𝑆) and Window Advance (𝑊𝐴) are not defined, the method will
only fuse tuples that also share the same 𝜏 . Otherwise, it will fuse tuples falling
in the same windows. The optional parameter 𝐺𝐵 can specify further sub-
attributes used to group tuples into windows. Each output tuple concatenates
all the key-value pairs found in the input tuples being fused. The method
assumes that, for each set of fused tuples, each key is unique.

Event Monitor partition(𝑠𝑖𝑛,𝑠𝑜𝑢𝑡,F)
⟨𝜏, 𝑗𝑜𝑏, 𝑙𝑎𝑦𝑒𝑟, 𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛, 𝑝𝑜𝑟𝑡𝑖𝑜𝑛, [𝑘1:𝑣1, 𝑘2:𝑣2, . . .] ⟩

The method assumes 𝑠𝑖𝑛 is generated by a Source or the fuse method. Based
on the user-defined function F, each input tuple in 𝑠𝑖𝑛 is transformed in an
arbitrary number of output tuples in 𝑠𝑜𝑢𝑡 . For each such tuple, the input tuple
metadata is copied, and enriched by the 𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛 and 𝑝𝑜𝑟𝑡𝑖𝑜𝑛 sub-attributes,
which F is expected to return. If no partition function is defined, STRATA
assumes each tuple produced by a Source or method fuse is to be processed as
a whole, and sets default values for the 𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛 and 𝑝𝑜𝑟𝑡𝑖𝑜𝑛 sub-attributes.

Event Monitor detectEvent(𝑠𝑖𝑛,𝑠𝑜𝑢𝑡,F)
⟨𝜏, 𝑗𝑜𝑏, 𝑙𝑎𝑦𝑒𝑟, 𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛, 𝑝𝑜𝑟𝑡𝑖𝑜𝑛, [𝑘1:𝑣1, 𝑘2:𝑣2, . . .] ⟩

The method assumes 𝑠𝑖𝑛 is generated by a Source, method fuse, or method
partition. The user-defined function F transforms each input tuple in 𝑠𝑖𝑛
in an arbitrary number of output tuples in 𝑠𝑜𝑢𝑡 with the given schema.

Event Aggregator correlateEvents(𝑠𝑖𝑛,𝑠𝑜𝑢𝑡,𝐿,F)
⟨𝜏, 𝑗𝑜𝑏, 𝑙𝑎𝑦𝑒𝑟, 𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛, [𝑘1:𝑣1, 𝑘2:𝑣2, . . .] ⟩

The method assumes 𝑠𝑖𝑛 is generated by method detectEvent. Based on the
user-defined function F, the method aggregates all the output tuples generated
by method detectEvent for a certain layer and specimen (i.e., for all the
portions of such a specimen) as well as the events of the previous 𝐿 layers,
hence supporting both intra- and inter-layer analysis. The key-value pairs in
each output tuple’s payload are defined by F.

Table 1: STRETCH’s API

operators to aggregate the data and forward it to other analysis
tasks or the expert. The choice of relying on compositions of na-
tive operators brings two benefits. As mentioned in § 2 and also
discussed in [25], it implies that the API methods can be executed
in a distributed, parallel, elastic fashion by the underlying SPEs.
Also, since all major SPEs offer similar native operators, it means
STRATA can be also seamlessly ported to other SPEs.

5 USE-CASE AND EVALUATION
Use-case description
In this section, we present a real-world use-case implemented on
top of the STRATA framework. Such a use-case is intended both to
exemplify the data analysis applications STRATA can support as
well as to provide a first assessment of its data analysis performance.

45

Middleware 2022, November 7 – 11, 2022, Québec City, Québec, Canada Vincenzo Gulisano, Marina Papatriantafilou and Zhuoer Chen, Eduard Hryha, Lars Nyborg

Print
Param.
Source

Raw
data

collector

Join

OT
Image
Source

Map

Map

Aggregate

Aggregate

Event
Monitor

Event
Aggregator

Raw
data

connector

Event
Connector

Key-Value
store

Defines two sources, to collect printing
parameters as well as OT images

Fuses input tuples, so that each OT image is
enriched with the relevant printing parameters

Splits each OT image into per-specimen
portions of the OT image

Splits each per-specimen portion of an OT
image into cells

Computes a label for each cell, forwarding
only cells labelled as cold or warm

Clusters (DBScan) cells labelled as cold/warm,
returning big-enough clusters to the expert

Figure 3: Data pipeline detecting portions of the specimen(s)
being printed that have beenmelted with too-low or too-high
thermal energy, known to result in poor material structure.

In this use-case, the expert wants to know if portions of the spec-
imen(s) being printed are melted with too-low or too-high thermal
energy since such portions can result in poor material structure.
Optical Tomography (OT) is used to produce, for each layer, a long-
exposure image that captures the light emissions from the melt
pool and solidified material. In the resulting OT images, too-low
and too-high thermal energy values are identified based on whether
the reported light emanation value is below or above a threshold
value, the latter computed based on historical information from
previous jobs. Subsequently, the corresponding specimen portions
affected by too-low/too-high thermal energy are clustered, within
and across layers, and reported when bigger than a certain volume.

Figure 3 provides a simplified view of the different parts of the
pipeline associated with this use-case while Algorithm 1 shows
a simplified version of the APIs invocations from the use-case.
Figure 3 shows the operators deployed in the different modules of
STRATA. In the following, we cover the operators for the Raw Data
Collector, Event Monitor, and Event Aggregator modules.

Raw Data Collector. The pipeline defines two operators: for retriev-
ing information about the printing jobs submitted at the PBF-LB
machine (Alg. 1 L1), and for collecting the OT images generated
during each process (Alg. 1 L2). The latter source generates tuples
that, besides the timestamp 𝜏 and the 𝑗𝑜𝑏 and 𝑙𝑎𝑦𝑒𝑟 sub-attributes,

Algorithm 1: Simplified listing of the query from Figure 3.
1 addSource(new PrintingParameterCollector(),𝑝𝑝)

2 addSource(new OTImageCollector(),𝑂𝑇)

3 fuse(𝑂𝑇 ,𝑝𝑝,𝑂𝑇&𝑝𝑝)
4 partition(𝑂𝑇&𝑝𝑝,𝑠𝑝𝑒𝑐,isolateSpecimen())
5 partition(𝑠𝑝𝑒𝑐,𝑐𝑒𝑙𝑙,isolateCell())

6 detectEvent(𝑐𝑒𝑙𝑙,𝑐𝑒𝑙𝑙𝐿𝑎𝑏𝑒𝑙,labelCell())

7 correlateEvents(𝑐𝑒𝑙𝑙𝐿𝑎𝑏𝑒𝑙,𝑜𝑢𝑡,𝐿,DBSCAN())

carry an OT image as a 2D numerical array in which each value
indicates the light emanation intensity of a pixel in the image.

Event Monitor. In this layer, the sources’ data is fused enriching
each OT image with the respective printing parameters (Alg. 1 L3).
Since WS, WA, and GB parameters are not specified when invoking
fuse, the query relies on a Join matching tuples from the 2 streams
using sub-attributes 𝜏 , 𝑗𝑜𝑏, and 𝑙𝑎𝑦𝑒𝑟 for the GB parameter.

The resulting tuples are fed to aMap instantiated by the partition
method (Alg. 1 L4). For each OT image, a series of smaller images
each containing the pixels of one of the specimens being printed
is produced by the isolateSpecimen() method. The information
about which pixels refer to each specimen is found in the key-value
sub-attributes generated by the Printing Parameters source.

A second invocation of the partition method (Alg. 1 L5) is
used to further partition the pixels of each specimen into cells
through the isolateCell() function. The latter are then fed to the
detectEvent method (Alg. 1 L6), which classifies each cell as very
cold, cold, regular,warm, or very warm using the labelCell() func-
tion and forwards a tuple only for cells classified as very cold or very
warm. The Aggregate operator instantiated by the detectEvent
method gets the relevant thresholds from the key-value store.

Event Aggregator. The final portion of the pipeline clusters together
the individual events referring to specimen portions that are af-
fected by too-low or too-high thermal energy. Density-based clus-
tering (in particular the DBSCAN, Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise) is used
to cluster close-by portions and instantiated by invoking method
correlateEvents (Alg. 1 L7). The choice of the method is moti-
vated through earlier work in defect detection, where 𝑘-means
clustering was adopted [29]; DBSCAN is a preferred alternative,
both due to the fact that the number of sought clusters is not known
in advance, as well as due to its additional capabilities to detect
clusters of arbitrary shapes and sizes [6] and be both more accurate
and efficient [16, 22, 23, 30]. Parameter 𝐿 refers to the number of
previous layers through which each cluster can expand. In this case,
the function passed to method correlateEvents also returns an
image of the resulting clusters that is later inspected by the expert.

Evaluation setup
We use a higher-end server, mounting an Intel Xeon E5-2637 v4
@ 3.50GHz (4 cores, 8 threads) and 64 GB RAM. The server runs
Ubuntu 18.04 and OpenJDK 1.8.0. In this work, we examine the data
acquired in a PBF-LB printing process conducted on an EOS M290
machine (an industrial PBF-LB machine) equipped with a state-of-
the-art online OT sensor. The OT system takes a long exposure
image of the process area with 250× 250 mm size for each processed
layer using an sCMOS camera. The monitored data are in the form
of gray-scale images of 2000 × 2000 pixels, each of 8Mb in size, with
the gray value of each pixel representing the intensity of the melt
pool during the PBF-LB process. Each OT image is forwarded by
the PBF-LB machine at the completion of the corresponding layer.

Data. The printing process used to evaluate the presented pipeline
builds 12 specimens, each of 25 (width) × 50 (length) × 23 (height)
mm in dimensions. Within each block, three small cylinders are de-
fined to later measure the three-dimensional distribution of process

46

Towards Data-Driven Additive Manufacturing Processes Middleware 2022, November 7 – 11, 2022, Québec City, Québec, Canada

defects with X-ray Computed Tomography. Along the build height
direction, each block is broken down into 23 stacks of 1 mm height.
Within each stack, the laser is set to scan at a certain orientation
angle to the gas flow, which flows from the back to the front of the
machine to remove process by-products such as smoke and spatter
particles [17]. The different scanning orientations incur different
interactions between the generated spatter and the local gas flow,
creating potential sites for defects to appear. Figure 4 shows the OT
image of a specimen together with its resulting clustering based on
the observed thermal energy levels.

Evaluation metrics
We evaluate STRATA’s performance for this use-case in terms of
latency and throughput (see § 3). Shown results are based on 5 rep-
etitions of each experiment. Based on the PBF-LB machine being
used, there is a gap of approximately 3 seconds between the com-
pletion of a layer and the beginning of the next one during which
the machine removes the leftover powder and recoats the printing
surface for the following one. A QoS threshold of 3 seconds is thus
assumed for the use-case pipeline outcomes’ latency to allow for
an online decision about whether to continue, update, or terminate
the process before the next layer starts being printed.

0 100

0

100

200

300

0 100

0

100

200

300

very cold
cold
regular
warm
very warm

Figure 4: OT image of a specimen together with its resulting
clustering based on the observed thermal energy levels.

Evaluation results
In our first experiment, we measure the latency with which up-
to-date results are delivered upon the reception of one OT image.
To account for different accuracy levels, we variate the length of
the cell edge so that method isolateCell() (Alg. 1 L5) separates
cells with sizes varying from 40x40 to 2x2 pixels (5 to 0.25𝑚𝑚2).
The results are shown in Figure 5. For each cell size, the observed
latency values are shown using a boxplot. As expected, the smaller
the area of a cell, the higher the number of cells to be analyzed
within and across layers, and the higher the processing latency. In
our prototype implementation, STRATA is always able to meet the
QoS threshold for all cell sizes, up to the limit case of 2𝑋2 pixels
cells (smaller cells would imply per-pixel analysis).

To further study how parameters settings impact the perfor-
mance metrics being evaluated, in our second experiment we inves-
tigate the effect of changing the number of previous layers clustered
together in method correlateEvents (parameter 𝐿, Alg. 7 L7). As
shown in Figure 6, we variate 𝐿 from 5 layers (0.2𝑚𝑚) to 80 layers

40 20 10 5 4 2
Length of cells' edges (pixels)

101

102

103

104

La
te

nc
y

(m
illi

se
co

nd
s)

QoS Latency Threshold

Figure 5: Boxplots of the latency values observed for cells of
various sizes monitored and clustered by the query in Alg. 1.

5 10 20 40 60 80
Number of aggregation layers

101

102

103

104

La
te

nc
y

(m
illi

se
co

nd
s)

QoS Latency Threshold

Figure 6: Boxplots of the latency values observed when clus-
tering a different number of layers using the query in Alg. 1.

(3.2𝑚𝑚). Also in this case, despite the expected growth trend, all
reported latency values are lower than the QoS threshold.

Since live OT images come within a period of minutes (in general,
the actual time depends on the shape and number of specimens
being printed), we complement our experiments with a third one
in which input data is replayed as fast as possible while checking
whether the aforementioned latency threshold is respected. Such
an experiment can provide an estimate of how fast OT images from
historic data can be reprocessed or of the number of jobs that could
be processed in parallel (e.g., from various PBF-LB machines).

In this case, we focus on two cell sizes, namely 20x20 and 10x10.
The results are shown in Figure 7. The upper part of the figure
shows the resulting processing throughput (in terms of thousands
of cells processed per second) for an increasing number of OT
images fed to the query per second. The bottom part shows the
resulting average processing latency. As expected, the throughput
initially grows linearly with the number of OT image/s fed to the
query while the latency remains low until the query processing
capacity is exceeded, the throughput flattens and the latency grows

47

Middleware 2022, November 7 – 11, 2022, Québec City, Québec, Canada Vincenzo Gulisano, Marina Papatriantafilou and Zhuoer Chen, Eduard Hryha, Lars Nyborg

0

100

200

300

400

500

Th
ro

ug
hp

ut
 (1

03 C
el

ls/
s)

20X20 cells
10X10 cells

0 50 100 150 200 250
Throughput (OTImages/s)

102

103

104

La
te

nc
y

(m
illi

se
co

nd
s)

QoS Latency Threshold

Figure 7: Throughput/latency for various cell sizes and in-
creasing number of OT Images/s fed to the query from Alg. 1.

with a steeper curve. This common pattern [13] is observed for both
cell sizes. Since, as aforementioned, smaller cells result in a higher
number of cells to analyze, the throughput curve for the 10x10 cells
reaches the max value and flattens before that of the 20x20 cells
(at approximately one-fourth of the latter, since as expected each
20x20 cell corresponds to 4 10x10 cells). These results indicate our
prototype implementation can sustain processing rates of 10s to
100s of OT images/s, thus reprocessing past printing jobs in seconds
or processing data from many PBF-LB machines in parallel.

6 RELATEDWORK
Quality assurance based on monitoring/event detection in AM
depends on aspects like the intended part characteristics, the mate-
rial properties, the process parameters, and the hardware/software
control of the process, among others [19]. Also, as AM processes
should be monitored from the scale of particles (∼100`𝑚) to that
of entire parts (𝑑𝑚), it is necessary to define the relevant analy-
sis to be conducted effectively and efficiently on monitoring data.
Consequently, advanced process monitoring combined with the ap-
propriate implementation of data analytics for quality assurance is a
must. Important concerns are the reusability of powder, alloy design
for AM, and taking advantage of PBF-LB being an inherently rapid
cooling technology, while considering the possible metallurgical
constraints and powder-process gas interactions during printing.

Regarding data analysis in AM, [11] comprehensively categorizes
monitoring problems and, as also elaborated by [20, 21], lists ML
approaches as candidates, acknowledging the need for process

awareness of geometries, materials, and flaw types with continuous
rather than batch-based data pipelines, emphasizing the need for
low-latency/high-throughput in-process monitoring. To the best
of our knowledge, STRATA is the first general-purpose framework
that, rather than discussing a specific monitoring/quality assurance
process, defines a general-purpose and scalable API for intra- and
inter-layer data analysis for PBF-LB printing processes.

Regarding ML for streaming data, [9] comprehensively sum-
marizes the state of the art in ACM’s core forum on data mining,
data science, and analytics. Highlighted open problems are about
evolving graph data, from images, text, and other non-structured
data sources, including pattern mining in those and associated data
structures. As we show, STRATA’s API offers general aggregation
methods to equip ML operators, as is the case for the DBSCAN
clustering method part of our real-world use-case.

7 CONCLUSIONS
We presented STRATA, a framework for scalable, low-latency, and
high-throughput data-driven AM with a special focus on PBF-LB
processes. To the best of our knowledge, ours is the first contribu-
tion that, rather than an ad-hoc solution to analyze a specific feature
of an PBF-LB printing process (e.g., a type of defect), proposes a
general API for a broad set of intra- and inter-layer data analysis
pipelines. With a prototype built on top of state-of-the-art data
handling components, STRATA offers an API that internally lever-
ages common APIs of Big Data frameworks (e.g., stateless/stateful
stream processing operators) to support efficiency and portability.

In the future, we plan to extend the portfolio of use-cases and
related performance studies accounting for common features of
PBF-LB processes, such as e.g., the material used as powder, the
shape of the object being printed, or the type of monitored defect.

ACKNOWLEDGMENTS
This work has been conducted in the framework of the Centre for
Additive Manufacture–Metal (CAM2) supported by the Swedish
Governmental Agency for Innovation Systems (VINNOVA). Fund-
ing from the VR grant “EPITOME” (2021-05424); Chalmers AoA
frameworks Energy and Production, WPs INDEED, and “Scalability,
Big Data and AI”, resp., and the European Union’s Horizon 2020
research and Innovation Programme Additive Manufacturing using
Metal Pilot Line (MANUELA) under grant agreement n. 820774 and
Demonstration of Infrastructure for Digitalization enabling indus-
trialization of Additive Manufacturing (DiDAM) research project
(VINNOVA Project ID 2019-05591) are gratefully acknowledged.

REFERENCES
[1] Apache Flink. 2022. https://flink.apache.org. Accessed:2022-6-27.
[2] Apache Kafka. 2022. https://kafka.apache.org/. Accessed:2022-6-27.
[3] Apache Storm. 2022. http://storm.apache.org. Accessed:2022-6-27.
[4] Zhuoer Chen, Xinhua Wu, and Chris HJ Davies. 2021. Process variation in Laser

Powder Bed Fusion of Ti-6Al-4V. Additive Manufacturing 41 (2021), 101987.
[5] Brett P Conner, Guha P Manogharan, Ashley N Martof, Lauren M Rodomsky,

Caitlyn M Rodomsky, Dakesha C Jordan, and James W Limperos. 2014. Making
sense of 3-D printing: Creating a map of additive manufacturing products and
services. Additive Manufacturing 1 (2014), 64–76.

[6] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.
In 2nd Conf. on Knowledge Discovery and Data Mining (KDD-96). AAAI Press,
226–231.

48

https://flink.apache.org
http://storm.apache.org

Towards Data-Driven Additive Manufacturing Processes Middleware 2022, November 7 – 11, 2022, Québec City, Québec, Canada

[7] Sarah K Everton, Matthias Hirsch, Petros Stravroulakis, Richard K Leach, and
Adam T Clare. 2016. Review of in-situ process monitoring and in-situ metrology
for metal additive manufacturing. Materials & Design 95 (2016), 431–445.

[8] Xinwei Fu, Talha Ghaffar, James C Davis, and Dongyoon Lee. 2019. Edgewise:
A Better Stream Processing Engine for the Edge. In USENIX Annual Technical
Conference (ATC) 19. USENIX, WA, USA, 929–946.

[9] Heitor Murilo Gomes, Jesse Read, Albert Bifet, Jean Paul Barddal, and João Gama.
2019. Machine learning for streaming data: state of the art, challenges, and
opportunities. ACM SIGKDD Explorations Newsletter 21, 2 (2019), 6–22.

[10] Paul R Gradl, Darren C Tinker, John Ivester, Shawn W Skinner, Thomas Teasley,
and John L Bili. 2021. Geometric feature reproducibility for laser powder bed
fusion (L-PBF) additive manufacturing with Inconel 718. Additive Manufacturing
47 (2021), 102305.

[11] Marco Grasso and Bianca Maria Colosimo. 2017. Process defects and in situ
monitoring methods in metal powder bed fusion: a review. Measurement Science
and Technology 28, 4 (2017), 044005.

[12] Vincenzo Gulisano. 2012. StreamCloud: An Elastic Parallel-Distributed Stream
Processing Engine. Ph. D. Dissertation. Universidad Politécnica de Madrid.

[13] Vincenzo Gulisano, Ricardo Jimenez-Peris, Marta Patino-Martinez, Claudio Sori-
ente, and Patrick Valduriez. 2012. Streamcloud: An elastic and scalable data
streaming system. IEEE Transactions on Parallel and Distributed Systems 23, 12
(2012), 2351–2365.

[14] Vincenzo Gulisano, Hannaneh Najdataei, Yiannis Nikolakopoulos, Alessandro V.
Papadopoulos, Marina Papatriantafilou, and Philippas Tsigas. 2022. STRETCH:
Virtual Shared-Nothing Parallelism for Scalable and Elastic Stream Processing.
IEEE Transactions on Parallel and Distributed Systems (2022), 1–18. https://doi.
org/10.1109/TPDS.2022.3181979

[15] Martin Hirzel, Robert Soulé, Scott Schneider, Buğra Gedik, and Robert Grimm.
2014. A catalog of stream processing optimizations. ACM Computing Surveys
(CSUR) 46, 4 (2014), 1–34.

[16] Amir Keramatian, Vincenzo Gulisano, Marina Papatriantafilou, and Philippas
Tsigas. 2022. IP.LSH.DBSCAN: Integrated Parallel Density-Based Clustering
through Locality-Sensitive Hashing. In European Conference on Parallel Processing.
Springer.

[17] Alexander Ladewig, Georg Schlick, Maximilian Fisser, Volker Schulze, and Uwe
Glatzel. 2016. Influence of the shielding gas flow on the removal of process
by-products in the selective laser melting process. Additive Manufacturing 10
(2016), 1–9.

[18] Liebre SPE. 2022. https://github.com/vincenzo-gulisano/Liebre. Accessed:2022-
6-27.

[19] Mahesh Mani, Shaw Feng, Brandon Lane, Alkan Donmez, Shawn Moylan, and
Ronnie Fesperman. 2015. Measurement science needs for real-time control of
additive manufacturing powder bed fusion processes. (2015).

[20] Mohammad Montazeri, Abdalla R Nassar, Alexander J Dunbar, and Prahalada
Rao. 2020. In-process monitoring of porosity in additive manufacturing using
optical emission spectroscopy. IISE Transactions 52, 5 (2020), 500–515.

[21] William Mycroft, Mordechai Katzman, Samuel Tammas-Williams, Everth
Hernandez-Nava, George Panoutsos, Iain Todd, and Visakan Kadirkamanathan.
2020. A data-driven approach for predicting printability in metal additive manu-
facturing processes. Journal of Intelligent Manufacturing 31, 7 (2020), 1769–1781.

[22] Hannaneh Najdataei, Vincenzo Gulisano, Philippas Tsigas, and Marina Papa-
triantafilou. 2022. pi-Lisco: parallel and incremental stream-based point-cloud
clustering. In Proceedings of the 37th ACM/SIGAPP Symposium on Applied Com-
puting. 460–469.

[23] Hannaneh Najdataei, Yiannis Nikolakopoulos, Vincenzo Gulisano, and Marina
Papatriantafilou. 2018. Continuous and parallel lidar point-cloud clustering. In
2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS).
IEEE, 671–684.

[24] Dimitris Palyvos-Giannas, Vincenzo Gulisano, and Marina Papatriantafilou. 2019.
Haren: A Framework for Ad-Hoc Thread Scheduling Policies for Data Streaming
Applications. In Proceedings of the 13th ACM International Conference on Dis-
tributed and Event-Based Systems (DEBS ’19). ACM, Darmstadt, Germany, 19–30.
https://doi.org/10.1145/3328905.3329505

[25] Dimitris Palyvos-Giannas, Bastian Havers, Marina Papatriantafilou, and Vincenzo
Gulisano. 2020. Ananke: a streaming framework for live forward provenance.
Proceedings of the VLDB Endowment 14, 3 (Nov. 2020), 391–403. https://doi.org/
10.14778/3430915.3430928

[26] C. Pauzon, B. Hoppe, T. Pichler, S. Dubiez-Le Goff, P. Forêt, T. Nguyen, and
E. Hryha. 2021. Reduction of incandescent spatter with helium addition to
the process gas during laser powder bed fusion of Ti-6Al-4V. CIRP Journal of
Manufacturing Science and Technology 35 (2021), 371–378. https://doi.org/10.
1016/j.cirpj.2021.07.004

[27] RocksDB. 2022. https://http://rocksdb.org/. Accessed:2022-6-27.
[28] Anshu Shukla, Shilpa Chaturvedi, and Yogesh Simmhan. 2017. RIoTBench: An

IoT Benchmark for Distributed Stream Processing Systems. Concurrency and
Computation: Practice and Experience 29, 21 (2017), e4257. https://doi.org/10.
1002/cpe.4257 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.4257

[29] Robert Snell, Sam Tammas-Williams, Lova Chechik, Alistair Lyle, Everth
Hernández-Nava, Charlotte Boig, George Panoutsos, and Iain Todd. 2020. Meth-
ods for rapid pore classification in metal additive manufacturing. Jom 72, 1 (2020),
101–109.

[30] Yiqiu Wang, Yan Gu, and Julian Shun. 2020. Theoretically-Efficient and Practical
Parallel DBSCAN. In 2020 SIGMOD Int. Conf. on Management of Data. ACM,
2555–2571.

49

https://doi.org/10.1109/TPDS.2022.3181979
https://doi.org/10.1109/TPDS.2022.3181979
https://doi.org/10.1145/3328905.3329505
https://doi.org/10.14778/3430915.3430928
https://doi.org/10.14778/3430915.3430928
https://doi.org/10.1016/j.cirpj.2021.07.004
https://doi.org/10.1016/j.cirpj.2021.07.004
https://http://rocksdb.org/
https://doi.org/10.1002/cpe.4257
https://doi.org/10.1002/cpe.4257
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.4257

	Abstract
	1 Introduction
	2 Preliminaries (Stream Processing)
	3 Problem Definition
	4 The Strata Framework
	5 Use-case and Evaluation
	6 Related Work
	7 Conclusions
	Acknowledgments
	References

