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Abstract

Modern NLP models learn language from lexical co-occurrences. While this
method has allowed for significant breakthroughs, it has also exposed potential
limitations of modern NLP methods. For example, NLP models are prone to
hallucinate, represent a biased world view and may learn spurious correlations
to solve the data instead of the task at hand. This is to some extent the
consequence of training the models exclusively on text. In text, concepts
are only defined by the words that accompany them and the information in
text is incomplete due to reporting bias. In this work, we investigate whether
additional context in the form of multimodal information can be used to improve
on the representations of modern NLP models. Specifically, we consider BERT-
based vision-and-language models that receive additional context from images.
We hypothesize that visual training primarily should improve on the visual
commonsense knowledge, i.e. obvious knowledge about visual properties, of the
models. To probe for this knowledge we develop the evaluation tasks Memory
Colors and Visual Property Norms.

Generally, we find that the vision-and-language models considered do not
outperform unimodal model counterparts. In addition to this, we find that the
models switch their answer depending on prompt when evaluated for the same
type of knowledge. We conclude that more work is needed on understanding
and developing vision-and-language models, and that extra focus should be put
on how to successfully fuse image and language processing. We also reconsider
the usefulness of measuring commonsense knowledge in models that cannot
represent factual knowledge.

Keywords

NLP, BERT, Neural network, Vision-and-language models, Grounding, Know-
ledge representation
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Chapter 1

Introduction

Deep Learning and Natural Language Processing (NLP) research has recently
made substantial progress (Devlin et al., 2019; Brown et al., 2020; Thoppilan
et al., 2022b; OpenAI, 2022). We now have models that can e.g. classify text,
extract information from text and generate plausible looking texts without
the need for manual feature engineering. Instead, the models learn how to
read and write from largely unannotated human-authored texts. There are
several examples of downstream tasks for which these models have proven
useful, ranging from text summarization to translation and chatbots (Turovsky,
2016; Gupta and Gupta, 2019; OpenAI, 2022).

Modern NLP models are derived from the same basic components. They
build on language models, i.e. mathematical models that predict a probable
word given a context of surrounding words (Shannon, 1948). An illustrative
example can be seen in Figure 1.1. These language models are then parameter-
ized by deep artificial neural networks trained in an unsupervised fashion to
predict the most probable words based on lexical co-occurrences from large
amounts of (mainly) freely available digital texts (e.g. English Wikipedia and
thousands of books) (Devlin et al., 2019; Bengio et al., 2000).

While recent NLP models have made breakthroughs in many aspects of
language processing, they have also exposed potential limitations of modern
methods for processing and representing language. One limitation of current
NLP models is that they are prone to hallucinate, i.e. produce outputs that
are factually incorrect or simply in conflict with the context (Maynez et al.,
2020). When they describe the biography of a person they might add plausible

Language Model gone, dead, alive, huge, shaking

The tree was

Figure 1.1: An example of how a Language Model works by predicting words
from a textual context. The suggested continuations were generated by a large
BERT model with 336M parameters.
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4 CHAPTER 1. INTRODUCTION

but incorrect facts and when they act as a chatbot they might switch persona
mid-conversation. The models also represent a biased world view, in which
the Sun revolves around the Earth and women are more likely to work as
receptionists (Gordon and Van Durme, 2013; Bolukbasi et al., 2016).

The aforementioned limitations are potentially not surprising since they arise
from training language models exclusively on lexical co-occurrences (Bender
and Koller, 2020; Bisk et al., 2020). There is nothing in the design or training
of these models that specifically encourages factuality or lack of bias. Most
probably, the case is rather the opposite. Also, from the perspective of the
model, concepts such as ‘facts‘, ‘bananas‘ or ‘personas‘ only exist in text and
they are only defined by the words that surround them. There is no external
information to this that further differentiates, complements or grounds the
concepts. Contrariwise, a human has access to more modalities of information
than text to help her differentiate between different concepts. She exists in a
multimodal world that can be seen, heard, felt, experienced and read. When
she reads about a banana, she knows that it refers to something external to
text, i.e. the concept is grounded in information external to text.

In this work, we investigate whether multimodal information can be used to
ground and improve on the linguistic representations of modern NLP models.
We specifically consider vision-and-language (VL) models, language models
augmented with visual information, and evaluate them for if they have acquired
any additional knowledge or general language understanding. In Paper I we
introduce a basic method for evaluating the color knowledge of NLP models,
something we expect to improve from training on visual information. In the
same paper we also propose a new VL model architecture. Paper II presents a
more general task that measures the visual conceptual knowledge of a model
and evaluates a set of VL models on this. However, since all of these tasks are
text-only and VL models generally are trained on text-image pairs, there is
the question of whether the models are evaluated slightly out-of-distribution.
Therefore, Paper III further builds on the work of Paper I and II by investigating
if there are better setups for evaluating VL models on text-only tasks.

Before we delve further into the contributions of the aforementioned papers,
we also outline their theoretical background in Chapter 2.



Chapter 2

Background

The main focus of the work presented in this thesis is in the area of representa-
tion modelling, as introduced in Section 2.1 and expanded on in Section 2.3.
BERT models are typically used in this setting and they are derived from the
Transformer network, introduced in Section 2.4 and Section 2.2 respectively.

The motivation for the work in this thesis originates from observed limita-
tions of language models, described in Section 2.7. The approach we investigate
for solving some of the limitations of NLP models is to make use of context
and grounding, for example in the form of multimodal models, as introduced
in Section 2.8. Specifically, we focus on vision-and-language models and build
on previous research on these, as presented in Sections 2.9 and 2.10. Addition-
ally, we make use of different evaluation methods in the investigations of the
vision-and-language models, as described in Sections 2.5 and 2.6.

2.1 NLP models

Modern NLP models can be segmented into three different categories depending
on what format they are to be used in, as illustrated in Figure 2.1. The main
formats are representation modelling, language modelling and sequence-to-
sequence processing (Jurafsky and Martin, 2022). For representation modelling,
an NLP model is used to generate a vector, a representation, of the text input
that then can be used instead of the text for any text related task, such as
sentiment classification or categorization (Peters et al., 2018; Devlin et al.,
2019). The main focus of the work of this thesis lies on representation models.
For language modelling, the goal is to generate a continuation to the provided
input text. This format is useful for text generation, used in e.g. chatbots,
question answering or story generation (Brown et al., 2020). For sequence-to-
sequence processing the task is to generate a completely new sequence based
on an input sequence. This format is for example used in machine translation
and summarization (Lewis et al., 2020).

Neural networks are used in most modern NLP models regardless of usage
format, as they are especially suitable for modelling text or text representations.
Neural networks are universal function approximators (Hornik et al., 1989) in

5



6 CHAPTER 2. BACKGROUND

A tree stood on a hill.

FSentiment(X)
FSimilarTo(X,Y )
FCategory(X)

Wind swept through

its leaves.

Ett träd stod

på en kulle.

Representation Model Language Model Seq2seq model

X

Figure 2.1: The three main usage formats of NLP models.

the sense that they may be used to model any imaginable function. In addition
to this, they require no manual feature engineering and can be trained directly
on unannotated text data to learn in an unsupervised fashion.

Most modern NLP models are parametric models, in the sense that they
are fully described by and limited to their finite set of parameters. This can be
described as,

P (x|θ,D) = P (x|θ),

where θ contains the parameters that fully describe the network and D is
the data on which the network has been trained. Consequently, θ contains
all of the information that has been learned from the training data. This is
very convenient in the sense that we only need to retain the neural network
parameters and not the data for subsequent text processing purposes.

2.2 Transformer

The neural network architecture that typically is used in modern NLP mod-
els is the deep Transformer network (Vaswani et al., 2017). This network
utilizes stacked Attention layers (Bahdanau et al., 2015) to model dependen-
cies between words in a sequence and has proven to be very performant for
language modelling. This network setup works well also for longer sequences
for which important word sets are far from each other. Compared to the
previous state-of-the-art NLP models based on recurrence and convolutions,
the Transformer architecture largely avoids sequential computing. Thanks to
its superior modelling capacity and parallelizability, the Transformer is the new
state-of-the-art network for language processing.

The Transformer network was originally developed for language translation.
Since translation is a sequence-to-sequence task, the Transformer consists of
two networks, an encoder network to encode the input to be translated and a
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decoder network that generates the translation while considering the encoded
input and preceding output. Each of these network parts can and have been used
separately in modern NLP models. The encoder lends itself especially useful for
representation learning, while the decoder is useful for autoregressive language
modeling for which we wish to generate continuations based on preceding values
of a provided sequence. The only remaining sequential aspect of this model is
the generation by the decoder, meaning that all other computations can be
parallelized for faster training.

Both the encoder and decoder of the Transformer network build on stacks of
six respective identical layers. The layer for the encoder consists of multi-head
attention and a fully connected feed-forward network components. The layer
for the decoder is similar to the encoder layer, while it contains additional
attention over the encoder output and masks the attention over the decoder
input to prevent information leakage from the tokens to be predicted. This
stacked setup allows for easy re-scaling of the Transformer, since one can simply
change the number of layers in the stacks.

2.3 In practice: language representations and
transfer learning

Language representations are used to some extent in all NLP models. While
neural networks can be used to model anything in any form we desire, it is
useful to make use of some inductive bias to structure the modelling and
facilitate the training of the neural networks. Therefore, representations are
typically used to incrementally process text, moving from more general to more
specific linguistic representations further up in the model. In this context, a
representation is a vector v ∈ Rd where d is the size of the representation, that
contains the essential information of the concept it represents. In the field of
NLP these concepts can for example be words, sentences or documents.

An example of a language representation is the word embedding (Mikolov
et al., 2013). It has been tuned to encode distinctive information about the
word it represents, so if we for example consider the word embeddings for the
words “cat” and “dog”, we would find that they are more similar than for
example “cat” and “plankton”. We can also have a representation that encodes
information about a full sentence. The benefit of language representations is
that they allow us to modularize language processing such that we can, for
example, reason about sentence representations as an aggregation of word
embeddings. It also allows us to develop generic language representations that
later can be reused for more specific tasks.

Language representations are typically used in transfer learning (Pan and
Yang, 2010). For this setting, a NLP model is first trained to produce generally
useful language representations for a general task, after which the representa-
tions can be further tuned for a specialized task. Transfer learning is suitable
for situations in which we have several similar tasks and expect them to require
similar skills to solve. We can then learn a set of generic skills that can be
tuned and used for each task. This is useful from the efficiency perspective in
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BERT

[CLS] The tree was [MASK] .

C T1 T2 T3 T4 T5

FNN

[gone, dead, alive, huge, shaking, ...]

Figure 2.2: An illustrative image of BERT for masked language modelling.
FNN denotes a feed-forward neural network.

not having to train several similar models from scratch, and might solve all
tasks better.

2.4 BERT

A model frequently used in the work of this thesis is the Bidirectional Encoder
Representations from Transformers (BERT) model. It had a large impact on
modern NLP research after it was developed by Devlin et al. (2019) and showed
a promising path forward for NLP. BERT is a language representation model
that has been trained to generate contextualized token representations in a
bidirectional fashion, also considering the words after the word of interest in a
sequence. The BERT model comes in two sizes, BERT-base and BERT-large,
modelled by a Transformer encoder with stacks of 12 or 24 layers respectively,
as described in Section 2.2. The encoder generates representations for input
tokens that can be used by a smaller network to solve some downstream task,
as illustrated in Figure 2.2. The assumption is that if the encoder is sufficiently
trained, it should be able to generate language representations that are useful
for generic language tasks, as in transfer learning.

The BERT model is trained in two steps. The first step is a pre-training
phase in which the model is tasked with Masked Language Modelling (MLM),
i.e. predicting masked words in a text passage, and next sentence classification
on a large text corpus. The training data of the BERT model consists of English
Wikipedia and the Book Corpus (Zhu et al., 2015). The second training step is
a fine-tuning phase during which the model can be specifically tuned to perform
some kind of specific linguistic task, usually by adding a feed-forward neural
network on top. With this setup, even low-resource tasks may be possible to
solve thanks to the general language capabilities that have been obtained by
the model in the pre-training step.
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2.5 Evaluating for natural language understand-
ing

The overarching goal of NLP research is to acquire models that are useful for
natural language processing. To facilitate this research there are methods for
assessing if a proposed model for language processing is better than another.
A popular method for assessing the performance of a NLP model is to evaluate
it on an open benchmark. The benchmark score of this model can then be
compared to scores of previously evaluated models.

A frequently used benchmark that we also make use of is the General
Language Understanding Evaluation (GLUE) benchmark (Wang et al., 2018).
As the name implies, the aim of this benchmark is to test for the general natural
language understanding (NLU) of a model from evaluation on nine different
NLP tasks, such as sentiment prediction and question answering. When the
BERT model was proposed it was mainly evaluated on GLUE. However, shortly
after BERT was released, other newer NLP models outperformed both BERT
and the human baseline on GLUE, indicating that this benchmark no longer
is suitable for evaluating the language capabilities of modern NLP models.
In reality, the NLU of NLP models is inferior to that of a human and a
proper benchmark should reflect this. Therefore, GLUE is useful for evaluating
BERT-like models, but not necessarily newer and larger language models.

A successor to GLUE is SuperGLUE (Wang et al., 2019). This benchmark
also evaluates for general natural language capabilities from evaluation on
eight different tasks that are more challenging and diverse than those of its
predecessor. Consequently, this benchmark is more suitable for evaluating
successors of the BERT model that outperform the human baseline of GLUE.

2.6 Evaluating for knowledge

More than linguistic knowledge is required for successful language processing
(Zhang et al., 2021). To fully understand language, commonsense world know-
ledge, and some factual knowledge is required. We here refer to general
knowledge of an agent as when the agent takes the world to be one way and
not another, leaving no room for contradictions (Brachman and Levesque,
2004). With commonsense knowledge we refer to knowledge that most humans
agree on, such as “A bear has a nose.”, and with factual knowledge we refer
to information that is non-questionable and can be found in e.g. certified
Wikipedia pages. We can thus view commonsense knowledge as a subset of
factual knowledge.

An underlying theme of this thesis is to measure the commonsense knowledge
of NLP models. Zhang et al. (2021) suggest that recent success of large language
models on NLU benchmarks can be attributed to the capability of these models
for learning the required commonsense knowledge for solving the benchmarks.
It is seemingly more difficult for NLP models to learn commonsense knowledge
than syntactic and semantic knowledge, suggesting that this is the driver for
successful NLU.
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There is much interest in extracting and measuring the different types of
knowledge that supposedly resides in NLP models. For BERT-like models,
cloze statements are typically used to extract knowledge since the models are
tuned to this format from their MLM pre-training. Petroni et al. (2019) use
this format to test for factual and commonsense knowledge with their LAMA
(LAnguage Model Analysis) probe based on Wikipedia and commonsense
knowledge. They find that much knowledge is stored in language models and
further hypothesize that these models have a potential use as knowledge bases.
Weir et al. (2020) also test for commonsense knowledge, such as “A dog has
fur.”, and find that these are present in different BERT based models. West
et al. (2022) experiment with extracting latent commonsense knowledge from
a GPT-2 model to create a knowledge graph, and use different prompting
techniques for this.

2.7 Limitations of modern NLP models

As mentioned in the introduction, recent successes have also exposed limitations
of modern NLP models. In this section, we further expand on issues related to
hallucination, learning spurious correlations, reporting bias and critique against
the general setup and goals of current NLP research. The work of this thesis is
primarily focused on mitigating the limitations related to reporting bias and
general setup of NLP research.

Generative NLP models suffer from hallucination. As illustrated in Fig-
ure 2.3, even sophisticated models such as ChatGPT may generate plausible but
incorrect facts. The text generated by the model states that Astrid Lindgren
was born in Vimmerby, while she was born in a town close to Vimmerby. It
also states that Lindgren received the Right Livelihood Award in 1979, while
she actually received it in 1994. If these models are used for low-risk scenarios
such as storytelling, there is no immediate danger. It is, however, a problem
for situations in which correct information is important and expected.

Language models are also affected by reporting bias (Gordon and Van Durme,
2013) in that the majority of human written text does not contain information
the writer expects the reader to already be familiar with. Text rather describes
non-obvious world information that is worth writing down. For example that
a banana is green and straight rather than yellow and curved. Since modern
NLP models are trained solely on human written text, they learn an inaccurate
world representation. Paik et al. (2021) have for example observed that the
models learn a perception of color that does not agree with that of a human,
but rather with the text used for training.

Another issue with NLP models, and with many deep neural networks in
general, is that they may learn to make correct inferences with an incorrect
method. Very few modelling constraints are necessary or imposed on the models
to guide their inference process, as this is also a strength of neural networks.
However, this means that the models may make use of spurious correlations or
artifacts in the training data to solve the data and not the task (Feder et al.,
2022). NLP models have been noted to base predictions that should be factual
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Astrid Lindgren was a Swedish writer and children’s book author best known
for her character Pippi Longstocking. She was born on November 14, 1907
in Vimmerby, Sweden. Lindgren grew up in a family with strong storytelling
traditions, and she began writing stories and poems from a young age.
After completing her education, Lindgren worked as a secretary and later as a
journalist. In the 1930s, she married Sture Lindgren and had two children. In
the 1940s, she began writing children’s books, starting with the character Pippi
Longstocking, which became her most well-known and beloved creation.
Lindgren’s books have been translated into more than 70 languages and have sold
millions of copies worldwide. In addition to Pippi Longstocking, Lindgren is also
the author of numerous other children’s books, including the Ronia the Robber’s
Daughter series, The Children of Noisy Village, and Karlsson-on-the-Roof.

Lindgren was also a strong advocate for children’s rights and was involved

in various humanitarian and political causes throughout her life. She received

numerous awards for her work, including the Hans Christian Andersen Award for

Children’s Literature in 1958 and the Right Livelihood Award in 1979. Lindgren

passed away on January 28, 2002 at the age of 94.

Figure 2.3: Hallucination in ChatGPT. The model was prompted with the
query “Give me the biography of Astrid Lindgren.”. Passages marked in yellow
are questionable or clearly incorrect.

on the style of their prompts, meaning that they might switch their prediction
when they are queried for the same fact but in a different way (Elazar et al.,
2021; Cao et al., 2021; Jiang et al., 2020). Additionally, NLP models solve the
grounded commonsense inference task SWAG by picking up on dataset-specific
distributional biases instead of learning to perform commonsense inference
(Zellers et al., 2018, 2019). It has also been observed that BERT picks up on
shallow heuristics such as lexical overlap to solve a general natural language
inference task (McCoy et al., 2019).

There is also critique against the general approach of learning language from
lexical co-occurrences. For the development of general NLP models such as
BERT, the goal was general language understanding, as evaluated by e.g. GLUE.
However, Bender and Koller (2020) and Bisk et al. (2020) have questioned
whether modern NLP models can acquire language understanding, since they
only operate on linguistic form. The general argument is that understanding
requires meaning, where meaning is the relation between linguistic form and
communicative intent, while the models have no notion of communicative intent.
This argument is encapsulated by the symbol grounding problem that points
to the impossibility for a non-Chinese speaker to learn the meanings of Chinese
words from Chinese dictionary definitions alone (Harnad, 1990). For simplicity,
we will intermittently continue to refer to the language processing capabilities
of a NLP model as “language understanding”, while we generally agree that
the word “understanding” is misused in this setting.
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2.8 NLP in context: grounding and multimodal
models

Much critique against modern NLP models refers to that they are not grounded
(Bender and Koller, 2020; Bisk et al., 2020). This generally refers to that they
have no connection to the actual concept(s) a linguistic form, e.g. a word,
refers to. The exact definition of grounding is not yet established within NLP
research, and different interpretations can be found across research papers
(Chandu et al., 2021). In this paper, we define grounding in the context of
NLP to refer to connecting a linguistic concept to its correspondence in some
representation dimension external to text, such as sensory representations or
knowledge representations. For example, if a human reads the word “tree” they
know that it refers to something they can e.g. see, hear, touch, interact with
and smell in the real world. They also know that they can go to the library or
Google to get more information about it. Consequently, a lack of grounding
for an NLP model can also be seen as a lack of context. A model that has
been trained solely on text has not been provided with the necessary context
to ground linguistic form in.

An obvious first step towards grounding NLP models is to provide the
models with the context together with the linguistic form. For example,
when we provide a model with the phrase “a dog sitting on a couch”, we can
also provide the model with an image of a dog sitting on a couch. There is
then potential for the model to learn to connect the concepts in the image
with the concepts in the text. Such a model is denoted as multimodal since
it receives information from multiple modalities. A multimodal model can
combine information from two or more modalities and is useful for tasks that
require multimodal information processing, such as visual or video question
answering and image captioning (Zellers et al., 2021; Goyal et al., 2017; Lin
et al., 2014). A multimodal model also has the potential to produce language
representations that are grounded in information from a modality other than
text.

Apart from arguments related to grounding, multimodal models also have
the benefit of a multi-view of concepts (Huang et al., 2021). Meaning that
if some information in text is incomplete, it can potentially be found in the
complementary modalities. For example, if the text suffers from reporting bias
in a certain aspect, the other modalities might compensate for this and result
in better latent representations of the model.

2.9 Vision-and-language models

A modality that is frequently combined with text is the visual modality. Models
that process both visual information and textual information are referred to
as vision-and-language (VL) models. Examples of VL models considered in
our work are VisualBERT, LXMERT, OSCAR, CLIP-BERT and FLAVA (Li
et al., 2019; Tan and Bansal, 2019; Li et al., 2020; Singh et al., 2022). All of
these models, except for CLIP-BERT and to some extent FLAVA, have been
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Q: what fruit is this?

A: a lemon

Visual Question Answering

a [MASK].

a lemon.

Image Captioning

Figure 2.4: Two potential tasks for VL models. In the question answering case,
the model usually generates an answer or performs a choice out of multiple
options. In the image captioning case, the model can either be queried in an
MLM fashion or generate a caption from scratch.

what is the

color of

the lemon?

Backbone

Embeddings

Main model yellow

Figure 2.5: The typical setup for a VL model. Image features extracted by
a backbone are given to a main model together with the text representation,
usually formatted as embeddings. The dashed rectangle marks the part of the
model that fuses the visual and textual information and is further described in
Figure 2.6.

developed to solve predominantly VL tasks, such as Visual Question Answering
(VQA) or image captioning, as illustrated in Figure 2.4. Furthermore, all of
these models were developed as general purpose models and can similarly to
BERT be adapted to different downstream tasks.

Most VL models are largely similar in their model setup, as illustrated in
Figure 2.5. Typically, the models form initial representations for the visual
input and textual input separately before the information from the different
modalities is fused in the main model. Pre-trained word embeddings are
typically used for the text input and a pre-trained visual model, generally
referred to as backbone, is used to generate a representation for the visual input.
VisualBERT, LXMERT and OSCAR use a frozen Faster R-CNN object detector
(Ren et al., 2015) to extract detection features from the visual input, while
CLIP-BERT utilizes a frozen CLIP model (Radford et al., 2021) and FLAVA
utilizes a non-frozen Vision Transformer (ViT) model (Dosovitskiy et al., 2021)
to generate image features. Also, all aforementioned models use Transformer
encoder networks and VisualBERT, OSCAR as well as CLIP-BERT are based
on a BERT model architecture.

The method for fusing the visual and textual information varies depending
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Main model

Image encoder

Text encoder

Early fusion Constrained fusion

Main model

Figure 2.6: The two different fusion methods used by the VL models described
in this thesis. For the early fusion, the image and text representations are
simply concatenated and for the constrained fusion the representations are
processed separately before the information is fused in a constrained manner
through e.g. cross-attention. For the constrained fusion method the main
model can also be referred to as multimodal encoder.

on VL model. All VL models used in the work of this thesis are fusion encoders
with self-attention spanning across the modalities (Singh et al., 2022). Further-
more, all models except for LXMERT and FLAVA use a single transformer
as main model for early and unconstrained fusion modalities, while LXMERT
and FLAVA only allow for cross-attention between the modalities in specific
co-attention transformer layers in the main model, as illustrated in Figure 2.6.

The models we consider are also similar in their training procedure. Visual-
BERT, OSCAR and CLIP-BERT are initialized from pre-trained BERT-base
model weights. All aforementioned VL models are then trained on image-text
datasets of varying size and information content. Common for all datasets is
that they either are visual question answering datasets or image captioning
datasets, as illustrated in Figure 2.4. For example, VisualBERT is trained on
the image captioning dataset MS COCO and the Visual Question Answering
(VQA) dataset (Lin et al., 2014; Goyal et al., 2017), while LXMERT in addition
to these datasets is trained on Visual Genome, GQA and VG-QA (Hudson and
Manning, 2019; Zhu et al., 2016). The tasks the models are trained on differ
slightly depending on model. Examples of training tasks are MLM, image-text
matching and image feature prediction. Most VL models are trained on at the
least MLM and image-text matching.

A major difference between FLAVA and other VL models is that FLAVA was
developed to work well for vision tasks, language tasks and multimodal vision-
and-language tasks simultaneously. Most VL models have been developed to
only work well for vision-and-language tasks, ignoring the unimodal situations.
FLAVA, on the other hand, has been designed to perform well for language
understanding, visual recognition and multimodal reasoning tasks. It builds on
a modularized architecture, utilizing separate image and text encoders that
also generate representations for a multimodal encoder that fuses the separate
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information sources. Each separate encoder is then responsible for each task
from each modality.

2.10 Analysis of vision-and-language models

Apart from research on improving the performance of VL models on VL tasks,
there is also work on understanding how VL models work and how their
cross-modal interactions function, i.e. how they fuse information from text
with information in images. It has been found that VisualBERT, LXMERT
and other BERT based VL models have a similar performance when unified
from training on the same VL corpus for the same tasks, indicating that the
different VL model architectures are of little importance for model performance
(Bugliarello et al., 2021). For VisualBERT and LXMERT, it has also been
found that visual information is used more for text processing than vice versa
for visual processing, indicating that the models are not symmetrically cross-
modal (Frank et al., 2021). Hessel and Lee (2020) also found indications that
the VL performance of LXMERT largely cannot be attributed to cross-modal
interactions, but rather unimodal information processing.

Based on the discussion on grounded NLP, there have also been investig-
ations into the use of VL models for language processing grounded in visual
information. Yun et al. (2021) investigate whether multimodal training im-
proves on the linguistic representations of NLP models. They evaluate the
representations of VisualBERT and find that they are not better than those
of the text-only BERT model, indicating that more work is needed before we
can use multimodal training to improve on the performance of NLP models.
On the other hand, Paik et al. (2021) find that CLIP, a model that processes
both images and text, mitigates issues with reporting bias and can acquire a
color perception that agrees more with that of a human compared to text-only
models. Iki and Aizawa (2021) also investigate the language understanding of
VL models, but rather to check if performance on GLUE is preserved by a model
tuned to perform VL tasks. It was generally found that VL models decrease in
performance on GLUE compared to their language model counterparts.
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Chapter 3

Summary of Included
Papers

3.1 Paper I

In Paper I we investigate the use of visual data to complement the knowledge
of large language models, as described Section 2.8. We propose a method for
evaluating visual knowledge transfer to text for uni- or multimodal language
models and introduce a novel text-only task, Memory Colors, querying for
knowledge of memory colors, i.e. typical colors of well-known objects (Pérez-
Carpinell et al., 1998). The task is in English and contains 109 object types
paired with their memory color according to the knowledge of 11 human
annotators. Since we are only interested in evaluating representation models,
Memory Colors is formatted as a cloze-style fill-in-the-blank task, similar to
the format used by Petroni et al. (2019). An example of a query from Memory
Colors is “What is the color of a sunflower? [MASK]”, where [MASK] should
be filled in with the correct answer (yellow).

Similarly to the case for humans, we assume that a model with sufficient
knowledge of visual concepts should be able to answer text-only queries about
their colors without necessarily being provided with images of the concepts.
To support this point, we complement Memory Colors with a human baseline
from 11 human annotators that did not have access to images while answering
the queries.

We also introduce a novel VL model architecture, CLIP-BERT that utilizes
CLIP as backbone and BERT-base as main model. We train it on 4.4M captions
and 2.7M images. After training, it can be used to make inferences in an implicit
or explicit mode. In the implicit mode, the model is queried with only text
and in the explicit mode it is also provided with a visual representation of
the text generated by CLIP. Since CLIP has been trained to map visual and
textual representations to the same space, it has a potential use for “imagining”
a visual representation corresponding to text when no image is available. We
also measure an upper bound for the CLIP-BERT performance by evaluating

17
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it when it is provided with images corresponding to the text.
To separate and investigate the knowledge contributions from text versus

images, we experiment with removing information about visual concepts from
the text part of the training data by using different filtering methods. For
example, we might remove a training example from the data if it contains an
object and its corresponding color from Memory Colors. In this way we can
clearly separate knowledge contributions from images and text respectively.

Finally, we evaluate CLIP-BERT on Memory Colors in the different modes
with the different filterings of the training data. We also evaluate its text-only
counterpart BERT-base trained on the same different filterings of the training
data. We find that CLIP-BERT outperforms BERT in every filtering setting,
and with a larger margin if visual information is filtered out from the text data
used for training. We also find that a CLIP-BERT model in explicit mode
has a larger performance margin when visual information has been filtered out
from the training corpus. This indicates that our method can successfully be
used to measure visual knowledge transfer capabilities in models and that our
novel model architecture shows promising results for leveraging multimodal
knowledge in a unimodal setting.

Contributions T. Norlund mainly contributed to the design of the study,
implemented the CLIP-BERT model and code for evaluating it. He also made
major contributions to the writing of the paper.

L. Hagström mainly contributed to the design of the study and developed
the Memory Colors dataset. She also made major contributions to the writing
of the paper.

R. Johansson provided supervision on the work and writing for the paper.

3.2 Paper II

In Paper II we concretize and further build on the hypothesis that training on
a visual modality should improve on the visual commonsense knowledge in a
model. Here, visual commonsense knowledge refers to obvious visual properties
of concepts, such as memory colors or that bears have fur, and is less likely to
be found in text. To get more robust results, we develop Visual Property Norms
(VPN), a successor to Memory Colors that is approximately 60 times larger. It
tests for more general visual perceptual knowledge and contains queries for up
to 6,541 different conceptual features. VPN is derived from the CSLB concept
property norms dataset (Devereux et al., 2014) that contains the conceptual
knowledge of 30 human participants for each of 541 concrete objects. Similarly
to Memory Colors, VPN is also a text-only task that evaluates for knowledge a
model can express through text.

In addition to CLIP-BERT, we also evaluate LXMERT, VisualBERT and
BERT baselines on VPN and Memory Colors. We find that while CLIP-BERT
has the highest performance on Memory Colors, on VPN it does not outperform
a BERT model that has been trained on texts that contain visual information.
We also find that all models are sensitive to how they are prompted, casting
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some doubts as to whether we can reason about them as having commonsense
“knowledge”. These results also agree with previous research (Elazar et al.,
2021; Cao et al., 2021).

Contributions L. Hagström performed the main work and R. Johansson
supervised.

3.3 Paper III

In Papers I and II we used textual prompts to evaluate the visual commonsense
knowledge of VL models. It is however an open research question on how to
use multimodal models for unimodal tasks. We handled the lack of visual
information to the models by simply omitting the image input. However, most
VL models have not been developed with text-only tasks in mind and generally
expect image-text pairs as input. Therefore, when we evaluated the VL models,
we potentially evaluated them out-of-distribution and measured a performance
that was sub-par. Iki and Aizawa (2021) undertook the same issue when
they evaluate different VL models on GLUE. They handled it by providing
the models with a black image to replace the lacking image input, while the
question remains as to whether this is a suitable method for evaluating VL
models on text-only tasks.

In Paper III we investigate and compare seven possible methods for adapting
three different pre-trained VL models to text-only input. The investigated
adaptations can be classified into three different categories, 1) provide no visual
features and potentially fine-tune the models on a text dataset, 2) provide the
models with imputations for the missing visual information and 3) use the
backbone of the model to ‘imagine‘ the visual information. For the first category,
we experiment with using the models zero-shot, fine-tuning on Wikipedia or
fine-tuning on the training corpora of LXMERT. For the second category, we
use imputations based on an average of the training images for the model, a
black image, zeros or visual features that have been fine-tuned on LXMERT
training corpora or Wikipedia. The third adaptation for the third category is
only tested on VL models with CLIP as backbone.

The VL models we investigate in the paper are CLIP-BERT, LXMERT
and VisualBERT. We also develop four text-only BERT baselines that are
counterparts to the VL models. The first baseline is a default BERT model
as developed by Devlin et al. (2019), the second BERT model has received
further training on the training corpora of LXMERT, the third has received
further training on Wikipedia corpora of the same size as the LXMERT corpora,
and the fourth BERT model has been trained from scratch on the LXMERT
corpora. Using these baselines, we can further disentangle effects of multimodal
training from effects of 1) training on corpora with visual information, such as
captions and visual questions, and 2) training on larger corpora.

We also evaluate FLAVA, a VL model that requires no adaptations since it
has been developed to work well for text-only tasks. Consequently, we should
be able to use it as an upper bound to compare the adaptation results against.
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We evaluate all baselines and models with their different adaptations on
GLUE and VPN. Generally, we find that the VL models are sensitive to
adaptation for VPN, a zero-shot task, while they are less sensitive to adaptation
for GLUE. We also find that the adaptation methods perform differently for
different models and that unimodal model counterparts perform on par with the
VL models regardless of adaptation, indicating that current VL models do not
necessarily gain better language understanding from their multimodal training.
Additionally, FLAVA performs worse than both unimodal baselines and VL
models on the different evaluations, indicating that more work is needed for
the development of truly multimodal models. Lastly, we find that all models
and their adaptations are sensitive to how they are prompted, in accordance
with the observations made for Paper II.

Contributions L. Hagström performed the main work and R. Johansson
supervised.



Chapter 4

Discussion and Future
Work

In this thesis, we investigated whether multimodal training could be used to
make NLP models learn better linguistic representations in certain aspects.
We mainly evaluated BERT based VL models on GLUE, Memory Colors and
Visual Property Norms, of which the two latter evaluation tasks were developed
by us to test for visual commonsense knowledge. Our hypothesis was that if the
linguistic representations of the VL models improve from the visual training, it
would firstly benefit performance on tasks that require knowledge related to
visual information.

Generally, we found that the visual training signal does not improve on the
linguistic representations of a VL model compared to the representations of
a text-only counterpart trained on the same text data. We hypothesize that
there are several potential explanations for this. One is that the evaluated
VL models are not good representatives of multimodal models, suffering from
e.g. simplistic fusion methods and poor backbones that have been observed to
produce noisy visual representations (Frank et al., 2021). It could also be that
the capabilities we evaluated for can be obtained from text-only training on
visual related texts, such as captions.

Most likely, if we want models to learn grounded language representations
from vision, more work is needed on resolving how the visual information
should aid the textual to produce generally useful model representations and
grounded outputs. Further research into information fusion methods for VL
models would therefore be valuable. However, working with and evaluating
VL models is difficult due to large model sizes, complex inference procedures
and large training image datasets. Therefore, we have done some work on
this in Paper b and are also interested in future work on making VL model
investigations easier.

We noted that all evaluated models were sensitive to how they were promp-
ted when we evaluated for commonsense knowledge. Essentially, the models
changed their “world view” depending on the prompt even when they were
queried for the same knowledge, contradicting the definitions of knowledge in
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Section 2.6. We therefore question whether we can reason about these models
as having commonsense or factual knowledge. This agrees with previous results
by e.g. Elazar et al. (2022). They found that NLP models seemingly acquire
shallow heuristics rather than factual knowledge.

In our future work, we will continue to focus on the intersection between
factual knowledge and NLP models. One question we will further investigate is
if there are alternatives to fully parametric models for representing knowledge
in NLP models. If we expect a model to acquire knowledge from multimodal
information, we also have the option of representing this knowledge using a
non-parametric model. It would then be possible to ground the NLP model
predictions in structured knowledge representations instead of implicit model
parameters, as done by e.g. Thoppilan et al. (2022a).
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