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Abstract 

A de novo molecular design workflow can be used together with technologies such as reinforcement learning to 
navigate the chemical space. A bottleneck in the workflow that remains to be solved is how to integrate human feed-
back in the exploration of the chemical space to optimize molecules. A human drug designer still needs to design 
the goal, expressed as a scoring function for the molecules that captures the designer’s implicit knowledge about the 
optimization task. Little support for this task exists and, consequently, a chemist usually resorts to iteratively building 
the objective function of multi-parameter optimization (MPO) in de novo design. We propose a principled approach 
to use human-in-the-loop machine learning to help the chemist to adapt the MPO scoring function to better match 
their goal. An advantage is that the method can learn the scoring function directly from the user’s feedback while 
they browse the output of the molecule generator, instead of the current manual tuning of the scoring function with 
trial and error. The proposed method uses a probabilistic model that captures the user’s idea and uncertainty about 
the scoring function, and it uses active learning to interact with the user. We present two case studies for this: In the 
first use-case, the parameters of an MPO are learned, and in the second use-case a non-parametric component of 
the scoring function to capture human domain knowledge is developed. The results show the effectiveness of the 
methods in two simulated example cases with an oracle, achieving significant improvement in less than 200 feedback 
queries, for the goals of a high QED score and identifying potent molecules for the DRD2 receptor, respectively. We 
further demonstrate the performance gains with a medicinal chemist interacting with the system.
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Graphical Abstract

Introduction
The use of artificial intelligence and machine learn-
ing (AI/ML) in drug discovery has increased rapidly in 
recent years, providing AI-aided design tools for drug 
design projects [1–3]. The strengths of AI lie in finding 
patterns from vast amount of data from heterogeneous 
sources, at its best augmenting humans’ abilities in chal-
lenging tasks such as molecular optimization. Advances 
in de novo molecular design tools enable automation 
of the design step in in silico design-make-test-analyze 
(DMTA) cycles of drug design [4, 5]. They transform the 
task of a chemist from designing a molecule to designing 
a scoring function that is used to evaluate the generated 
molecules, and which essentially expresses the chemist’s 
goal in a drug design project. Even though designing the 
scoring function may be an easier task for a human than 
coming up with new molecules, that is difficult, too, and 
AI/ML drug design tools to date do not provide aid for 
this task. In the current practice, a design tool generates 
a batch of molecules, which are filtered and evaluated by 
a chemist, who consequently manually tunes the scor-
ing function and its parameters to yield better generated 
molecules. This iterative process is laborious and requires 
broad expertise. Furthermore, even after automatic post-
processing filters, the number of generated molecules 
is in the hundreds or thousands, an order of magnitude 
higher than the number of molecules humans can feasi-
bly evaluate.

We propose to assist this manual trial-and-error 
approach in designing the scoring function by interac-
tive human-in-the-loop machine learning. Human-in-
the-loop learning (HITL) is a branch of machine learning 
where human users can interact with a machine learn-
ing model during model training and usage, to integrate 
expert knowledge to the model and improve the model’s 

performance [6–8]. In molecular design, recent stud-
ies have found that medicinal chemist’s intuition can 
perform on par with machine learning methods e.g. in 
solubility prediction [9], but to the best of our knowl-
edge human intuition has not been incorporated in a 
systematic way into de novo molecular design. The HITL 
approach introduced in this work provides a principled 
way for integrating human intuition into de novo molecu-
lar design.

Drug discovery is an inherently multi-objective prob-
lem where numerous pharmaceutically important objec-
tives need to be satisfied, with the added complications 
that often objectives can be: i. Conflicting (for example 
in a project where increased solubility and increased 
metabolic stability are required–even though increas-
ing solubility can cause reducing metabolic stability), ii. 
Challenging to quantify or measure experimentally (e.g. 
drug-likeness [10], synthetic accessibility objectives [11, 
12]), and iii. The number of all potentially relevant objec-
tives can be very large making the optimization landscape 
infeasible for most optimization algorithms; hence in 
practice a subset of objectives is usually selected and may 
need to be modified during the optimization process.

The concept of multiparameter optimization (MPO), 
is widely used in the context of medicinal chemistry 
[13–15]. For example, Wager et  al. [15] used MPO for 
the central nervous system drug property space, by cal-
culating scalar score as an empirical non-linear function 
of six fundamental physicochemical properties. Similar 
approaches have been widely applied by medicinal chem-
ists in other therapeutic areas. Alternative approaches to 
address multi-objective optimization in drug design have 
been reported, where either the problem is transformed 
to a single objective by linear or non-linear weighting of 
the objectives, or a full or partial Pareto solution space 
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is obtained; see a recent review by Nicolaou et  al. [14]. 
Yasonik [16] recently suggested nondominated sorting 
and transfer learning to iteratively fine-tune a recurrent 
neural network, without a scoring function.

Typical scoring components in MPO include physi-
cal, chemical and predicted properties of a molecule, 
and desirability functions are used to define which val-
ues are preferred for each property. Once the scoring 
function is known, various machine learning methods 
can be used to explore the chemical space and generate 
novel molecular structures, including Monte Carlo tree 
search based on SMILES (simplified molecular-input 
line-entry system) strings [17], reinforcement learn-
ing [4], Generative Adversarial Networks (GANs) [5], 
genetic algorithms[18, 19], and Particle Swarm Opti-
mization [20]. In other fields, previous work exists on 
interactively optimizing multiple objectives [21, 22], 
but these methods are limited to relatively low-dimen-
sional design problems.

For designing the interaction with a chemist, an impor-
tant question is which molecules should be presented 
(“queried”) to them for feedback and in which order. 
This type of problem is widely studied in active learn-
ing, automatic experimental design, and optimization. 
Active learning methods consider which new training 
instance to add to a supervised learning training set, to 
best improve the model’s accuracy [23]. In contrast, for 
optimization tasks a query must balance between explo-
ration to learn about the problem, and exploitation to 
restrict the queries to potentially relevant ones. Simple 
exploration-exploitation problems can be formulated as 
so-called bandit problems (see e.g. [24]), and solved with 
methods that guarantee small cumulative regret, i.e. that 
minimize the loss from not querying the optimal items. 
Theoretical guarantees have been derived for linear [25], 
generalized linear [26, 27], and Gaussian process reward 
models [28], among others. A popular heuristic to solve 
the exploration-exploitation problem in more com-
plex models is Thompson sampling, which chooses the 
action that maximizes the expected reward with respect 
to a randomly drawn belief [29, 30]. In case the humans 
are assumed to have knowledge about predictive fea-
tures, previous HITL methods have shown that Bayesian 
sequential experimental design is effective in finding rel-
evant features to a prediction task [7, 31].

Interactive multi-parameter optimization of molecules 
starts to raise interest, but to date few works exist. One 
example is grünifai [32], which optimizes molecules in 
a continuous vector space, starting from an input mol-
ecule, and allows a user to observe intermediate result 
molecules and give feedback (good/not good) to them. 

However, grünifai does not use an optimization strategy 
to select molecules that are shown to the user. In this 
work we compare different strategies to select molecules, 
and show their effect on the outcome of optimization, 
especially on the number of queries to the human needed 
to reach a goal. To our knowledge there is no proof of 
concept that interaction with a human chemist helps 
optimization, which is the key contribution in this work.

The way human feedback is incorporated in the MPO 
objective could be different as well. In this work we study 
two tasks. In Task 1, we use human feedback to infer 
the parameters of the desirability function of each com-
ponent in an MPO function. In Task 2, we use human 
feedback to infer the parameters of a predictive model; 
this model could be used as a component in an MPO. In 
grünifai example mentioned above, human feedback is 
used to create an MPO component of chemical desirabil-
ity score.

Our first contribution is to model the chemist’s goal 
via probabilistic user-modeling, to automatically adapt 
the scoring function to match their goal. The adapta-
tion is done by querying a chemist for feedback on mol-
ecules and using the feedback to estimate the parameters 
of the desirability functions of each molecular property 
to be optimized in Task 1, or in Task 2 for fitting a non-
parametric predictive model for single-parameter opti-
mization. We show empirically that a scoring function 
adapted in this way will yield molecules that better match 
the chemist’s goal. Our second contribution is to present 
how Bayesian optimization, a well-established machine 
learning method, efficiently chooses which molecules 
are shown to the chemist for the interest of adapting the 
objectives better and generating high-scoring molecules. 
From the methodological point of view, this work pro-
vides a proof of concept for interactive reward elicitation 
in drug design—that is, how to actively learn about the 
reward function of reinforcement learning by interact-
ing with a human. We first show the effectiveness of the 
methods in simulated example cases, and then demon-
strate the performance with a human chemist’s feedback 
using a graphical user interface for interaction with the 
system.

Methods
This work divides the problem of interactive adapta-
tion of the MPO objective function into two tasks that 
are implemented independently: In Task 1, depicted in 
Fig. 1, the high-level goal is to infer the parameters of the 
desirability function of each property in a MPO func-
tion: A chemist inputs a set of molecular properties they 
wish to optimize, and their weights. What is unknown 
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is which values of the properties are good, i.e. the desir-
ability functions. An initial guess about the good inter-
val of each property is given by the chemist, but they are 
refined by the algorithm based on the chemist’s feedback. 
In Task 2, the goal is to build a chemist-specific scoring 
component for a molecular property for single parameter 
optimization; the same component can later act as part of 
the objective in an MPO. The chemist evaluates the score 
of molecules with respect to the property to be opti-
mized. This feedback is used to learn a non-parametric 
model, which can be used during molecular optimization 
to generalize the chemist’s feedback to new molecules.

The proposed method for Task 1 is outlined in Fig. 1: 
The goal of a chemist is encoded as a composite scor-
ing function Sr,t(x) for an MPO at round r of generating 
novel molecular designs and the t:th iteration of online 
interaction with the chemist. The scoring function 

consists of K  molecular properties ck(x) and score trans-
formation functions φr,t,k that define desirability of the k
:th molecular property. A de novo molecular design sys-
tem interacts with a chemist by selecting molecules to 
query, and the chemist then gives feedback of how well 
the molecules match their goal. The feedback is used to 
adapt scoring function Sr,t(x) so that it predicts mole-
cules’ score more accurately, which is achieved by fitting 
the desirability functions φr,t,k.

De novo design tool without a human‑in‑the‑loop 
component
As a de novo design tool we use REINVENT, which is an 
open-source program [4]. REINVENT uses a deep gen-
erative model to generate small molecules in the SMILES 
[33] format. The generative model is used in a reinforce-
ment learning scenario, where the main objective is to 

Fig. 1 Human-in-the-loop de novo molecular design: an AI-assistant helps a chemist to decide parameters of an MPO objective function Sr ,t(x) 
iteratively at round r  and iteration t  , where r  are rounds of goal-directed molecule generation with a de novo design tool, and t  are online 
interactions with a chemist. The objective consists of K molecular properties ck(x) with relative weights wk . The utility of the k:th property is 
measured using a desirability function φr ,t ,k that defines the range of good property values. At each iteration, the method selects a molecule xr ,t to 
query, which the chemist evaluates with feedback y . The method then adapts Sr ,t(x) based on the feedback by estimating the parameters of φr ,t ,k to 
match the chemist’s underlying goal



Page 5 of 16Sundin et al. Journal of Cheminformatics           (2022) 14:86  

maximize the score of a composite scoring function. 
REINVENT generates molecules by sequentially add-
ing tokens representing atoms and their connection to a 
SMILES string using the generative model, also referred 
to as ’agent’ later in the text. In reinforcement learning 
mode, a batch of generated SMILES strings at each epoch 
are scored using the scoring function. The score is used 
as a reward to tune the weights of the agent and thus 
train it to produce more high-scoring molecules.

In the current system, without HITL, the user interacts 
with the tool by defining the learning objective by speci-
fying the scoring function. The scoring function of REIN-
VENT allows the user to combine the various objectives 
which can play a role in molecular design. The objec-
tives include components such as predictive models, 
calculated properties, 2D and 3D similarity [34, 35] and 
molecular docking [36]. These components are normally 
combined either as a weighted product

or a weighted sum

where the user-selected components are denoted as ck 
in both equations and the corresponding weights are 
denoted as w , and K is the number of components. If the 
component outputs a continuous value, e.g. a regression 
model, the prediction outcome is scaled to [0, 1] using a 
score transformation φk that is the desirability function of 
the k:th property. Weights can vary in the range [1, + ∞) 
while the score from each component φk(ck(x)) can vary 
in the range [0, 1], resulting in an overall score within a 
range of [0, 1]. Both the components and the score trans-
formations of these components are defined by the user 
and are manually tuned to guide the idea generation in a 
direction the designer assumes to be relevant to the pro-
ject’s objectives.

Human‑in‑the‑loop assisted de novo molecular design
This section introduces two HITL methods for setting 
objectives in de novo molecular design. The first is appli-
cable when relevant sub-objective properties are known 
and available as scoring components: it adapts the MPO 
function (Section  “Adapting the MPO function using 
human-in-the-loop feedback (Task 1)”). The second is 

(1)S(x) =

[

K
∏

k=1

φk(ck(x))
wk

]

1
/

∑K
k=1 wk

(2)S(x) =

∑K
k=1wkφk(ck(x))
∑K

k=1wk

for cases where a specification of a scoring component 
for a molecular property does not exist, and we propose 
a method to learn a new predictive model that captures 
the medicinal chemist’s knowledge about the molecular 
property (Section  "Building a new scoring component 
from human knowledge (Task 2)"). In both cases, the AI-
assistant needs to solve an active learning problem of how 
to select the molecules to show to the chemist during the 
interaction. Different active query selection strategies are 
described in Section "Query selection strategies".

Adapting the MPO function using human‑in‑the‑loop 
feedback (Task 1)
This method adapts the MPO objective to match the 
chemist’s goal by estimating its parameters from itera-
tive simple feedback, in the setup depicted in Fig. 1. We 
assume that a chemist inspects a molecule x ∈ M , where 
M is the set of all valid molecules, evaluates it based on 
their tacit inner scoring function modelled with S(x) , 
S : M → [0, 1] , and gives binary feedback y ∈ {0, 1} . Here 
y =1 means that the molecule is good for their purpose 
and y =0 that it is not. In addition, we make the simplify-
ing assumptions that S is stationary and deterministic.

The adaptive MPO scoring function consists of K  
adaptive scoring components φr,t,k(ck(x)) ∈ [0, 1] , 
k = 1, . . . ,K  , each measuring the utility of a molecular 
property ck(x) ∈ R that can be computed from a mol-
ecule x . The MPO function is adapted by modifying the 
desirability functions φr,t,k , also called score transforma-
tions, at rounds of molecule generation ( r = 1, . . . ,R ) 
and at iterations of on-line interaction with a chem-
ist ( t = 1, . . . ,T  ). Let θr,t,k ∈ R

dk  denote the unknown 
parameters of φr,t,k , and simplify notation by writing 
φk

(

ck(x), θr,t,k
)

:= φr,t,k(ck(x)) . The number of param-
eters dk depends on the model family of the transfor-
mation φk , which is assumed to be known. In this work, 
we use a double sigmoid score transformation for each 
component, which defines a range where the generated 
molecules’ properties are desired to lay, with smooth 
thresholds. The double sigmoid transformation, illus-
trated in Fig.  1, is parameterized with four parameters: 
θ = [LOW ,HIGH ,α1,α2]:

where [LOW ,HIGH ] defines the desired interval of the 
property value x , α1 and α2 control the steepness of the 
rising and descending edge respectively.

The scores of the scoring components are aggre-
gated using an aggregation method from Eq.  (1) or 

φ(x, θ) =
10α1x

10α1x + 10α1LOW
−

10α2x

10α2x + 10α2HIGH
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(2), assuming known weights wk , with a constraint that 
∑K

k=1wk = 1 . The resulting adaptive scoring function 
Sr,t(x) with Eq. (1) aggregation is

where θ r,t = [θ r,t,1, . . . , θ r,t,K ]
⊤ (bolded letter denotes a 

vector).

Task
Given K  molecular properties, known score transforma-
tion function family parameterized with θ , score aggre-
gation type (Eq.  (1) or (2)), score aggregation weights w 
and an initial guess θ0 , learn θ by showing molecules to 
a chemist, recording their response and computing the 
posterior distribution of θ  to adapt the MPO scoring 
function Sθ (x).

Workflow
In the first round (r = 1) , an initial batch of molecules is 
generated using scoring function Sθ0 as a scoring function 
in REINVENT. Then an active query selection strategy 
sequentially selects molecules to be shown to a chemist, 
who gives feedback to them. This continues for T  iterations, 
after which the next round begins ( r = 2 ) and a new batch 
of molecules is generated using Sθ r−1 as a scoring function, 
where the θ r−1 = θ r−1,T is a vector of point estimates of 
the score transformation parameters from the last round.

Probabilistic model of the chemist’s score
The chemist’s unknown score is modelled using the Eq. (3), 
where the relevant components  ck are known. We further 
assume that the chemist has (tacit) limits for desired values 
of the properties, therefore, there are two unknown param-
eters for each component θ r,t,k =

[

HIGHr,t,k , LOWr,t,k

]

 . 
The two steepness parameters of the double sigmoid are 
assumed to be fixed.

We assume the chemist gives feedback y =1 with the 
probability S(x) ; therefore, the observation model for the 
chemist’s response, given that they were shown a molecule 
query xr,t , is

(3)Sr,t(x) := Sθ r,t (x) =

K
∏

k=1

φk
(

ck(x), θ r,t,k
)wk

With Bayesian inference, we can then compute the poste-
rior distribution of model parameters, conditioned on the 
observed data Dr,t =

{(

xi, yi
)}Nr,t

i=1
 , where Nr,t is the num-

ber of queries up to round r and iterationt , as

where p
(

Dr,t | θ
)

 is the likelihood of observed data given 
parameters θ , p(θ) is the prior distribution of θ , and the 
denominator 

∫

p
(

Dr,t | θ
)

dθ which normalizes the distri-
bution is called evidence. Given the observation model in 
Eq. (4) and assuming that the observations are independ-
ent and identically distributed (i.i.d.), the likelihood is

In case an active learning query strategy selects which 
observations to acquire, the observations are no longer 
i.i.d., which in a full treatment can be taken into account. 
Here we make a simplifying assumption and use (6), which 
may result in a bias in the model.

For specifying the prior distributions p(θ) , the chem-
ist provides initial values θ0 =

{(

HIGH0,k , LOW0,k

)}K

k=1
 

which are set to be the expected values of the prior 
distributions:

where σθ ,k = 1
8

(

HIGH0,k − LOW0,k

)

 is a hyperparam-
eter that defines how likely the values are to differ from 
the initial guess, and it depends on the width of the prior 
belief about the desired range of the property.

Using the scoring function in REINVENT requires 
point estimates θ r . We use the expectation of posterior 
distributions θ r =

∫

θp(θ | Dr,T)dθ , which minimizes the 
mean squared error of θ . The full algorithm is shown in 
Algorithm 1.

(4)y|xr,t ∼ Bernoulli(Sr,t−1(xr,t))

(5)p
(

θ | Dr,t

)

=
p
(

Dr,t | θ
)

p(θ)

∫ p
(

Dr,t | θ
)

p(θ)dθ

(6)p
(

Dr,t | θ
)

=
∏Nr,t

i=1
Sθ (xi)

yi(1− Sθ (xi))
1−yi

LOWk ∼ Normal
(

LOW0,k , σ
2
θ ,k

}

,

(7)HIGHk ∼ Normal
(

HIGH0,k , σ
2
θ ,k

)
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Implementation
We use the probabilistic programming language Stan [37] 
to fit the model, and to compute posterior distributions 
and expectations of θ . For computational reasons, we par-
ametrize the model with (LOW ,DELTA) , DELTA > 0 , so 
that HIGH = LOW + DELTA . The code is publicly avail-
able at https:// github. com/ Molec ularAI/ reinv ent- hitl.

Building a new scoring component from human knowledge 
(Task 2)
The second method we propose is applicable in cases 
where a pre-specified scoring component for a specific 
property is not available but, instead, the values for the 
molecular property of interest can be obtained via inter-
action with a chemist and in addition potentially in a 
small experimental dataset. The method learns a new 
predictive model from the chemist’s feedback based on 
the property values, and the resulting component can 
then subsequently be used as one of the objectives in 
MPO.

Setup
We assume a small initial dataset D0 with mole-
cules x and their scores y for the property of interest, 
either acquired beforehand from a chemist, or from 

experiments. In addition, there exists a pool of unla-
beled molecules U , which can be shown to a chemist. 
The chemist’s feedback y is a score between [0,1] about 
the suitability of the molecule for the drug design task, 
with respect to the property of interest (0 = not good, 
1 = very likely good). We assume a Gaussian likelihood of 
feedback: y ∼ N

(

f ∗(x), σ 2
0

)

 , where f ∗(x) is the chemist’s 
evaluation of the property of interest, and σ0 is the stand-
ard deviation of the noise in the chemist’s answers. This 
means that the chemist’s answers may be erroneous but 
are correct on average. For simplicity, we assume that the 
noise in the data generating process of y in D0 is the same 
as in the chemist’s feedback. Molecules are represented 
by features, which in this work are descriptors such as 
physicochemical properties; x ∈ R

p , or Morgan finger-
prints x ∈ {0, 1}d [38], where d is the dimensionality of 
the features.

Task
Given initial dataset D0 , a pool of unlabeled molecules 
U , and a possibility to query T  molecules from a chemist, 
learn a non-parametric model f (x ) (“a chemist’s compo-
nent”) to represent the chemist’s knowledge, so that the 
molecules generated using f (x) as a scoring function get 
a high chemist’s score f ∗(x).

https://github.com/MolecularAI/reinvent-hitl
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Chemist’s component
In contrast to the previous Task 1, here in Task 2 we do 
not make any assumptions about the structure of the 
model of the chemist; instead, we use a Bayesian non-
parametric model, Gaussian Process, to fit a flexible user 
model to D0 and the feedback.

We place a Gaussian process prior on the chemist’s 
component, f ∼ GP

(

0, k
(

x, x′
))

 , where k
(

x, x′
)

 is a ker-
nel that measures the similarity of two molecules x and 
x′ . The observations in data Dt =

{(

xi, yi
)}Nt

i=1
 include 

both D0 and all feedback received up to iteration t 
( t = 1, . . . ,T  ), so that Nt is the sum of N0 and the num-
ber of feedback queries so far. The posterior of the Gauss-
ian process, at a test point x∗ , is then characterized with 
the mean f ∗ and variance

where k∗ is a vector with elements k(x∗, xi) , 
i = 1, . . . ,Nt , and Kt is a covariance matrix with entries 
k
(

x, x′
)

 for each x, x′ ∈ Dt . The vector y contains all 
observations yi , i = 1, . . . ,Nt . [39]

We apply two types of kernels: squared exponential for 
a case when x are physicochemical properties, and Tani-
moto kernel [40] for Morgan fingerprint features. In our 
experiments, Morgan fingerprints resulted in better per-
formance, and therefore, we focus on results with them. 
For completeness, the results with physicochemical prop-
erties are shown in the Additional file 1: Sect. 3.2.

Implementation
We use GPflow [41] to implement the chemist’s compo-
nent using a standard Gaussian process regression model, 
and Tanimoto kernel implementation from [42].

Query selection strategies
Active learning can be used to select a molecule for a 
chemist to label, from the pool of unlabeled molecules 
U . In typical active learning settings, U is available before 
training. In our work, U either consists of molecules from 
a previous molecule generation, or molecules from public 

(8)f̄∗ = kT∗

(

K t + σ 2
0 I
)−1

y

(9)Var
(

f∗
)

= k(x∗, x∗)− kT∗

(

K t + σ 2
0 I
)−1

k∗

databases. The goal in active learning is to learn an accu-
rate model that maps from molecules x to labels y.

Our setup differs from standard active learning in that 
the model will subsequently be used as a scoring function 
for molecule generation (technically: a reward function 
in reinforcement learning), and, therefore, it is desired 
to have a model that can correctly identify high-scoring 
molecules. This leads to an exploration–exploitation 
trade-off in query selection: the system needs to trade 
off showing as many positive examples as possible, while 
ensuring that unknown areas are explored sufficiently to 
find new positive examples. We use a Bayesian optimiza-
tion approach based on Thompson sampling [29] to solve 
this trade-off. Below we give brief summaries of the query 
selection strategies that we compare in this work: ran-
dom sampling, uncertainty sampling, pure exploitation, 
and Thompson sampling. Each of them aims at selecting 
a next molecule x∗ ∈ U to query from a chemist.

Random sampling
Sample x∗ uniformly randomly from U.

Uncertainty sampling
Select the molecule that the model is the most uncer-
tain about: x∗ = arg maxx∈uHθ

(

y | x
)

 where Hθ denotes 
entropy when the model parameters are θ , and y | x is the 
predicted score of molecule x in the model ( y ∈ {0, 1} in 
Task 1 and y ∈ [0, 1] in Task 2).

Pure exploitation
Select the molecule that maximizes the expected expert 
score: x∗ = arg maxx∈U

∫

Sθ (x)p(θ | Dr,t)dθ (Task 1), 
and x∗ = arg maxx∈U f (x) (Task 2).

Thompson sampling
Select a molecule that greedily maximizes the expected 
score given a randomly drawn belief. In Task 1, this 
means drawing a sample θ s from the current poste-
rior distribution p

(

θ | Dr,t

)

 , and then maximizing 
x∗ = arg maxx∈U Sθ s(x) (Algorithm  2). In Task 2, we 
sample one realization f s of the GP posterior at points 
x ∈ U , and select the x with the largest value of the sam-
pled function mean f s(x) (Algorithm in Additional file 1: 
Sect. 1.1).
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Human‑in‑the‑loop experiments
We demonstrate the methods in two example tasks, with 
binary and continuous feedback. The goal in Task 1 is to 
adapt the scoring function consisting of physicochemi-
cal properties to generate molecules that score high 
in Quantitative Estimate of Drug-likeness (QED) [10], 
with binary feedback. In Task 2 we train a novel scoring 
component for capturing the chemist’s knowledge about 
DRD2 activity of the molecule, based on continuous-val-
ued feedback.

To make the study reproducible, we use an oracle to 
simulate the responses of a chemist instead of includ-
ing a real human in the loop. Nevertheless, we assume 
the budget of 200 active learning queries, which is close 
to the maximum feasible number of interactions with a 
human chemist.

For evaluating how well the generated molecules match 
the simulated chemist’s goal, we use the score from the 
oracle, coined ‘oracle score’ to distinguish it from the 
from the score of a molecule in a scoring function. To 
reduce computation time in the experiments, we select 
queries sequentially in batches, by greedily selecting the 
nbatch best molecules according to a query strategy at 
iteration t . As a result, the performance of other methods 
may be underestimated compared to random sampling, 
because they will not be able to optimize their selection 
during a batch.

Task 1: Adapting the parameters of the MPO function
We experimentally evaluate the method for adapt-
ing MPO in a task of generating molecules with a high 
QED-score [10], based on scoring components of phys-
icochemical properties. We chose QED-score as the goal 
because it is inspired by how humans evaluate the drug-
likeness of molecules. This makes it a suitable proxy to 
simulate a chemist’s intuition and, furthermore, there 
exists a publicly available method for approximating 
it [10]. We make a minor modification to the standard 
QED score, so that the modified score SmQED(x) ∈ [0, 1] 
favors smaller values of partition coefficient (logP), to 
make the task more difficult a priori (for the details of 

the modification of the desired value of logP from the 
original average 3 to average 1.5, see Additional file  1: 
Sect. 2.1).

The scoring components include the following seven 
physicochemical properties, calculated with RDKit [43]: 
molecular weight (MW), partition coefficient (SlogP), 
hydrogen bond donors (Lipinski) (HBD), hydrogen bond 
acceptors (Lipinski) (HBA), polar surface area (PSA), 
number of rotatable bonds and the number of aromatic 
rings. We assume that all properties are transformed with 
the double sigmoid function, with unknown HIGH and 
LOW parameters. The other two parameters of the dou-
ble sigmoids are set to fixed values deemed good for each 
property based on prior knowledge, provided in Addi-
tional file  1: Section  2.2. We aggregate the scores using 
weighted geometric average (eq. (1)).

As a starting point in the first round, we use poor 
guesses on the parameters θ0 =

{(

HIGH0,k , LOW0,k

)}7

k=1
 

to create a scoring function that gives high score to mol-
ecules with a wide range of molecular properties. The 
exact initial values are reported in Additional file 1: sec-
tion  2.3 We use this scoring function in REINVENT 
and collect the high-scoring molecules generated dur-
ing 300 epochs of training as the first unlabeled mol-
ecules U (depending on the run, this results in the order 
of 1,000–10,000 molecules). The number of epochs was 
chosen so that in most cases a (local) maximum has been 
found, observed as flattening of the learning curve. We 
run the experiment for two rounds (initialization, and 
two rounds of feedback queries, R = 2 ), and evaluate the 
performance as the average oracle score of the generated 
molecules at initialization and at the end of each round.

At each round, the user model is initialized with 10 
randomly chosen molecules, and the priors of the user-
model are defined by the previous round’s  θr−1 ( θ0 in 
the first round). Then, we do 10 iterations of querying 
nbatch = 10 molecules in batches. This means that we 
query in total T = 110 molecules from a simulated chem-
ist, making the total query budget in the experiment 
220. The simulated chemist gives feedback 1 randomly 
with probability of SmQED(x) . For each query strategy 
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Fig. 2 Graphical user interface for giving feedback to molecules. The chemist evaluates DRD2 activity of molecules on a scale from 1 to 5 For 
initialization, we randomly sample 10 molecules and get their scores from the oracle. For the experiment with a human chemist, we randomly 
sample 10,000 molecules to be unlabeled molecules U to speed up the method. For ten iterations we sequentially query 100 molecules in batches 
of 10 from a chemist, who evaluates them on a scale from 1 to 5 (0 = very likely not active, 5 = very likely active). The scores are linearly scaled to 
the range [0,1]. The order of the evaluated molecules is chosen using Thompson sampling that was the best in the simulated experiments. For 
evaluating the performance, the oracle model is used to score the molecules generated by REINVENT with the chemist’s component as a scoring 
function at iteration t = 1, . . . , 10.

Fig. 3 The parameters of the MPO objective are better estimated 
with increasing amount of feedback. The mean relative absolute 
error (MRAE) in the estimated parameters decreases with increasing 
human feedback, and fastest with Thompson sampling. Solid lines 
show average of MRAE over 10 random seeds, and the shaded areas 
one standard error of the mean (SEM)

Fig. 4 The average oracle score of the generated molecules 
increases at each round of adapting the MPO. At each round, a new 
batch of molecules is generated using an adapted scoring function 
after in total 110 queries (round 1) and 220 queries (round 2) to a 
simulated chemist. For comparison, we show round 0 that is the 
performance with the initial guess θ0 . The bars show the mean of the 
average oracle score of the generated molecules over 10 random 
seeds, and the error bars represent one SEM. The gray horizontal line 
shows the average oracle score in 5000 molecules sampled from 
REINVENT without MPO objective, using its prior agent
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described in "Task 2: Learn human knowledge about a 
molecular property as a separate component" Section we 
repeat the experiment ten times with different random 
seeds to quantify variance due to different D0 and sto-
chasticity in the simulated chemist’s answers.

Task 2: Learn human knowledge about a molecular property 
as a separate component
We test possibility to learn human knowledge using 
example of DRD2 activity. For reproducibility, we use 
an oracle model, instead of a human chemist. We derive 
human component f(x) using algorithm described in 
"Building a new scoring component from human knowl-
edge (Task 2)" Section. To evaluate derived human 
component f(x), we first use f(x) as a scoring function in 
REINVENT to train an agent; we then sample molecules 

from trained REINVENT agent, and evaluate sampled 
molecules using the oracle model.

To compare query strategies, we derive human com-
ponent f(x) for each of the query strategies described in 
"Building a new scoring component from human knowl-
edge (Task 2)" Section, and repeat the experiments 10 
times with different random seeds.

For sensitivity analysis, we repeat the experiment, but 
this time we derive human component f(x) with noise 
added to the simulated chemist’s answers.

Training oracle model We evaluate the Task 2 method 
in an example case of learning the DRD2 activity of mol-
ecules from feedback. For an oracle in this case, we use 
activity prediction model trained on a large publicly avail-

Fig. 5 A non-parametric scoring component that represents the chemist’s knowledge improves REINVENT output even with small number 
of queries (< 100) to a simulated chemist. The lines show the average oracle score in the REINVENT output and shaded areas its variation in 10 
repeated experiments (mean and SEM). The method is not very sensitive to Gaussian noise in the simulated chemist’s answers. a noise level 
σchemist = 0.0 , b σchemist = 0.15 , c σchemist = 0.30
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able dataset on DRD2 activity [44]. We used an activity 
prediction model trained on both the active and inactive 
compounds of the ExcapeDB DRD2 modulator set.1 To 
train the model, stereochemistry was stripped from all 
compounds in the dataset, and they were represented in 
their canonical form by using RDKit [43]; the resulting 
duplicates were removed; data was split to test and train-
ing sets with a stratified split and the compounds were 
represented with ECFP6 fingerprint (radius 3) hashed 
to 2048 bits; a Scikit-learn [45] Random Forest Classi-
fier model was trained to discriminate active from inac-
tive compounds; Optuna [46] was used for finding the 
optimal hyperparameters with a 5-fold cross validation; 
the performance of the resulting model in terms of area 
under the curve (AUC) was 0.945. We use predicted posi-
tive class probabilities from the activity prediction model 
when answering the queries.

Deriving human component f(x) As described in "Task 
1: Adapting the parameters of the MPO function" Sec-
tion, we derive human component as a Gaussian Process 
model. The DRD2 dataset consists of 275,768 molecules 
represented as SMILES strings. In the beginning, we sam-
ple randomly N0 = 10 molecules to be the initial dataset 

D0 and acquire their scores from the simulated chemist 
(oracle in the noise-free case). The rest of the molecules 
are used as unlabeled molecules U in the simulated exper-
iments. During interaction, we query in total 200 mole-
cules from the simulated chemist in batches of 5 ( T = 40).

Sensitivity analysis In addition to a noise-free case, we 
do a sensitivity analysis of the method with respect to the 
noise in the simulated chemist’s answers. For this, the ora-
cle’s answers are corrupted with independent Gaussian 
noise with standard deviation σ0 = 0.15 (moderate noise) 
and σ0 = 0.30 (severe noise). For simplicity, feedback val-
ues are capped within range [0,1].

For evaluation, we set f (x) as the scoring function in 
REINVENT and train the agent for 300 epochs. After 
obtaining a trained agent, we sample 1024 molecules 
from the agent and evaluate sampled molecules using 
the oracle model. For each query strategy described in 
"Building a new scoring component from human knowl-
edge (Task 2)" section, we repeat the experiments 10 
times with different random seeds.

Deriving a DRD2 scoring function using a human
To show that the results of the simulated experiment 
in Task 2  are relevant, we exemplified the method with 
human feedback in a modified version of Task 2 where 
the chemist was queried directly. We let a medicinal 
chemist (who is also coauthor of the manuscript) inter-
act with the system in the same DRD2 activity setup as 
described in "Task 2: Learn human knowledge about a 
molecular property as a separate component" Section. 
The system has a graphical user interface for interaction, 
shown in Fig. 2.

Results
Task 1: Adapting the parameters of the MPO objective 
function
A probabilistic model of the chemist’s score can esti-
mate the unknown parameters of the desirability func-
tions sufficiently well from the feedback, and as a result, 
the adapted MPO scoring function achieves improved 
QED score in the generated molecules after just one 
round and 100 HITL interaction. The uncertainty in 
the model decreases after feedback (Additional file  1: 
Section 3.1), and as a result, the error in the estimated 
MPO parameters decreases with increasing feedback, 
shown in Fig.  3. The adapted scoring function also 
improves the quality of the generated molecules at 
each round, as seen in the increase in the average ora-
cle score in Fig.  4, which is the main objective of the 
method. All query selection strategies are effective in 
increasing the performance.

Fig. 6 A medicinal chemist’s feedback on DRD2 activity of molecules 
improves the average activity of the generated molecules, measured 
using activity prediction model described in “Task 2: Learn human 
knowledge about a molecular property as a separate component” 
section. The dashed lines show performance in three repeated 
experiments. The performance is summarized in mean performance 
(solid line) with one standard error of mean (shaded area). The 
repetitions differ by different randomly sampled initial data and 
consequently different actively selected queries. The queries are 
selected using Thompson sampling

1 The DRD2 activity prediction model is available from https:// github. com/ 
Molec ularAI/ Reinv entCo mmuni ty.

https://github.com/MolecularAI/ReinventCommunity
https://github.com/MolecularAI/ReinventCommunity
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To study whether introducing HITL is making signifi-
cant difference in Task 1, we compared the average QED 
score produced using different query strategies at round 
1 to the baseline (average QED score in 1000 molecules 
sampled from REINVENT prior, in 10 repetitions) by 
analysis of variance. The average QED scores of all query 
strategies were significantly different from the baseline: 
p-value in ANOVA 8.7∗10−9 , and adjusted p-values in 
Tukey’s test <0.05 for all query strategies compared to 
the REINVENT prior (values reported in the Additional 
file 1).

To study which query strategy is better, we compared 
the performance of the query strategies using the area 
under the elicitation curve as a test statistic. We use the 
analysis of variance (ANOVA) and post-hoc Tukey’s HSD 
test for pairwise comparisons, to test for statistical sig-
nificance. For Task 1, we find no statistically significant 
difference between different query strategies (p-value in 
ANOVA 0.196, p-values adjusted for multiple compari-
sons in Tukey’s test are reported in the Additional file 1). 
In Task 2, however, there are significant differences 
between the performance of query strategies, see next 
section.

Task 2: New scoring component for human knowledge
Similar results are obtained in the Task 2. Figure 5a shows 
that the average oracle score of the generated molecules 
increases with increasing amount of feedback from a 
simulated chemist, with all query selection methods. 
Thompson sampling outperforms the other approaches 
and takes on average less than 70 queries to achieve the 
average oracle score 0.6, and less than 170 queries to 
achieve score close to 0.8, in the noise-free case. It should 
be noted that the first 10 molecules are always cho-
sen using random sampling to initialize the model, and 
iteration 1 corresponds to the subsequent first interac-
tion with the simulated chemist. In case the simulated 
chemist’s answers contain noise (Fig.  5 b,c), Thompson 
sampling reaches performance 0.6 in less than 110 (190) 
queries for noise level σchemist = 0.15 ( 0.30).

We use analysis of variance (ANOVA) and post-hoc 
Tukey’s HSD test to test for statistical significance of the 
results. For no-noise case ( σchemist = 0 ), all query strat-
egies were significantly different from each other except 
for pure exploitation to random sampling (ANOVA: 
p-value 7⋅10–8; the adjusted p-values of Tukey’s test are 
reported in the Additional file  1). However, as noise 
increases in the simulated chemist’s answers, the dif-
ference between methods becomes less evident: for 
noise level σchemist = 0.15 , only Thompson sampling is 
significantly different from other methods (ANOVA: 
p-value 0.002; Adjusted p-values in Tukey’s test: 0.009 
for Thompson sampling vs. Pure exploitation, 0.043 for 

Thompson sampling vs. Random sampling and 0.002 
for Thompson sampling vs. Uncertainty sampling; the 
rest of the p-values are reported in the Additional file 1). 
For  σchemist = 0.30 case, none of the methods were sig-
nificantly different from each other (p-value in ANOVA 
0.109).

Human interaction
A medicinal chemist’s feedback achieves similar perfor-
mance as the simulated chemist’s feedback in the previ-
ous section. On average, the performance increases from 
0.18±0.06 to 0.52±0.15 (mean± standard error of the 
mean). In the best case in Figure  6, the average DRD2 
activity evaluated by the oracle model (see "Task 2: Learn 
human knowledge about a molecular property as a sepa-
rate component" Section) increases 159% (from 0.33 to 
0.85) in the generated molecules after 100 queries to the 
chemist. In the two other repetitions, initial performance 
was lower, and in one case the method was not able to 
improve performance due to poor initial data. Different 
randomly chosen initial data caused different queries 
and hence also different performance. According to the 
chemist, the molecules shown in the first (experiment 
#1: green) experiment were easier to evaluate because 
there were more active molecules than in the ones shown 
in the latter two repetitions (experiment #2: orange and 
experiment #3: blue).

The same medicinal chemist interacted with the system 
in all three experiments, and therefore factors such as 
learning or fatigue could affect the results. We could not 
systematically evaluate these effects; however, the experi-
ment #1 was the best and the experiment #3 the second 
best, so we did not observe any consistent effect of learn-
ing or fatigue in this demonstration.

Discussion and conclusion
This work presents the first proof-of-principle for using 
human-in-the-loop interactions to aid de novo molecular 
design. We studied two approaches which we envision 
captures the basic use-cases where interactive machine 
learning provides a more principled way to exploit chem-
ist’s knowledge than manual trial and error. The first 
approach tunes the parameters of reward function com-
ponents, and could reduce users’ mental load of planning 
the scoring function that captures their goal, which might 
be especially useful for new users of de novo tools. The 
second approach builds a scoring function from scratch, 
and could benefit at the start of new projects, where 
experimental datasets may exist but are very small, and 
we wish to augment them with chemists’ intuition.

Although the second approach could be directly used to 
find a non-parametric MPO objective function in princi-
ple, we believe the first method to be more efficient for that 
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task, because it allows leveraging existing domain knowl-
edge. The domain knowledge comes from two sources: the 
chemist explicitly defines which molecular properties are 
of interest, and, more importantly, the method predicts 
molecular properties using pre-trained models, which 
compress chemical knowledge from large databases.

The experimental results quantify the improvement in 
de novo molecule generation with human-in-the-loop 
interaction. Experiments with a simulated chemist show 
that less than 200 molecule evaluations are sufficient to 
significantly improve the average score of the generated 
molecules in both use-cases (Tasks 1 and 2), even with 
noisy feedback. Furthermore, a demonstration with a 
medicinal chemist’s feedback supports this conclusion. 
We also provide a graphical user-interface where a chem-
ist can interactively input their feedback.

It is known that medicinal chemist’s evaluation of mol-
ecules varies greatly between individuals and the answers 
are sometimes not consistent even for one person [47]. 
Our probabilistic model tackles this using a noise model 
and by assuming that, on average, the answers are cor-
rect. This assumption may be sufficient in simple cases, 
and necessary for cases with little data. However, the 
chemist’s feedback is likely to include biases, as they are 
ubiquitous in any human assessment. Ways to address 
the bias by soliciting answers from multiple experts 
have been studied in expert knowledge elicitation [48]. 
Another possibility could be to learn about the biases 
of the experts, by using cognitive models and estimat-
ing their parameters to model the user behavior. To our 
knowledge this has not yet been done in HITL tasks.
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Additional file 1: Figure S1. Modified desirability function of octanol-
water partition coefficient. The weights of components in the modified 
QED score are the mean weights QEDmo

w
 from [1], except that the weight 

of ALERTS component is set to 0.0 to remove the dominating effect of 
structural alerts. Figure S2. Visualization of posterior distributions of the 
desired interval [LOW ,HIGH] of seven physicochemical properties (vertical 
panels) (a) after initialization with 10 randomly selected queries and (b) 
after 100 queries to an oracle. Colored vertical lines show samples from 
posteriors of parameters LOW  (blue) and HIGH (red). Light blue dots 
represent molecules and their true scores in each desirability function. 
Expected value of the parameters is visualized with vertical black lines, 
showing that the desired interval is refined and narrowed down during 

interaction. Furthermore, the uncertainty about parameters decreases 
after interaction. Table S1. Values of fixed parameters of the double sig-
moid desirability functions in Task 1 experiments. Table S2. Initial values 
of the parameters that are adapted during user interaction in Task 1.
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