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Abstract
In this paper, we introduce quadrature domains for the Helmholtz equation. We show exis-
tence results for such domains and implement the so-called partial balayage procedure.
We also give an application to inverse scattering problems, and show that there are non-
scattering domains for the Helmholtz equation at any positive frequency that have inward
cusps.
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1 Introduction andMain Results

1.1 Background

This work is motivated by a problem in inverse scattering theory, but it raises questions
of independent interest in the context of quadrature domains and free boundary problems.
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We recall that a bounded domain D ⊂ R
n is called a quadrature domain (for harmonic

functions), corresponding to a measure μ with supp(μ) ⊂ D, if
∫

D

h(x) dx =
∫

h(x) dμ(x) (1.1)

for every harmonic function h ∈ L1(D). More generally, one can consider distributions μ ∈
E ′(D). In the most classical case one is interested in domains D for which μ is supported at
finitely many points, so that Eq. 1.1 reduces to a quadrature identity for computing integrals
of harmonic functions.

Quadrature domains can be viewed as a generalization of the mean value theorem
(MVT) for harmonic functions. Indeed, we can rephrase the MVT for harmonic functions
as follows:

Br(a) is a quadrature domain with μ = m(Br(a))δa,

where δa is the Dirac measure at a, m denotes the Lebesgue measure in R
n (i.e. dm = dx)

and Br(a) is the ball of radius r centered at a. In general, the boundary of a quadrature
domain is a free boundary in an obstacle-type problem (see [39]), and hence near any given
point z ∈ ∂D the domain D is either smooth or Dc has zero density at z. Various examples
can be constructed via complex analysis, for example, the cardioid domain in Example 3.3
below. We refer to [19], [42], and [29] for further background.

The inverse scattering problems studied in [45] lead to a related concept, for solutions of
the Helmholtz equation (� + k2)u = 0, where k ≥ 0 is a frequency. This setting gives rise
to various interesting questions. We are not aware of earlier work on quadrature domains for
k > 0, and in this article we only give some first steps. In addition, we show that any quadra-
ture domain is a non-scattering domain (cf. Definition 1.8) if it admits an incident wave
that is positive on its boundary. In [45] it was observed that in the case k = 0 quadrature
domains are non-scattering domains, and hence there are non-scattering domains having
inward cusps. Corollary 1.9 below provides a similar result valid for all k > 0.

1.2 Notation

Here we gather recurring notation and definitions. We also mention here that all functions
and measures will be real-valued unless stated otherwise.
m Lebesgue measure in R

n

Br(a) ball of radius r centered at a

Br ball of radius r centered at origin
D unit disk
Jα Bessel function of first kind
jα,1 the first positive zero of the Bessel function Jα

Yα Bessel function of second kind
R(n, k) = cref

n k−1 maximal length scale
�̃k = �̃k,R(n,k) a particular fundamental solution of the Helmholtz operator −(� + k2)

U
μ
k = �̃k ∗ μ potential of a measure μ

Fk(μ) the class of admissible functions in an obstacle problem
cMVT
n,k,r constant related to mean value theorem

D(μ) saturated set for Balk(μ)

ω(μ) non-contact set for an obstacle problem
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1.3 Main Results

We begin with a definition generalizing Eq. 1.1.

Definition 1.1 Let k > 0. A bounded open set D ⊂ R
n (not necessarily connected) is

called a quadrature domain for (� + k2), or a k-quadrature domain, corresponding to a
distribution μ ∈ E ′(D), if

∫
D

w(x) dx = 〈μ, w〉

for all w ∈ L1(D) satisfying (� + k2)w = 0 in D.

We remark that solutions of (� + k2)w = 0 are sometimes called metaharmonic func-
tions, see e.g. [35, Section 4] or [22] for a discussion. It is important that supp(μ) has to be
a subset of D (see however [32, Lemma 2.8] for a discussion that weakens this assumption
for harmonic functions). Indeed, that supp(μ) ⊂ D implies that the distributional pairing
〈μ, w〉 is well defined, because solutions of (� + k2)w = 0 are smooth in D. Furthermore,
without this requirement the existence of a distribution satisfying the definition would be
trivial, indeed one could choose μ = χD .

The first question is whether k-quadrature domains even exist for k > 0. This is indeed
the case. In fact, balls are always k-quadrature domains. This is a consequence of a MVT
for the Helmholtz equation which goes back to H. Weber [48, 49] (see also [35], [36], or
[18, p. 289]). The MVT takes the form

∫
Br (a)

w(x) dx = cMVT
n,k,r w(a)

whenever w ∈ L1(Br(a)) and (� + k2)w = 0 in Br(a). However, unlike for harmonic
functions, the constant cMVT

n,k,r has varying sign depending on k, r . In particular, the con-
stant vanishes when Jn/2(kr) = 0 where Jα denotes the Bessel function of the first kind.
More details are given in Appendix A. It follows that unions of disjoint balls are also k-
quadrature domains corresponding to linear combinations of delta functions. Choosing two
balls whose closures intersect at one point furnishes an example of a k-quadrature domain
whose boundary is not smooth.

In order to make further progress we consider a PDE characterization of k-quadrature
domains. One can show (see Proposition 2.1) that D is a k-quadrature domain corresponding
to μ ∈ E ′(D) if and only if there is a distribution u ∈ D ′(Rn) satisfying

{
(� + k2)u = χD − μ in R

n,

u = |∇u| = 0 in R
n \ D.

(1.2)

Note that by elliptic regularity the distribution u solving (� + k2)u = χD near ∂D must be
C1 near ∂D, and thus the condition that u and ∇u vanish in R

n\D (instead of Rn\D) makes
sense. The following result is a local version of the above fact, characterizing domains D

that are k-quadrature domains for some distribution μ. However, there is no reason to expect
that μ could be chosen to have support at finitely many points.



P.-Z. Kow et al.

Theorem 1.2 Let k > 0, and let D be a bounded open set in Rn. Then D is a k-quadrature
domain for some μ ∈ E ′(D) if and only if there is a neighborhood U of ∂D in R

n and a
distribution u ∈ D ′(U) satisfying{

(� + k2)u = χD in U,

u = |∇u| = 0 in U \ D.
(1.3)

Moreover, ifD is a k-quadrature domain for someμ ∈ E ′(D), thenD is also a k-quadrature
domain for some measure μ̃ having smooth density with respect to Lebesgue measure.

Remark 1.3 If u is as in Theorem 1.2, then clearly{
�u = f χD in U,

u = |∇u| = 0 in U \ D,
(1.4)

with f = 1 − k2u. Extending u from a neighborhood of ∂D into some distribution in R
n

with u = |∇u| = 0 in R
n \ D shows that we have an analogue of Eq. 1.2 with k = 0

and with χD replaced by f χD . Thus any k-quadrature domain is a weighted 0-quadrature
domain. Since the weight f is positive on ∂D, free boundary regularity results for weighted
0-quadrature domains apply also to k-quadrature domains. In particular, such a domain has
locally either smooth boundary or its complement is thin in the sense of minimal diameter
(see [39, page 109]). We also remark that when k = 0 the Eq. 1.2 is related to harmonic
continuation of potentials, see [31] for further information.

Theorem 1.2 has an immediate consequence showing that domains with real-analytic
boundary are k-quadrature domains.

Corollary 1.4 If k > 0, then any bounded open set D ⊂ R
n with real-analytic boundary is

a k-quadrature domain.

Proof Since ∂D is real-analytic, we can use the Cauchy–Kowalevski theorem to find a
real-analytic function u near ∂D satisfying{

(� + k2)u = 1 near ∂D,

u|∂D = ∂νu|∂D = 0,

where ∂ν denotes the derivative in the normal direction to ∂D. We redefine u to be zero
outside D. One can directly check that u and ∇u are Lipschitz continuous across ∂D. Hence
u will be C1,1 near ∂D and will satisfy the condition in Theorem 1.2. This proves that D is
a k-quadrature domain.

The next result gives further examples of k-quadrature domains in two dimensions.

Theorem 1.5 Let k > 0, and let D be the unit disc in R
2 ∼= C. Suppose that D = ϕ(D)

where ϕ is a complex analytic function in a neighbourhood of D such that ϕ : D → D is
bijective. Then D is a k-quadrature domain.

Domains D as in Theorem 1.5 include cardioid type domains and domains with double
points. Examples and further properties of these domains are given in the end of Section 3.

We also study k-quadrature domains from the potential theoretic point of view. More pre-
cisely, we construct some k-quadrature domains by using partial balayage, that is, given a
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non-negative compactly supported Radon measure μ, we construct a measure ν by distribut-
ing the mass of μ more uniformly. By investigating the structure of ν, we then construct a
k-quadrature domain D with respect to μ. For the case when k = 0 this procedure is clas-
sical, see e.g. [26–28, 42]. In this paper, we give similar results for k > 0 and many of our
results and proofs follow those in the case of k = 0 as presented in [26, 27]. In this direction,
our main goal is to prove the following theorem:

Theorem 1.6 (see also Theorem 7.1) Let μ be a positive measure supported in a ball of
radius ε > 0. There exists a constant cn > 0 depending only on the dimension such that if

0 < k <
cn

μ(Rn)1/n
and ε < cnμ(Rn)1/n, (1.5)

then there exists an open connected set D with real-analytic boundary which is a k-
quadrature domain for μ. Moreover, for each w ∈ L1(D)∩L1(μ) satisfying (�+k2)w ≥ 0
in D we have ∫

D

w(x) dx ≥
∫

w(x) dμ(x). (1.6)

Remark 1.7 The assumption w ∈ L1(μ) is in order to ensure that the right-hand side of
Eq. 1.6 is well defined.

Finally we consider the relation of k-quadrature domains to the inverse problem of
determining the shape of a penetrable obstacle from a single measurement, as discussed
in [45]. See [14, 17, 52] for more details about scattering problems. Let D ⊂ R

n be a
bounded open set, and let h ∈ L∞(D) satisfy |h| ≥ c > 0 a.e. near ∂D (such a func-
tion h is called a contrast for D). The pair (D, h) describes a penetrable obstacle D with
contrast h.

We now probe the penetrable obstacle (D, h) by some incident field u0 at frequency
k > 0. The incident field is a solution of

(� + k2)u0 = 0 in R
n.

Let usc be the corresponding scattered field. That is, the unique function usc so that the total
field utot = u0 + usc satisfies

{
(� + k2 + hχD)utot = 0 in R

n,

usc satisfies the Sommerfeld radiation condition at |x| → ∞.
(1.7)

Here we recall that a solution u of (�+ k2)u = 0 in R
n \BR (for some R > 0) satisfies the

Sommerfeld radiation condition if

lim|x|→∞ |x| n−1
2 (∂ru − iku) = 0, uniformly in all directions x̂ = x

|x| ∈ Sn−1,

where ∂r denotes the radial derivative. Solutions satisfying the Sommerfeld radiation
condition are also called outgoing. The functions u0, usc and utot are allowed to be complex.

The single measurement inverse problem is to determine some properties of the obstacle
D from knowledge of the scattered wave usc(x) when |x| is large. If D = ∅, then usc ≡ 0,
and a related question is to ask whether some nontrivial domain D admits some h and u0 so
that usc = 0 for large x. Such a penetrable obstacle (D, h) would be invisible when probed
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by the incident wave u0 and would look like empty space. Domains D having this property
for some h and u0 will be called non-scattering domains.

Definition 1.8 We say that a bounded open set D ⊂ R
n is a non-scattering domain if there

is some h ∈ L∞(D) with |h| ≥ c > 0 a.e. near ∂D and some solution u0 of (�+k2)u0 = 0
in R

n such that the corresponding scattered wave usc satisfies usc|Rn\BR
= 0 for some

R > 0.

The following result states that k-quadrature domains are also non-scattering domains,
at least if there is some incident wave u0 that is positive on ∂D. By the results in [45] such
an incident wave u0 exists at least when

• D is a C1 domain (Lipschitz if n = 2, 3) so that Rn \ D is connected and k2 is not a
Dirichlet eigenvalue of −� in D; or

• D is contained in a ball of radius < k−1j n−2
2 ,1 where j n−2

2 ,1 is the first positive zero of

the Bessel function Jn−2
2

.

By combining Theorem 1.2 and [45, Remark 2.4] we deduce the following corollary.

Corollary 1.9 Let D ⊂ R
n be a k-quadrature domain, and assume that there exists u0

solving (� + k2)u0 = 0 in R
n with u0|∂D > 0. Then D is a non-scattering domain (for the

incident wave u0 and for some contrast h).

From Theorem 1.5 and Corollary 1.9 we see that there exist non-scattering domains with
inward cusps for any k > 0, extending the corresponding result for k = 0 in [45]. In
contrast, domains having suitable corner points cannot be non-scattering domains for any
k > 0, i.e. “corners always scatter”. This line of research was initiated in [7] and various
further results were obtained in [4–6, 15, 16, 21, 38].

1.4 Organization

We prove Theorems 1.2 and 1.5 in §2, respectively §3. In §4, we introduce an obstacle prob-
lem, and define the partial balayage in terms of the maximizer of such an obstacle problem.
We then study the structure of partial balayage in §5 and §6. Using these properties, we
prove Theorem 1.6 in §7. Finally, we provide some details about a real-valued fundamental
solution relevant to our construction, some results related to maximum principles, and the
mean value theorem (MVT) in Appendix A.

2 PDE Characterization of Quadrature Domains

In this section we will prove Theorem 1.2 from the introduction. We begin with a global
PDE characterization of k-quadrature domains.

Proposition 2.1 Let k > 0, and let D ⊂ R
n be a bounded open set. Then D is a k-

quadrature domain corresponding to μ ∈ E ′(D) if and only if there is a distribution u ∈
D ′(Rn) satisfying {

(� + k2)u = χD − μ in R
n,

u = |∇u| = 0 in R
n \ D.

(2.1)
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Note that even though u is only assumed to be in D ′(Rn), the equation (� + k2)u = χD

near ∂D and elliptic regularity imply that u is C1 near ∂D and hence the condition that
u = |∇u| = 0 in R

n \ D is meaningful.

Example 2.2 (When μ is a Dirac mass.) For the case when D = BR with R > 0, and
the measure is a constant multiple of the Dirac mass, we can find an explicit solution u =
uk,R of Eq. 2.1 in terms of Bessel functions. The general radially symmetric solution of
(� + k2)u = 1 in R

n \ {0} is

uk(x) = 1

k2
+ c1|x|1− n

2 Jn
2 −1(k|x|) + c2|x|1− n

2 Yn
2 −1(k|x|).

Given a radius R > 0 there is a unique choice of the constants c1, c2 so that uk,R :=
ukχBR

∈ C1,1(Rn \ {0}), namely

c1 = πR
n
2 Yn

2
(kR)

2k
and c2 = −πR

n
2 Jn

2
(kR)

2k
.

With these choices of coefficients uk,R satisfies

(� + k2)uk,R = χBR
− k− n

2 (2πR)
n
2 Jn

2
(kR) δ in R

n,

uk,R|
Rn\BR

= 0,

which gives an example of Proposition 2.1 with μ = k− n
2 (2πR)

n
2 Jn

2
(kR) δ.

Example 2.3 (When μ ≡ 0.) Let D be a bounded domain in R
n such that ∂D is homeomor-

phic to a sphere. The well-known Pompeiu problem [40, 50, 53] asks whether the existence
of a nonzero continuous function on R

n whose integral vanishes on all congruent copies of
D implies that D is a ball.

The problem can be reformulated in terms of free boundary problems, or in the context
of this paper, in terms of null k-quadrature domains (i.e., μ ≡ 0). Indeed the assumption in
Pompeiu problem is equivalent to the existence of a function v solving the free boundary
problem

�v + λv = χD in R
n, v = 0 outside D, (2.2)

for some λ > 0, see [51, Theorem 1] and [50]. If the bounded open set D satisfies the
assumptions in the Pompeiu problem and its boundary ∂D is additionally Lipschitz regular,
then ∂D is analytic [51]. See also [9, 10, 20] for some related results. The so-far unanswered
question is: whether D has to be a ball?

The fact that balls (with appropriate radii depending on k > 0) solve this problem is

evident from the following simple procedure: take the function u(x) = |x| 2−n
2 Jn−2

2
(k|x|)

that solves �u + k2u = 0 in R
n, add a constant to u so that one of the local minima (say

|x| = R) of u reaches the level zero, and then redefine the function to be zero outside BR .
After multiplying by a suitable constant, this function obviously solves the free boundary
formulation of the Pompeiu problem.

An interesting observation is that the solution to the free boundary formulation of the
Pompeiu problem thus constructed may change sign. The construction leads to a non-
negative solution only if we choose R to be the smallest radius for which u takes a
minimum.

The above discussion also gives an indication of the failure of the application of the
classical moving-plane technique for this problem.
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We will require the following Runge approximation type result, see e.g. [1, Chapter 11]
for related results. We will follow the argument in [43, Lemma 5.1].

Proposition 2.4 Let k ≥ 0, and let D ⊂ R
n be a bounded open set. Let �k be any funda-

mental solution of −(� + k2) and let � ⊃ D be any open set in R
n. Then the linear span

of
F = {∂α�k(z − · )|D : z ∈ � \ D, |α| ≤ 1}

is dense in
HkL

1(D) = {w ∈ L1(D) : (� + k2)w = 0 in D}
with respect to the L1(D) topology.

Remark 2.5 If the domain D has sufficiently regular boundary it suffices to take α = 0 in
F . However, for domains like the slit disk one needs to consider also ∂α�k(z − · )|D for all
|α| = 1 and z ∈ � \ D below (note that these functions are all in L1(D)). We shall later
require a version of this result for sub-solutions (see Proposition 7.5).

Proof of Proposition 2.4 By the Hahn–Banach theorem, it is enough to show that any
bounded linear functional � on L1(D) that satisfies �|F = 0 also satisfies �|HkL

1(D) = 0.
Since the dual of L1(D) is L∞(D), there is a function f ∈ L∞(D) with

�(w) =
∫

D

f w dx, w ∈ L1(D).

We extend f by zero to R
n and consider the function

u(z) = −(�k ∗ f )(z) for all z ∈ �.

By the assumption �|F = 0, the function u satisfies{
(� + k2)u = f in �,

u = |∇u| = 0 in � \ D.

We now consider the zero extension of u, still denoted by u, which satisfies{
(� + k2)u = f in R

n,

u = |∇u| = 0 in R
n \ D.

Note that since f ∈ L∞, we have u ∈ C1,α for any α < 1. In order to show that �|HkL
1(D) =

0, we take some w ∈ HkL
1(D) and compute

�(w) =
∫

D

f w dx =
∫

D

((� + k2)u)w dx.

We claim that one can integrate by parts and use the condition (� + k2)w = 0 to conclude
that ∫

D

((� + k2)u)w dx = 0. (2.3)

This implies that �|HkL
1(D) = 0 and proves the result. However, the proof of Eq. 2.3 is

somewhat delicate due to the failure of Calderón–Zygmund estimates when p = ∞. In the
case k = 0, Eq. 2.3 follows from [43, Lemma 5.1]. We will verify that the same argument
works for k > 0.

First observe that u solves
�u = f − k2u in R

n.
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Since f and u are L∞, it follows from [25, Theorem 3.9] that ∇u satisfies

|∇u(x) − ∇u(y)| ≤ C|x − y| log(1/|x − y|), x, y ∈ D, |x − y| < e−2.

Using the condition u = |∇u| = 0 in R
n \ D, this implies that uniformly for x ∈ D near

∂D one has

u(x) = O(δ(x)2 log(1/δ(x))),

∇u(x) = O(δ(x) log(1/δ(x))),

where δ(x) = dist(x, ∂D).
As in [43, Lemma 5.1] we introduce the sequence (ωj )

∞
j=1 of Ahlfors–Bers mollifiers

[2, 3] that satisfy ωj ∈ C∞(Rn), 0 ≤ ωj ≤ 1, ωj = 0 near ∂D, ωj = 1 outside a
neighborhood of ∂D, ωj (x) → 1 for x /∈ ∂D, and

|∂αωj (x)| ≤ Cαj−1δ(x)−|α|(log 1/δ(x))−1 for x /∈ ∂D,

see [30, Lemma 4]. We now begin the proof of Eq. 2.3. One has∫
D

((� + k2)u)w dx = lim
j→∞

∫
D

((� + k2)u)ωjw dx

= lim
j→∞

∫
D

[
(� + k2)(ωju) − 2∇ωj · ∇u − (�ωj )u

]
w dx.

Using the estimates for u and ωj , the limits corresponding to the last two terms inside the
brackets are zero. Moreover, since w is smooth near supp(ωj ), we have∫

D

(� + k2)(ωju)w dx =
∫

D

ωju(� + k2)w dx = 0.

This concludes the proof of Eq. 2.3.

Proof of Proposition 2.1 Let �k be any fundamental solution of −(� + k2), i.e. �k ∈
D ′(Rn) solves −(� + k2)�k = δ0 in R

n. In particular, �k is smooth away from the origin.
If D is a k-quadrature domain corresponding to μ, then∫

D

∂α�k(z − x) dx = 〈μ, ∂α�k(z − · )〉 (2.4)

whenever z ∈ R
n \ D and |α| ≤ 1. Let u = −�k ∗ (χD − μ), which is well defined

since χD − μ is a compactly supported distribution. We see that (� + k2)u = χD − μ and
u = |∇u| = 0 in R

n \ D as required.
Conversely, suppose that u ∈ D ′(Rn) is as in the statement. We easily obtain the quadra-

ture identity for functions w that solve (� + k2)w = 0 near D, since by taking a cutoff
ψ ∈ C∞

c (Rn) with ψ = 1 near D we have∫
D

w dx − 〈w,μ〉 = 〈χD − μ,ψw〉 = 〈−(� + k2)u, ψw〉 = 〈u, −(� + k2)(ψw)〉 = 0,

using that the derivatives of ψ vanish near supp(u).
For general solutions w ∈ L1(D) we need another argument. Since u is compactly

supported, by the properties of convolution for distributions we have

u = δ0 ∗ u = −(� + k2)�k ∗ u = −�k ∗ (� + k2)u = −�k ∗ (χD − μ).

Using that u = |∇u| = 0 in R
n \ D, we have∫

D

∂α�k(z − x) dx = 〈μ, ∂α�k(z − · )〉 (2.5)
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for all z ∈ R
n \ D and |α| ≤ 1. Now let w ∈ L1(D) solve (� + k2)w = 0 in D, and use

Proposition 2.4 to find a sequence wj ∈ span{∂α�k(z − · )|D : z ∈ R
n \ D, |α| ≤ 1} with

wj → w ∈ L1(D). In particular, for any j ≥ 1 we have∫
D

wj dx = 〈μ, wj 〉. (2.6)

Since μ ∈ E ′(D), there is a compact set K ⊂ D and an integer m ≥ 0 such that

|〈μ, ϕ〉| ≤ C‖ϕ‖Cm(K), ϕ ∈ C∞(D).

By elliptic regularity and Sobolev embedding, any v ∈ L1(D) with (� + k2)v ∈ Hs−2(D)

satisfies v ∈ Cm(K) when s > m + n/2. By the closed graph theorem this yields the
estimate

‖v‖Cm(K) ≤ C(‖v‖L1(D) + ‖(� + k2)v‖Hs−2(D)).

Applying this estimate to v = wj − w gives

‖wj − w‖Cm(K) ≤ C‖wj − w‖L1(D). (2.7)

Thus we may take limits as j → ∞ in Eq. 2.6 and obtain that∫
D

w dx = 〈μ, w〉.
This shows that D is a k-quadrature domain for μ.

Proof of Theorem 1.2 If D is a k-quadrature domain corresponding to μ, then taking a
neighborhood U of ∂D that is disjoint from supp(μ) and restricting the distribution from
Proposition 2.1 to U gives the required u ∈ D ′(U) satisfying Eq. 1.3.

Conversely, assume that u ∈ D ′(U) satisfies Eq. 1.3. Let ψ ∈ C∞
c (U) satisfy 0 ≤ ψ ≤ 1

and ψ = 1 near ∂D, and define ũ = ψu ∈ D ′(Rn). Also define

μ̃ := χD − (� + k2)ũ. (2.8)

Then ũ satisfies {
(� + k2)ũ = χD − μ̃ in R

n,

ũ = |∇ũ| = 0 in R
n \ D.

Moreover, μ̃ ∈ D ′(Rn) satisfies supp(μ̃) ⊂ D by the assumption on u. Then D is a k-
quadrature domain by Proposition 2.1. By elliptic regularity u is smooth in U ∩D, and thus
μ̃ coincides with a smooth function in D. Since one also has supp(μ̃) ⊂ D, it follows that
μ̃ has a smooth density with respect to Lebesgue measure.

3 Quadrature Domains with Cusps

This section contains the proof of Theorem 1.5. The proof will employ the following simple
fact regarding the vanishing order of solutions. In this section all functions are allowed to
be complex valued.

Lemma 3.1 Let v be a C∞ function near some x0 ∈ R
n satisfying{

�v = O(|x − x0|m) near x0,

v|S = ∂νv|S = 0,
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where m ≥ 0 is an integer, S is a smooth hypersurface through x0, and ∂ν denotes the
derivative in the normal direction to S. Then one has v = O(|x − x0|m+2), and more
precisely

v =
∑

|α|=m+2

vα(x)(x − x0)
α

where vα are smooth near x0.

Proof After a rigid motion, we may assume that x0 = 0 and the normal of S satisfies
ν(0) = en. We use the Taylor formula and write v as

v =
m+1∑
j=0

Pj + R, R =
∑

|α|=m+2

vα(x)(x − x0)
α,

where each Pj is a homogeneous polynomial of degree j and each vα is smooth. Using the
assumption v|S = ∂νv|S = 0 we have P0 = P1 = 0. Moreover, the assumption for �v

implies that
m+1∑
j=2

�Pj = O(|x|m).

Since the left hand side is a polynomial of degree m − 1, it follows that we must have
�Pj = 0 for 2 ≤ j ≤ m + 1.

Suppose that γ is a smooth curve on S with γ (0) = 0 and γ̇ (0) = ω where ω ⊥ en and
|ω| = 1. Since v|S = ∂νv|S = 0, we have

0 = v(γ (t)) =
m+1∑
j=2

|γ (t)|jPj (γ (t)/|γ (t)|) + O(|γ (t)|m+2), (3.1)

0 = ∂νv(γ (t)) =
m+1∑
j=2

|γ (t)|j−1ν(γ (t)) · ∇Pj (γ (t)/|γ (t)|) + O(|γ (t)|m+1). (3.2)

Since γ (t) = tω + O(t2), we have γ (t)/|γ (t)| → ω as t → 0. If one would have
P2(ω) �= 0, then multiplying Eq. 3.1 by t−2 would lead to a contradiction as t → 0. Simi-
larly ∂nP2(ω) �= 0 would lead to a contradiction with Eq. 3.2. Thus P2(ω) = ∂nP2(ω) = 0.
Varying ω implies that

P2|xn=0 = ∂nP2|xn=0 = 0.
But since �P2 = 0, unique continuation implies that P2 ≡ 0. Iterating this argument shows
that P2 ≡ . . . ≡ Pm+1 = 0 as required.1

We are now ready to prove Theorem 1.5. As we shall illustrate in Examples 3.3–3.5 the
domain D may have inward cusps and the map ϕ is not necessarily injective on ∂D, which
introduces some technicalities in the argument.

Proof of Theorem 1.5 Let D = ϕ(D) where ϕ is analytic near D and injective in D. Note
that D is an open set by the open mapping theorem for analytic functions [41, Theo-
rem 10.32]. We claim:

if zj ∈ D and d(ϕ(zj ), ∂D) → 0, then d(zj , ∂D) → 0. (3.3)

1Lemma 3.1 can also be proved by a simple blow-up argument. Starting with a quadratic blow-up one obtains
P2 in the limit and S becomes a hyperplane {xn = 0}, along with the zero Cauchy-data for P2. This implies
P2 ≡ 0. Repeating this argument, by a cubic scaling we obtain P3 ≡ 0. Iterating this argument we have
Pj ≡ 0 for all j ≤ m + 1.
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To see Eq. 3.3, we argue by contradiction and assume that d(ϕ(zj ), ∂D) → 0 but there
is ε > 0 and a subsequence (zjk

) with d(zjk
, ∂D) ≥ ε. After passing to another sub-

sequence also denoted by (zjk
), we have zjk

→ z ∈ D with d(z, ∂D) ≥ ε. However,
since d(ϕ(zj ), ∂D) → 0 we must have d(ϕ(z), ∂D) = 0. This contradicts the fact that
ϕ(D) = D, proving Eq. 3.3.

Next we show that
ϕ(∂D) = ∂D. (3.4)

We begin the proof of Eq. 3.4 by taking z ∈ ∂D and showing that ϕ(z) ∈ ∂D. By continuity
ϕ(z) ∈ D. If one had ϕ(z) ∈ D, then since ϕ is bijective D → D there would be some
z′ ∈ D with ϕ(z′) = ϕ(z). For any ε < |z − z′|/2 we consider the open sets ϕ(Bε(z

′)) and
ϕ(Bε(z)∩D). The point ϕ(z) is contained in the interior of the first set and in the closure of
the second, in particular the two sets are not disjoint. This contradicts the assumption that ϕ

is injective, and thus proves that ϕ(∂D) ⊂ ∂D. For the converse inclusion, if x ∈ ∂D and
xj → x where xj ∈ D, then xj = ϕ(zj ) for some zj ∈ D. After passing to a subsequence
we may assume that zjk

→ z ∈ D, and by Eq. 3.3 one must have z ∈ ∂D. Thus x =
lim ϕ(zj ) = ϕ(z), proving Eq. 3.4.

By Theorem 1.2, the result will follow if we can find a distribution u near ∂D solving{
(� + k2)u = χD near ∂D,

u = |∇u| = 0 outside D.
(3.5)

By the chain rule the equation (� + k2)u = 1 in some set ϕ(U1), with U1 ⊂ D open, is
equivalent to the equation

(� + k2|ϕ′|2)(u ◦ ϕ) = |ϕ′|2 in U1.

Since |ϕ′|2 = ∂ϕ∂ϕ is real-analytic near ∂D, the Cauchy–Kowalevski theorem implies that
there exists a neighborhood U of ∂D and a function û which is real-analytic in U such that{

(� + k2|ϕ′|2)û = |ϕ′|2 in U,

û = ∂νû = 0 on ∂D.
(3.6)

By Eq. 3.4 and the open mapping theorem we know that V = ϕ(U) is an open neighborhood
of ∂D. We define

u(x) :=
{

û(ϕ−1(x)) for all x ∈ V ∩ D,

0 for all x ∈ V \ D.

The function u is defined piecewise and it satisfies Eq. 3.5 away from ∂D. If we can
prove that u ∈ C1,1(V ), then u will satisfy Eq. 3.5 also near ∂D and the proof of the
theorem will be concluded. Note that by the inverse function theorem, u is smooth in V ∩D.
We would like to show that u is continuous up to ∂D. If x ∈ ∂D and xj ∈ V ∩ D satisfy
xj → x, then xj = ϕ(zj ) for some zj ∈ D. Then d(ϕ(zj ), ∂D) → 0, and Eq. 3.3 ensures
that d(zj , ∂D) → 0. It follows that

u(xj ) = û(zj ) → 0

since û is Lipschitz near ∂D and û|∂D = 0. This shows that u ∈ C0(V ).
Next we show that u is C1 up to ∂D. Let x ∈ ∂D and xj ∈ D with xj → x. It is enough

to show that for any ε > 0 there is j0 such that |∇u(xj )| ≤ ε for j ≥ j0. Now xj = ϕ(zj )

where zj ∈ D, and by the chain rule one has

∂u(ϕ(z)) = ∂û(z)

ϕ′(z)
, ∂u(ϕ(z)) = ∂û(z)

ϕ′(z)
.
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Thus

|∇u(ϕ(z))| = |∇û(z)|
|ϕ′|(z) . (3.7)

Using Eq. 3.3 we know that d(zj , ∂D) → 0, and thus ∇û(zj ) → 0 since ∇û|∂D = 0. How-
ever, ϕ′(zj ) may also converge to zero and this requires some care. We start by observing
that there are only finitely many points z0 ∈ ∂D with ϕ′(z0) = 0, and near any such z0 one
can write

ϕ(z) = ϕ(z0) + (z − z0)
2g(z),

for some analytic function g. Since ϕ : D → D is bijective it follows that ϕ′′(z0) �= 0 and
hence g(z0) �= 0 (see Remark 3.2). Thus |ϕ′(z)|2 = O(|z − z0|2). Using Lemma 3.1 we
know that

∂αû(z) = O(|z − z0|4−|α|) for |α| ≤ 4 and for all z near z0. (3.8)

By Eq. 3.7, for z ∈ D near z0 we have

|∇u(ϕ(z))| ≤ C
|z − z0|3
|z − z0| ≤ C|z − z0|2.

Thus there is δ > 0 such that

|∇u(ϕ(z))| ≤ ε when z ∈ W :=
⋃

z0∈∂D,ϕ′(z0)=0

(B(z0, δ) ∩ D).

We have ∂D ⊂ W ∪ W ′ where W ′ is some open set with |ϕ′(z)| ≥ c > 0 for z ∈ W ′. We
already know that |∇u(ϕ(zj ))| ≤ ε when zj ∈ W , and for zj ∈ W ′ the expression Eq. 3.7
gives that

|∇u(ϕ(zj ))| ≤ 1

c
|∇û(zj )|

which becomes ≤ ε when j ≥ j0 for some sufficiently large j0 by Eq. 3.3. This concludes
the proof that u ∈ C1(V ).

Finally, we use the chain rule again and observe that for z ∈ D one has

|∇2u(ϕ(z))| ≤ C

( |∇2û(z)|
|ϕ′(z)|2 + |∇û(z)||ϕ′′(z)|

|ϕ′(z)|3
)

.

As before, the worst case is when z is close to some z0 ∈ ∂D with ϕ′(z0) = 0. By Eq. 3.8,
for z near z0 one has

|∇2u(ϕ(z))| ≤ C

( |∇2û(z)|
|z − z0|2 + |∇û(z)|

|z − z0|3
)

≤ C.

It follows that ∇u is Lipschitz continuous in V . In fact it is Lipschitz in V ∩ D and V \ D,
and if x ∈ V ∩D and y ∈ V \D we let y1 be a closest point to x in R

n \D (so that y1 ∈ ∂D)
and observe that

|∇u(x) − ∇u(y)| = |∇u(x) − ∇u(y1)| ≤ C|x − y1| ≤ C|x − y|.
This proves that u ∈ C1,1(V ), and therefore concludes the proof of Theorem 1.5.

Remark 3.2 Let D = ϕ(D) where ϕ is an analytic function near D which is injective in D.
In this remark we clarify what ∂D looks like. Recall from Eq. 3.4 that ϕ(∂D) = ∂D. We
may divide the boundary points in three categories.

(i) (Smooth points) If x0 ∈ ∂D is of the form x0 = ϕ(z0) for a unique z0 ∈ ∂D and
ϕ′(z0) �= 0, then by the inverse function theorem D near x0 is given by the region
above the graph of a real-analytic function.



P.-Z. Kow et al.

(ii) (Inward cusp points) If x0 ∈ ∂D is of the form x0 = ϕ(z0) for some z0 ∈ ∂D with
ϕ′(z0) = 0, then ϕ′′(z0) �= 0 since if ϕ vanished to higher order the bijectivity in D

would fail in the same way that it does for z �→ zm, m > 2, around z = 0 (the image
of an arbitrary half-plane covers C\ {0} more than once). Thus ϕ behaves near z0 like
z �→ z2 which produces an inward cusp.

(iii) (Double points) If x0 ∈ ∂D satisfies x0 = ϕ(z1) = ϕ(z2) for two distinct z1, z2 ∈ ∂D,
then by the bijectivity ϕ′(z1) �= 0 and ϕ′(z2) �= 0 and there exists an r > 0 small
enough so that ∂D ∩ Br(x0) is the union of two analytic arcs whose intersection is
{x0} where the arcs touch (by injectivity they do not cross).

Moreover, there are only finitely many points which fail to be in category (i).

This classification of the points on the boundary of D is rather classical. Remark 3.2 is
also related to Sakai’s regularity theorem, see [44, Theorem 5.2] as well as [37, Section 3.2].

Example 3.3 (Fig. 1) Let ϕ(z) = z + 1
2z2 and D = ϕ(D). Then D is a cardioid whose

boundary is smooth except at the point ϕ(−1) = −1/2 where it has an inward cusp. It is
clear that ϕ satisfies the conditions of Theorem 1.5. Similarly, if ϕ(z) = z+ 1

m
zm for integer

m ≥ 2 then D has m − 1 inward cusps.

Example 3.4 (Fig. 2) Let ϕ(z) = z − 2
√

2
3 z2 + 1

3z3 and D = ϕ(D) (see e.g. [37, equa-
tion (1.9)]). Then the corresponding domain D is not a Jordan domain and furthermore
its boundary has inward cusps. By Theorem 1.5, the domain D is a k-quadrature
domain.

Example 3.5 (Fig. 3) Let ϕ(z) = (z − 1)2 − (
1 − i

2

)
(z − 1)3 and D = ϕ(D). The domain

D looks similar to a cardioid, but with an inward cusp which is curved in such a manner
that the ∂D cannot locally be represented as the graph of a function. It is also a k-quadrature
domain by Theorem 1.5.

Fig. 1 Plot of Example 3.3 (GNU Octave)
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Fig. 2 Plot of Example 3.4 (GNU Octave)

4 Partial Balayage Via an Obstacle Problem

In this section we define the partial balayage measure Bal(μ) with respect to � + k2 for
certain sufficiently concentrated measures μ when k > 0 is small. For simplicity we will
assume that μ is concentrated near the origin, but by translation invariance any other point
would do. There are several ways of defining partial balayage, and we will proceed via an
obstacle problem (see e.g. [27, Definition 3.2] for k = 0).

Let R(n, k) = 1
2j n−2

2 ,1k
−1 and let �̃k = �̃k,R(n,k) be the fundamental solution given in

Proposition A.1. Here and in what follows we write U
μ
k := �̃k ∗ μ for any Radon measure

μ. In the special case where μ = χ�m for some open set � we simply write U�
k := �̃k∗χ�.

Fig. 3 Plot of Example 3.5 (GNU Octave)
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We now restrict ourselves to measures μ having a bounded density with respect to
Lebesgue measure. Slightly abusing notation we write μ ∈ L∞(�) to mean that μ has the
form

μ = f m,

where f ∈ L∞(Rn) satisfies f = 0 outside �. Under this assumption, by elliptic regularity
(see e.g. [25, Theorem 9.11])

U
μ
k ∈

⋂
1<p<∞

W
2,p

loc (Rn) ⊂
⋂

0<α<1

C1,α(BR(n,k)).

For k > 0 and μ ∈ L∞(BR(n,k)) define

Fk(μ) =
⎧⎨
⎩ v ∈ H 1(BR(n,k))

(� + k2)v ≥ −1 in BR(n,k)

v ≤ U
μ
k in BR(n,k)

v = U
μ
k on ∂BR(n,k)

⎫⎬
⎭ . (4.1)

Lemma 4.1 Let 0 < γ < R(n, k) and μ ∈ L∞(Bγ ). Assume that there exists r > 0 such
that

r < R(n, k) − γ and cMVT
n,k,r ≥ μ+(Rn), (4.2)

where cMVT
n,k,r is the constant appearing in the mean value theorem for the Helmholtz equation

(see Eq. A.3). Then Fk(μ) contains an element ũk which equals U
μ
k in BR(n,k) \Bγ+r (note

that γ + r < R(n, k).

Proof Let

ũk := U
μ+
k ∗ hr − U

μ−
k where hr := 1

cMVT
n,k,r

χBr . (4.3)

Using the mean value theorem in Proposition A.2, we have

U
μ+∗hr

k (x) ≤ U
μ+
k (x) for all x ∈ R

n with equality if μ+(Br(x)) = 0,

which implies
ũk ≤ U

μ
k in R

n and ũk = U
μ
k in R

n \ Bγ+r .

Finally we note that

(�+k2)ũk(x) = (−μ+∗hr+μ−)(x) ≥ −μ+∗hr(x) = −μ+(Br(x))

cMVT
n,k,r

≥ −μ+(Rn)

cMVT
n,k,r

≥ −1,

which shows that ũk ∈ Fk(μ).

For fixed μ we now choose the parameter r in Lemma 4.1 in order to find an explicit
range of k > 0 for which the lemma applies.

By the definition of cMVT
n,k,r the second inequality in Eq. 4.2 is equivalent to

k ≤ (2πkr)
1
2 Jn

2
(kr)

1
n

μ+(R)
1
n

. (4.4)

Since t �→ t
1
2 Jn

2
(t)

1
n is strictly increasing on [0, j n−2

2 ,1], we see that in order to maximize

the range of k we here want to choose kr as large as possible.
By the definition of R(n, k) we see that the range of r we can consider is given by

0 < rk <
1

2
j n−2

2 ,1 − γ k .
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Therefore, if we assume that

k ≤
j n−2

2 ,1

4γ
we can choose

rk =
1
2j n−2

2 ,1 − γ k

2
≥

j n−2
2 ,1

8
.

By the monotonicity of t �→ t
1
2 Jn

2
(t)

1
n we then know that Eq. 4.4 is satisfied for all

k ≤

(
πj n−2

2 ,1

4

) 1
2

Jn
2

(
j n−2

2 ,1

8

) 1
n

μ+(R)
1
n

.

Consequently, for any

cn ≤ min
{(πjn−2

2 ,1

4

) 1
2

Jn
2

(j n−2
2 ,1

8

) 1
n

,
j n−2

2 ,1

4

}

we conclude the following lemma:

Lemma 4.2 Fix any γ > 0 and μ ∈ L∞(Bγ ). There exists a positive constant cn

(depending only on the dimension n) such that if

0 < k ≤ cn min{γ −1, μ+(Rn)−
1
n } (4.5)

then Fk(μ) contains an element ũk with

ũk = U
μ
k near Rn \ BR(n,k). (4.6)

The following proposition will be used to define partial balayage in terms of the solution
of our obstacle problem.

Proposition 4.3 Let μ and k > 0 be as in Lemma 4.2. Then there exists a largest element
V

μ
k in Fk(μ). In addition, the element V μ

k satisfies

〈1 + (� + k2)V
μ
k , V

μ
k − U

μ
k 〉 = 0, (4.7)

where 〈·, ·〉 is the H−1(BR(n,k)) × H 1
0 (BR(n,k)) duality pairing.

Remark 4.4 Note that Lemma 4.2 implies that there exists ũk ∈ Fk(μ) satisfying ũk = U
μ
k

near ∂BR(n,k). Therefore, if V
μ
k is that largest element in Fk(μ) then

V
μ
k = U

μ
k near ∂BR(n,k). (4.8)

Therefore, we can extend V
μ
k to the whole R

n, by defining V
μ
k := U

μ
k outside BR(n,k).

The proof of the proposition is based on variational arguments. In particular, we shall
need the following elementary lemma several times in the proof.

Lemma 4.5 Fix k > 0 and 0 < R < jn−2
2 ,1k

−1. Let a : H 1
0 (BR) × H 1

0 (BR) → R be the

symmetric bilinear form defined by

a(u1, u2) :=
∫

BR

(∇u1 · ∇u2 − k2u1u2) dm. (4.9)

Then a is continuous, positive, and coercive.
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Proof That a is a continuous is clear from the definition. To prove that the form is coercive
and positive we observe that by assumption k2 is strictly smaller than the first eigenvalue of
Dirichlet Laplacian on BR (which is exactly j2

n−2
2 ,1

R−2). Therefore,

a(u, u) =
∫

BR

(|∇u|2 − k2|u|2) dm ≥ (1 − k2R2j−2
n−2

2 ,1
)

∫
BR

|∇u|2 dm.

This concludes the proof.

Proof of Proposition 4.3 Let ϕ ∈ H 1(BR(n,k)) be the unique solution to{
(� + k2)ϕ = −1 in BR(n,k),

ϕ = U
μ
k on ∂BR(n,k),

(4.10)

and define

F̃k(μ) = {
w = ϕ − v v ∈ Fk(μ)

}=
{
w ∈ H 1

0 (BR(n,k))
(� + k2)w ≤ 0 in BR(n,k)

w ≥ ϕ − U
μ
k in BR(n,k)

}
.

We claim that there exists a smallest element u∗ of F̃k(μ). If this is the case then

V
μ
k := ϕ − u∗ in BR(n,k) (4.11)

is the largest element of Fk(μ).
To see that there exists a smallest element in F̃k(μ) we argue as follows. Let a be

the bilinear form defined in Eq. 4.9 with R = R(n, k). By Lemma 4.5 a is symmetric,
continuous, and coercive. Define the constraint set

K̃k := {
u ∈ H 1

0 (BR(n,k)) u ≥ ϕ − U
μ
k

}
. (4.12)

Note that ϕ − U
μ
k ∈ H 1

0 (BR(n,k)) by definition of ϕ, thus K̃k is nonempty. Since K̃k is
a nonempty closed convex subset of H 1

0 (BR(n,k)), Stampacchia’s theorem [8, Theorem 5.6]

implies that there exists a unique u∗ ∈ K̃k that minimizes the functional

u �→ a(u, u) (4.13)

and u∗ ∈ K̃k can also be characterized by

a(u∗, u − u∗) ≥ 0 for all u ∈ K̃k . (4.14)

Plugging in u = u∗ + φ with non-negative φ ∈ C∞
c (BR(n,k)) into Eq. 4.14, the definition

of a in Eq. 4.9 implies that
(� + k2)u∗ ≤ 0 in BR(n,k). (4.15)

In particular, we conclude that u∗ ∈ F̃k(μ). Finally, by arguing as in the proof of
[34, Theorem II.6.4], one can prove that u∗ ≤ v in BR(n,k) for all v ∈ F̃k(μ). Consequently,
we have found the desired smallest element in F̃k(μ).

Choosing u = ϕ − U
μ
k ∈ H 1

0 (BR(n,k)) in Eq. 4.14, we have

〈(� + k2)u∗, ϕ − U
μ
k − u∗〉 ≤ 0. (4.16)

Since u∗ ∈ K̃k we know that u∗ ≥ ϕ − U
μ
k . Along with Eqs. 4.15 and 4.16 this inequality

implies
〈(� + k2)u∗, ϕ − U

μ
k − u∗〉 = 0. (4.17)

Combining Eq. 4.17 with Eq. 4.11, as well as Eq. 4.10, we obtain

0 = 〈(� + k2)(ϕ − V
μ
k ), V

μ
k − U

μ
k 〉 = −〈1 + (� + k2)V

μ
k , V

μ
k − U

μ
k 〉,
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which shows that V
μ
k satisfies Eq. 4.7.

We are now ready to define partial balayage for the Helmholtz operator.

Definition 4.6 Let μ and k > 0 be as in Lemma 4.2. The partial balayage of μ is defined
by

Balk(μ) := −(� + k2)V
μ
k in distribution sense, (4.18)

where V
μ
k is given by Proposition 4.3.

We have the following basic properties of the partial balayage measure and the
corresponding potential.

Lemma 4.7 Let μ and k > 0 be as in Lemma 4.2. Then

Balk(μ) ≤ 1 in R
n, (4.19a)

U
Balk(μ)
k ≡ V

μ
k in R

n. (4.19b)

We also have
U

Balk(μ)
k ≤ U

μ
k in R

n (4.19c)
and

U
Balk(μ)
k = U

μ
k in a neighborhood of Rn \ BR(n,k). (4.19d)

Proof If we can show Eq. 4.19b, then Eqs. 4.19a and 4.19c are immediate consequence of
Proposition 4.3 and the definition of Fk(μ), while Eq. 4.19d is an immediate consequence
of Remark 4.4. It remains to prove Eq. 4.19b. Write u = U

μ
k − V

μ
k , so −(� + k2)u =

μ − Balk(μ). Note that u has compact support by Remark 4.4. Thus

u = �̃k ∗ (−(� + k2)u) = �̃k ∗ (μ − Balk(μ)) = U
μ
k − U

Balk(μ)
k .

This proves that U
Balk(μ)
k = V

μ
k .

We also make the following observation which will be very useful in our construction of
k-quadrature domains.

Lemma 4.8 Let μ and k > 0 be as in Lemma 4.2. If

Balk(μ) = χDm for some open set D (4.20)

then

UD
k ≤ U

μ
k in R

n, (4.21a)

UD
k = U

μ
k in R

n \ D. (4.21b)

Proof We already proved Eq. 4.21a in Lemma 4.7. Set ν = Balk(μ) and rewrite Eq. 4.7 as

0 =
∫

BR(n,k)

(U
μ
k − UD

k )(1 − χD) dx =
∫

BR(n,k)\D
(U

μ
k − UD

k ) dx.

Combining this equality with Eqs. 4.21a and 4.19d, we conclude Eq. 4.21b.

We end this section by quickly relating our definition of partial balayage through an
obstacle problem to a formulation in terms of energy minimization. Such a formulation is
classical in the setting of k = 0 (see for instance [27]).
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Remark 4.9 (Partial balayage and energy minimization) Let μ and k > 0 be as in
Lemma 4.2. Using Proposition 5.1, we know that ν := Balk(μ) ∈ L∞(BR(n,k)). We define
the following bilinear form:

(μ1, μ2)e,k :=
∫∫

BR(n,k)×BR(n,k)

�̃k(x − y) dμ1(y) dμ2(x) =
∫

BR(n,k)

U
μ1
k (x) dμ2(x)

for all μ1, μ2 ∈ L∞(BR(n,k)). Using Lemma 4.7, we can write Eq. 4.7 as (ν−μ, m−ν)e,k =
0. Accordingly, for each σ ∈ L∞(BR(n,k)) with σ ≤ m, we see that

(ν − μ, σ − ν)e,k = (ν − μ, σ − m)e,k ≥ 0, (4.22)

where the inequality follows from Lemma 4.7. By defining the “energy” Ek(λ) := (λ, λ)e,k ,
we see that

(ν − μ, σ − ν)e,k = −Ek(ν − μ) + (ν − μ, σ − μ)e,k,

thus from Eq. 4.22, we have

Ek(ν − μ) ≤ (ν − μ, σ − μ)e,k for all σ ∈ L∞(BR(n,k)) with σ ≤ m. (4.23)

When U
μ1
k , U

μ2
k ∈ H 1

0 (BR(n,k)) we can compute

(μ1, μ2)e,k = −
∫

BR(n,k)

U
μ1
k (� + k2)U

μ2
k dx = a(U

μ1
k , U

μ2
k ),

Ek(μ1) = a(U
μ1
k , U

μ1
k ) ≥ 0,

where a(·, ·) is the (real) inner product given by Lemma 4.5. Thus the notion of Ek as an
energy functional makes sense. Using this observation and the Cauchy-Schwarz inequality,
if we restrict σ in Eq. 4.23 to those functions satisfying Uσ

k − U
μ
k ∈ H 1

0 (BR(n,k)), then we
have

Ek(ν − μ) ≤ a(U
ν−μ
k , U

σ−μ
k )

≤ (a(Uν
k − U

μ
k , Uν

k − U
μ
k ))

1
2 (a(Uσ

k − U
μ
k ,Uσ

k − U
μ
k ))

1
2

≡ (Ek(ν − μ))
1
2 (Ek(σ − μ))

1
2 .

Therefore, the partial balayage ν minimizes the energy in the following sense:

Ek(ν − μ) ≤ Ek(σ − μ) for all σ ∈ L∞(BR(n,k)) with Uσ
k ∈ Fk(μ), (4.24)

where Fk(μ) is given by Eq. 4.1. Here we also refer to [47, Section 30] for a related
discussion.

5 Structure of Partial Balayage

In this section we prove the following proposition which provides information concerning
the structure of Balk(μ). This will in particular be useful when we later on wish to construct
k-quadrature domains.

Proposition 5.1 (Structure of partial balayage) Let μ and k > 0 be as in Lemma 4.2 and
let ν := Balk(μ). Then

min{μ, m} ≤ ν ≤ m in R
n. (5.1)

Furthermore, if we define the open sets

D(μ) := R
n \ supp(m − ν), and (5.2)

ω(μ) := {
x ∈ R

n U
μ
k (x) > Uν

k (x)
}

(5.3)
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then ω(μ) ⊂ D(μ) and for each measurable set D with ω(μ) ⊂ D ⊂ D(μ) we have

ν = χDm + χRn\Dμ. (5.4)

Remark 5.2 The corresponding result for k = 0 can be found in [26, Theorem 2.3(c)]. We
refer also to [24, 27, 46], and in particular [27, Figure 3] for a visualization.

The set D(μ) is called the saturated set for ν = Balk(μ), which is the largest open set O
in R

n such that ν|O = m|O . By our assumptions and Lemma 4.7 both supp(ν) and supp(μ)

are contained in BR(n,k), and hence D(μ) ⊂ BR(n,k). We also note that if O ⊂ D(μ)\ω(μ)

has positive Lebesgue measure then μ|O = ν|O = m|O . In particular, if the density of μ is
greater than 1 on supp(μ) it holds that m(D(μ) \ ω(μ)) = 0. See also [26, Remark 2.4] for
some discussions on the relation between D(μ) and ω(μ) for the case when k = 0.

Proof of Proposition 5.1 Step 1: A minimization problem. Let ξ ∈ H 1
0 (BR(n,k)) be the

unique solution to −(� + k2)ξ = (1 − μ)+, and consider the constraint set

K̂k = {
w ∈ H 1

0 (BR(n,k)) w ≥ ξ − u∗
}
,

where u∗ ∈ H 1
0 (BR(n,k)) is the function appearing in the proof of Proposition 4.3. We recall

that u∗ minimizes the functional a(u, u) among all functions in K̃k , where a is the bilinear
form defined in Eq. 4.9 and K̃k was defined in Eq. 4.12. Note that K̂k is nonempty since
ξ − u∗ ∈ K̂k .

By Lemma 4.5 and Stampacchia’s Theorem (see [8, Theorem 5.6]) there exists a unique
w∗ ∈ K̂k which minimizes the functional w �→ a(w,w) among w ∈ K̂k . Moreover, the
minimizer w∗ is characterized by the property

a(w∗, w − w∗) = 〈−(� + k2)w∗, w − w∗〉 ≥ 0 for all w ∈ K̂k . (5.5)

Step 2: Complementarity formulation. Since w∗ ∈ K̂k , we can in Eq. 5.5 restrict w to
those satisfying w ≥ w∗. The definition of a implies that

(� + k2)w∗ ≤ 0 in BR(n,k). (5.6)

Choosing w = ξ − u∗ in Eq. 5.5,

〈(� + k2)w∗, ξ − u∗ − w∗〉 ≤ 0,

which along with Eq. 5.6 and the fact that w∗ ≥ ξ − u∗ implies

〈(� + k2)w∗, ξ − u∗ − w∗〉 = 0. (5.7)

In fact, if w∗ ∈ K̂k satisfies Eqs. 5.6 and 5.7, then

〈(� + k2)w∗, w − w∗〉
= 〈(� + k2)w∗, w − (ξ − u∗)〉 + 〈(� + k2)w∗, ξ − u∗ − w∗〉 ≤ 0,

for all w ∈ K̂k . Hence the minimizer w∗ ∈ K̂k can also be characterized by the
complementarity problem Eqs. 5.6 and 5.7.

Step 3: An energy inequality. We can rewrite Eq. 5.7 as

〈(� + k2)w∗, ξ − w∗〉 = 〈(� + k2)w∗, u∗〉. (5.8)

The inequalities (� + k2)ξ = −(1 − μ)+ ≤ 0 and w∗ ≥ ξ − u∗ (i.e. u∗ ≥ ξ − w∗) thus
imply that

〈(� + k2)ξ, ξ − w∗〉 ≥ 〈(� + k2)ξ, u∗〉. (5.9)
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Combining Eqs. 5.8 and 5.9, one finds

a(ξ − w∗, ξ − w∗) = 〈−(� + k2)(ξ − w∗), ξ − w∗〉
≤ 〈−(� + k2)(ξ − w∗), u∗〉 = a(ξ − w∗, u∗)
≤ a(ξ − w∗, ξ − w∗)

1
2 a(u∗, u∗)

1
2 .

By Lemma 4.5 the bilinear form a is positive, and thus we obtain the energy inequality

a(ξ − w∗, ξ − w∗) ≤ a(u∗, u∗). (5.10)

Step 4: Verifying that w∗ = ξ −u∗. If we can show that ξ −w∗ ∈ K̃k , i.e. that it satisfies

ξ − w∗ ≥ ϕ − U
μ
k in BR(n,k) (5.11)

where ϕ is the function in Eq. 4.10, then since u∗ minimizes a(u, u) among all u ∈ K̃k the
inequality in Eq. 5.10 implies that ξ − w∗ = u∗ in BR(n,k), in other words w∗ = ξ − u∗ in
BR(n,k).

To prove Eq. 5.11 we argue as follows. Let

φ := min{w∗, ξ − (ϕ − U
μ
k )} in BR(n,k). (5.12)

By the definition of φ and Proposition A.5,

φ ≤ w∗, φ ∈ K̂k, and − (� + k2)φ ≥ 0 in BR(n,k). (5.13)

Using Eq. 5.13 and the facts that w∗ ∈ H 1
0 (BR(n,k)) and −(� + k2)w∗ ≥ 0 in BR(n,k), we

have in terms of distributional pairings in BR(n,k) that

a(φ, φ) = 〈−(� + k2)φ, φ〉
≤ 〈−(� + k2)φ,w∗〉 = 〈φ, −(� + k2)w∗〉
≤ 〈w∗, −(� + k2)w∗〉 = a(w∗, w∗).

Since w∗ was defined to be the unique minimizer of a(w,w) among w ∈ K̂k , we obtain

φ = w∗ in BR(n,k).

By the definition of φ this can equivalently be stated as

w∗ ≤ ξ − (ϕ − U
μ
k ) in BR(n,k).

After rearranging we deduce the desired inequality Eq. 5.11. By the discussion following
Eq. 5.11 it holds that

w∗ = ξ − u∗ in BR(n,k).

Step 5: Proving Eq. 5.1. By 5.1, Eq. 5.6, and the definition of ξ ,

(� + k2)u∗ ≥ (� + k2)ξ = −(1 − μ)+. (5.14)

From Eqs. 4.11 and 4.19b we deduce that

u∗ = ϕ − Uν
k . (5.15)

Combining Eqs. 5.14 and 5.15, we obtain that in BR(n,k)

ν − 1 ≥ −(1 − μ)+ = − max{1 − μ, 0} = min{μ − 1, 0}
⇐⇒ min{1, μ} ≤ ν.

By the definition of partial balayage ν ≤ 1 in BR(n,k), and we have arrived at Eq. 5.1.
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Step 6: Proving Eq. 5.4. By the Calderón–Zygmund inequality U
μ
k ,Uν

k ∈ ⋂
p<∞ W

2,p

loc
(Rn) and hence ω(μ) is well defined as an open set. From Eq. 4.7 and Proposition 4.3, it
follows that

0 ≤
∫

ω(μ)

(U
μ
k − Uν

k ) d(m − ν) ≤
∫

BR(n,k)

(U
μ
k − Uν

k ) d(m − ν) = 0,

and hence ∫
ω(μ)

(U
μ
k − Uν

k ) d(m − ν) = 0. (5.16)

Consequently, ν|ω(μ) = m|ω(μ). Since ω(μ)c = {x ∈ R
n : Uν

k (x) = U
μ
k (x)} and U

μ
k , Uν

k ∈
W

2,p
loc (Rn) it holds that (� + k2)(Uν

k − U
μ
k ) = 0 almost everywhere on this set. Therefore,

ν|ω(μ)c = μ|ω(μ)c .
Consequently, for any D as in the proposition we by the definition of D(μ) have

ν|D\ω(μ) = m|D\ω(μ) and thus the claimed decomposition

ν = χDm + χRn\Dμ

follows. This completes the proof of Proposition 5.1.

We next deduce the following lemma.

Lemma 5.3 Let μ and k > 0 be as in Lemma 4.2. Suppose there is an open set D such that
D ⊂ BR(n,k) and supp(μ) ⊂ D and a distribution u satisfying

⎧⎪⎨
⎪⎩

(� + k2)u = χD − μ in BR(n,k),

u > 0 in D,

u = 0 in BR(n,k) \ D.

(5.17)

Then Balk(μ) = χDm, D = ω(μ) and D is a k-quadrature domain for μ.

Proof of Lemma 5.3 Since u (extended by zero outside BR(n,k)) is a compactly supported
distribution, we have

u = �̃k ∗ (−(� + k2)u) = U
μ
k − UD

k .

Since u is non-negative, then we know that UD
k ∈ Fk(μ), where Fk(μ) is the collection of

functions given in Eq. 4.1. For each v ∈ Fk(μ), since u = 0 in BR(n,k) \ D, we see that

w := UD
k − v = UD

k − U
μ
k + U

μ
k − v ≥ 0 in BR(n,k) \ D.

On the other hand, we have (�+k2)w = −1−(�+k2)v ≤ 0 in D. Therefore the maximum
principle in Proposition A.4 implies that w ≥ 0 in D as well. This shows that UD

k is the
largest element in Fk(μ), so by the definition of partial balayage Eq. 4.18 we have

Balk(μ) = −(� + k2)UD
k = χDm.

By the above we see that D = {u > 0} = {Uμ
k > U

Balk(μ)
k } = ω(μ).

Since u ∈ C1(Rn) attains its minimum in Dc it holds that |∇u| = 0 in Dc. Therefore,
since by assumption supp(μ) ⊂ D, Proposition 2.1 implies that D is a k-quadrature domain
for μ.
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6 Performing Balayage in Smaller Steps

Fix γ > 0 and assume that μ1, μ2 ∈ L∞(Bγ ) are non-negative. By Proposition 4.3, there
exists a positive constant cn such that if

0 < k < cn min{γ −1, μ1(R
n)−

1
n }, (6.1)

then U
Balk(μ1)
k is the largest element in Fk(μ1) (defined as in Eq. 4.1) and U

Balk(μ1)
k = U

μ1
k

near ∂BR(n,k). Again Proposition 4.3 also implies that if

0 < k < cn min{γ −1, (μ1 + μ2)(R
n)−

1
n }, (6.2)

then U
Balk(μ1+μ2)
k is the largest element of Fk(μ1 + μ2) and U

Balk(μ1+μ2)
k = U

μ1+μ2
k near

∂BR(n,k).
Finally, if we additionally assume that supp(ν1) ⊂ Bγ with ν1 = Balk(μ1), Proposi-

tion 4.3 implies that if

0 < k < cn min{γ −1, (ν1 + μ2)(R
n)−

1
n }, (6.3)

then U
Balk(ν1+μ2)
k is the largest element of Fk(ν1 + μ2) and U

Balk(ν1+μ2)
k = U

ν1+μ2
k near

∂BR(n,k). Using Proposition 5.1 we observe that

supp(μ1) ⊂ supp(μ1 + μ2) ⊂ supp(ν1 + μ2) ⊂ Bγ .

We are now ready to prove the following proposition:

Proposition 6.1 Let γ > 0 and μ1, μ2 ∈ L∞(Bγ ) be non-negative and such that
supp(Balk(μ1)) ⊂ Bγ . If

0 < k < cn min{γ −1, (μ1 + μ2)(R
n)−

1
n , (Balk(μ1) + μ2)(R

n)−
1
n }

with cn (depending only on the dimension n), then

Balk(μ1 + μ2) = Balk(Balk(μ1) + μ2)

and
ω(μ1 + μ2) = ω(μ1) ∪ ω(Balk(μ1) + μ2).

Proof Note that if k satisfies the inequality in the proposition then k satisfies the inequali-
ties Eqs. 6.1, 6.2, and 6.3.

We begin by showing the equality Balk(μ1 + μ2) = Balk(Balk(μ1) + μ2).
Since U

ν1+μ2
k = U

ν1
k + U

μ2
k and U

ν1
k = U

μ1
k near ∂BR(n,k) it suffices to show that

U
Balk(ν1+μ2)
k = U

Balk(μ1+μ2)
k in BR(n,k). (6.4)

Step 1: The implication “≤” of Eq. 6.4. Using Lemma 4.7 we observe that

U
Balk(ν1+μ2)
k ≤ U

ν1+μ2
k = U

ν1
k + U

μ2
k

≤ U
μ1
k + U

μ2
k = U

μ1+μ2
k in BR(n,k)

and
(� + k2)U

Balk(ν1+μ2)
k ≥ −1 in BR(n,k).

Thus U
Balk(ν1+μ2)
k ∈ F (μ1+μ2). Since U

Balk(μ1+μ2)
k is the largest element in F (μ1+μ2),

we arrive at
U

Balk(ν1+μ2)
k ≤ U

Balk(μ1+μ2)
k in BR(n,k). (6.5)
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Step 2: The implication “≥” of Eq. 6.4. Observe that

U
Balk(μ1+μ2)
k − U

μ2
k ≤ U

μ1+μ2
k − U

μ2
k = U

μ1
k in BR(n,k)

and
(� + k2)(U

Balk(μ1+μ2)
k − U

μ2
k ) ≥ −1 + μ2 ≥ −1 in BR(n,k).

Thus U
Balk(μ1+μ2)
k −U

μ2
k ∈ F (μ1). Since U

ν1
k is the largest element in F (μ1), it holds that

U
Balk(μ1+μ2)
k − U

μ2
k ≤ U

ν1
k in BR(n,k),

and hence
U

Balk(μ1+μ2)
k ≤ U

ν1
k + U

μ2
k = U

ν1+μ2
k in BR(n,k).

Furthermore,
(� + k2)U

Balk(μ1+μ2)
k ≥ −1 in BR(n,k).

Thus U
Balk(μ1+μ2)
k ∈ F (ν1 +μ2). Since U

Balk(ν1+μ2)
k is the largest element in F (ν1 +μ2),

it follows that
U

Balk(ν1+μ2)
k ≥ U

Balk(μ1+μ2)
k in BR(n,k). (6.6)

Step 3: Conclusion. Combining Eqs. 6.5 and 6.6 implies Eq. 6.4 and completes the proof
that

Balk(μ1 + μ2) = Balk(ν1 + μ2).

In the proof of this equality we established that

U
Balk(μ1+μ2)
k = U

Balk(ν1+μ2)
k ≤ U

ν1+μ2
k = U

ν1
k + U

μ2
k ≤ U

μ1
k + U

μ2
k = U

μ1+μ2
k .

The first inequality is an equality only in ω(Balk(μ1) + μ2)
c and the second is an equality

only in ω(μ1)
c. Therefore, the combined inequality, U

Balk(μ1+μ2)
k (x) ≤ U

μ1+μ2
k (x) is an

equality only for x ∈ ω(ν1 + μ2)
c ∩ ω(μ1)

c = (ω(ν1 + μ2) ∪ ω(μ1))
c. By definition,

ω(μ1 +μ2) is the set where this inequality is strict so the claim follows. This completes the
proof of Proposition 6.1.

7 Construction of k-Quadrature Domains

In this section our aim is to prove the following theorem, which contains the statement of
Theorem 1.6.

Theorem 7.1 Let μ be a positive measure supported in Bε for some ε > 0. There exists a
constant cn > 0 depending only on the dimension such that if

0 < k <
cn

μ(Rn)1/n
and ε < cnμ(Rn)1/n, (7.1)

then there exists an open connected set D with real-analytic boundary satisfying D ⊂
BR(n,k) which is a k-quadrature domain for μ. Moreover, for each w ∈ L1(D) ∩ L1(μ)

satisfying (� + k2)w ≥ 0 in D we have∫
D

w(x) dx ≥
∫

w(x) dμ(x). (7.2)

Remark 7.2 As we shall see in the proof the k-quadrature domain is constructed as the non-
contact set ω of the partial balayage of a measure obtained by averaging μ over a small
ball. If μ satisfies the assumptions of Lemma 4.2 then Balk(μ) is well-defined and the
k-quadrature domain D we construct is precisely ω(μ).
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However, our definitions and results concerning Balk(μ) and ω(μ) are not valid for every
μ as in the statement of the theorem, and as such we need to take some care.

Before we turn to the proof of Theorem 7.1 we prove some preliminary results that we
will need in our main argument.

The first is a simple lemma concerning the partial balayage of a multiple of Lebesgue
measure restricted to a ball.

Lemma 7.3 Let 0 < r < r ′ < 1
2j n−2

2 ,1k
−1 = R(n, k). Then there exists a positive constant

cn (depending only on the dimension n) such that if

0 < k ≤ cn min

{
1

r
,

J n
2
(kr)

1
n

J n
2
(kr ′) 1

n (rr ′) 1
2

}
, (7.3)

then

Balk

(
cMVT
n,k,r ′

cMVT
n,k,r

χBr m

)
= χBr′ m (7.4)

and

ω

(
cMVT
n,k,r ′

cMVT
n,k,r

χBr m

)
= Br ′ . (7.5)

Remark 7.4 Since t �→ t
n
2 Jn

2
(t) is strictly increasing on t ∈ [0, j n−2

2 ,1], then we see that

cMVT
n,k,r ′

cMVT
n,k,r

= (r ′)n/2Jn
2
(kr ′)

rn/2Jn
2
(kr)

> 1. (7.6)

Since t �→ t− n
2 Jn

2
(t) is a decreasing function on [0, j n+2

2 ,1], we find that

Balk

(
cMVT
n,k,r ′

cMVT
n,k,r

χBr m

)
(Rn) − cMVT

n,k,r ′

cMVT
n,k,r

χBr m(Rn)

= m(B1)((r
′)n − (r ′)n/2Jn

2
(kr ′)

rn/2Jn
2
(kr)

rn)

= m(B1)(r
′)

n
2 k− n

2 Jn
2
(kr ′)

( (kr ′) n
2

Jn
2
(kr ′)

− (kr)
n
2

Jn
2
(kr)

)
≥ 0.

(7.7)

Proof of Lemma 7.3 For each x ∈ R
n, we see that the distribution y �→ �̃k(x − y) is in

L1
loc(R

n) and satisfies (� + k2)�̃k(x − ·) = −δx ≤ 0 in R
n. By applying the MVT in

Proposition A.2, we have

1

cMVT
n,k,r

U
Br

k (x) = 1

cMVT
n,k,r

∫
Br

�̃k(x − y) dy ≥ 1

cMVT
n,k,r ′

∫
Br′

�̃k(x − y) dy = 1

cMVT
n,k,r ′

U
Br′
k (x)

(7.8)
for all x ∈ R

n, and equality holds if and only if x ∈ R
n \ Br ′ . In other words

u = cMVT
n,k,r ′

cMVT
n,k,r

U
Br

k − U
Br′
k ∈ C1(Rn)
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satisfies ⎧⎪⎪⎨
⎪⎪⎩

(� + k2)u = χBr′ − cMVT
n,k,r′
cMVT
n,k,r

χBr in R
n

u > 0 in Br ′

u = 0 in R
n \ Br ′ .

(7.9)

The conclusion of the lemma follows by applying Lemma 5.3.

The second result we require is an analogue of Proposition 2.4 but for sub-solutions of the
Helmholtz equation. We again follow the argument in [43, Lemma 5.1] which considered
the case k = 0.

Proposition 7.5 Let k ≥ 0, and let D ⊂ R
n be a bounded open set. Let �k be any funda-

mental solution of −(� + k2) and let � ⊃ D be any open set in R
n. Then the linear span

with positive coefficients of

F = {±∂α�k(z − ·)|D : z ∈ � \ D, |α| ≤ 1} ∪ {−�k(z − ·)|D : z ∈ D}
is dense in

SkL
1(D) = {w ∈ L1(D) : (� + k2)w ≥ 0 in D}

with respect to the L1(D) topology.

Proof We first show that if any bounded linear functional � on L1(D) with �|F ≥ 0 also
satisfies

�|SkL
1(D) ≥ 0, (7.10)

then we have G = SkL
1(D), where G is the linear span with positive coefficients of F .

Suppose to the contrary that there exists f0 ∈ SkL
1(D)\G. Using the Hahn-Banach theorem

(second geometric form, see e.g. [8, Theorem 1.7]), there exists a closed hyperplane {�0 =
α} that strictly separates the closed set G and the compact set {f0}, thus we have

�0(f0) < α < �0(f ) for all f ∈ G. (7.11)

Since λ�0(f ) = �0(λf ) > α for all λ > 0 and each fixed f ∈ G, we deduce that �0(f ) ≥ 0
for all f ∈ G and that α ≤ 0. By Eq. 7.10 and since f0 ∈ SkL

1(D) we know that �0(f0) ≥
0. Combining this with Eq. 7.11 and the fact that α ≤ 0 gives a contradiction.

Now let � be a bounded linear functional on L1(D) with �|F ≥ 0. We need to prove that
�|SkL

1(D) ≥ 0. Since the dual of L1(D) is L∞(D), there is a function f ∈ L∞(D) with

�(w) =
∫

D

f w dx, w ∈ L1(D).

We extend f by zero to R
n and consider the function

u(z) = −(�k ∗ f )(z) for all z ∈ �.

By the assumption �|F ≥ 0, the function u satisfies⎧⎪⎨
⎪⎩

(� + k2)u = f in �,

u = |∇u| = 0 in � \ D,

u ≥ 0 in D.

Our aim is to employ the same argument as in the proof of Eq. 2.3 to show that∫
D

((� + k2)u)w dx ≥ 0, for all w ∈ SkL
1(D),
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which implies �|SkL
1(D) ≥ 0. However, in order to carry out the the integration by parts

which concluded that argument we used that solutions of the Helmholtz equation are smooth
in the interior of D, this is not necessarily the case for sub-solutions. To circumvent this
issue we use a classical mollification argument. Fix a non-negative ψ ∈ C∞

c (Rn) with
support in B1 and ‖ψ‖L1(Rn) = 1. For ε > 0 set ψε(x) = ε−nψ(x/ε). For w ∈ SkL

1(D)

set wε = w ∗ ψε , which is well defined and C∞ near any compact subset K of D if
ε < dist(K,Dc). Then wε → w in L1(K) as ε → 0+. We claim that (�+k2)wε(x) ≥ 0 in
K for ε < dist(K,Dc). Indeed, since (�+k2)w(x) ≥ 0 in D this is in particular the case in
Bε(y) for any y ∈ K . The claim follows by differentiating under the integral sign and using
the non-negativity of ψ . With this approximation in hand the argument can be completed
as in the proof of Eq. 2.3 by appealing to the L1 convergence of wε to w in the support of
the cutoff function ωj , and applying the integration by parts argument with w replaced by
wε .

Finally we need the following result which is in the spirit of Proposition 2.1. This result
can be interpreted as saying that D is a quadrature domain for sub-solutions w satisfying
(� + k2)w ≥ 0 in D (i.e. D is a quadrature domain for metasubharmonic functions).

Corollary 7.6 Let k > 0, and let D, � ⊂ R
n be bounded open sets such that D ⊂ �, and

let μ ∈ L∞(D) be a non-negative measure with supp(μ) ⊂ D. If

UD
k = U

μ
k in � \ D, (7.12a)

UD
k ≤ U

μ
k in �, (7.12b)

then for each w ∈ L1(D) satisfying (� + k2)w ≥ 0 in D we know that∫
D

w(x) dx ≥
∫

w(x) dμ(x). (7.13)

Proof By Eqs. 7.12a and 7.12b U
μ
k − UD

k ≥ 0 with equality in � \ D. By Calderón–
Zygmund estimates U

μ
k ,UD

k ∈ C1(�). Since U
μ
k − UD

k attains its minimum in � \ D it
holds that ∇U

μ
k = ∇UD

k in �\D. When combined with Eqs. 7.12a and 7.12b we conclude
that ∫

D

∂α�̃k(z−x) dx =
∫

∂α�̃k(z−x) dμ(x) for all z∈BR(n,k)\D, |α|≤1, (7.14a)
∫

D

�̃k(z − x) dx ≤
∫

�̃k(z − x) dμ(x) for all z ∈ D. (7.14b)

Let w be the function as in the statement of the lemma, and use Proposition 7.5 to find a
sequence

wj ∈ span+
({±∂α�̃k(z − ·)|D : z ∈ BR(n,k) \ D, |α| ≤ 1}

∪{−�̃k(z − ·)|D : z ∈ D}
)

with wj → w ∈ L1(D). From Eqs. 7.14a and 7.14b, we know that∫
D

wj (x) dx ≥
∫

wj (x) dμ(x) for all j . (7.15)

Since μ ∈ L∞(D) Hölder’s inequality implies that∣∣∣
∫

(wj (x) − w(x)) dμ(x)

∣∣∣ ≤ ‖μ‖L∞(D)‖w − wj‖L1(D).
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Taking the limit j → ∞ in Eq. 7.15 we therefore arrive at∫
D

w(x) dx ≥
∫

w(x) dμ(x).

This is the desired inequality Eq. 7.13, and thus completes the proof.

We are now ready to prove Theorem 7.1.

Proof of Theorem 7.1 Step 1: Constructing the k-quadrature domain. For ε < δ <

R(n, k) to be chosen set

hδ = 1

cMVT
n,k,δ

χBδ . (7.16)

Then

μ ∗ hδ(x) = μ(Bδ(x))

cMVT
n,k,δ

(7.17)

is non-negative and supported in Bε+δ . Furthermore for all x ∈ Bδ−ε ,

μ ∗ hδ(x) = μ(Bδ(x))

cMVT
n,k,δ

= μ(Rn)

cMVT
n,k,δ

. (7.18)

Let us for κ ≥ 1 and r > 0 define

μκ,r := κχBr m.

Set
μ1 := μκ,r and μ2 := μ ∗ hδ − μκ,r

with

1 < κ ≤ μ(Rn)

cMVT
n,k,δ

and 0 < r ≤ δ − ε (7.19)

to be chosen. Note that these choices of r, κ imply that the measures μ1, μ2 are non-
negative. Furthermore, both measures have bounded densities with respect to Lebesgue
measure and

μ1(R
n) = κm(Br) and μ2(R

n) = μ(Rn)m(Bδ)

cMVT
n,k,δ

− κm(Br).

Our aim is to appeal to Proposition 6.1 and perform an initial balayage of μ1 by utilizing
Lemma 7.3. To this end we choose

κ = cMVT
n,k,r ′

cMVT
n,k,r

= (r ′) n
2 Jn

2
(kr ′)

r
n
2 Jn

2
(kr)

.

for some r < r ′ < R(n, k). By Lemma 7.3, if

0 < k < cn min
{1

r
,

J n
2
(kr)

1
n

J n
2
(kr ′) 1

n (rr ′) 1
2

}
= cn min

{1

r
,

1

κ
1
n r

}
= cn

r
, (7.20)

then Balk(μ1) = χBr′ m and by Eq. 7.7 it holds that Balk(μ1)(R
n) ≥ μ1(R

n) = κ|Br |.
Consequently, (μ1 + μ2)(R

n) ≤ (Balk(μ1) + μ2)(R
n) and thus if

0 < k < cn min
{ 1

r ′ ,
1

δ + ε
,

1

((cMVT
n,k,δ )

−1μ(Rn)δn + (r ′)n − κrn)1/n

}
, (7.21)

then Eq. 7.20 is valid, since r ′ > r , and furthermore Proposition 6.1 implies that

Balk(μ∗hδ) = Balk(μ1+μ2) = Balk(Balk(μ1)+μ2) = Balk(μ1,r ′ +μ∗hδ−μκ,r ) (7.22)
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and

ω(μ ∗ hδ) = ω(μ1) ∪ ω(Balk(μ1) + μ2) ⊃ Br ′ , (7.23)

where we also used that ω(μ1) = Br ′ by Lemma 7.3.
By construction

μ1,r ′ + μ ∗ hδ − μκ,r = 0 outside Br ′ ∪ Bε+δ (7.24)

and

μ ∗ hδ − μκ,r ≥ 0. (7.25)

Therefore,

μ1,r ′ + μ ∗ hδ − μκ,r ≥ 1 in Br ′ . (7.26)

Consequently, if we choose our parameters to satisfy

r ′ > ε + δ, (7.27)

then the fact that μ ∗ hδ ∈ L∞(Rn) combined with Proposition 5.1 implies

Balk(μ1,r ′ + μ ∗ hδ − μκ,r ) = χD(μ1,r′+μ∗hδ−μκ,r )m, (7.28)

and Br ′ ⊂ D(μ1,r ′ + μ ∗ hδ − μκ,r ).
Combining Eqs. 7.22 and 7.28, we have

Balk(μ ∗ hδ) = Balk(μ1,r ′ + μ ∗ hδ − μκ,r ) = χD(μ1,r′+μ∗hδ−μκ,r )m.

Using Eq. 7.23 and that we shall choose our parameters so that r ′ > ε + δ we find

supp(μ ∗ hδ) ⊂ Br ′ ⊂ ω(μ ∗ hδ),

therefore Lemma 5.3 implies that2

Balk(μ ∗ hδ) = χω(μ∗hδ)m. (7.29)

Using that only one connected component of ω(μ ∗ hδ) intersects supp(μ ∗ hδ), we can
argue as in [26, Corollary 2.3] to prove that ω(μ ∗ hδ) is connected.

By Lemma 4.8 and the definition of ω(μ ∗ hδ),

U
ω(μ∗hδ)
k = U

μ∗hδ

k = �̃k ∗ μ ∗ hδ in BR(n,k) \ ω(μ ∗ hδ), and (7.30a)

U
ω(μ∗hδ)
k < U

μ∗hδ

k = �̃k ∗ μ ∗ hδ in ω(μ ∗ hδ). (7.30b)

Under our assumptions, Corollary 7.6 implies that ω(μ ∗ hδ) is a k-quadrature domain for
μ ∗ hδ and furthermore we have the quadrature inequality for sub-solutions.

The MVT (Proposition A.2) implies that �̃k ∗hδ(y) ≤ �̃k(y) for all y ∈ R
n and equality

holds if |y| ≥ δ. Therefore, by the non-negativity of μ,

U
μ∗hδ

k (x) = �̃k ∗ μ ∗ hδ(x) =
∫

(�̃k ∗ hδ)(x − y)dμ(y) ≤ �̃k ∗ μ(x) = U
μ
k (x)

with equality if dist(x, supp(μ)) ≥ δ. In particular, since under our assumptions

{x ∈ R
n : dist(x, supp(μ)) < δ} ⊂ Bε+δ ⊂ Br ′ ⊂ ω(μ ∗ hδ)

2Note that μ∗hδ does not necessarily have a density which is greater than 1 on its support and so the structure
of its partial balayage in Eq. 7.29 does not follow directly from Proposition 5.1.



Quadrature Domains for the Helmholtz Equation with Applications...

we have equality for x ∈ BR(n,k) \ ω(μ ∗ hδ). We have thus arrived at3

U
D(μ∗hδ)
k = U

μ
k in BR(n,k) \ ω(μ ∗ hδ), and (7.31a)

U
D(μ∗hδ)
k < U

μ
k in ω(μ ∗ hδ). (7.31b)

We now show that we can choose the parameters r, δ, κ appropriately only depending
on the measure μ, specifically we shall choose them depending on ε, μ(Rn). We choose
δ = 2ε and r = ε, and let γ = kε.

Since t �→ t− n
2 Jn

2
(t) is a decreasing function on [0, j n−2

2 ,1] satisfying that

limy→0+ y− n
2 Jn

2
(y) = 2− n

2

�(1+ n
2 )

, we by using the explicit form of cMVT
n,k,r find that

(cMVT
n,k,2ε)

−1(2ε)n = γ
n
2

π
n
2 Jn

2
(2γ )

≥ �(1 + n
2 )

π
n
2

. (7.32)

The required bound on k Eq. 7.21 is then valid if

0 < k < cn min
{ 1

r ′ ,
1

ε
,

1

(π− n
2 �(1 + n

2 )μ(Rn) + (r ′)n)1/n

}
. (7.33)

Assume that cn ≤ j n−2
2 ,1/4 so that 0 ≤ γ ≤ j n−2

2 ,1/4. Then, since t �→ t
n
2 Jn

2
(t) is

strictly increasing on [0, j n−2
2 ,1] we can choose r ′ = 4r which ensures that Eq. 7.27 is

satisfied since
r ′ = 4r = 4ε > 3ε = ε + δ,

and we have

κ = cMVT
n,k,4r

cMVT
n,k,r

= (4r)
n
2 Jn

2
(4γ )

r
n
2 Jn

2
(γ )

= 2nJ n
2
(4γ )

J n
2
(γ )

> 1.

We now want to find a sufficient condition so that Eq. 7.19 holds. By the choice of κ and
the definition of γ what we need to verify is the inequality

κ = 2nJ n
2
(4γ )

J n
2
(γ )

≤ μ(Rn)

cMVT
n,k,2ε

= μ(Rn)γ
n
2

(2ε)nπ
n
2 Jn

2
(2γ )

, (7.34)

or equivalently,

4nπ
n
2
Jn

2
(4γ )J n

2
(2γ )

J n
2
(γ )γ

n
2

εn ≤ μ(Rn).

Since the function

γ �→ Jn
2
(4γ )J n

2
(2γ )

J n
2
(γ )γ

n
2

is continuous it is bounded from above for all γ ∈ [0, j n−2
2 ,1/4] by a constant depending

only on n. Therefore, the required bound Eq. 7.19 holds if we assume that

ε ≤ cnμ(Rn)1/n (7.35)

3If μ ∈ L∞(BR(n,k)) then Eqs. 7.31a and 7.31b combined with an application of Lemma 5.3 implies that

ω(μ) = ω(μ ∗ hδ) and Balk(μ) = Balk(μ ∗ hδ) = χω(μ)m.
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provided cn is chosen sufficiently small, specifically so that

cn ≤ min
γ∈[0,j n−2

2 ,1
/4]

(
Jn

2
(γ )γ

n
2

4nπ
n
2 Jn

2
(4γ )J n

2
(2γ )

)1/n

.

Since we chose our parameters so that r ′ = 4ε, the require bound on k Eq. 7.33 (and thus
also Eqs. 7.21 and 7.20) is valid if

0 < k <
cn

μ(Rn)1/n
. (7.36)

Consequently, all our requirements are met provided

0 < k <
cn

μ(Rn)1/n
and ε ≤ cnμ(Rn)1/n (7.37)

for some constant cn depending only on n.
From here and on we let h denote the function hδ with the particular choice δ = 2ε in

the discussion above. By the construction we have that

Balk(μ ∗ h) = χω(μ∗h)m (7.38)

and
supp(μ) ⊂ Bε ⊂ supp(μ ∗ h) ⊂ B4ε ⊂ ω(μ ∗ h). (7.39)

Step 2: ω(μ ∗ h) is a k-quadrature domain with respect to μ. Equations 7.31a and
7.31b imply that U

μ
k −U

ω(μ∗h)
k ≥ 0 with equality in BR(n,k)\ω(μ∗h). By elliptic regularity

U
ω(μ∗h)
k is C1(BR(n,k)) and U

μ
k is smooth away from supp(μ). Thus U

μ
k − U

ω(μ∗h)
k attains

its minimum in BR(n,k) \ ω(μ ∗ h), and consequently

∇U
ω(μ∗h)
k = ∇U

μ
k in BR(n,k) \ ω(μ ∗ h). (7.40)

Since supp(μ) ⊂ ω(μ ∗ h) ⊂ BR(n,k) the extension by zero of U
μ
k − U

ω(μ∗h)
k to all of Rn

satisfies the assumptions of Proposition 2.1 and hence ω(μ ∗ h) is a k-quadrature domain
with respect to μ.

As noted above, Eqs. 7.30a, 7.30b and Corollary 7.6 imply that∫
ω(μ∗h)

w(x) dx ≥
∫

w(x) d(μ ∗ h)(x)

for all w ∈ L1(ω(μ ∗ h)) satisfying (� + k2)w(x) ≥ 0 in ω(μ ∗ h). Assume further that
w ∈ L1(μ). By Fubini and since by construction Bδ(y) ⊂ ω(μ ∗ h) for all y ∈ supp(μ) the
integral above can be rewritten as∫

ω(μ∗h)

w(x) d(μ ∗ h)(x) =
∫ (∫

ω(μ∗h)

w(x)hδ(x − y) dx

)
dμ(y)

=
∫ (

1

cMVT
n,k,δ

∫
Bδ(y)

w(x) dx

)
dμ(y).

Since Bδ(y) ⊂ ω(μ ∗ h) for all y ∈ supp(μ) the function w(x) is a sub-solution of the
Helmholtz equation on Bδ(y) for all y ∈ supp(μ). Therefore, the mean value inequality for
sub-solutions of the Helmholtz equation implies that the expression within the parenthesis
is greater than w(y) for each y ∈ supp(μ). Since w ∈ L1(μ) and μ is non-negative this
proves Eq. 7.2.

Step 3: Regularity of ∂ω(μ ∗ h). We now show that ω(μ ∗ h) has real-analytic
boundary ∂ω(μ ∗ h) by using the moving plane technique as in [27, Theorem 5.4]. Set
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u := U
μ∗h
k − U

ω(μ∗h)
k ∈ ⋂

0<α<1 C1,α(BR(n,k)). By Proposition 4.3, we know that u is the
smallest among all w ∈ H 1

0 (BR(n,k)) satisfying

w ≥ 0 and (� + k2)w ≤ −μ ∗ h + 1 in BR(n,k). (7.41)

Moreover, Lemma 4.8 and the fact that Balk(μ ∗ h) = χω(μ∗h)m implies

u = 0 in BR(n,k) \ ω(μ ∗ h). (7.42)

Given x0 ∈ ∂ω(μ ∗ h), there by Eq. 7.39 exists a hyperplane that separates supp(μ ∗ h) and
x0. Since Laplacian is translation and rotation invariant, without loss of generality, we may
assume that the hyperplane is {

x ∈ R
n xn = 0

}
, (7.43)

and that supp(μ ∗ h) ⊂ {
x ∈ R

n xn < 0
}
. We define

(ω(μ ∗ h))loc = ω(μ ∗ h) ∩ {
x ∈ R

n xn > 0
}

and
(∂ω(μ ∗ h))loc = ∂ω(μ ∗ h) ∩ {

x ∈ R
n xn > 0

}
.

Let u∗ be the reflection of u with respect to the hyperplane Eq. 7.43, that is, u∗(x′, xn) =
u(x′,−xn). We now define

v := u − inf{u, u∗} = (u − u∗)+.

Since (� + k2)u ≤ −μ ∗ h + 1 ≤ 1 in BR(n,k), we have (� + k2)u∗ ≤ 1 in BR(n,k).
Since there exists a unique φ ∈ H 1

0 (BR(n,k)) such that (� + k2)φ = 1 in BR(n,k), using
Proposition A.5, we know that

(� + k2) inf{u, u∗} ≤ 1 in BR(n,k).

From (� + k2)u = 1 in (ω(μ ∗ h))loc, we have

(� + k2)v ≥ 0 in (ω(μ ∗ h))loc.

The boundary condition v = 0 on ∂((ω(μ ∗ h))loc) and using maximum principle in
Proposition A.4 yield v ≤ 0 in (ω(μ ∗ h))loc, and hence

v = 0 in (ω(μ ∗ h))loc,

because v ≥ 0 by its definition. Thus we have

∂u

∂xn

≤ 0 on
{

x ∈ R
n xn = 0

}
. (7.44)

From Eq. 7.42, we know that ∂u
∂xn

= 0 on (∂ω(μ ∗ h))loc. On the other hand, we know that

(� + k2)u = 1 in (ω(μ ∗ h))loc.

Hence ∂u
∂xn

∈ C∞((ω(μ ∗ h))loc) ∩ ⋂
0<α<1 C0,α((ω(μ ∗ h))loc) and it satisfies

(� + k2)
∂u

∂xn

= ∂

∂xn

(� + k2)u = 0 in (ω(μ ∗ h))loc.

Applying the strong maximum principle in Proposition A.4 on ∂u
∂xn

, we obtain ∂u
∂xn

< 0 in

(ω(μ ∗ h))loc (because ∂u
∂xn

�≡ 0 in ω(μ ∗ h)).
Since x0 can be separated from supp(μ∗h) by hyperplanes whose normals form an open

convex cone, this argument implies that in a neighbourhood of x0 the function u is decreas-
ing in a cone of directions. We deduce that in a neighbourhood of x0 the free boundary
∂ω(μ ∗ h) is the graph of a Lipschitz function. Since the choice of x0 ∈ ∂ω(μ ∗ h) was
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arbitrary, we conclude that the free boundary ∂ω(μ ∗ h) is locally a Lipschitz graph. Using
[11–13], we know that ∂ω(μ ∗ h) is C1, and then from [33] we conclude that ∂ω(μ ∗ h) is
real-analytic. We also refer to the monograph [23] for the general regularity theory for free
boundaries.

Appendix A: Auxiliary Propositions

The results in this appendix are well-known, and the proofs can found at arXiv:2204.13934.

A.1 A Real-Valued Fundamental Solution

In this section we give an exact expression for a real-valued radial fundamental solution
to the Helmholtz equation. This solution is positive in a ball with suitable radius, which is
crucial for our construction of k-quadrature domains.

Proposition A.1 Fix k > 0 and n ≥ 2. For any R > 0, let �̃k,R be given by

�̃k,R(x) = k
n−2

2

4(2π)
n−2

2 Jn−2
2

(kR)
|x|− n−2

2

(
Yn−2

2
(kR)J n−2

2
(k|x|) − (A.1)

Jn−2
2

(kR)Y n−2
2

(k|x|)
)

.

Then the distribution �̃k,R ∈ L1
loc(R

N) is radial, smooth outside the origin and satisfies
{

(� + k2)�̃k,R = −δ0 in D′(Rn),

�̃k,R(x) = 0 for x ∈ ∂BR(0).
(A.2)

Furthermore, in the case when 0 < R < jn−2
2

k−1, the distribution �̃k,R is positive inBR(0).

A.2 TheMean Value Theorem

Proposition A.2 Let n ≥ 2 be an integer, and let R > 0 be any constant. If u ∈ L1(BR(x0))

is a solution to

(� + k2)u = 0 in BR(x0),

then

∫
BR(x0)

u(x) dx = cMVT
n,k,Ru(x0) with cMVT

n,k,R = (2π)n/2
R

n
2 Jn

2
(kR)

k
n
2

. (A.3)

In addition, if we assume that 0 < R < jn−2
2 ,1k

−1 and u ∈ L1(BR(x0)) is a sub-solution of

the Helmholtz equation,

(� + k2)u ≥ 0 in BR(x0),

then, provided x0 is a Lebesgue point for u,
∫

BR(x0)

u(x) dx ≥ cMVT
n,k,Ru(x0) (A.4)

http://arxiv.org/abs/2204.13934
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with equality if and only if (� + k2)u = 0 in BR(x0). In addition, the mapping

r �→ 1

cMVT
n,k,r

∫
Br (x0)

u(x) dx

is monotone increasing on (0, R) unless there exists an 0 < R′ ≤ R such that (�+k2)u = 0
in BR′(x0) in which case the mapping is constant on (0, R′) and increasing on (R′, R).

Remark A.3 In particular,

when n = 2, cMVT
2,k,R = 2πRJ1(kR)

k
,

when n = 3, cMVT
3,k,R = 4π(sin(kR) − kR cos(kR))

k3
.

Unlike the mean value theorem for harmonic functions, there are radii for which cMVT
n,k,R is

zero or even negative.

A.3 Maximum Principle

We will need the following (generalized) maximum principle and properties of sub/super-
solutions in small domains.

Proposition A.4 Fix n ≥ 2, let U ⊂ R
n be a bounded open set, and let λ1(U) denote the

first eigenvalue of the Dirichlet Laplacian on U , that is

λ1(U) := inf
u∈H 1

0 (U)

‖∇u‖2
L2(U)

‖u‖2
L2(U)

. (A.5)

Given any 0 < k2 < λ1(U). If w ∈ H 1(U) satisfies w|∂U ≤ 0 (i.e. w+ := max{w, 0} ∈
H 1

0 (U)) and (� + k2)w ≥ 0 in the sense of H−1(U), then w ≤ 0 in U . If we additionally
assume that w ∈ C(U), then in each connected component of U we have either w < 0 or
w ≡ 0.

Proposition A.5 Fix n ≥ 2, k > 0, and let U ⊂ R
n be a bounded open set. If w1, w2 ∈

H 1(U) satisfy (� + k2)wj ≤ 0 in the sense of H−1(U) for j = 1 and 2, then the same is
true for w = min{w1, w2}.

Remark A.6 Note that λ1(BR) = j2
n−2

2 ,1
R−2. Therefore, the condition k2 < λ1(U) is

satisfied if U ⊂ BR with 0 < R < jn−2
2 ,1k

−1.
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