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Abstract

While the Bayesian decision-theoretic frame-
work offers an elegant solution to the problem of
decision making under uncertainty, one question
is how to appropriately select the prior distribu-
tion. One idea is to employ a worst-case prior.
However, this is not as easy to specify in se-
quential decision making as in simple statistical
estimation problems. This paper studies (some-
times approximate) minimax-Bayes solutions for
various reinforcement learning problems to gain
insights into the properties of the corresponding
priors and policies. We find that while the worst-
case prior depends on the setting, the correspond-
ing minimax policies are more robust than those
that assume a standard (i.e. uniform) prior.

1 Introduction

Reinforcement learning is the problem of an agent learn-
ing how to act in an unknown environment through in-
teraction and reinforcement. In the standard setting, the
learning agent acts in an unknown Markov Decision Pro-
cess µ, within some class of MDPs M. The agent ob-
serves the state st ∈ S of the MDP and selects an ac-
tion at ∈ A using a policy π. It then observes a reward
rt ∈ R and the next state st+1. The agent’s goal is to max-
imise utility, defined as the sum of rewards to some horizon
T , u =

∑T
t=1 rt, in expectation, i.e. Eπ

µ(u), where Eπ
µ is

the expectation under the MDP and policy. Since the true
µ is unknown, this optimisation problem is ill-posed. In
the Bayesian setting, this conundrum is solved by select-
ing some subjective prior distribution β over MDPs and
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maximising Eπ
β(u) =

∫
M Eπ

µ(u) dβ(µ). Then it remains
to compute the optimal adaptive (i.e. history-dependent)
policy, something that can be only done approximately in
general, due to the fact that the number of adaptive policies
increases exponentially with the problem horizon.

The above discussion assumes that the agent has some-
how chosen a prior. However, it is not clear how such
a prior can be selected from first principles, if we have
no domain knowledge, but still want to be robust. The
minimax-Bayes idea (Berger, 1985) is to assume that na-
ture selects the worst possible prior β∗ for the agent, but
without knowledge of the agent’s policy. This can be for-
malised by having nature play the minimising player in
a simultaneous-move zero-sum game defined by the ex-
pected utility Eπ

β(u), where the agent (who maximises)
chooses π, and nature (who minimises) chooses β. In sim-
ple Bayesian decision problems (e.g. linear regression) the
minimax-Bayes problem is well-studied and β∗ sometimes
corresponds to a maximum entropy prior. However, in an
interactive setting, results are limited to one-shot experi-
ment design (Grünwald and Dawid, 2004), which shows
that maximum entropy priors are not the worst-case priors
generally.

In reinforcement learning, which can be seen as a sequen-
tial generalisation of one-shot experiment design, this prob-
lem has not received much attention in the past. Some-
times, the concept of maximum entropy has been used
in reinforcement learning as a penalty term on the pol-
icy (e.g. Todorov, 2006; Haarnoja et al., 2018; Eysenbach
and Levine, 2021) as well as in the context of inverse rein-
forcement learning (Ziebart, 2010), but an explicit connec-
tion to the minimax-Bayes literature has not been made.
In preliminary work, Androulakis and Dimitrakakis (2014)
analysed variants of the weighted majority algorithm for
finding minimax priors in a restricted version of this set-
ting.

Contributions. In this paper, we study the basic theoreti-
cal and algorithmic properties of minimax-Bayes reinforce-
ment learning. This includes (a) characterising the exis-
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tence of solutions under different assumptions on the policy
and MDP space (b) defining algorithms, together with con-
vergence guarantees when possible, and (c) performing nu-
merical experiments to illustrate the behaviour of (approx-
imate) minimax-Bayes algorithms and contrast them with
Bayesian RL algorithms that assume a standard maximum-
entropy (e.g. uniform) prior.

The paper is organised as follows. In Section 2, we for-
mally introduce the setting. In Section 3, we introduce
regret definitions and prove some basic properties of the
regret as well as relations between Bayesian regret and
Bayes-optimal regret. Section 4 discusses the existence
of a value for the game between a Bayesian agent and
Nature, which selects the prior. Section 5 develops algo-
rithms for finding approximately minimax policies in cer-
tain policy classes. In particular, we consider (a) finite-
horizon Bayes-optimal policies (b) posterior sampling poli-
cies, and (c) parametrised adaptive policies. Our results in-
dicate that, not only is an approximate minimax solution
achievable in many settings but that they are much more
robust than Bayes-adaptive policies under common priors.
Finally, Section 7 contains the related work and conclu-
sions.

2 Setting

A Markov Decision Process (MDP) is a tuple µ =
⟨S,A, P, ρ, T ⟩, where S is a set of states, A is a set of
actions, P : S × A → ∆(S) is a transition function,
ρ : S × A → [0, 1] is a reward function, and T is a (poten-
tially random) horizon. LetM denote the space of MDPs.

For simplicity, in our theoretical development, we focus on
the setting where the agent is acting in a finite state space
S with a finite set of actions A, the reward function ρ is
known, and the horizon T is fixed and finite, although many
of our results could be more generally applicable. In each
round t, the agent observes state st ∈ S , chooses an action
at ∈ S and receives a reward rt = ρ(st, at). We write
st = (s1, . . . , st) and at = (a1, . . . , at) for the sequence
of states and actions up to round t. Given the reward func-
tion, the history ht = (st, at−1) describes the information
available to the agent before choosing an action in round t.
The agent’s utility u is an additive function of individual
rewards u ≜

∑T
t=1 rt. The agent is acting in an MDP

through a policy π ∈ Π, where we let Π denote a generic
policy space. For a fixed MDP µ ∈ M and policy π ∈ Π,
the expected utility is given by U(π, µ) ≜ Eπ

µ[u] with max-
imal utility denoted by U∗(µ) ≜ maxπ∈Π U(π, µ).

When the MDP is unknown, as in the reinforcement learn-
ing problem, the policy is adaptive and the agent’s actions
can depend on what it has been observed in the past, as we
explain below.

2.1 Policies.

Let H be the set of all histories. A (stochastic) policy π
is a set of probability measures {π(· | h) | h ∈ H} on the
set of actions A. We denote the set of all behavioural1

policies by ΠS. A policy is deterministic if, for each his-
tory ht = (st, at−1), there exists an action a ∈ A such
that π(at = a | ht) = 1. We denote the set of de-
terministic policies by ΠD. A policy is memoryless (or
reactive) if, for all histories ht with st = s, we have
π(at = a | ht) = π(at = a | st = s). We denote the
set of memoryless (stochastic) policies by ΠS

1 . The set of
memoryless deterministic policies is denoted by ΠD

1 . Ob-
viously, ΠD

1 ⊂ ΠD ⊂ ΠS and ΠD
1 ⊂ ΠS

1 ⊂ ΠS. Finally,
for any MDP µ there exists a deterministic, memoryless
policy that is optimal, i.e. U∗(µ) = maxπ∈Π U(π, µ) =
maxπ∈ΠD

1
U(π, µ) (see e.g. Puterman, 2014).

Strategies. Typically, minimax results rely on the notion
of mixed strategies. Here, we let σ ∈ ∆(Π) denote a prob-
ability measure over a set of base policies Π.

Fact 1. For any strategy σ ∈ ∆(ΠD) there exists an equiv-
alent stochastic policy π ∈ ΠS such that σ(at|ht) = π(at |
ht) for all histories ht with positive probability.

2.2 Utility and Beliefs

In the following, we overload the U(π, β) to also mean the
expected utility of π with respect to a distribution β over
MDPs:

U(π, β) ≜ Eπ
β [u] =

∫
M
U(π, µ) dβ(µ), (1)

under appropriate measurability assumptions.

There are two possible ways to interpret the distribution
β, depending on how it is chosen. If β is chosen by the
agent selecting π, it corresponds to the subjective belief of
the decision maker about which is the most likely MDP a
priori. Then, U(π, β) corresponds to the expected utility
of a particular policy under this belief. Let

U∗(β) ≜ max
π∈Π

U(π, β)

denote the Bayes-optimal utility for a belief. We recall the
fact that this is a convex function (c.f. DeGroot, 1970). By
definition, the following bounds hold:

U(π, β) ≤ U∗(β) ≤
∫
M
U∗(µ) dβ(µ), ∀π ∈ Π,

so that U∗(β) is convex with respect to β. In the above,
the left-hand side is the utility of an arbitrary policy, while
the right side can be seen as the expected utility we would
obtain if the true MDP was revealed to us.

1That is, history-dependent and stochastic policies.
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The second view of β is to assume that the MDP is ac-
tually drawn randomly from the distribution β. If this is
known, then the subjective value of a policy is equal to its
true expected value. However, it is more interesting to con-
sider the case where nature arbitrarily selects β from a set
of possible priors B. Then we wish to find a policy π∗

achieving:
max
π∈Π

min
β∈B

U(π, β). (2)

A minimax solution exists if the game has a value, i.e.
maxπ∈Π minβ∈B U(π, β) = minβ∈B maxπ∈Π U(π, β).
Then there exists a maximin policy π∗ which is optimal in
response to some minimax belief β∗, and vice versa. A suf-
ficient condition for this to occur is for U∗(β) to be convex
and differentiable everywhere (c.f. Grünwald and Dawid,
2004). In particular, a maximin strategy (i.e. a distribution
over policies) can always be found when Π is finite. On the
other hand, for any fixed prior β, there is always an optimal
deterministic policy. Note that this is only a best-response
policy and not a solution to the maximin problem (2).

Fact 2. For any distribution β over MDPs, there exists a
deterministic, history-dependent policy that is optimal, i.e.
U∗(β) = maxπ∈Π U(π, β) = maxπ∈ΠD U(π, β).

Unfortunately, looking at the problem from the point of
view of utility maximisation is somewhat problematic.
This is because an unrestricted set of priors for nature may
lead to absurd solutions: nature could pick a prior so that
all rewards are zero, thus trivially achieving minimal util-
ity. For that reason, we actually focus on the problem of
minimax regret, i.e. the gap between the agent’s policy and
that of an oracle. We give the appropriate definitions in the
next section.

3 Properties of the regret

We generally write R(π, I) to mean the regret of some al-
gorithmic policy π relative to an oracle with information I.

Let us start with the regret of a policy relative to an oracle
that knows the underlying MDP:

Definition 1 (Regret). The regret of a policy π for an MDP
µ is R(π, µ) ≜ U∗(µ)− U(π, µ).

Since this regret notion may be too strong, it is also inter-
esting to define the regret of a policy with respect to the
oracle that knows β. This allows us to take into account
oracles which have less knowledge than the actual MDP.

Definition 2 (Bayes-optimal Regret). This is the regret of
a policy π with respect to the Bayes-optimal policy2 for β:
R(π, β) ≜ U∗(β)−U(π, β) =

∫
M dβ(µ)[U(π∗(β), µ)−

U(π, µ)], where π∗(β) = argmaxπ U(π, β).

2Generally this policy will belong to the set of history-
dependent policies, but in some cases, it makes sense to restrict
them to e.g. a subset of parametrised policies.

This notion of regret tells us how much we lose relative to
a computationally unbounded oracle that knows the prior.
We can use it to measure the loss both due to a misspeci-
fied prior, by fixing π∗(β0) to some prior β0 and examining
R(π∗(β0), β) as the actual prior β varies, and due to com-
putational approximations, by measuring R(π∗

ϵ (β), β) for
policies calculated with some approximate algorithm.

Finally, we may wish to subjectively calculate our expected
regret under an oracle that knows the underlying MDP.
Since the agent does not know the underlying MDP, it nec-
essarily measures regret under a Bayesian prior.

Definition 3 (Bayesian regret). The Bayesian regret of a
policy π under a prior β is L(π, β) ≜ Eµ∼β [R(π, µ)] =∑

µ β(µ)R(π, µ) =
∑

µ β(µ)[U
∗(µ)− U(π, µ)].

These definitions of regret are closely related, as we shall
show in the remainder. It will be illuminating to look at the
difference between the regret the agent subjectively expects
to suffer with respect to some prior distribution β, relative
to the regret of the same policy compared to the Bayes-
optimal policy for the same prior.

R(π0, µ)

U(π0, β)

U(π∗(β0), β)

U(π∗(β), β)

U∗(µ0)
U∗(µ1)

Bayesian regret
L(π0, β)

Bayes-optimal
regret R(π0, β)

δ(µ0) δ(µ1)β′
β

Figure 1: Illustration of the notions of regret for different
policies with a belief β over two MDPs µ1 and µ2, where
δ(µ) denotes the Dirac belief on µ. Any fixed policy π0
will have a utility that is a linear function of the belief
(green dotted line). The blue curve shows the utility of the
Bayes-optimal policy π∗(β) = argmaxπ U(π, β). This
policy is prior-aware, and hence not fixed, but depends on
the prior β. Note that by definition, U(π∗(β), β) is convex.
However, if we fix a Bayes-optimal policy for a specific
prior β0, we obtain a tangent U(π∗(β0), β) to the Bayes-
optimal curve at β0. The Bayesian regret (of π0) (red line)
is the expected regret of a policy compared against an or-
acle that knows the MDP (black dotted line). The Bayes-
optimal regret (of π0) is the difference in performance to
the Bayes-optimal policy (purple line).

Remark 1. The Bayesian regret of a policy π is greater
than the Bayes-optimal regret, i.e. R(π, β) ≤ L(π, β).

Proof. Note that R(π, β) =
∫
M dβ(µ)[U(π∗(β), µ) −

U(π, µ)] ≤
∫
M dβ(µ)[U∗(µ)−U(π, µ)] = L(π, β), since

U(π∗(β), µ) ≤ U∗(µ) by definition of U∗(µ).
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The above also follows from the fact that for any policy π
and prior β, the Bayesian regret of π equals the Bayesian
regret of the Bayes-optimal policy3 plus the Bayes-optimal
regret of π, that is, L(π, β) = L(π∗(β), β) +R(π, β). Ge-
ometrically, this follows from the fact that the utility of any
fixed policy is lower bounding the convex Bayes-optimal
utility curve, as can be seen in Figure 1. The following fact
also follows from a simple geometrical argument:

Remark 2. R(π, β) is convex in β.

Proof. By definition of the Bayesian-optimal regret, we
have R(π, β) = U∗(β) − Eµ∼β [U(π, µ)]. As U∗(β) is
convex in β and Eµ∼β [U(π, µ)] is linear in β, their differ-
ence is also convex.

Of course, the game where nature sees the agent’s policy
π first before selecting a prior is strictly determined and
nature can simply select a single MDP (Dirac distribution)
as its best response to π. In this particular case, this follows
directly from the convexity of the Bayes-optimal regret.

Following the steps of the proof by Lattimore (2021) for
the bandit case, we can show that the maximum regret is
attained in Dirac beliefs. Here, we let B denote the set of
beliefs and we work under the assumption that the degen-
erate beliefs are contained in the belief space.

Lemma 1 (Lattimore (2021)). If for each MDP µ ∈ M
there exists an associated Dirac belief βµ ∈ B, then for any
policy π we have maxµ∈MR(π, µ) = maxβ∈B R(π, β).

This immediately implies that the minimax regret is the
same over both beliefs and MDPs:

min
π∈Π

max
µ∈M

R(π, µ) = min
π∈Π

max
β∈B

R(π, β) (3)

We find a similar result for the Bayesian regret.

Lemma 2. If for each MDP µ ∈M there exists an associ-
ated Dirac belief βµ ∈ B, then for any π:

max
µ∈M

R(π, µ) = max
β∈B

L(π, β). (4)

Proof. For any β ∈ B, we have

max
µ∈M

R(π, µ) ≥ max
µ∈supp(β)

R(π, µ)

= max
µ∈supp(β)

U(π∗(µ), µ)− U(π, µ)

≥
∫
supp(β)

dβ(µ)[U(π∗(µ), µ)− U(π, µ)]

= L(π, β).

Consequently maxµR(π, µ) ≥ maxβ L(π, β). Us-
ing δ(M) to denote the set of Dirac beliefs over M,

3This is equal to the difference between the Bayes-optimal
value and the upper bound.

we have: maxβ L(π, β) ≥ maxβ∈δ(M) L(π, β) =
maxµ∈MR(π, µ), due to the fact that R(π, µ) = L(π, βµ)
for the singular belief βµ on MDP µ. As a result, it
must hold that maxµ∈MR(π, µ) ≥ maxβ∈B L(π, β) ≥
maxµ∈MR(π, µ).

Lattimore and Szepesvári (2019) show that for the problem
of prediction with partial information, the minimax regret
equals the minimax Bayesian regret. We show that this also
holds in a general setting, as an immediate consequence of
Lemma 2.
Corollary 1. If for each MDP µ ∈ M there exists an as-
sociated Dirac belief βµ ∈ B, then for any π:

min
π∈Π

max
µ∈M

R(π, µ) = min
π∈Π

max
β∈B

L(π, β) (5)

Equations (3) and (5) can be made intuitive through a sim-
ple geometric argument. Due to the linearity of the ex-
pected regret with respect to the belief for any fixed policy,
the best response for nature always includes singular be-
liefs.

4 Minimax theorems

The above results merely make precise the intuition that
when playing second, nature does not need to randomise:
it can simply pick the worst-case MDP for the policy we
have chosen. However, we typically want to model a worst-
case setting by assuming nature picks its distribution with-
out knowing which policy the decision maker will pick. For
that reason, it is important to investigate whether the nor-
mal form game against nature, where nature and the agent
play without seeing each other’s move, has a value. We
would expect this to be the case if the regret was a bilinear
function of the policy and prior. Consequently, the answer
is positive with respect to both the Bayesian regret and the
utility in the finite setting. However, this is not the case for
the Bayes-optimal regret.
Corollary 2. For a finite set of MDPs in a finite state-
action space, with a known reward function and a finite
horizon, the utility and Bayesian regret satisfy:

min
β∈B

max
π∈Π

U(π, β) = max
π∈Π

min
β∈B

U(π, β), (6)

max
β∈B

min
π∈Π

L(π, β) = min
π∈Π

max
β∈B

L(π, β) (7)

Proof. First note that, due to Fact 1, the stochastic pol-
icy π can always be written as a distribution σ over deter-
ministic behavioural policies d ∈ ΠD so that U(π, β) =∑

µ

∑
d β(µ)U(d, µ)σ(d). The result follows from the

standard minimax theorem. Similarly for regret, we use
L(π, β) =

∑
µ

∑
d β(µ)R(d, µ)σ(d).

The same does not hold for the Bayes-optimal regret, since
for arbitrary policy spaces the agent’s Bayes-optimal policy
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has zero Bayes-optimal regret, as it is aware of the prior dis-
tribution. However, the minimax value is generally greater
than zero.

Lemma 3. The game R(π, β) does not have a value when
M contains at least two MDPs µ, µ′ whose optimal policy
sets have an empty intersection.

Proof. For π ∈ ΠD, we have maxβ minπ R(π, β) = 0, so
that minπ maxβ R(π, β) ≥ maxβ minπ R(π, β) = 0.
From (3), it then follows that minπ maxµR(π, µ) =
minπ maxβ R(π, β) ≥ maxβ minπ R(π, β) = 0. It re-
mains to show that minπ maxµR(π, µ) > 0. Assume
the contrary. Then there is some policy π∗ for which
maxµR(π

∗, µ) = 0. However, there exists at least one
µ′ whose optimal policy does not coincide with π∗, hence
R(π∗, µ′) > 0.

Finally, it is interesting to consider the Bayesian regret of
the Bayes-optimal policy. For the worst-case Bayesian re-
gret of the Bayes-optimal policy, we find that it is equal to
the minimax Bayesian regret.

Lemma 4. For finite M, the worst-case Bayesian regret
of the Bayes-optimal policy equals the minimax Bayesian
regret, i.e.

max
β∈B

L(π∗(β), β) = max
β∈B

min
π∈Π

L(π, β) = min
π∈Π

max
β∈B

L(π, β).

Proof. By definition of the Bayes-optimal policy, we have
U(π∗(β), β) = maxπ U(π, β). Thus,

max
β

L(π∗(β), β) = max
β

∑
µ

β(µ)[U∗(µ)− U(π∗(β), µ)]

= max
β

min
π

∑
µ

β(µ)[U∗(µ)− U(π, µ)]

= max
β

min
π
L(π, β).

While the above holds for arbitrary M, for the sec-
ond equality we need to use Corollary 2, which states
that the game has a value when M is finite, so that
maxβ minπ L(π, β) = minπ maxβ L(π, β).

It is important to emphasise that this does not imply that
π∗(β∗) is a minimax policy, but merely that its value at the
worst-case belief β∗ is equal to the value of the game. As
we shall see in Section 6.2, in settings with a finite number
of policies, β∗ is located at a vertex with at least two best
response policies π∗, where the minimax policy must be a
mixture between those.

Open questions. This concludes our preliminary discus-
sion of minimax values for Bayesian games on MDPs.
While it is clear that standard minimax theorems apply in
the discrete case when we consider stochastic policies, it is
an open question whether those can be extended to a more

general setting. In particular, do the utility and Bayesian
regret game have a value with an uncountable family of pri-
ors such as the Dirichlet-product prior? It is also an open
question whether a value for the game exists when we are
restricted to deterministic policies in some cases. We con-
jecture that this is generally not the case. For example in
discrete, finite horizon problems, the set of policies pure
deterministic policies is finite, and so it is unlikely that one
of them is maximin. We explore these questions experi-
mentally, after we first develop some algorithms in the fol-
lowing section.

5 Algorithms

In this section, we attempt to answer some of the above
questions empirically. In particular, does there exist an
equilibrium for bandit problems, where the Bayes-optimal
policy can be efficiently approximated through Gittins in-
dices? What about settings where we must restrict the pol-
icy space to parametrised or tree policies? Does solving the
minimax problem approximately lead to robust policies?
Are the worst-case priors we obtain through optimisation
actually preferable in some way to standard priors such as
the uniform one? For example, do they lead to more robust
policies?

For the infinite horizon case, we cannot consider the
Bayes-optimal regret, as it requires us to compute the
Bayes-optimal policy. However, we can always target the
Bayesian regret, which is an upper bound on the Bayes-
optimal regret. (And since the former is usually the same
as the minimax regret, it gives us a minimax policy).

Section 5.1 describes a stochastic gradient descent-ascent
algorithm for finding an approximate minimax regret pair.
For the finite horizon case, we can obtain the Bayes-
optimal response to any prior distribution. More specifi-
cally, when the set of possible MDPs is finite, and we have
an optimal policy oracle, we can employ a cutting plane al-
gorithm, described in Section 5.2. This allows us to obtain
the set of all best response policies to the worst-case prior,
and hence the minimax policy.

5.1 Gradient descent ascent

We want to calculate the minimax pair (π∗, β∗) for the
Bayesian regret. This can be done through gradient
descent-ascent (GDA) (Lin et al., 2020), which alternates
performing a gradient step for the prior and performing a
gradient step for the policy. We show convergence guar-
antees for GDA in the finite MDP setting, for certain
parametrisations of the policy. To calculate the minimax
solution for the Bayesian regret, we need the gradient with
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respect to the policy and the prior.

∇πL(π, β) = −
∫
M
dβ(µ)∇πU(π, µ) (8)

∇βL(π, β) =

∫
M
R(π, µ)∇βdβ(µ). (9)

Intuitively, Algorithm 1 works as follows: First, we sam-
ple M MDPs from the current prior βt−1. We use those to
do a policy gradient step and obtain a new policy πt using
standard policy gradient algorithms, as well as a gradient
step in the prior space to obtain a new prior βt. Since each
gradient may not be exact, we use Gπ(π, β) and Gβ(π, β)
to denote the approximate gradient with respect to the pol-
icy and prior respectively. Appendix A describes how we
obtain those in detail. Since gradient steps may lead us out-
side the feasible prior space B, we use a projection PB to
ensure we have a valid prior distribution. Finally, we return
a randomly selected policy-prior pair from the ones gener-
ated during the algorithm’s run.

Algorithm 1 Stochastic GDA

Input policy π0, belief β0, learning rates (ηπ, ηβ) and
stochastic gradient estimators Gπ, Gβ for ∇πL,∇βL
for t = 1, . . . , T do

Get directions gβ = 1
M

∑
iG

(i)
β (πt−1, βt−1) and

gπ = 1
M

∑
iG

(i)
π (πt−1, βt−1) using M i.i.d samples

πt ← πt−1 − ηπgπ
βt ← PB

(
βt−1 + ηβgβ

)
end for
Output β∗, π∗ uniformly at random from
{(β1, π1), . . . , (βT , πT )}

5.1.1 Convergence guarantees for finite set of MDPs

In the MDP setting with n MDPs, we have B as the proba-
bility simplex which has the diameter D =

√
2. Addition-

ally, the gradient

∇βL(π, β) =

n∑
i

R(π, µi)∇βP (µi|β) (10)

∇βi
L(π, β) = R(π, µi) (11)

is constant and therefore convex.

Lemma 5. If the policy π is parameterised as a softmax
over actions, independently for each ht and the horizon T
is fixed. Then L(π, β) is T 2(|A| + 1)-smooth and L(·, β)
is T 2-Lipschitz

With these properties, and a batch size M = 1, the re-
quirements of Theorem 4.9 of Lin et al. (2020) are fulfilled
and Algorithm 1 will find a ϵ−stationary point in terms of

Moreau envelopes, given appropriate step sizes, with an it-
eration complexity of

O

(
|A|3T 6

((
T 4 + σ2

)
∆̂Φ

ϵ6
+

∆̂0

ϵ4

)
max

{
1,
σ2

ϵ2

})
,

(12)
as long as EG

[
∥G(π, β)−∇L(π, β)∥2

]
≤ σ2. Note that

no guarantees exist for general non-convex non-concave
Bayesian regret L, as is the case for Dirichlet beliefs and
parametric policies.

Here the stationarity is defined as ||∇Φ1/2l(π)||2 ≤ ϵ as
in Lin et al. (2020). We have Φ(·) = maxβ∈B L(·, β) and
Φλ(π) = minw∈Π Φ(w) + (1/2λ)||ω− π||22 is the Moreau
envelope of Φ. Finally we obtain ∆̂Φ = Φ1/2l(π0) −
minπ Φ1/2l(π) and ∆̂0 = Φ(π0)− L(π0, β0).

5.2 Cutting planes

In this section we demonstrate an efficient method for lo-
calising the minimax pair (π∗, β∗) for beliefs over a finite
set of MDPs, given that an oracle for the Bayes-optimal
policy for a given belief is available. This could for exam-
ple be obtained in finite horizon tasks with a sufficiently
small horizon such that a tree-policy is tractable. An exam-
ple of this can be found in (Duff, 2002, Section 1.5).

We use the approximate centroid cutting plane algorithm
from Bertsimas and Vempala (2004), which can be seen
as a high dimensional extension of the bisection algo-
rithm. The goal here is to find a way to repeatedly ob-
tain a plane where we can reject one side of the half-plane,
quickly shrinking the plausible set of beliefs. Each pol-
icy π has a corresponding regret plane4 L(π, β) over β.
Since L(π∗(β), β)) ≤ maxβ∈B L(π∗(β), β)), any β :
L(π∗(β′), β′)) > L(π∗(β′), β)) can not be the minimax
β and can be discarded. This is the same as discarding the
half-plane given by the descent direction of the Bayesian
regret plane. An illustration of this principle in two dimen-
sions can be found in Figure 2.

Selecting a new approximate centroid as the next β to query
guarantees fast convergence in the volume of the plausible
set of beliefs given the following lemma.

Lemma 6 (Lemma 5 Bertsimas and Vempala (2004)).
Each cut in Algorithm 2 will reduce the volume of the set
Kt by at least 1/3 with high probability.

The full procedure is described in Algorithm 2. Here βt
is the approximate centroid (through one of the methods in
Bertsimas and Vempala (2004), such as hit-and-run sam-
pling) of the set Kt. Kt contains the plausible beliefs that
could be the minimax belief, at step t of the algorithm. The
cut is given by Ct which is the normal to the Bayes regret

4Due to the Bayesian regret being an expectation over MDPs
and hence is linear.
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L(π∗(β0), β)
L(π∗(β), β)

δ(µ0) δ(µ1)β0
β

L(π∗(β0), β)
L(π∗(β), β)

δ(µ0) δ(µ1)β0β1
β

Figure 2: Illustration of cutting plane algorithm for two
dimensions. The top image illustrates the Bayesian regret
plane obtained for queried belief β0 while the bottom im-
age shows how the cut obtained by the plane discards the
right side of the belief space and a new queried belief β1 is
obtained.

plane at βt where each element C(i)
t = R(π∗(βt), β =

δµi
).

Algorithm 2 Cutting plane algorithm for finding minimax
belief

Input: Initial belief set of constraints K0, Optimal Pol-
icy oracle, Policy evaluation oracle, t = 0;
for t ∈ 0, . . . , T − 1 do

Obtain βt ≈ EKt
[x]

Obtain optimal policy π∗
βt

and C
(i)
t =

R(π∗(βt), β = δµi
).

Kt+1 = Kt ∩ {β : CT
t (β − βt) > 0}

end for
Return β∗ ∈ KT that has VOL(KT )

VOL(K0)
<
(
2
3

)T
with high

probability and corresponding π∗(β∗).

This method is also applicable when the policy space
is a set of ϵ-optimal policies Πϵ ⊂ Π, i.e. such that
maxπ∈Πϵ U(π, β) ≥ maxπ∈Π U(π, β)− ϵ for any β ∈ B.
It is natural to look at such a policy space, because policies
obtained through look-ahead tree search or neural network
may be adaptive, but they can only be ϵ-optimal in general.

Lemma 7. If maxπ∈Πϵ L(π, β) ≤ maxπ∈Π L(π, β)+ϵ for
all β ∈ B then

min
π∈Π

L(π, βϵ,∗) ≥ max
β∈B

min
π∈Π

L(π, β)− ϵ (13)

where βϵ,∗ = argmaxβ∈B minπ∈Πϵ L(π, β).

Additionally, if minπ∈Π L(π, β) is c-concave in β then
||βϵ,∗ − β∗||2 <

√
ϵ/c.

A proof is provided in the appendix.

6 Experiments

We perform three experiments to see how minimax priors
differ from common uniform priors, and examine the rel-
ative robustness of the corresponding policies. The first
characterises worst-case priors for Bernoulli bandits. The
second experiment is on finite MDP sets with a finite hori-
zon. Here we verify the feasibility of the cutting plane al-
gorithm for finding minimax solutions. We also illustrate
the regret of posterior sampling. The final experiment is for
the general case of discrete MDPs and parametric adaptive
policies, where a value may not exist.5

6.1 Illustrations of Worst-Case Priors for Bernoulli
Bandits

We are interested in analysing the worst-case priors when
the Bayesian agent is responding to nature’s prior with a
Bayes-optimal policy. In general, computing the Bayes-
optimal policy is intractable. However, for Bernoulli ban-
dits with infinite horizon and geometrically discounted re-
wards, so that the utility is defined as u =

∑
t γ

trt, Gittins
(Gittins, 1979; Gittins et al., 2011) showed that an index
policy, the so-called Gittins index, yields a Bayes-optimal
policy.

For K-armed Bernoulli bandits θ = (θ1, . . . , θK) with
θk ∈ [0, 1], we then consider Beta product priors such
that β(θ) =

∏K
k=1 Beta(ak, bk){θk}. To illustrate how

the Bayes-expected regret of the Bayes-optimal policy
changes with respect to the prior, we consider a two-armed
Bernoulli bandit, where the first arm’s prior is fixed to
some distribution Beta(a1, b1) and the second arm’s prior
Beta(a2, b2) is set to different values. Figure 3 shows the
Bayesian regret for different fixed priors for arm 1 and
varying prior for arm 2.

We observe that high Bayesian regret is typically suf-
fered when the second prior’s mean approximately matches
the mean of the first arm’s prior, i.e. E[Beta(a1, b1)] =
E[Beta(a2, b2)]. Moreover, it seems that maximal Bayesian
regret is achieved at a completely symmetric prior, i.e.
Beta(a1, b1) = Beta(a2, b2), irrespective of how the first
arm’s prior is chosen. More generally, we can observe that
lower values of a and b yield higher Bayesian regret, mak-
ing the intuition precise that the Bayes-optimal policy suf-
fers higher Bayesian regret when the prior provides less
information. Based on this, a worst-case prior can be con-
jectured to make arms maximally indistinguishable a priori;
as one may expect.

We also allowed all priors to vary to discover the actual
worst-case prior. We found this depends heavily on the dis-
count factor γ and the number of arms K. For K = 2 and
γ = 0.9, we found it is approximately Beta(0.8, 0.8) for

5The code is made available at https://github.com/
minimaxBRL/minimax-bayes-rl.

https://github.com/minimaxBRL/minimax-bayes-rl
https://github.com/minimaxBRL/minimax-bayes-rl
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(a) Beta(1, 1) (b) Beta(3, 3) (c) Beta(4, 2) (d) Beta(2, 4)

Figure 3: The Bayesian regret of the Bayes-optimal policy in two-armed Bernoulli bandits, where the first arm’s prior is
fixed. The x- and y-axis denote the parameters of the second arm’s prior.

both arms. In general, the worst-case prior is symmetric
with parameters increasing in the number of arms and the
discount factor, i.e. moving towards short-tailed priors.

6.2 Finite Set of MDPs

In this section, we study the properties of minimax prob-
lems where we have a belief over a finite set of MDPs. The
transition matrix is randomly sampled from an exponential
distribution before being normalised. The agent starts in
state 1, and the reward is 1 for taking the first action in state
N, and zero elsewhere. We use a finite horizon T = 5 to al-
low exact computation of the optimal policies and Bayesian
regret. Additionally we use γ = 1.

Figure 4 show the Bayesian regret for a two-MDP task.
This helps us visualise that the Bayes-optimal value is
a piecewise linear function consisting of the minimum
over locally optimal policies. We also compare with the
Bayesian regret of the PSRL policy (Strens, 2000), which
for every episode acts optimally with respect to a sampled
MDP from the belief. The quadratic curve for PSRL is due
to the fact that we allow the policy to change with the be-
lief.

In additional experiments in Appendix C, we study the
Bayesian regret landscape for a three MDP setup (see Fig-
ure 6). We also compare the worst case Bayesian regret
of the minimax policy and of the Bayes optimal policy for
the uniform belief for a few different setups with 16 differ-
ent MDPs in Table 1 and can see that the minimax policy
significantly outperforms the uniform best response policy.

6.3 Infinite Set of MDPs

In the following experiments, we study priors over an infi-
nite space of MDPs. The main prior of interest is Dirichlet
product-priors. We use the minimax policy gradient algo-
rithm to simultaneously update the parameters of the be-
lief β and the parameters of the policy π. We choose a
history-dependent policy parametrisation using a softmax
rule. In these experiments we study MDPs with 5 states
and two actions. Further, we consider problems with hori-
zon T = 1000.

Figure 4: This figure shows the Bayesian regret of different
policies. The dashed lines show the value of three adaptive
policies optimal for the maximin-regret prior. Two of them
are best responses, which are also optimal on either side of
the maximin point. The minimax-regret policy is shown in
green, and it has a uniform regret no matter what the actual
prior is. The solid lines show policies which have knowl-
edge of the MDP prior: the Bayes-optimal policy and the
best PSRL policy for that specific prior. Their dependency
on the prior makes their regret a concave function.

In Figure 5 we investigate the performance of the minimax
policy π∗ compared to the baseline best response adaptive
policies, π∗(β1), π∗(β∗), to the uniform prior β1 and the
maximin prior β∗, respectively. The three policies are eval-
uated on six different priors. These are, the uniform prior
β1, the maximin prior β∗, two priors interpolated between
the uniform and the maximin prior, a uniform prior over de-
terministic MDPs βD and a delta distribution over the pa-
rameters of the Chain environment (Strens, 2000), βChain.

In this setting we can only expect to find approximate min-
imax solutions. Thus, there is no guarantee the obtained
minimax solution is globally robust to changes in belief.
However, in Figure 5 we observe the minimax policy π∗ to
be the most robust taking all priors into account.
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Figure 5: βD is approximately uniform over deterministic
MDPs. βChain is a delta distribution over the Chain MDP.
The MDPs in between β1 (Uniform) and β∗ (Maximin) are
interpolated. The mean is depicted with a dashed line, the
solid line is the median and the upper whisker is the 99.9%
percentile.

7 Discussion and Conclusion

Related work We studied the problem of minimax-
Bayes reinforcement learning. Although minimax-Bayes
problems are well-known in statistical inference (c.f.
Berger, 1985), they have received little attention in sequen-
tial problems. Older work such as Arrow et al. (1949) is
interested in minimax and Bayes optimal solutions to de-
cision making tasks but without combining them. Simi-
larly, Hodges Jr and Lehmann (1952) relaxes the property
of minimax risk to restricted Bayes solutions where the
maximal risk is bounded while also changing the objec-
tive to an interpolation between the expected and maximal
risk. While this is work in the same spirit as ours it is funda-
mentally different. Grünwald and Dawid (2004) studied the
problem of one-shot experiment design prior to estimation.
In the partial monitoring setting, Lattimore and Szepesvári
(2019) made connections between the Bayesian minimax
regret and the minimax regret.

There have been a variety of work interested in using meta
learning to create Bayes-(adaptive) optimal agents such as
Hochreiter et al. (2001); Wang et al. (2016); Mikulik et al.
(2020); Zintgraf et al. (2021). They use recurrent neural
networks to encode an episode’s history so as to adapt op-
timally in a new episode in a new MDP. As they are in-
terested in optimising for specific MDP distribution, β is
considered fixed and they solve maxπ Eµ∼β U(µ, π) with-
out studying β’s impact on the utility or regret.

Work on Bayesian robust reinforcement learning (Derman
et al., 2020; Petrik and Russel, 2019) is related in the man-
ner that they search for policies that are robust against in-

terference from nature. The difference is that they wish to
find policies that are good against the worst MDP from the
set of MDPs that are plausible with respect to a specific
posterior, rather than against an adversarial prior.

Conclusion In this work we study the computation of
minimax-Bayes policies, which have not been previously
considered. We also include conditions for when the solu-
tions can be guaranteed to be found efficiently. Experimen-
tally we find that these policies not only appear to be fea-
sible, but also that such policies can be significantly more
robust than those based on standard uninformative priors.
Finally, we make exposition of many important properties
of minimax-Bayes solutions for reinforcement learning to
make a basis for future work in this area.
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A Gradient calculations.

For solving the minimax problem either for the expected utility or the expected regret, we need to calculate the appropriate
gradient for both the policy and the prior. The gradients for the expected utility are as follows:

∇πU(π, β) =

∫
M
dβ(µ)∇πU(π, µ), ∇βU(π, β) =

∫
M
U(π, µ)∇βdβ(µ) (14)

The Bayesian regret gradient is similarly obtained:

∇πL(π, β) = −
∫
M
dβ(µ)∇πR(π, µ) ∇βL(π, β) =

∫
M
R(π, µ)∇βdβ(µ). (15)

Since in the minimax regret scenario, the agent is minimising rather than maximising, the policy update is identical.
However, the prior gradient is scaled with respect to the regret rather than the utility. Let us now look at how to calculate
those gradients in more detail.

A.1 Policy gradient

Here we look at two classes of policies. The first occurs when there is a finite number of bases (possibly stochastic
and behavioural) policies from which the agent chooses one randomly. The second is a class of parametrised stochastic
behavioural policies.

Finite policy distributions. For a strategy σ = (σ1, . . . , σn) over a finite set of n policies Π ⊂ ΠS, we can write

U(σ, β) =
∑
π,µ

σ(π)U(π, µ)β(µ). (16)

We then obtain
∂

∂σi
U(σ, β) =

∑
µ

U(πi, µ)β(µ) (17)

We do not use this setting in practice in the paper, but it is an interesting special case.

Stochastic policies. Stochastic policies π in a parametrised policy space ΠW ⊂ ΠS can be an arbitrary neural network
policy. For a finite set of MDPs, the gradient is:

∇πU(π, β) =
∑
µ

∇πU(π, µ)β(µ). (18)

For an infinite set of MDPs, we have

∇πU(π, β) =

∫
M
∇πU(π, µ) dβ(µ) ≈ 1

M

M∑
k=1

∇πU(π, µ(k)), µk ∼ β(µ) (19)

So it is only necessary to compute

∇πU(π, µ) =
∑
h

U(h)Pπ
µ(h)

∑
t

∇π lnπ(at | ht)

=
∑
h

U(h)Pπ
µ(h)

∑
t

∇ππ(at | ht)
π(at | ht)

,

where for a given history h = (s1, r1, a1, . . . , sT , rT ), ht = (s1, r1, a1, . . . , st, rt). It remains to compute ∇ππ(at | ht),
which can be done automatically using auto-grad software.

However, one particular case is when the policy is parametrised with wa = (wa,i)
n
i=1 vectors combined with a statistic

ϕ : H → Rn
+ so that

π(at = a | ht) =
w⊤

a ϕ(ht)∑
b w

⊤
b ϕ(ht)

=

∑
i wa,iϕi(ht)∑

b

∑
i wb,iϕi(ht)

(20)
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∂

∂wa,i
πw(at = a | ht) =

ϕi(ht)[
∑

(b,j) ̸=(a,i) wb,jϕj(ht)]

[
∑

b

∑
j wb,jϕj(ht)]2

,
∂

∂wb,i
πw(at = a | ht) = −

ϕi(ht)
∑

j wa,jϕj(ht)

[
∑

b

∑
j wb,jϕj(ht)]2

.

(21)
With a feature representation ϕ : H×A → Rn and a softmax policy then

π(at | ht) =
ew

⊤ϕ(ht,at)∑
b e

w⊤ϕ(ht,b)
, ∇w lnπ(at | ht) = ϕ(ht, at)−

∑
a∈A

π(at = a | ht)ϕ(ht, a). (22)

For the case where ϕ(ht, a) simply partitions the history, so that w⊤ϕ(h, a) = wh,a, the above becomes

∂

∂wh,a
lnπ(at | ht) =


1− π(a|h), at = a, ht = h

−π(a|h), at ̸= a, ht = h

0, ht ̸= h

(23)

A.2 Prior gradient.

The steps above were all standard policy gradient steps, which can be implemented with sampled MDPs from the current
prior. However, we also need to update the prior distribution with a gradient step. Here we distinguish two cases: a belief
over a finite number of MPDs and a Dirichlet belief.

FiniteM. Now let us represent the belief as a finite-dimensional vector β = (βi) on the simplex. The partial derivative
is then:

∂

∂βi
U(π, β) =

∑
j

U(π, µj)
∂

∂βi
βj = U(π, µj) (24)

DirichletM. Let us first consider the general case of an infinite MDP space. Then we can approximate the gradient of
the expected utility through sampling:

∇βU(π, β) =

∫
M
U(π, µ)∇β ln[β(µ)]dβ(µ) ≈

1

M

M∑
k=1

U(π, µ(k))∇β ln[β(µ
(k))], (25)

where µ(k) ∼ β are samples from the current prior.

For discrete state-action MDPs for a certain number of states and actions, we can use a Dirichlet-product distribution. This
means that for each state-action’s (s, a) transition distribution, we define a separate Dirichlet distribution β(µs,a) with
parameter vector αs,a ∈ R|S|

+ :

β(µ) =
∏
(s,a)

β(µs,a), β(µs,a) =
1

B(αs,a)

∏
i

µ
αs,a,i−1
s,a,i (26)

where µs,a,i = P(st+1 = i|st = s, at = a). For the sequel, it is notationally convenient to ignore the s, a subscript and
focus only on the next state distribution i

∂

∂αj
lnβ(µ) =

∂

∂αj
ln

{
1

B(α)

∏
i

µαi−1
i

}

=
∂

∂αj

{
ln

1

B(α)
+
∑
i

(αi − 1) lnµi

}

=
∂

∂αj
ln

1

B(α)
+ lnµj

Note that

ln 1/B(α) = ln
Γ(
∑

i αi)∏
i Γ(αi)

= lnΓ(
∑
i

αi)−
∑
i

log Γ(αi)
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So that

∂

∂αj
ln 1/B(α) =

∂

∂αj
ln Γ(

∑
i

αi)−
∂

∂αj
ln Γ(αj)

=
1

Γ(
∑

i αi)

∂

∂αj
Γ(
∑
i

αi)−
1

Γ(αj)

∂

∂αj
Γ(αj)

= ψ(
∑
i

αi)− ψ(αj)

where ψ is the digamma function.

This means that the overall derivative is

∂

∂µs,a,i
lnβ(µ) =

∂

∂µs,a,i
ln
∏

(s′,a′)

β(µs′,a′)

=
∂

∂µs,a,i

∑
s′,a′

lnβ(µs′,a′)

=
∂

∂µs,a,i
lnβ(µs,a)

= ψ(
∑
j

αs,a,j)− ψ(αs,a,i) + ln(µs,a,i)

Combinging the above, we get

α
(k)
s,a,i = α

(k−1)
s,a,i − δ

(k)U(π, µ(k))

ψ(∑
j

αs,a,j)− ψ(αs,a,i) + ln(µ
(k)
s,a,i)

 , (27)

where δ(k) is the step-size.

Reward prior. We can derive a similar update for Beta-distributed rewards, with

α(k)
s = α(k−1)

s − δ(k)U(π, µ(k))
[
ψ(αs + βs)− ψ(αs) + ln(ρ(k)s )

]
(28)

β(k)
s = β(k−1)

s − δ(k)U(π, µ(k))
[
ψ(αs + βs)− ψ(βs) + ln(1− ρ(k)s )

]
. (29)

We can also define the Beta-distribution with alternate parametrisation: ps = αs/(αs + βs), ns = αs + βs which implies
αs = psns, βs = ns(1− ps). We then obtain

∂

∂ps
lnβ(µ) (30)

= ns
∂

∂αs
lnβ(µ)− ns

∂

∂βs
lnβ(µ) (31)

= ns

[
−ψ(αs) + ψ(βs) + ln(ρ(k)s )− ln(1− ρ(k)s )

]
(32)

= ns

[
−ψ(αs) + ψ(βs) + ln

(
ρ
(k)
s

1− ρ(k)s

)]
(33)

∂

∂ns
lnβ(µ) = p

∂

∂αs
lnβ(µ) + (1− p) ∂

∂βs
lnβ(µ) (34)

= p
[
−ψ(αs) + ψ(βs) + ln(ρ(k)s )− ln(1− ρ(k)s )

]
+
[
ψ(αs + βs)− ψ(βs) + ln(1− ρ(k)s )

]
(35)

= p

[
−ψ(αs) + ψ(βs) + ln

(
ρ
(k)
s

1− ρ(k)s

)]
+
[
ψ(αs + βs)− ψ(βs) + ln(1− ρ(k)s )

]
(36)
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B Ommitted proofs

Proof of Lemma 1. For any β

max
µ∈M

R(π, µ) ≥ max
µ∈supp(β)

R(π, µ) (37)

= max
µ∈supp(β)

U(π∗(µ), µ)− U(π, µ) (38)

≥ max
µ∈supp(β)

U(π∗(β), µ)− U(π, µ) (39)

≥
∑

µ∈supp(β)

β(µ)[U(π∗(β), µ)− U(π, µ)] (40)

= U(π∗(β), β)− U(π, β) = R(π, β). (41)

Since the above holds for any β, maxµR(π, µ) ≥ maxβ R(π, β). Letting δ(M) denote the degenerate distributions on
individual members ofM, we have:

max
β

R(π, β) ≥ max
β∈δ(M)

R(π, µ) = max
µ∈M

R(π, µ)

Proof of Lemma 5. Let π, π′, π′′ ∈ Π. To verify that L(π, β) is l-smooth we study if

||∇L(π, β)−∇L(π′, β′)|| ≤ l||(π, β)− (π′, β′)||. (42)

||∇L(π′′, β′′)−∇L(π′, β′)||22 (43)

≤||(π′′, β′′)− (π′, β′)||22(sup
π,β
||∇2L(π, β)||22) (44)

=||(π′′, β′′)− (π′, β′)||22(sup
π,β
||∇2

πL(π, β)||22) (45)

≤||(π′′, β′′)− (π′, β′)||22(sup
π,β
||∇2

πL(π, β)||2F ) (46)

Here the second transformation is due to the fact that any derivative with respect to β is constant, and therefore the second
order derivatives are zero except for∇2

π . ||.||F denotes the Frobenius norm.

For stochastic policies π in a parametrised policy space ΠW ⊂ ΠS , we can write (cf. Dimitrakakis and Ortner (2022)):

∇πL(π, β) = ∇πU(π, β) =
∑
β

∇πU(π, µ)β(µ). (47)

Similarly, we obtain, for the Hessian:

∇2
πL(π, β) = ∇2

πU(π, β) =
∑
β

∇2
πU(π, µ)β(µ). (48)

So it is only necessary to compute

∇2
πU(π, µ) =

∑
h

U(h)∇π(Pπ
µ(h)

∑
t

∇π lnπ(at | ht)) (49)

=
∑
h

U(h)(∇π(Pπ
µ(h))

∑
t

∇π lnπ(at | ht)) + Pπ
µ(h)

∑
t

∇2
π lnπ(at | ht)) (50)

=
∑
h

U(h)(Pπ
µ(h)

∑
t

∇π lnπ(at | ht)
∑
t

∇π lnπ(at | ht)T + Pπ
µ(h)

∑
t

∇2
π lnπ(at | ht)) (51)

=
∑
h

U(h)(Pπ
µ(h)

∑
t

∇π lnπ(at | ht)∇π lnπ(at | ht)T + Pπ
µ(h)

∑
t

∇2
π lnπ(at | ht)) (52)
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where for a given history h = (s1, r1, a1, . . . , sT , rT ), ht = (s1, r1, a1, . . . , st, rt).

From the setting of a softmax policy and a partitioned history in Eq (23).

∂

∂wh,a
lnπ(at | ht) =


1− π(a|h), at = a, ht = h

−π(a|h), at ̸= a, ht = h

0, ht ̸= h

(53)

∂∂

∂wh,a∂wh,a′
lnπ(at | ht) =


π(a|h)(π(a|h)− 1), a = a′, ht = h

π(a|h)π(a′|h), a ̸= a′, ht = h

0, ht ̸= h.

(54)

We then get Let∇2
πU(π, µ) = G1 +G2 where

G1 =
∑
h

U(h)Pπ
µ(h)

∑
t

∇π lnπ(at | ht)∇π lnπ(at | ht)T (55)

G2 =
∑
h

U(h)Pπ
µ(h)

∑
t

∇2
π lnπ(at | ht). (56)

||G1||F =||
∑
h

U(h)Pπ
µ(h)

∑
t

∇π lnπ(at | ht)∇π lnπ(at | ht)T ||F (57)

≤max
h
|U(h)|||

∑
h

Pπ
µ(h)

∑
t

∇π lnπ(at | ht)∇π lnπ(at | ht)T ||F (58)

≤T ||
∑
h

Pπ
µ(h)

∑
t

∇π lnπ(at | ht)∇π lnπ(at | ht)T ||F (59)

=T

√√√√∑
ht

∑
a∈A

∑
a′∈A

(
Pπ
µ(ht)T

∂ lnπ(at | ht)
∂ωht,a

∂ lnπ(at | ht)
∂ωht,a′

)2

(60)

≤T
√∑

ht

T 2 Pπ
µ(ht)

2
∑
a∈A

∑
a′∈A

12 (61)

≤T
√
T 2
∑
ht

Pπ
µ(ht)

∑
a∈A

∑
a′∈A

1 (62)

≤T
√
T 2|A|2 (63)

≤|A|T 2 (64)

Here equation (60) comes from the definition of the Frobenius norm and the fact that every element (ht, a, a′) in the matrix
corresponds to

∑
h Iht∈h Pπ

µ(h)
∂ lnπ(at|ht)

∂ωht,a

∂ lnπ(at|ht)
∂ωht,a

′
and that Pπ

µ(ht) =
∑

h P
π
µ(ht|h)P

π
µ(h) =

∑
h Iht∈h1/T Pπ

µ(h).

Equation (61) follows from the absolute value of equation (53) being bounded by one.
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||G2||F = ||
∑
h

U(h)Pπ
µ(h)

∑
t

∇2
π lnπ(at | ht)||F (65)

≤T ||
∑
h

Pπ
µ(h)

∑
t

∇2
π lnπ(at | ht)||F (66)

≤T ||
∑
ht

T Pπ
µ(ht)∇2

π lnπ(at | ht)||F (67)

≤T
√∑

ht

T 2 Pπ
µ(ht)

21 (68)

≤T
√
T 2
∑
ht

Pπ
µ(ht)1 (69)

≤T 2 (70)

Similarly to the case for G1, the steps follow the definition of the Frobenius norm, the observation that each element is
weighted by Pπ

µ(ht)T , and that the absolute value of the partial derivatives is bounded by 1.

Finally this yields

l ≤ ||∇2
πU(π, µ)||F ≤ ||G1||F + ||G2||F ≤ T 2(|A|+ 1). (71)

L(., β) is L-Lipschitz if ||∇πU(π, µ)||2 ≤ L.

||∇πU(π, µ)||2 = ||
∑
h

U(h)Pπ
µ(h)

∑
t

∇π lnπ(at | ht)||2 (72)

≤ ||
∑
h

U(h)Pπ
µ(h)

∑
t

∇π lnπ(at | ht)||F (73)

≤ T
√
T 2
∑
ht

Pπ
µ(ht)

212 (74)

≤ max
h

(|U(h)|)T. (75)

This then gives L ≤ T 2.

Proof of Lemma 7. Firstly,

min
π∈Π

L(π, βϵ,∗) (76)

≥ min
π∈Πϵ

L(π, βϵ,∗)− ϵ (77)

≥ min
π∈Πϵ

L(π, β∗)− ϵ (78)

≥ min
π∈Π

L(π, β∗)− ϵ (79)

which completes the first part of the proof.

Secondly from the definition of c-convexity, and the fact that ∇β minπ∈Π L(π, β
∗)T (β − β∗) must be zero since the

gradient must be zero in any direction that does not move out of B, we have

min
π∈Π

L(π, β) ≤ min
π∈Π

L(π, β∗)− c||β∗ − β||22. (80)

Rearranging and setting β = βϵ,∗ finishes the proof.
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Figure 6: Visualisation of Bayesian regret for three finite-horizon MDPs. The arrows show the gradients of the Bayesian
regret for the corresponding Bayes-optimal policy. The axes represent the belief of two of the MDPs while the belief of the
final MDP is given by 1-x-y.

Table 1: Comparison of worst-case Bayesian regret for optimal policies at minimax and uniform belief for 16 MDP tasks.

Seed 1 2 3 4 5

Minimax 0.247 0.314 0.348 0.342 0.363
Uniform 0.640 0.554 0.484 0.646 0.850

C Additional results for finite MDPs

In this section we generate MDPs as in the same way as in Section 6.2, with the difference that Table 1 uses γ = 0.9.

Figure 6 gives an example of what the Bayesian regret landscape looks like for a task with three MDPs. The change in
Bayesian regret for the fixed optimal policy of a certain belief is visualised with arrows.

In Table 1 we have some additional results comparing the performance of the uniform-prior and worst-case prior policies.
In particular, we generate 5 sets of 16 MDPs. For each set, we calculate the minimax policy and the best response to the
uniform prior. We then calculate the worst-case Bayesian regret for each policy. As we can expect, the minimax policy
significantly outperforms the uniform best response policy.
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