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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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This study presents an efficient and robust inverse approach to obtain the heat flux distribution on the tool rake face in oblique cutting including
the tool nose radius. In this approach, Machine Learning (ML) is used to establish the relation between the parameters associated with the heat
flux distribution and the error functions expressing the deviation between the embedded thermocouple measurements and Finite Element (FE)
simulations. The dependency of the algorithm on the number of input data, the optimization strategy, and the overall performance of the approach
are studied. The results show a clear potential of the proposed ML-based inverse identification approach.
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1. Introduction

Heat generation during machining processes is a crucial fac-
tor affecting the tool wear and surface integrity of the machined
components. However, the difficulties in measuring the sur-
face temperature on the tool-chip contact area encouraged re-
searchers either to use the analytical and numerical methods
to predict the temperature rise in the cutting zone or to de-
velop inverse approaches to estimate the heat flux on the con-
tact area based on the experimental measurements. In the latter
approach, the estimated heat flux can be applied to the mod-
els to predict the temperature under similar conditions. Numer-
ous studies are focused on the estimation of cutting tempera-
ture and heat flux on the contact area in machining based on
these approaches. For instance, numerical simulations of the
chip formation process incorporating different friction models
and thermal boundary conditions are widely used to obtain the
temperature distribution at the tool-chip interface [1–4]. The
other commonly pursued approach is to estimate the heat flux
based on the classical metal cutting theories or energy meth-
ods, which is then used as a boundary condition in analytical or

numerical models to obtain the temperature distribution within
the tool and along the chip-tool interface [5, 6]. Combined with
these modeling strategies, several authors have pursued the de-
velopment of the so-called meta-models for the tool tempera-
ture prediction as the cutting or cooling-lubrication conditions
vary. These studies generally exploit ML or Artificial Neural
Network (ANN) models based on temperature predictions (the
mean or maximum interface temperature) obtained using either
of described modeling approaches [7, 8]. However, the simu-
lation error associated with: 1) the tool-chip contact area; 2)
the amount of generated heat due to the friction and plastic
deformation can lead to unreliable temperature predictions at
the tool-chip interface. This limits the application of these ap-
proaches for temperature predictions in cutting.

To obtain a better estimation of the heat flux and its distribu-
tion at the tool-chip interface, several studies placed their focus
on the inverse heat transfer problem. These studies often use
thermocouple measurements as inputs for inverse identification
of the amount and/or distribution of heat flux. These approaches
generally benefit from FEM (Finite Element Method) or FDM
(Finite Difference Method) for simulation of the heat transfer
problem, making it possible to incorporate more complex tool
geometries and boundary conditions. For instance, Yvonnet et
al. [9] demonstrated the potential of an FEM-based inverse ap-
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Fig. 1. Experimental setup (left) and configuration of thermocouple holes (right).

proach to obtain the heat flux distribution on the tool-chip in-
terface and the convection coefficient of the external surfaces
simultaneously. Kryzhanivskyy et al. [10] included the time-
dependent heat flux distribution on the tool surface in their
FE-based inverse approach. The authors evaluated the time-
dependency of different heat flux expressions to determine the
most suitable one giving the best match with measured temper-
atures. The spatial distribution of the heat flux on the rake face
was also investigated using an exponential function.

In this study, we placed our focus on an accurate represen-
tation of the heat flux distribution at the tool-chip contact area.
An ML-based inverse approach is developed to determine the
parameters of an assumed heat flux distribution to mimic the
machining. FEM is used to address the heat transfer problem
and to generate the inputs required to train the appropriate ML
model describing the relationship between the heat flux parame-
ters and the absolute error between predicted temperatures and
measurements at known locations. The ML model is used to
obtain the optimum set of heat flux parameters giving the least
error. In addition, the sensitivity of model predictions on the
number of simulations required for training the ML model, the
variations in the location of thermocouples, and the objective
functions used for minimization are also investigated.

2. Experimental Details

Face turning (FT) experiments are performed under dry con-
ditions on an EMCO 365 CNC lathe. The workpiece mate-
rial used in the experiments is C38 steel. All machining tests
are carried out on cylindrical bars with an outer diameter of
156.5mm. The tool holder used in the experiments is C3-
PCLNR-22040-12 (Sandvik Coromant). The inserts mounted
on the tool holder are uncoated cemented carbide CNMA-
120404-KR (Sandvik Coromant) without a chip breaker. The

Table 1. Cutting Conditions for Face Turning (FT) Experiments.

No Cutting speed, Vc (m/min) Feed, f (mm/rev) Depth of cut, ap (mm)

FT1 150 0.05 0.8
FT2 150 0.10 0.8
FT3 150 0.15 0.8

insert and tool holder assembly gives 95◦ major cutting edge an-
gle and 6◦ rake angle. Three cutting conditions (given in Table
1) are used in the experiments to investigate the effect of feed
on the estimations of heat flux and temperature. The machining
duration for each cut is kept short (around 4 seconds) to reduce
the effect of flank and crater wear on the temperature measure-
ments. This short machining duration would not be sufficient to
reach a steady state in terms of interface temperature; however,
this would not largely influence the intensity of heat flux as the
tool-chip contact area and chip formation reached stable con-
ditions during the cutting time. The experimental setup for the
temperature measurements can be seen in Fig. 1. Three holes
with a diameter of 0.55±0.05mm are produced using electrical
discharge machining (EDM) from the bottom of the inserts with
0.6±0.2mm from the rake face of the insert. The location and the
depth of the thermocouple holes were decided based on prelim-
inary FE simulations. This was to ensure that the temperature
measurements at different locations would provide sufficiently
large differences required for model calibration.

Temperatures are measured with mineral insulated thermo-
couples (Type K), with 0.5mm diameter, embedded in the fabri-
cated holes. A multichannel data logger is used to collect the
measurements and to ensure that the measurements are syn-
chronized. To reassess the position and depth of the holes, the
flank sides of the inserts are ground after the machining tests.
The grinding is continued until the holes appear, and the depths
and positions are remeasured (see Fig. 1) using a stereo-optical
microscope, Zeiss Discovery V20, equipped with an image pro-
cessing software. The tool-chip contact areas are also measured
by using Scanning Electron Microscope (SEM) after removing
the built-up edge with a diluted HCl solution.

3. Heat Transfer Simulation Details

The heat transfer simulations are performed in ABAQUS.
The FE models include the tool holder, insert, shim and thermo-
couples for a realistic representation of the experimental setup.
The location and the depth of the holes and the tool-chip contact
area in the FE models are defined based on the reassessed mea-
surements. The simulations are performed for a total time of
5 seconds. A perfect contact is considered between the compo-
nents of the assembly. The convection coefficient of 200W/m2K
is applied on the outer surfaces while the ambient temperature

2
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Fig. 2. (a) FE model, (b) tool-chip contact area, (c) heat flux (mW/mm2) distributions obtained from ML-approach and (d) the same heat flux (mW/mm2) applied on
the tool rake face in the FE-model.

is assumed to be constant 25◦C. The other boundary conditions
consist of a constant 25◦C at the base of the tool holder and the
prescribed heat flux distribution over the tool-chip contact area
(see Fig. 2).

The applied heat flux has the distribution as in Eqs. 1a and
1b. The expression given in Eq. 1a represents the effect of the
tool nose radius on the heat flux while Eq. 1b is the simplified
Gaussian distribution. The heat generation (or heat flux Q) due
to friction is related to the shear stress and velocity (Q ∝ τV). In
Fig. 3, the distributions of normal stressσ, shear stress τ and ve-
locity V are given similar to [2, 3, 5, 11]. This figure also shows
the distribution of heat flux along the contact length where the
heat generation due to friction and shear zones are both in-
cluded similar to [1]. Gaussian distribution function given in
Eq. 1b can represent this distribution well. However, it must be
noted that the heat flux Q distribution needs also to be scaled to
include the heat generation due to the plastic deformation in the
primary shear and secondary shear zones. This can be achieved
by carefully selecting the distribution parameters.

The equation of the distribution of heat flux is as follows

R =


(Y − b2), if X < b1

(Y − b2) + b3 (X − b1)2, if X ≥ b1
(1a)

Q =b4 exp

−
 R
b5

2
(1b)

where Q is the distributed heat flux, X and Y are coordinates,
whereas {bi}i=1,..,5 are the parameters to be identified. Here, b1,
b2, b3, and b5 represents the spatial distribution and b4 repre-
sents the maximum magnitude of heat flux Q. An example of
heat flux distribution obtained from ML-approach is shown in
Fig. 2(c). This heat flux is then applied on the FE model on the
respective surface by using the ABAQUS in-built capabilities
as shown in Fig. 2(d).

The temperature readings are collected from the nodes at the
top surfaces of the thermocouples, and the average temperature
for each thermocouple is calculated accordingly. These values
are later compared with the experimental temperature measure-
ments at discrete time intervals to generate the inputs required
for training the ML models. The material properties used for the
components of the FE model are given in Table 2. The number
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Fig. 3. Schematic distribution of normal stress, shear stress, velocity and heat
generation along the contact length.

Table 2. Material Properties of the Components of FE-Model.

Component Conductivity (W/mK) Heat capacity (J/m3K)

Tool holder 39.6 3.56e+6
Shim 39.6 3.56e+6
Insert 92.9 2.94e+6
Thermocouples 16.1 4e+6
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prescribed heat flux distribution over the tool-chip contact area
(see Fig. 2).

The applied heat flux has the distribution as in Eqs. 1a and
1b. The expression given in Eq. 1a represents the effect of the
tool nose radius on the heat flux while Eq. 1b is the simplified
Gaussian distribution. The heat generation (or heat flux Q) due
to friction is related to the shear stress and velocity (Q ∝ τV). In
Fig. 3, the distributions of normal stressσ, shear stress τ and ve-
locity V are given similar to [2, 3, 5, 11]. This figure also shows
the distribution of heat flux along the contact length where the
heat generation due to friction and shear zones are both in-
cluded similar to [1]. Gaussian distribution function given in
Eq. 1b can represent this distribution well. However, it must be
noted that the heat flux Q distribution needs also to be scaled to
include the heat generation due to the plastic deformation in the
primary shear and secondary shear zones. This can be achieved
by carefully selecting the distribution parameters.

The equation of the distribution of heat flux is as follows

R =


(Y − b2), if X < b1

(Y − b2) + b3 (X − b1)2, if X ≥ b1
(1a)

Q =b4 exp

−
 R
b5

2
(1b)

where Q is the distributed heat flux, X and Y are coordinates,
whereas {bi}i=1,..,5 are the parameters to be identified. Here, b1,
b2, b3, and b5 represents the spatial distribution and b4 repre-
sents the maximum magnitude of heat flux Q. An example of
heat flux distribution obtained from ML-approach is shown in
Fig. 2(c). This heat flux is then applied on the FE model on the
respective surface by using the ABAQUS in-built capabilities
as shown in Fig. 2(d).

The temperature readings are collected from the nodes at the
top surfaces of the thermocouples, and the average temperature
for each thermocouple is calculated accordingly. These values
are later compared with the experimental temperature measure-
ments at discrete time intervals to generate the inputs required
for training the ML models. The material properties used for the
components of the FE model are given in Table 2. The number
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Fig. 3. Schematic distribution of normal stress, shear stress, velocity and heat
generation along the contact length.

Table 2. Material Properties of the Components of FE-Model.

Component Conductivity (W/mK) Heat capacity (J/m3K)

Tool holder 39.6 3.56e+6
Shim 39.6 3.56e+6
Insert 92.9 2.94e+6
Thermocouples 16.1 4e+6
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of elements in FE models is selected carefully to minimize the
simulation time and to ensure that the resolution of the heat flux
distribution on the rake face is sufficiently high. The assembly
consists of 300000 elements, and each simulation takes around
7 minutes. This is particularly important since a relatively large
number of simulations need to be performed to train the ML
model.

4. Inverse Identification Details

Inverse identification of the heat flux distribution is carried
out using an ML-based approach. Initially, 400 sets of param-
eters b1, b2, b3, b4 and b5 (in Eqs. 1a and 1b) are randomly
created within certain range for each cutting condition. These
ranges for the parameters b1 to b5 are 0 – ap/2, 0 – lc, 0 – 3, 1e5
– 4e5, lc/4 – lc/2, respectively, where lc is contact length, and
ap is depth of cut. These ranges ensure that the maximum heat
flux is inside the contact area and follows the edge along the
nose radius properly. Then, the FE simulations are performed
for all 400 heat flux distributions. In the next step, the differ-
ence between experimental and simulation temperature results
is calculated for each FE simulation. Two different objective
functions are defined in terms of the calculated error as follows

min
x

∑
n

|Texp − Tsim|
Texp

(2a)

min
x

∑
n

||Texp − Tsim|| (2b)

where Texp and Tsim are the experimental and simulated tem-
peratures at discrete time instants n while x = {bi}i=1,..,5. Eq. 2a
considers the absolute percentage error between the experimen-
tal and simulated temperature at given time instants, while Eq.
2b represents the norm of the error.

The inputs parameters in Eqs. 1a and 1b and the calculated
errors based on Eqs. 2a and 2b are used for building the ML
model, which describes the relationship between the heat flux
distribution and deviations between the experimental and simu-
lated temperatures at discrete time instants. Such a relationship
is obtained for all three thermocouple measurements. The er-
ror, which is estimated by the ML model, is then minimized to
determine the optimum set of parameters for the heat flux distri-
bution. This inverse approach is implemented in MATLAB. The
Gaussian process regression, Bayesian optimization and mini-
mization algorithm with MultiStart are used to obtain the opti-
mum set of parameters. Cross-validation is also included in the
regression model to prevent overfitting. To assess the reliability
(R) of the presented inverse identification approach, an FE sim-
ulation is performed using the optimum set of parameters. The
results from this simulation are compared with the experimen-
tal measurements and the error values based on Eqs. 2a and 2b
are evaluated. The comparison between these values and those
estimated by the ML model enables the assessment of the reli-
ability (R) of the ML model.

5. Results

5.1. Sensitivity assessment

In this section, the performance of the ML-based inverse
identification of heat flux distribution for cutting condition FT2
is evaluated using 7 different scenarios described in Table 3. In
scenarios 1 to 3, the data from the thermocouples TC1 to TC3
are used to build the ML models separately. These cases are cre-
ated to test the performance of the ML model. As evident from
Fig. 4, the FE simulations can only capture the trends of temper-
ature rise. This observation is expected as the time-dependency
of the heat flux is not included in this investigation, however
other factors could also play a role. The sensitivity of the sim-
ulation results to the position of embedded thermocouples is
evaluated by changing their distance from the rake surface (i.e.
by changing the depth of the holes) within a ±200µm range as
depicted by the shaded regions in Fig. 4. As can be seen, the
sensitivity of the results depends on how close the thermocou-
ples are to the heat source (i.e., tool-chip contact area). TC1
temperature results span with a 50◦C range, while TC2 and
TC3 temperature measurements slightly change for the given
variation in the depth of the holes (around 1◦C and 0.2◦C, re-
spectively).

Scenarios 4 to 7 are performed to investigate how the exclu-
sion of the initial stage of temperature rise (i.e., 0<t<1sec), the
number of the input data (FE simulations) to train the ML model
and the choice of objective function influence the coefficient of
determination (R2) and the reliability (R) of model predictions.
The initial rapid increase in the temperature measurements is
excluded to obtain the objective functions in scenario 5. Thus, a
better fit (Ave.Diff.=20.5%, R=96%) for the temperature after
the initial increase is obtained compared to scenario 4. When
the number of FE simulations is decreased from 400 (scenario
4) to 200 (scenario 6), the reliability (R) drops from 95% to
87% with an increase in the average difference from 23.2% to
33.4%. For better reliability with less computational time, the
number of simulations can be selected between 200-400. Sce-
nario 7 with Eq. 2b as the objective function yields almost the
same average difference (23.3%) as scenario 4 (23.2%). How-
ever, the reliability of the ML model decreased to 86%. Since
the main objective of the study is to represent the heat flux dis-
tribution realistically, it is crucial to have a reliable model. Thus,
scenario 5 seems to be the most suitable strategy with the high-
est reliability and the lowest average deviation with the experi-
mental temperature data.

5.2. Results for different cutting conditions

As discussed earlier, scenario 5 leads to the most reliable es-
timations. However, as reported in previous studies [10, 12, 13],
the uncertainty in temperature measurements increases when
the thermocouples are located near the regions with steep tem-
perature gradients. This uncertainty reduces the reliability of
the experimental data acquired from TC1 for inverse identifi-
cation of the optimum set of parameters. Hence, the TC1 tem-
perature measurements were excluded during the optimization
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Table 3. Assessed Scenarios for Inverse Identification of Heat Flux Distribution of FT2.

No Included data Included range Number of data Obj. func. R2 Reliability Average difference

1 TC1 0<t<4sec 400 Eq. 2a 0.99 - -
2 TC2 0<t<4sec 400 Eq. 2a 0.99 - -
3 TC3 0<t<4sec 400 Eq. 2a 0.99 - -
4 All 0<t<4sec 400 Eq. 2a 0.99 95% 23.2%
5 All 1<t<4sec 400 Eq. 2a 0.99 96% 20.5%
6 All 0<t<4sec 200 Eq. 2a 0.72 ±0.27 87% 33.4%
7 All 0<t<4sec 400 Eq. 2b 0.99 86% 23.3%

*Reliability is the percentage comparison of the estimated error by ML and the error from FE simulations.

Fig. 4. Time-temperature response of scenarios 1 (left), 2 (middle) and 3 (right) simulation and experimental measurements for FT2.

process. The results of the FE simulation performed using the
optimum set of parameters are presented in Fig. 5. Increasing
feed from FT1 to FT3 increases the experimental temperature
measurements recorded from all three thermocouples. A simi-
lar trend is observed in the simulated temperatures, i.e. an in-
crease in feed results in an increased maximum temperature
obtained from the FE simulations. However, the simulation re-
sults for TC1 show large deviations from the experimental re-
sults. This is perhaps due to the experimental uncertainties and
the assumptions made for the simplicity in the simulations. Yet
the estimations for TC2 and TC3 capture the overall trends of
the experimental measurements with the average difference of
7.46%, 11.56% and 7.29% for FT1 to FT3, respectively. Nev-
ertheless, the simulated maximum temperatures are larger than
those reported in the literature for the similar range of cutting
conditions [14], but the mean temperatures seem to be within
reasonable ranges.

These large deviations between the measured and simulated
temperatures are associated with a number of factors including
uncertainties during experimental measurements, the assump-
tions made to build the FE models, and the inverse identifica-
tion methodology itself. For instance, difficulties regarding the
fixation of the thermocouples during the experiments may af-
fect the contact region between the tool and the thermocouples,
and therefore the temperature measurements. Using a thermal
paste may results in a better contact between the surfaces, how-
ever the thermal paste should be apply carefully so that it does
not introduce a gap between the surface of the holes and the tip
of the thermocouples. Moreover, a thermal paste with a suitable
operating temperature needs to be selected based on estimated
temperature levels for the machining operation, since the prop-

erties of the paste change outside of the operating temperature.
Here, no thermal paste is used to avoid the complications men-
tioned above, as a priori knowledge of the maximum machining
temperatures was not available. However, in order to ensure the
contact between the hole inner surface and the thermocouple
is maintained during machining process, the dimensions of the
holes and thermocouples are carefully selected, and the thermo-
couples are bent to create a preload toward the holes (providing
the springback effects). Despite these considerations, it is still
difficult to be sure how deep the thermocouples were located in
the holes during machining, even though the depths of the ther-
mocouple holes are measured by grinding the flank surfaces of
the inserts after machining (due to irregular geometries at the
end of the holes). This effect is investigated by considering a
tolerance of 200µm for the depth and assessing the sensitivity
of the results (see Fig. 4) for FT2. Moreover, the contact area
is assumed to be a rectangular area over the rake face for the
simplicity in this study; however, it is known that the contact
area has a more complex shape in practice due to the geometry
of the insert and the cutting conditions as such in [15].

As the simulation uncertainties are concerned, the function
selected for the heat flux distribution is crucial for obtaining re-
alistic results. In addition, the resolution of the heat flux distri-
bution applied to FE simulations is proportional to the number
of elements used in the contact area which can affect the esti-
mated results. The reason is that the distribution in ABAQUS is
defined as an expression based on the coordinate of the nodes
in the contact area. It is worth mentioning again that, the time-
dependency of the heat flux is not included in this study; how-
ever, it has a significant effect on the temperature increase rate,
especially at the beginning of the readings. Thus, the exact tem-
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lar trend is observed in the simulated temperatures, i.e. an in-
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obtained from the FE simulations. However, the simulation re-
sults for TC1 show large deviations from the experimental re-
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the estimations for TC2 and TC3 capture the overall trends of
the experimental measurements with the average difference of
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ertheless, the simulated maximum temperatures are larger than
those reported in the literature for the similar range of cutting
conditions [14], but the mean temperatures seem to be within
reasonable ranges.

These large deviations between the measured and simulated
temperatures are associated with a number of factors including
uncertainties during experimental measurements, the assump-
tions made to build the FE models, and the inverse identifica-
tion methodology itself. For instance, difficulties regarding the
fixation of the thermocouples during the experiments may af-
fect the contact region between the tool and the thermocouples,
and therefore the temperature measurements. Using a thermal
paste may results in a better contact between the surfaces, how-
ever the thermal paste should be apply carefully so that it does
not introduce a gap between the surface of the holes and the tip
of the thermocouples. Moreover, a thermal paste with a suitable
operating temperature needs to be selected based on estimated
temperature levels for the machining operation, since the prop-

erties of the paste change outside of the operating temperature.
Here, no thermal paste is used to avoid the complications men-
tioned above, as a priori knowledge of the maximum machining
temperatures was not available. However, in order to ensure the
contact between the hole inner surface and the thermocouple
is maintained during machining process, the dimensions of the
holes and thermocouples are carefully selected, and the thermo-
couples are bent to create a preload toward the holes (providing
the springback effects). Despite these considerations, it is still
difficult to be sure how deep the thermocouples were located in
the holes during machining, even though the depths of the ther-
mocouple holes are measured by grinding the flank surfaces of
the inserts after machining (due to irregular geometries at the
end of the holes). This effect is investigated by considering a
tolerance of 200µm for the depth and assessing the sensitivity
of the results (see Fig. 4) for FT2. Moreover, the contact area
is assumed to be a rectangular area over the rake face for the
simplicity in this study; however, it is known that the contact
area has a more complex shape in practice due to the geometry
of the insert and the cutting conditions as such in [15].

As the simulation uncertainties are concerned, the function
selected for the heat flux distribution is crucial for obtaining re-
alistic results. In addition, the resolution of the heat flux distri-
bution applied to FE simulations is proportional to the number
of elements used in the contact area which can affect the esti-
mated results. The reason is that the distribution in ABAQUS is
defined as an expression based on the coordinate of the nodes
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dependency of the heat flux is not included in this study; how-
ever, it has a significant effect on the temperature increase rate,
especially at the beginning of the readings. Thus, the exact tem-
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Fig. 5. The experimental and estimated time-temperature responses, heat flux distribution parameters, and the maximum and mean temperatures on the rake face.
The mean temperature is the average of nodal temperatures on the tool-chip contact area. FT1 (left), FT2 (middle) and FT3 (right).

perature increase cannot be captured by FE simulations in Figs.
4 and 5. Furthermore, including the temperature-dependent ma-
terial properties may also affect the results. However, some pre-
liminary results showed that this effect is negligible for the ma-
terials used in this study. Moreover, the selected objective func-
tion and the number of data used in the ML model can affect
the optimization process and so the identified set of parameters.
It must be remembered that a unique solution does not exist as
many optimum sets can satisfy the objective function during the
optimization. Thus, different sets of upper and lower limits im-
posed on each parameter during the minimization process may
yield different optimum sets of parameters. This suggests that
these limits need to be decided carefully.

6. Conclusion

In summary, the parameters of any given heat flux distribu-
tion can be identified by using the proposed ML-based inverse
approach. The sensitivities and the uncertainties of the identi-
fication process, experimentation and simulations are evaluated
and discussed in this study. The results show that the proposed
ML-based approach has the potential to be used for the iden-
tification of heat flux parameters. However, the results and the
reliability of this approach can be improved with modifications
such as a more realistic representation of contact area, time-
dependency of the heat flux and spatial-dependency of maxi-
mum heat intensity with respect to the undeformed chip thick-
ness. These factors remain to be investigated in the future.

Acknowledgements

This research was financially supported by the Swedish na-
tional research program Vinnova-FFI, project no. 2016-05397.
We would also like to acknowledge the support of Chalmers
Area of Advance Production, Scania CV, AB Sandvik Coro-
mant and Swedish National Infrastructure for Computing at
Chalmers Centre for Computational Science and Engineering.

References

[1] Li, X., Kopalinsky, E.M., Oxley, P.L.B., 1995. A Numerical Method for
Determining Temperature Distributions in Machining with Coolant Part 2:

Calculation Method and Results. Proceedings of the Institution of Mechan-
ical Engineers Part B: Journal of Engineering Manufacture 209, 45–52.

[2] Dogu, Y., Aslan, E., Camuscu, N., 2006. A Numerical Model to Determine
Temperature Distribution in Orthogonal Metal Cutting. Journal of Materi-
als Processing Technology 171, 1–9.

[3] Shi, B., Attia, H., 2009. Modeling the Thermal and Tribological Processes
at the Tool-Chip Interface in Machining. Machining Science and Technol-
ogy 13, 210–226.

[4] Xia, Q., Gillespie, D.R.H., 2020. Quasi-static Finite Element Modelling of
Thermal Distribution and Heat Partitioning for the Multi-Component Sys-
tem of High Speed Metal Cutting. Journal of Materials Processing Tech.
275, 116389.

[5] Usui, E., Shirakashi, T., Kitagawa, T., 1978. Analytical Prediction of Three
Dimensional Cutting Process Part 3: Cutting Temperature and Crater Wear
of Carbide Tool. Journal of Engineering for Industry 100, 236–243.

[6] Usui , E., Shirakashi , T., Kitagawa, T., 1984. Analytical Prediction of Cut-
ting Tool Wear. Wear 100, 129–151.

[7] Kara, F., Aslantas, K., Cicek, A., 2016. Prediction of Cutting Temperature
in Orthogonal Machining of AISI 316L Using Artificial Neural Network.
Applied Soft Computing 38, 64-–74.

[8] Hashemitaheri, M., Mekarthy, S.M.R., Cherukuri, H., 2020. Prediction of
Specific Cutting Forces and Maximum Tool Temperatures in Orthogonal
Machining by Support Vector and Gaussian Process Regression Methods.
Procedia Manufacturing 48, 1000-1008.

[9] Yvonnet, J., Umbrello, D., Chinesta, F., Micari F., 2006. A Simple Inverse
Procedure to Determine Heat Flux on the Tool in Orthogonal Cutting. In-
ternational Journal of Machine Tools and Manufacture 46, 820–827.

[10] Kryzhanivskyy, V., Bushlya, V., Gutnichenko, O., M’Saoubi, R., Ståhl,
J.E., 2018. Heat Flux in Metal Cutting: Experiment, Model, and Compar-
ative Analysis. International Journal of Machine Tools and Manufacture
134, 81–97.

[11] Malakizadi, A., Hosseinkhani, K., Mariano, E., Ng, E., Prete, A.D., Ny-
borg, L., 2017. Influence of friction models on FE simulation results of
orthogonal cutting process. The International Journal of Advanced Manu-
facturing Technology 88, 3217–3232.

[12] Attia, M.H., Kops, L., 2004. A New Approach to Cutting Temperature Pre-
diction Considering the Thermal Constriction Phenomenon in Multi-Layer
Coated Tools. CIRP Ann. - Manuf. Technol. 53, 47—52.

[13] Dour, G., Dargusch, M., Davidson, C., 2006. Recommendations and
Guidelines for the Performance of Accurate Heat Transfer Measurements
in Rapid Forming Processes. Int. J. Heat Mass Tran. 49, 1773-–1789.

[14] Saez-de-Buruaga, M., Aristimuno, P., Soler, D., D’Eramo, E., Roth, A.,
Arrazola, P.J., 2019. Microstructure based flow stress model to predict
machinability in ferrite–pearlite steels. CIRP Annals 68, 49-52.

[15] Attanasio, A., Ceretti, E., Fiorentino, A., Cappellini, C., Giardini, C., 2010.
Investigation and FEM-Based Simulation of Tool Wear in Turning Opera-
tions With Uncoated Carbide Tools. Wear 269, 344-–350.

6


