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a b s t r a c t

Self-adaptive systems commonly operate in heterogeneous contexts and need to consider multiple
quality attributes. Human stakeholders often express their quality preferences by defining utility func-
tions, which are used by self-adaptive systems to automatically generate adaptation plans. However,
the adaptation space of realistic systems is large and it is obscure how utility functions impact the
generated adaptation behavior, as well as structural, behavioral, and quality constraints. Moreover,
human stakeholders are often not aware of the underlying tradeoffs between quality attributes. To
address this issue, we present an approach that uses machine learning techniques (dimensionality
reduction, clustering, and decision tree learning) to explain the reasoning behind automated planning.
Our approach focuses on the tradeoffs between quality attributes and how the choice of weights
in utility functions results in different plans being generated. We help humans understand quality
attribute tradeoffs, identify key decisions in adaptation behavior, and explore how differences in utility
functions result in different adaptation alternatives. We present two systems to demonstrate the
approach’s applicability and consider its potential application to 24 exemplar self-adaptive systems.
Moreover, we describe our assessment of the tradeoff between the information reduction and the
amount of explained variance retained by the results obtained with our approach.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Self-adaptive systems are becoming increasingly used in a va-
iety of contexts and need to consider multiple quality
ttributes (e.g., security, safety, energy consumption, cost, and
erformance). An important step for these systems is to plan

adaptations to changes in their environment at run time.
Consider, for instance, a robotic system that performs a variety

of tasks (e.g., delivering items, visiting a number of locations, or
assisting humans in their work). In certain situations, speed might
be extremely relevant, whereas other contexts might require the
system to be energy-efficient and safe. When planning adaptation
behavior, quality-related preferences and constraints need to be
taken into account, which often requires making tradeoffs among
quality attributes. For instance, a robotics system cannot travel
at a high speed and be extremely energy-efficient at the same
time, which is why stakeholders need to prioritize these quality
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attributes and possibly specify constraints (e.g., to prohibit the
robot from going below a certain battery level).

Quality-related preferences and constraints are often encoded
in a utility function whose value should be maximized by the
system. Multiple approaches to engineering self-adaptation em-
ploy utility functions to capture user preferences and constraints,
which are often defined as weighted sums of objectives (Garlan
et al., 2004; Kounev et al., 2014). These utility functions are
used in the planning process, which is commonly facilitated by
automated planning techniques, e.g., using probabilistic plan-
ning (Lacerda et al., 2014; García et al., 2019; Cámara et al., 2020;
Jamshidi et al., 2019). Given an initial state, a set of possible
actions, intermediate states, and a utility function, these tech-
niques compute policies which indicate the sequences of actions a
system should perform to arrive at a goal state. When performing
multi-objective policy synthesis, e.g., using probabilistic model
checking, it is often the case that a number of Pareto-optimal
solutions exist, in which all policies are known to meet the
imposed quantitative and behavioral constraints. Among those
Pareto-optimal solutions, one solution has to be selected that
optimizes the objectives in the most appropriate manner for a
given situation/context. To define a utility function that can be
used to select a solution, human preferences are needed (Wohlrab
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Example of a robot mission planning scenario.
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nd Garlan, 2021b). For realistic systems, however, the state and
ction spaces are typically large (and may contain hundreds of
housands of states Chen et al., 2020), which makes it difficult
or human users to verify that a utility function correctly captures
heir needs and leads to desirable policies being generated.

Human decision makers need tools and techniques to help
hem understand the tradeoffs of complex decision spaces and
uide them to good utility functions and preference specifica-
ions, enabling them to answer questions such as: Why are these
olicies being generated, and not others? What are the underlying
radeoffs among quality attributes? How sensitive to changes in
rioritization is the satisfaction of constraints or the achievement
f optimality? Which are the key choices that drive the most
mportant changes in adaptation behavior? What categories of
daptation behavior exist and what are their characteristics?
hat changes in the utility function would lead to different kinds
f adaptation behavior being generated?
When aiming to address these questions, identifying the

mportant characteristics of planning is similar to the common
achine learning problem of ascertaining the distinguishing

eatures of high-dimensional spaces. Therefore, we leverage ma-
hine learning techniques in our approach to explain the un-
erlying reasoning behind automated planning with a focus on
uality-related concerns. Our approach is based on a combination
f machine learning techniques: principal component analysis
PCA) (Jolliffe, 1986), multiple correspondence analysis (MCA) (Le
oux and Rouanet, 2009), k-means clustering (van de Velden
t al., 2019; Markos et al., 2019), and decision tree learning
DTL) (Breiman et al., 2017). These methods are complementary:
CA and MCA are dimensionality reduction techniques that can
e useful in explaining variances in large datasets; k-means clus-
ering is useful to investigate patterns/clusters in the generated
olicies; and DTL is a method (broadly employed in data mining)
hat helps to predict the value of a target variable based on one or
ore input variables. As we argue in this paper, the combination
f these techniques can help human stakeholders to understand
ow differences in utility functions might result in differences in
he adaptation behavior being generated.

We present two example systems and scenarios to demon-
trate the applicability of our approach, as well as provide guide-
ines for human decision makers aiming to leverage the approach.
o indicate the required effort of applying our approach to other
ystems, we discuss the necessary data collection and preparation
teps for 24 exemplars for self-adaptive systems.
The remainder of this paper is structured as follows: Section 2

resents an example of automated planning to motivate the
mportance of explaining quality attribute tradeoffs. Section 4
ntroduces our approach, Section 5 describes how we leverage
he selected machine learning techniques, and 6.2 describes our
valuation. We present related work in Section 7 and a discussion
f our findings in Section 8. We conclude this paper in Section 9.
2

2. Example: Robot mission planning

Although our technique applies to a large range of self-adaptive
systems, the example we consider in this paper is a robot mission
planning scenario, in which a robot needs to find an optimal nav-
igation path from a start location to a goal location. We selected
this example since automated planning is frequently used in the
robotics domain and it is crucial that users understand robot
mission plans to facilitate human–robot interaction (Chen et al.,
2020; Sukkerd et al., 2020). Fig. 1 shows an illustration of this
scenario. The robot is currently at its start location 1⃝ and should
move to the goal location 5⃝. It can choose several paths and
drive through multiple locations, some of which are private ( 2⃝)
or semi-private ( 3⃝). Moreover, some paths between locations
are occluded or partially occluded by obstacles (e.g., the path
between 2⃝ and 3⃝ is partially occluded). The robot should arrive
s quickly as possible, avoid collisions, and be as unintrusive
s possible (i.e., due to privacy concerns avoid areas that are
ccupied by humans). The robot is aware of its speed and location
n the map. It has sensors to detect collisions with obstacles, and
an adjust its speed (which can also reduce the probability of
ollisions) and select the path it should follow. In this example,
policy consists of state–action pairs that indicate how a robot
ould move from the initial state to the goal state. Each state
onsists of the robot’s location and speed. Actions can either re-
ult in a changed speed (setSpeed(...)) or in a changed target
location (moveTo(...)). For the sake of simplicity, we consider
a fixed speed of 1 in this example. We define the utility function
as a weighted sum of relevant objectives whose costs should be
reduced (i.e., travel time, collisions, and intrusiveness) (Ghezzi
and Molzam Sharifloo, 2013; Cheng et al., 2006; Esfahani et al.,
2013; Sousa et al., 2008). In this case, the utility function for a
policy σ would be:

u(σ ) = wt · ut (φt (σ )) + wc · uc(φc(σ )) + wi · ui(φi(σ )) (1)

The utility function of σ is the weighted sum (Triantaphyllou,
000) of the utilities for travel time (ut ), collisions (uc), and intru-
iveness (ui). Each of the individual utility functions u∗ map the
omain of the corresponding variables to the range [0, 1]. In the
xpression, φ∗ denotes functions that return the quantified travel
ime, collisions, and intrusiveness of σ , respectively. Weights w∗

ndicate the importance of the quality attributes and sum to 1.
To illustrate the difficulty of performing quality attribute trade-

ffs and understanding utility functions, we can calculate the
osts (of travel time, collisions, and intrusiveness) and their re-
pective utilities in our example planning problem. Table 1 shows
n example of the alternative paths (either via 2⃝ and 3⃝ or via
4 ), their costs, and utilities depending on the utility function
eights. For this example, we assume that the cost of travel
ime φt (σ ) is equivalent to the distance between locations (the
istance of the horizontal and vertical path segments is assumed
o be 1, the distance of the diagonal path segment between 3⃝

nd 5⃝ is
√
2 = 1.414, and the distance between 4⃝ and 5⃝ is 3).
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Table 1
Example paths and their costs depending on utility function weights.
Weights Locations Optimal Costs Utilities

wt wc wi φt φc φi ut uc ui u

1 0 0 2⃝, 3⃝ ✓ 3.414 1 3 0.147 0.5 0 0.147
4⃝ 4 2 0 0 0 1 0

0.33 0.33 0.33 2⃝, 3⃝ 3.414 1 3 0.147 0.5 0 0.215
4⃝ ✓ 4 2 0 0 0 1 0.333

0 0.5 0.5 2⃝, 3⃝ 3.414 1 3 0.147 0.5 0 0.25
4⃝ ✓ 4 2 0 0 0 1 0.5

0 1 0 2⃝, 3⃝ ✓ 3.414 1 3 0.147 0.5 0 0.5
4⃝ 4 2 0 0 0 1 0

0.5 0.5 0 2⃝, 3⃝ ✓ 3.414 1 3 0.147 0.5 0 0.323
4⃝ 4 2 0 0 0 1 0

0 0 1 2⃝, 3⃝ 3.414 1 3 0.147 0.5 0 0
4⃝ ✓ 4 2 0 0 0 1 1

0.5 0 0.5 2⃝, 3⃝ 3.414 1 3 0.147 0.5 0 0.073
4⃝ ✓ 4 2 0 0 0 1 0.5
ρ

Moreover, we assume that the expected cost φc(σ ) of a collision
s 1 for a partially occluded and 2 for an occluded path segment,
espectively, and 0 for non-occluded path segments. The cost of
ntrusiveness φi(σ ) is 1 for every semi-private location the robot
isits and 2 for every private location that is traversed. From the
tart location 1⃝, the path via 2⃝ and 3⃝ would cost 3.414 in
erms of travel time, 1 in terms of collision, and 3 in terms of
ntrusiveness. The path via 4⃝ is longer than the other path (cost
4 for travel time), is occluded between 1⃝ and 4⃝ (i.e., cost 2 in
erms of collision), and is not intrusive (cost 0).

To define the local utility functions u∗, we aim to capture how
ar away from the ‘worst’ or ‘most expensive’ value the costs
n the three dimensions are. In terms of travel time, 4 is the
aximum cost when traveling from the start to the goal location.

n terms of collision, the maximum cost of the possible paths is 2
with one occluded edge). For intrusiveness, the maximum cost is
(given that both 2⃝ and 3⃝ are non-public). For the local utility

unctions, we are interested in the ratio of our actual cost and
he maximum cost in one dimension. We subtract that ratio from
to indicate that a lower ratio is what is desirable and leads to
igher utility. We define the local utility functions in our example
s follows:

t (x) = 1 −
x
4

uc(x) = 1 −
x
2

ui(x) = 1 −
x
3

(2)

When using an automated planner for this example scenario,
the weights of the utility function (and the prioritization of qual-
ity attributes) would determine which path is chosen. In Table 1,
it can be seen that different paths would be chosen depending
on the weights of travel time, collision, and intrusiveness, along
with the cost. If travel time is the only important quality attribute
(wt=1), the planner would choose the path via 2⃝ and 3⃝ (as it is
shorter). In contrast, if intrusiveness is the only important quality
(wi=1), the planner would select the path via 4⃝ as the optimal
one. Clearly the preferences over quality attributes expressed in
the weights have a substantial impact on the actual path that
would be chosen by a planner.

In the two examples mentioned above, it is clear why the
planner chose a given path as optimal in the different contexts.
However, what would happen if all quality attributes are equally
important (w∗ = 0.333)? In this case, the planner would select
the path via 4⃝ in our example, but why did that happen? And
does that selection really fulfill stakeholder needs?

Ideally, we would like our planner to select a non-intrusive,
non-colliding path that is extremely short. However, it is unlikely
that the requirements of non-intrusiveness, collision avoidance,
and short travel time can all be completely fulfilled; instead,
3

tradeoffs need to be made and it has to be decided for a specific
situation what the important quality attributes are.

It can be seen that even in such a simple example, it can be
difficult to reason about path planning problems and state how
utility function weights should be chosen. Our approach aims
to address this challenge by making the planning process and
quality attribute tradeoffs more explainable to humans.

3. Automated planning with Markov decision processes

Before describing the steps of our approach, we present some
concepts related to the formalism employed for automated plan-
ning in the instantiation of our approach.

The planning problem domain is described as a Markov deci-
sion process:

Definition 3.1 (Markov Decision Process). A Markov decision pro-
cess (MDP) over a set of atomic propositions AP is a tuple M =

(S, sI , A, ∆, L, R), where S ̸= ∅ is a finite set of states; sI ∈ S is the
initial state; A ̸= ∅ is a finite set of actions; ∆ : S×A → Dist(S) is
a partial probabilistic transition function that maps state–action
pairs to discrete probability distributions over S, L : S → 2AP

is a labeling function that maps every state s ∈ S to the atomic
propositions from AP that hold in that state; and R is a (possibly
empty) set of (reward/cost) functions ρ : S → R≥0 that associate
non-negative values with states of the MDP.1

In each state s ∈ S, the set of actions a ∈ A for which ∆(s, a) is
defined contains the actions enabled in state s, and is denoted by
A(s). The choice of which action from A(s) to take in some states
is assumed to be nondeterministic.

We can reason about the behavior of MDPs using policies. A
policy resolves the nondeterministic choices included in a MDP,
selecting the action to take in states where |A(s)| > 1. Although
there are multiple classes of MDP policies, in this work, we use
deterministic memoryless policies as implemented in off-the-
shelf probabilistic model checkers like PRISM (Kwiatkowska et al.,
2011) and Storm (Dehnert et al., 2017) (called simply ‘policies’ in
the remainder of the paper).

Definition 3.2 (MDP Policy). A (deterministic memoryless) policy
of an MDP is a function σ : S → A that maps each state s ∈ S to
an action from A(s).

1 While generally, reward functions can also be associated with actions
: A → R≥0 , we consider only those that are associated with states in this

paper.
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To synthesize policies that satisfy constraints and optimize
bjective functions (defined over, e.g., quality attributes such as
imeliness, safety, etc.), probabilistic model checkers can employ
ormulas specified in probabilistic temporal logics like PCTL (Hans-
on and Jonsson, 1994; Bianco and De Alfaro, 1995), which are
sed to quantify properties related to probabilities and rewards
n system specifications modeled as MDPs.

efinition 3.3 (PCTL Formulae). State PCTL formulae Φ and path
CTL formulae Ψ over an atomic proposition set AP are defined
y the grammar:

Φ ::= true | α | Φ∧Φ | ¬Φ |P∼p[Ψ ] |Rρ
∼r [C≤k

] |Rρ
∼r [FΦ]

Ψ ::=XΦ | Φ U Φ | Φ U≤k Φ
(3)

here α ∈ AP is an atomic proposition, ∼∈ {≥, >,<, ≤} is a
elational operator, p ∈ [0, 1] is a probability bound, r ∈ R+

0 is
reward bound, k ∈ N>0 is a timestep bound, and ρ ∈ R is a

eward/cost function.

The semantics of the probability P and reward R operators
re defined over all policies σ of M as follows: P∼p[Ψ ] specifies
hat the probability that paths starting at a chosen state s satisfy
path property Ψ is ∼ p for all policies; Rρ

∼r [C≤k
] holds if the

xpected cumulated reward for ρ up to time-step k is ∼ r for all
olicies; and Rρ

∼r [FΦ] holds if the expected reward accrued for
before reaching a state that satisfies Φ is ∼ r for all policies.
eplacing ∼p (or ∼ r) from (3) with min =? or max =? specifies
hat the calculation of the minimum/maximum probability (or
eward) over all MDP policies is required.

In our example, we can encode, for instance, a PCTL formula
hat optimizes the utility associated with the timeliness of the
obot’s arrival at location L5 in the map as Rut

max=?[FLoc = L5],
here ut ∈ R is a utility function for timeliness encoded as a
eward/cost function, and Loc is a state variable that corresponds
o the robot’s location in the MDP. For a full description of the
CTL semantics, see Hansson and Jonsson (1994) and Bianco and
e Alfaro (1995).

ata generation. To explore the policy space of an automated
lanning problem, our approach requires executing an automated
lanner (e.g., the probabilistic model checker PRISM) repeatedly,
ith different combinations of utility function weights and pa-
ameter values (i.e., using uniform distributions over the space of
tility function weights).
The inputs provided to the planner are formalized under the

otion of policy exploration profile.

efinition 3.4 (Policy Exploration Profile). A policy exploration
rofile is a tuple (M,W , CΦ ,U, Π ), such that:

• M is a Markov decision process model encoding the plan-
ning domain.

• W ⊆ P([0, 1]n) is a set of tuples that capture various
utility weight combinations, where n is the number of util-
ity dimensions considered. For any w = (w1, . . . , wn) ∈

W ,
∑n

i=1 wi = 1.
• CΦ is a set of PCTL formulae, each of which encodes the

cost function that corresponds to a dimension of concern
(e.g., timeliness, energy consumption).

• U ⊆ P(Rn
≥0 → [0, 1]n) is a set of utility functions that map

costs in a given dimension of concern to the range [0, 1].
• Π : P → P(D) is a function that assigns sets of sym-

bols typed by a fixed set D to a set of parameters P re-
quired as input to the planning problem (e.g., state variable
initialization values such as the starting position of the

robot). d

4

From a policy exploration profile τ = (M,W , CΦ ,U, Π ), the
utomated planner generates as output a set of tuples of the form
σ , uσ , ug

σ ), where:

• σ is a MDP policy computed as σ = fσ (τ .Mπ , φc).p, where
π ∈ τ .Π is an assignment of parameter values for model
M, φc ∈ τ .CΦ is a PCTL formula encoding the cost function
for a given dimension of concern, and fσ (∗).p designates the
model checking function that synthesizes a policy from a
MDP model and a PCTL property.

• uσ ∈ [0, 1]n contains the utility values for the different
dimensions of concern. For dimension i, its utility value is
computed as uσ i = ui(fσ (τ .Mπ , φc).r), where ui ∈ U is
the utility function for dimension i and fσ (∗).r designates
the model checking function that quantifies a cost function
encoded as a PCTL property for a MDP model.

• ug
σ is the global utility of policy σ , calculated as the weighted

sum of utilities in uσ , i.e., ug
σ =

∑n
i=1 wi · uσ i.

. Approach

This section describes our approach, with a focus on how we
ntegrate several methods to explain quality attribute tradeoffs.
he approach has been designed to fulfill the requirements that
e outline in Section 4.1 with the methodology and tool support
escribed in Section 4.2. We provide a high-level description of
he employed machine learning techniques in Section 4.3. Our
pproach relies on data filtering and extraction. We describe
hese steps in Section 4.4.

.1. Requirements

This subsection describes the requirements for our approach
or explaining quality tradeoffs. Challenges with automated plan-
ing stem from the large state space of the planning problem
that makes it difficult to distinguish important variables from
ess important ones) (Chen et al., 2020). Moreover, the large
mount of possibly generated plans is hard to analyze for human
takeholders. When analyzing the actions of a plan, it is often
bscure what the underlying quality tradeoffs of this plan are
nd what alternative actions would have been possible. It is
lso challenging for humans to understand how input variables
e.g., utility function weights) need to be selected to generate
esirable plans. While approaches for utility function definition
ave been proposed in the past (Wohlrab and Garlan, 2021b),
t is often unclear to human stakeholders how a defined utility
unction impacts the generated planning policies. Our approach
or quality tradeoff explanations aims to address this issue. We
eveloped the following list of requirements and apply a variety
f machine learning techniques to fulfill them in our approach.
he explainability approach should:

1. give general insights into which variables (e.g., utility func-
tion weights, costs) are important to differentiate policies
and analyze their relations;

2. enable stakeholders to identify strategies, i.e., high-level
collections of policies sharing similar characteristics;

3. help to analyze how differences in utility function weights
impact the generated policies;

4. support the analysis of quantitative data (for cost and util-
ity weight variables) and categorical data (for policy ac-
tions).

nsights into important variables and their relations (1) are needed
o determine how strongly different quality attributes impact

ifferences in policies (and if there exist any tradeoffs between
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Table 2
Selection of techniques to meet different information needs.

Category Information need Technique(s) in
our approach

IN1 General General understanding of variables, their contributions, and correlations PCA, MCA
IN2 General Exploration of categorical variables and their contributions/relationships MCA
IN3 Key decisions Analysis of which state–action pairs are impacted by a change to utility function

weights
MCA

IN4 Strategies Identification of clusters (collections of policies that share similar characteristics)
and their key attributes

Joint k-means
clustering and
PCA/MCA

IN5 Utility function
weights

Thresholds (e.g., in utility function weights) and how they impact policies DTL

IN6 Cost/utility prediction Expected costs/utilities depending on how utility function weights are chosen DTL
quality attributes). To better understand the impact on pol-
icy actions, a categorization of policies into high-level collec-
tions (2) is required, so that humans do not need to reason
directly about policy actions but can analyze more general strate-
gies. An additional aspect is the role of utility function weights
(3), whose impact is often obscure to stakeholders and needs
to be clarified to help humans to correctly indicate their quality
preferences (Wohlrab and Garlan, 2021b). Finally, given that we
have a variety of variable types (4), support to analyze both quan-
titative and categorical data is required. Quantitative variables
represent data as numerical values. Categorical variables assign
one (qualitative) value of a fixed set of possible values to each
policy (Starnes et al., 2010) and express properties in terms of
values of enumerations, rather than as discrete or continuous
numerical values.

To be useful in practice, the problem space of the planning
ontext should be sufficiently large. Based on our experiences
ith the systems in this paper, the number of samples should be
t least 200 and the number of variables no less than 50. These
hresholds are easily met by most automated systems today.

As part of our approach, we apply a combination of Princi-
al Component Analysis (PCA), Multiple Correspondence Analysis
MCA), clustering, and decision tree learning (DTL). Details about
he employed machine learning techniques will be presented in
ection 5.
When applying machine learning methods, dimensionality

eduction techniques are commonly applied in combination with
ther techniques. For instance, combining dimensionality re-
uction and k-means clustering techniques can help to explore
orrelations and patterns in a dataframe (Markos et al., 2019).
owever, to the best of our knowledge, this combination of
ethods has not been applied to explain quality tradeoffs in
utomated planning.
Table 2 shows an overview of the information needs that

re addressed by our approach and the specific techniques we
ecommend. To address requirement (1), we support general
nformation needs (to explore variables, their contributions, and
orrelations) using PCA and MCA. PCA helps to focus on tradeoffs
etween quantitative variables, whereas MCA is useful to explore
ategorical variables and their relations. An example of a quanti-
ative variable is the expected number of collisions that occur in a
obot mission. An example of a categorical variable is the encod-
ng of a decision that can be taken in a specific state (e.g., to move
o another location or change the robot’s speed). Using these
imensionality reduction techniques, the requirement to support
uantitative and categorical data analysis is addressed (require-
ent 4). In particular, MCA can help users to detect actions

mpacted by a change to utility function weights. Moreover, using
CA, stakeholders can investigate which decisions are typically

aken together and how they are connected to utility function
eights and costs. Addressing requirement (2), we apply joint
-means clustering and PCA/MCA to identify clusters of policies
or strategies) that share similar characteristics, as well as their
5

key attributes (e.g., the most frequent/infrequent values for cate-
gorical variables, percentages of policies that belong to a cluster,
and the means of quantitative variables). To fulfill requirement
(3), decision trees are useful to explore specific thresholds of util-
ity function weights that distinguish different policies. They can
also be leveraged to predict the expected costs/utilities (in total
or related to specific quality attributes) depending on particular
decisions or utility function weights.

4.2. Methodology and tool support

To apply our approach in practice, an implementation of a
system needs to be in place, so that relevant data can be collected.
The implementation can be at a prototype level or a final system.
The crucial point is that it should be possible to specify a planning
problem and execute a policy synthesizer (e.g., PRISM model
checker Kwiatkowska et al., 2011). The planning problem is spec-
ified in the form of a Markov decision process (MDP), encoded in
a plain text file. The MDP specifies one reward/cost structure per
quality attribute and also a cost structure for the total cost, factor-
ing in the different costs/rewards of the three quality attributes
as a weighted sum using utility function weights. The MDP is
used to generate policies that can be saved in a tabular format
(e.g., using a csv file). In our examples, we performed uniform
sampling of different combinations of utility function weights,
but other sampling strategies are applicable as well. Instead of
utility functions, for instance, priority values for non-functional
requirements (Samin et al., 2022) can be used to capture the
priorities of different quality attributes. The dataframe should
have a sufficiently large number of samples to apply the machine
learning algorithms (i.e., no less than 200). Once a dataframe file
has been created, it can be input into appropriate statistics tools
(e.g., R R. Core Team, 2020) and analyzed to generate explanations
in the form of graphical plots.

The graphical plots can be created by following a sequence of
steps. Fig. 2 shows an overview of our approach, which receives
as input:

I1. a planning problem specification described by domain ex-
perts (e.g., modeled as a Markov decision process — MDP),
and

I2. a set of utility functions and weights (or priorities) specified
by various stakeholders.

I1. can be expressed as a plain text file containing a high-
level model of an MDP (e.g., that can be processed by PRISM
Kwiatkowska et al., 2011) and I2. can be expressed as a list of
utility function weight combinations. Each utility function weight
combination from I2. is used to generate an individual MDP,
using the utility function weights when generating the total re-
ward/cost structures.

This adjustment is performed in a Java program. The code and
scripts can be found in our Github repository.2 As mentioned

2 https://github.com/cmu-able/planningTradeoffExplanations

https://github.com/cmu-able/planningTradeoffExplanations
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Fig. 2. Overview of our approach.
efore, for the examples in this paper, we used uniform sampling
nd iterated over combinations of utility function weights with
wo loops. After creating an MDP, it uses the PRISM API to execute
he model checker.

To facilitate understanding the solution space and how stake-
older preferences affect the outcome of the planning process,
ur approach provides the following outputs:

O1. a set of strategies (policy clusters and attributes) that enables
stakeholders to understand the various coarse-grained kinds
of adaptation behavior that exist within the solution space
(e.g., collision-avoidant vs. intrusiveness-avoidant), rather
than requiring stakeholders to reason about numerous
individual policies,

O2. a set of variable relations (e.g., a strong preference for re-
ducing travel time results in a lower number of collisions),
as well as of variable contributions to quality variation in
the solution space, and

O3. a set of key decision impacts that helps to explain how
the selection of specific values for key variables results in
differences in the generated policies.

The approach consists of the following steps (cf. Fig. 2):

S1. Policy space exploration, which consists of generating a
set of policies that optimize different selections of utility
preferences captured by varying weights. These policies
(and their costs along the different quality dimensions)
can be generated using an automated planner (e.g., PRISM
Kwiatkowska et al., 2011).

S2. Data filtering and extraction are employed for selecting can-
didate variables and extracting their values, preparing the
data for subsequent processing steps. This step may require
the input of a domain expert, who has to curate the set
of candidate variables and extraction mechanisms, which
can be reused across the same class of planning prob-
lem. This step produces as output two sets of dataframes
that are used as input to PCA and MCA, respectively. For
PCA, dataframes contain exclusively quantitative variables,
whereas those for MCA contain mainly categorical vari-
ables, which can sometimes be complemented by quanti-
tative variables.

S3. Joint dimensionality reduction and k-means clustering em-
ploys both PCA and MCA to find variables that contribute
in a meaningful way to QoS variation across the solution
space, as well as their relations (i.e., the extent to which
they are positively/negatively correlated). Using the results
provided by PCA and MCA, this step applies a reduction
and k-means clustering technique (Markos et al., 2019) that
6

results in the elicitation of policy clusters (i.e., collections of
policies that share similar characteristics), along with data
on what the optimal number of clusters is and what key
attributes distinguish a cluster from others.

S4. Data filtering based on variable relations selects relevant
variable correlations (i.e., those that are meaningful in
terms of contribution to QoS variation), which can be
employed as input to the next step. This step requires the
input of a domain expert, whose decisions are informed by
the output artifacts generated in the previous step.

S5. Decision tree learning is used to arrive at the key decision
variables that help to explain how the selection of concrete
values for variables results in differences in the generated
policies.

In our implementation, S1. is performed using PRISM
(Kwiatkowska et al., 2011) and all subsequent steps are con-
ducted using R (R. Core Team, 2020). For S2., humans might
need to adjust the dataframes and select which variables are
categorical/numerical, as well as which variables should be used
for decision tree learning. The outputs of these steps are PDF
files containing plots. These plots can be leveraged by humans
to understand tradeoffs. The examples in this paper and the
provided explanations indicate how to read these plots. In the
future, we plan to provide further support for non-expert users
(see Section 9).

While we use PRISM (Kwiatkowska et al., 2011) and R (R. Core
Team, 2020) for the implementation, the approach we present in
this paper can be supported with a variety of tools, depending
on the concrete domain and system. In Section 8, we discuss
the required steps to apply our approach to the exemplars for
self-adaptive systems curated by the Software Engineering for
Adaptive and Self-Managing Systems (SEAMS) community. In our
implementation, we rely on R (R. Core Team, 2020), since it is free,
open source, and available on a variety of platforms. To facilitate
replication, we provide example dataframes and R scripts that can
be used to generate the plots presented in this paper.3

4.3. Selected machine learning techniques

This section introduces the machine learning methods that are
part of our approach: PCA, MCA, k-means clustering, and decision
tree learning.

3 https://github.com/cmu-able/planningTradeoffExplanations

https://github.com/cmu-able/planningTradeoffExplanations
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Fig. 3. Sample encoding of a policy for our robot mission planning example.

rincipal Component Analysis (PCA). PCA (Jolliffe, 1986) is a sta-
istical procedure used to reduce the dimensionality of datasets
onsisting of a large number of interrelated variables. The tech-
ique involves computing so-called principal components based
n the data, which are new variables that indicate the direc-
ions in which the samples described by the variables differ.
principal component is a linear combination of the original

ariables that explains some of the variance in the data. The
irst principal component (PC1) carries the most information re-
arding the differences between samples in the data, the second
rincipal component explains the most variance not covered by
he first one, and so on. It is often the case that only the first two
rincipal components carry relevant information (Jolliffe, 1986).
he output of PCA includes (i) the percentage of total variance of

the dataset explained by each principal component, (ii) correla-
tion loadings, which describe how much variables contribute to
explained variance, as well as their relationships, and (iii) scores,
escribing properties of the samples. In this paper, we are mainly
oncerned with variances and loadings, focusing on how much
nformation is explained by the principal components and how
ariables are related to each other.
In the high-dimensional planning space for self-adaptive sys-

ems, PCA can be leveraged to visualize correlations between
ariables (e.g., utility function weights) and indicate how vari-
bles contribute to the differences in samples (i.e., generated
olicies).

ultiple Correspondence Analysis (MCA). Similar to PCA, MCA is a
imensionality reduction technique (Le Roux and Rouanet, 2009).
CA is applicable for categorical data. The decisions in our poli-
ies (e.g., that the robot should move to location L2 after visiting
ocation L1) are encoded in categorical variables describing state–
ction pairs, which makes MCA an appropriate technique for
nalyzing policy data. While the focus is on categorical data, it is
lso possible to add supplementary quantitative variables when
erforming MCA. Variables and samples can be mapped into
oordinates on principal axes. These axes are similar to principal
omponents in PCA and help to explain the variance in the data,
ith the first axis being the most important to explain variance,
he second axis being orthogonal to it and accounting for the
econd-most amount of explained variance, and so on. The output
f MCA includes (i) the percentage of variances explained by
ach of the dimensions (axes), (ii) coordinates and contributions
f categories, which describe how much each categorical variable
ontributes to the dimensions, as well as their relations, and
iii) coordinates and contributions of samples, describing properties
f the samples.

lustering Algorithms. Clustering is concerned with making sense
f data by categorizing data points into collections that share sim-
larities. k-means clustering (an unsupervised learning technique)
s a widely used clustering technique and involves discerning
clusters in which every data point is allocated to the cluster
ith the nearest mean. We apply k-means clustering in combi-
ation with PCA and MCA (van de Velden et al., 2019; Markos
 r

7

et al., 2019) due to its potential of retaining as much variance
as possible in as few dimensions as possible, while calculating
and describing clusters of policies in the data. Reasoning about
policies in terms of clusters is helpful for humans to understand
patterns and characteristics of different categories of policies. The
technique for joint dimensionality reduction and clustering re-
quires the selection of parameters k (i.e., the number of clusters)
and the number of dimensions n to consider for PCA and MCA.
To select k and n, it is possible to calculate for what parameter
alues the clusters are most compact and the structure of clusters
ost well-separated using the so-called average silhouette width

ndex (Markos et al., 2019). In our approach, we calculated the
verage silhouette width index for different cluster sizes to select
. There exist multiple evaluation techniques for clustering algo-
ithms (Pfitzner et al., 2009). We manually labeled the samples
n our dataset to calculate the precision, recall, and F1 scores of
he algorithms. To evaluate the distance between clusters, we use
he average silhouette width index, since it indicates how similar
policy is to other policies in its cluster and how different it is

o other clusters (Batool and Hennig, 2021).

ecision Tree Learning. Decision tree learning is a supervised
earning technique that predicts the value of a variable based on
he values of other variables (Breiman et al., 2017). In our case,
e apply decision tree learning both to grow classification trees
to be able to predict what decision is taken when the system is
n a certain state) and regression trees (e.g., to predict costs in
ifferent quality dimensions, depending on actions taken by the
ystem).

ummary. To summarize, we have outlined the employed ma-
hine learning techniques of our approach: PCA, MCA, clustering,
nd decision tree learning. PCA (Jolliffe, 1986) and MCA (Le
oux and Rouanet, 2009) are dimensionality reduction tech-
iques used to focus the analysis on key components/dimensions
hat describe the differentiating features in the data. These di-
ensionality reduction techniques are combined with clustering
lgorithms (van de Velden et al., 2019; Markos et al., 2019) to
dentify strategies (collections of policies with similar charac-
eristics). To perform a fine-grained analysis of those strategies,
ecision tree learning (Breiman et al., 2017) is used to indicate
ariable thresholds (e.g., in utility function weights) and their
mpact on policies.

.4. Data filtering and extraction

Our approach requires human input for data filtering and
xtraction. Concretely, human input is required to select rele-
ant variables for a specific system and how they should be
epresented in dataframes. The data is gathered in two types of
ataframe,4 one containing a mix of categorical and numerical
ariables (for MCA) and the other one containing numerical vari-
bles only (for PCA). Fig. 3 shows an excerpt of the extracted
ata of a policy for our robot mission planning example. In the
ollowing, we leverage this example to explain how policy data
s encoded. To extract the data that corresponds to the columns
hat characterize a policy in a dataframe (MCA or PCA), we define
he notion of policy encoding, which is just a specification of the
ction selections made by the policy at each of the decision points
i.e., nondeterministic choices) in the MDP:

efinition 4.1 (Policy Encoding). The encoding of a policy σ : S →

, denoted henceforth by e : S × A → S × A, is a projection
f the policy that only enumerates state–action pairs in which
ction selection has been performed in the original MDP M =

S, sI , A, ∆, L, R), i.e., e(σ ) = {(s, a) : σ | |A(s) > 1|}.

4 A dataframe is a two-dimensional data structure capturing samples (in
ows) with their characteristics (in columns of potentially different types).
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The tables in the top left in Fig. 3 represent the utility function
eights w∗ ∈ xW , the costs for different quality attributes φ∗ ∈

C , and the utilities u∗ ∈ uσ (as introduced in Section 2). The
olicy in Fig. 3 is encoded in σ∗ ∈ xE , where σs describes the
ction to be taken in a state s. In our example, we consider a
ixed speed of 1 and the state is defined by a location on the map.
n the context of other robot planning scenarios, the state might
e defined, e.g., by a pair describing the location and the robot’s
peed.
Once we have defined the encoding of a policy, we build upon

t to describe our categorical dataframe for MCA. The categorical
ataframe contains categorical variables that assign one (qualita-
ive) value of a fixed set of possible values to each policy (Starnes
t al., 2010). In particular, the actions taken by a policy are
ncoded as categorical variables (e.g., with the qualitative value
‘moveTo(L7)’’). The categorical dataframe also contains quantita-
ive variables, e.g., for the policies’ utility function weights and
osts.

efinition 4.2 (Categorical Dataframe). For an output tuple λ =

σ , uσ , ug
σ ) generated by the planner from the policy exploration

rofile τ = (M,W , CΦ ,U, Π ), a row for a categorical dataframe
consists of the concatenation of the elements of the tuple
(xW , xC , uσ , xE, xP ), where:

• xW ∈ τ .W is the set of weights from which λ was generated.
• xC ∈ Rn

≥0 is the set of quantified costs of σ along the
different quality dimensions.

• xE = e(σ ) is the policy encoding of σ .
• xP ∈ τ .Π is the set of parameter values from which λ was

generated.

A categorical dataframe consists of the aggregation of all the rows
resulting from encoding the tuples contained in policy explo-
ration profile τ .

For the categorical dataframe (cat. in Fig. 3), actions indicate
the location that the robot should move to or the speed that
should be set.

In addition to categorical dataframes, we have numerical
dataframes for PCA, which are obtained in a similar way, but with
additional constraints that impose numerical types for all the val-
ues contained in the rows. Numerical dataframes do not contain
any categorical variables, but convert them into continuous or
discrete numerical values. The policy actions are transformed into
real values (e.g., indicating the traveled distance), as we describe
below.

Definition 4.3 (Numerical Dataframe). For an output tuple λ =

(σ , uσ , ug
σ ) generated by the planner from the policy exploration

profile τ = (M,W , CΦ ,U, Π ), a row for a numerical dataframe
consists of the concatenation of the elements of the tuple
(xW , xC , uσ , xE, xP ), where xW , xC and uσ are defined in the same
ay as for the categorical dataframe, with the additional con-
traint that all parameters in xP belong to numerical types, and
the elements in xE are transformed via a function feσ : S × A →

S × R that maps policy actions to numerical values.

For the numerical dataframe (num. in Fig. 3), actions are
translated into numerical values and represent the distance that
the robot should travel in this state (and 0 if it does not visit the
location), i.e., feσ (s, a) = (s, d(s, s′)), where d(s, s′) is the distance
between states (locations). Apart from the policy encoding in
state–action pairs, variables are used to describe the number of
steps nsteps in the policy (i.e., the number of actions that are taken
from the start to the goal location), the number of movements
nmoveTo, and the number of steps in which the speed is decreased

or increased (ndecSpeed and nincSpeed).

8

The tables at the bottom of Fig. 3 show environmental param-
eters (in xP , cf. Definitions 4.2 and 4.3) that in this case represent
characteristics of the map, i.e., the privacy levels of the locations
Li and the occlusion levels of all edges (Lj, Lk). These variables
are represented as categorical variables in the dataframe for MCA
(e.g., PUBLIC, PRIVATE, CLEAR, . . . ) and as numerical variables in
the dataframe for PCA. With the numerical variables, we indicate
whether a node is public (0), semi-private (1), or private (2), and
whether a path between two nodes is clear (0), partially occluded
(1), or occluded (2). Moreover, characteristics of the map are
captured in order to analyze how variations in the map result in
different generated policies. These variables are aggregated with
the policy data to form a single dataframe for analysis. While
the examples shown in this paper do not incorporate any map
variations, it is useful to consider environmental variables due to
their substantial influence on the adaptation behavior generated
by an automated planner.

In our dataframes, to focus the subsequent analysis on differ-
entiating variables, variables that have the same value for all rows
are removed. Moreover, as part of PCA, the data is scaled to have
unit variance before the analysis takes place.

When applying the approach to real-world systems, human
input is needed to select which variables are relevant in the
particular context and how they should be represented and ex-
tracted. For example, methods can be added to existing planning
programs that extract the required data as csv files. Human input
is also required to select which variables should be considered
when creating decision trees. Details about the filtering step
before DTL will be provided in Section 5.4.

5. Analyzing quality tradeoffs using machine learning tech-
niques

This section describes how machine learning methods are
applied as part of the approach: PCA, MCA, k-means clustering,
and decision tree learning.

To illustrate the techniques, we use a robot mission planning
example that is based on the system introduced in Section 2. The
extended version relies on a map containing 69 nodes (39 public,
14 semi-private, and 16 private) and 194 edges (15 of which are
partially occluded and 16 occluded). The privacy and occlusion
properties were randomly assigned to nodes and edges. This
random assignment of properties can contribute to the results
of the quality tradeoff analysis — if the most commonly selected
paths happen to be public, privacy might be less significant for
the tradeoff among quality attributes.

5.1. Principal Component Analysis (PCA)

We apply PCA to visualize correlations between variables
(e.g., utility function weights) and contributions of variables to
the differences in policies. Fig. 4 shows a PCA correlation loading
plot for our robot mission planning example. Table 3 indicates the
variables used in the plot with their meanings.

The plot indicates which variables are most relevant to ex-
plain the variance in the dataset and their relations to the first
two principal components. The first principal component (PC1)
accounts for 44.4% and the second (PC2) for around 30% of the
explained variance in the data. The plot contains two ellipses
indicating how much variance is taken into account, with the
outer ellipse being the unit circle and accounting for 100% ex-
plained variance and the inner ellipse indicating 50% explained
variance. Variables between the edges of the two ellipses are the
most distinguishing variables and the closer to the unit circle, the
more important a variable is. It can be seen that the utility func-

tion weights contribute to different extents: w_intrusiveness
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Fig. 4. PCA correlation loading plot for our robot mission planning scenario.
Table 3
Variables shown in the PCA correlation loading plot (Fig. 4).
Variable Meaning

L8_dist Distance traveled starting from location L8
SumCollisions Sum of expected collisions (with occluded segments counting 2 and

semi-occluded segments counting 1)
SumIntrusiveness Sum of intrusive incidents (with visited private locations counting 2

and semi-private locations counting 1)
SumTravelTime Sum of travel time
w_intrusiveness The importance of not missing a target (between 0 and 1)
w_travelTime The importance of not being destroyed (between 0 and 1)
w_collision The importance of not being destroyed (between 0 and 1)
I
t
d

is of high relevance for PC1 and is negatively correlated with
w_travelTime and w_collision. Overall, w_intrusiveness
has the greatest impact on the variance in the data, being located
between the unit circle and the circle explaining 50% of the
variance. It is followed by w_travelTime as the second most
ifferentiating utility function weight. The weight of collision is
f less importance, since it mainly impacts PC2.
Besides analyzing the contributions of variables using the plot,

t is also possible to see the relationships between them. The
ngle between the vectors going from the origin of coordinates
o two variable points indicates how closely these variables
re correlated. Fig. 4 indicates a positive correlation between
_intrusiveness, SumCollisions, and SumTravelTime (all
f which are negatively correlated with SumIntrusiveness).

This observation indicates that if intrusiveness is an important
attribute, the sums of collisions and travel time will be high
and the sum of traversed intrusive locations will be low. More-
over, variables whose points are on opposite sides of the plot
and form an angle larger than 90 degrees (e.g., there is an
angle close to 180 degrees between the vectors going from
the origin of coordinates to the variable points) are negatively
correlated, e.g., w_travelTime and SumTravelTime. Finally,
it can be seen that w_collision is positively correlated with
SumIntrusiveness (which are both negatively correlated with
SumCollisions), indicating that collisions are often avoided
by accepting a high sum of traversed intrusive locations. These
observations are in line with what one would expect of this
robot mission planning example: policies either optimize for in-
trusiveness avoidance (at the expense of travel time and collision
avoidance), travel time (at the expense of collision avoidance) or
collision avoidance (at the expense of intrusiveness). Analyzing
these correlations facilitates the understanding of tradeoffs in the

quality space. Another conclusion illustrated by the plot is that all

9

Table 4
Variables shown in the MCA biplot (Fig. 5).
Variable Meaning

LX3_ Decision indicating that LX3 is not visited
LX3_moveTo(L18) Decision indicating that the action in LX3 is to

move to L18

utility function weights are negatively correlated with each other.
Hence, stakeholders need to decide which quality attribute(s) to
prioritize, which will entail differences in the cost of the observed
policies (expressed in the sums of travel time, collisions, and
traversed intrusive locations).

5.2. Multiple Correspondence Analysis (MCA)

MCA is similar to PCA in the sense that it helps to reduce the
dimensionality of a dataframe and indicates correlations between
variables. The output of MCA is often shown as a two-dimensional
biplot in which individual samples and variables are shown along
the first and second principal axes. For the robot mission exam-
ple, an MCA biplot is shown in Fig. 5. The variables with their
meanings are clarified in Table 4. The locations of the samples
are plotted as blue points and categorical variables are indicated
as red triangles. The variables are plotted with respect to the two
principal dimensions. The two first dimensions account for 46%
and 31.8% of the explained variance. The squared correlations
between variables and the dimensions are used as coordinates.
Variables that are close to each other are correlated with each
other, for instance, L12_moveTo(LX3) and LX3_moveTo(L18).
t can be seen that several groups of categorical variables (red
riangles) are strongly correlated with each other and with the
epicted samples (blue points indicating policies). Variables that
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Fig. 5. MCA biplot for our robot mission planning scenario. Samples are plotted as blue points and categorical variables are shown as red triangles.
re close to 1 and −1 on an axis contribute strongly to that
dimension. For instance, the cluster of categorical variables in the
bottom left of the plot indicates that actions to move the robot
from L11 via L12 and LX3 to L18 are commonly taken together
and are correlated with a group of policies. Joint dimensionality
reduction and clustering allow users to explore this observation
further.

Already at first glance, the MCA biplot indicates that there
might exist different groups of samples and variables (which can
be considered as corresponding to different classes of policies).
Our approach supports further investigation of these groups of
policies with the joint dimensionality reduction and clustering
method described below.

5.3. Clustering algorithms

To select an appropriate k for the number of clusters, we
calculated the average silhouette width index for different cluster
sizes. The average silhouette width index was highest for k =

and 3 dimensions, indicating that for these values, the clus-
ers are most compact and well-separated. In this example, the
verage silhouette width index was 0.9604. Average silhouette
idth index values are between −1 and +1, with values close
o 1 indicating the clusters are well-separated. A value of 0.9604
ndicates that different clusters are well-distinguished from each
ther (Lengyel and Botta-Dukát, 2019). Therefore, we chose k = 4

and n = 3 for our subsequent analysis.
Besides calculating the average silhouette width index, we also

calculated macro-averaged precision, recall, and F1 scores. The
precision was 0.916, the recall 0.850, and the F1 score 0.873.
These values indicate that the automatically calculated clusters
correspond well to the clustering based on manual labeling.

In Fig. 6, a reduced k-means biplot for the robot mission
planning example is shown, in which policies are indicated as
points and quantitative variables (e.g., utility function weights
and policy costs) are shown as axes. As a first step, we combined
PCA with k-means for clustering (Markos et al., 2019). Policies are
grouped into four clusters that are correlated with quantitative
variables to different degrees. The clusters are labeled as FC (fast
cluster), BC (balanced cluster), CAC (collision-avoidant cluster),
and IAC (intrusiveness-avoidant cluster). Note that these labels
were manually created and are not automatically assigned to
10
the clusters. As in the PCA correlation loading plot, the angle
between the vectors going from the origin of coordinates to
two points indicates how closely these variables or samples are
correlated. The closer the point representing a policy is to the
label of an axis, the stronger is the correlation. The data suggests
that there is a substantial difference between the clusters: CAC
(the collision-avoidant cluster) is correlated with a high weight
of collision, whereas IAC (the intrusiveness-avoidant cluster) is
correlated with a high weight of intrusiveness. FC (the fast clus-
ter) is mainly correlated with a high weight of travel time and
BC (the balanced cluster) is correlated (to a lesser degree) with
w_travelTime and w_collision. Moreover, CAC is associated
with a high sum of traversed intrusive locations, IAC with a high
sum of collisions, and FC and BC with a short travel time. It
should also be noted that L8_dist, L11_dist, L17_dist, and
L26_dist are policy variables shown in the plot, which indicates
that the decisions at those locations are the most important to
characterize differences between clusters. Going back to Fig. 5,
we can see that the decisions taken at these locations are indeed
distinguishing characteristics of different groups of policies. For
large-scale examples such as this one, it is often not obvious for
humans to see what decisions differentiate clusters of policies,
which is why these plots are useful.

Fig. 7 depicts how the clusters can be further characterized.
The cluster means for the quantitative variables in all clusters
are shown. Similarly to our previous observations, the figure
indicates that CAC (the collision-avoidant cluster) is correlated
with a high weight of collision, a high sum of traversed intrusive
locations, and a low sum of collisions. IAC (the intrusiveness-
avoidant cluster) is correlated with a high weight of intrusiveness,
a high sum of collisions, and a low sum of intrusive traversed
locations. FC (the fast cluster) is correlated with a high weight
of travel time, low sums of collisions and travel time, and a high
number of traversed intrusive locations. Finally, BC (the balanced
cluster) deviates less from the mean of 0 of the standardized
values across all clusters. BC has a slightly increased mean weight
of travel time, which reflects in low sums of travel time and
intrusiveness and a slightly higher sum of collisions.

Apart from the coordinate plots, it is also worth examining
how the clusters can be characterized in terms of categorical
variables, which is something that can be done by applying MCA
in combination with k-means clustering (Markos et al., 2019).
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Fig. 6. A reduced k-means biplot of policies (points) and quantitative variables (axes with respect to Dimensions 1 and 2). The clusters are indicated as CAC, IAC,
FC, and BC.
Fig. 7. Bar plot of the cluster means for our robot mission planning scenario.
ig. 8 shows the values of categorical variables that have the
ighest standardized residuals (both positive and negative ones)
or each cluster. Standardized residuals represent how much the
alues of a categorical variable among the samples in a clus-
er differ from the values of that variable across all samples,
aking into account their standard deviation. Variables with a
igh absolute standardized residual are the ones that have an
bove/below average frequency in a cluster. In this example, the
alues encode state–action pairs, indicating the location at the
urrent state, followed by the action that should be taken (or an
mpty value if the policy does not enter the state). For instance,
11.moveTo(L12) in Fig. 8 indicates that for CAC, an unusually
requent decision at location L11 is to move to L12, which has
high standardized residual. Policies in FCAC frequently include
ariables indicating that the robot shall move from L11 to L12,
rom L12 to LX3, and from LX3 to L18. For IAC, it can be seen
hat policies in that cluster commonly move from L11 to L13 and
rom L13 to L17 (given that those values have high standardized
esiduals). Policies in FC and BC frequently avoid visiting L11 at
ll. In the particular map taken for this example, L11 and L12
re private nodes, whereas L13 is a public node. This observation
ndicates why policies in the intrusiveness-avoidant cluster IAC
11
tend to move to a public, non-intrusive location (i.e., L13) in this
state.

Based on the analysis of standardized residuals, it is possible
to elicit which decisions (in terms of state–action pairs) differ-
entiate clusters. In order to analyze how changes in the utility
function would lead to different policies being generated, we
focus especially on these differentiating decisions when applying
decision-tree learning.

5.4. Decision tree learning

We applied decision tree learning to dive into the details and
explain how, for example, a different selection of utility function
weights would impact the generated policies.

Before applying decision tree learning as part of our approach,
a filtering step needs to be performed in which relevant variables
are identified. Decision tree learning requires as an input a de-
pendent variable Y whose value should be predicted based on a
number of independent variables X . In case a classification tree is
grown, Y is a categorical variable, whereas for regression trees, Y
is quantitative. In our approach, various combinations of variables
are of interest, for instance:
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1. predicting what action is taken in a state s, depending
on the utility weights w, i.e., Y = σ (s) and X = w (a
classification tree);

2. predicting what action is taken in state sj, depending on the
actions that were taken in previous states, i.e., Y = σ (sj)
and
X = {σ (s1), . . . , σ (sj−1)} (a classification tree);

3. predicting the utility obtained in the quality attribute di-
mension i, depending on the selected policy σ , i.e., Y = uσ i
and X = σ (a regression tree);

4. predicting the cost in a quality attribute dimension i, de-
pending on the selected policy σ , i.e., Y = Φσ i and X = σ
(a regression tree).

hen predicting what action is taken in a state, we suggest focus-
ng on variables that have high absolute standardized residuals
n several clusters. L11 in our robot mission planning example
s such a state in which the selected actions differ strongly in
ifferent clusters and depending on the chosen utility function
eights.
Fig. 9 shows an example of a decision tree plot for the robot

ission example. It depicts a classification tree that indicates
hat actions shall be taken when the robot is at location L11.

t indicates what utility function weights the decision depends
n. Decision trees can be read in a top-down manner. Generally,
or low collision and high intrusiveness weights, the decision is
o move to L13, whereas for low intrusiveness weights and high
12
eights of travel time, the decision is to avoid L11. Moving to L12
s the decision taken for in-between values, e.g., for a weight of
.3 for intrusiveness, a weight of 0.3 for collision avoidance, and
weight of 0.4 for travel time. The decision tree plot can support
takeholders in further analysis of the spectrum of utility function
eights and their impact on selected policy actions. It should be
oted that the condition at the root of the tree is connected to
he most differentiating variable in the dataframe. In the example
bove, it is the weight of intrusiveness. While this observation
onfirms our findings from PCA, it is not sufficient to solely rely
n decision tree learning for quality tradeoff explanations, as
radeoffs are not as evident in decision trees.

.5. Summary

To summarize, with PCA (Jolliffe, 1986) and MCA (Le Roux
nd Rouanet, 2009), our approach helps to reduce the dimen-
ionality of our data and identify the differentiating variables. As
next step, the combination of dimensionality reduction tech-
iques with clustering (van de Velden et al., 2019; Markos et al.,
019) is used to identify strategies (categories of policies with
imilar characteristics). To analyze the details of these strategies
nd identify thresholds of variable values, decision tree learn-
ng (Breiman et al., 2017) is employed.
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Fig. 9. Decision tree plot for the robot mission planning example (showing the selected decision in the state L11).
. Evaluation

In the following, we present our evaluation method
Section 6.1), the results of our evaluation (Section 6.2), and
hreats to validity (Section 6.3).

.1. Evaluation method

We evaluated our approach with respect to the feasibility of
pplying it to other automated planning problems, as well as with
espect to the tradeoff between the information reduction and
he amount of explained variance retained by the results obtained
ith our approach. Concretely, our research questions are:

1. RQ1: To what extent is the approach applicable to auto-
mated planning problems? (Feasibility)

2. RQ2: How much can the complexity of the information
presented to a human stakeholder be reduced while pre-
serving most of the relevant information? (Information
reduction vs. amount of explained variance, only relevant
to PCA and MCA)

The evaluation focuses on the approach’s feasibility (RQ1) to
nvestigate how applicable machine learning-based techniques
re to elicit and explain tradeoffs. With feasibility, we refer to
he extent to which it is possible to generate explanations for
utomated planning systems and draw tradeoff-related conclu-
ions from them. Analyzing the information reduction-explained
ariance ratio (RQ2) gives indications about the potential of our
pproach to reduce the complexity of large problem spaces while
etaining important information. Note that the focus does not lie
n the usability of our approach, but on the applicability and po-
ential of applying machine learning techniques to explain trade-
ffs. In the future, the answers to these research questions can
orm a basis to develop more focused and usable explainability
echniques (see Section 9).

We used two systems for evaluation: an extended version of
he robot mission planning example (see Section 5) and DART-
im, concerned with a fleet of drones that perform a mission
Section 6.2.1). For both systems, we generated plans based on
fixed planning problem and a set of utility functions (using
niform distributions over the space of utility function weights)
ith the probabilistic model checker PRISM (Kwiatkowska et al.,
011).
13
6.2. Evaluation results

This section presents the evaluation results. Table 5 shows
an overview of the dataframe dimensions we considered for the
experimental evaluation described in this paper. The dimensions
relate to the number of quality attributes, cost dimensions, the
number of states, the number of action types, and the number
of samples we collected using PRISM. The number of states is
connected to the number of locations on the map (for robot
mission planning) and with the number of combinations of seg-
ments, altitude, and configurations that the fleet of drones can
be in (for DARTSim). The action types represent the actions to
move to another location or adjust the speed to fast or slow
(for robot mission planning) and to adjust the altitude, move, or
changing the configuration (for DARTSim). In the following, we
describe how the approach was applied to the DARTSim systems
to assess its feasibility (RQ1, Section 6.2.1). We then describe
the evaluation results of the information reduction vs. amount of
explained variance tradeoff (RQ2, Section 6.2.2).

6.2.1. DARTSim system (RQ1)
The second example system used for evaluation was DARTSim,

which is an exemplar that originated from the DART (Distributed
Adaptive Real-Time) project (Moreno et al., 2019). The system is
concerned with a fleet of drones that attempts to detect targets
while avoiding being hit by a threat. We used a version of DART-
Sim in which electronic countermeasures (ECM) can be switched
on or off and the fleet of drones can switch between loose and
tight formations. Using ECM and flying in tight formations reduce
the probability of being destroyed, but also decrease the proba-
bility of detecting a target. Moreover, the drones fly through five
segments before arriving at their goal location and their altitude
levels range from 1 to 4. The initial position is in segment 1 in a
loose formation with ECM switched off and at an altitude of 1. The
relevant quality attributes are safety (measured by the probability
of being destroyed) and the success of the mission (measured by
the probability of missing a target). Possible actions in each state
are to fly to the next segment, increase/decrease the altitude by
1 or 2, wait, change the formation to loose or tight, and switch
ECM on or off. To capture the policy actions in the numerical
dataframe used for PCA, we converted the actions into numerical
values capturing the change in altitude in a [−2, +2] interval.

In Fig. 10, the PCA correlation loading plot for DARTSim is de-
picted, where PC1 accounts for 45.57% and PC2 for 19.73% of the
explained variance. Table 6 shows an overview of the variables
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Table 5
Dataframe dimensions for experimental evaluation.
System QAs Costs # States Action types # Samples

Robot mission planning 3 3 69 196 215
DART 2 2 80 10 200
Table 6
Variables shown in the PCA correlation loading plot (Fig. 10).
Variable Meaning

costDestroyed Cost of the drone fleet being destroyed
missedTargets Number of missed targets
NumberDecAlt Number of steps in which the fleet decreases its altitude
NumberFly Number of steps in which the fleet flies
NumberIncAlt Number of steps in which the fleet increases its altitude
NumberSteps Number of steps in total in the current mission
seg.1.form.tight.ecm.true.
destr.false.alt.1

Change of altitude (between −2 and 2) when the fleet is in segment 1 at
altitude 1, in a tight formation, with ECM switched on, and not destroyed

w_missTarget The importance of not missing a target (between 0 and 1)
w_destrProbability The importance of not being destroyed (between 0 and 1)
Fig. 10. PCA correlation loading plot for DARTSim (all variables).
nd their meaning. It can be seen that there exist two negatively
orrelated clusters of quantitative variables: on the left side of
he plot, w_destrProbability is located, along with the sum
f missed targets, the altitude increase at segments 1 and 2 (in
ight formations with ECM switched on), and the number of steps
n which the altitude is increased and decreased. On the right
ide of the plot, w_missTarget is located, which is correlated
ith the cost of getting destroyed, the number of steps in which
he drones fly, and altitude changes at segments 1, 3, and 4 (in
oose formations with ECM switched off). We can see that the two
tility function weights are negatively correlated with each other.
he observations reflect what can be expected of this system: it
ither optimizes policies in order to avoid being destroyed (and
herefore, it uses tight formations and ECM) or it optimizes for
arget detection, uses loose formations and no ECM, and gets
estroyed more often. Among the categorical variables depicted
ere, seg.2.form.tight.ecm.true.destr.false.alt.3 is

the most relevant, as it is located close to the unit circle and
central to explain PC1. We observed that the relevant categorical
variables are often associated with the differentiating decisions
in the policies and are good candidates to explore as one of the
input variables for decision tree learning.

Fig. 11 shows an MCA plot of selected categorical variables
and policies. The variables with their meanings are clarified in
Table 7. Given that there exist many categorical variables in this
example and plotting them would lead to overlapping labels,
14
we filtered the data by the variable previously identified as
relevant (i.e., those that have the initial state
seg.2.form.tight.ecm.true.destr.false.alt.3). Hence,
the plot depicts the categorical variable values for actions selected
in segment 2 when the fleet is in a tight formation with ECM
switched on. It can be seen that three main groups of policies
exist that are correlated with the drones (i) decreasing their
altitude by 2, (ii) decreasing their altitude by 1 or flying to the
next segment, or (iii) increasing their altitude by 1.

When it comes to clustering, in this example the optimal clus-
ter size differs when calculating it based on the MCA dataframe or
based on the PCA dataframe. The resulting clusters are either five
clusters of sizes 25.5%, 23.5%, 18%, 17%, and 16% (using the PCA
dataframe) or three clusters of size 81.5%, 9.5%, and 9% (using the
MCA dataframe). Given that the MCA dataframe reflects the main
characteristics of policies more explicitly than the PCA dataframe
(where we abstract from actions being taken by representing
them using numerical values, i.e., altitude changes in the case of
DARTSim), we decided to use k = 3 for our analysis.

A reduced k-means biplot for DARTSim, indicating three clus-
ters of policies along with quantitative variables, is depicted in
Fig. 12. The closer the point representing a policy is to the label of
an axis of a quantitative variable, the stronger is the correlation.
The data suggests that there is a substantial difference between
the clusters: RTC (the risk-taker cluster) is correlated with a high
weight of not missing a target, whereas DAC (the destruction-
avoidant cluster) is correlated with a high weight of avoiding
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Fig. 11. MCA biplot for DARTSim. Samples are plotted as blue points and categorical variables are shown as red triangles.
Fig. 12. A reduced k-means biplot of policies (points) and quantitative variables (axes with respect to Dimensions 1 and 2) of DARTSim. The clusters are indicated
s RTC, DAC, and EDAC.
Table 7
Variables shown in the MCA biplot (Fig. 11).
Variable Meaning

seg.2.form.tight.ecm.true.
destr.false.alt.3_fly()

Decision indicating that in segment 2 with altitude 3, tight formation, ECM
activated, and no destruction, the drone fleet should continue flying at the
same altitude

seg.2.form.tight.ecm.true.
destr.false.alt.3_decAlt(2)

Decision indicating that in segment 2 with altitude 3, tight formation, ECM
activated, and no destruction, the drone fleet should decrease its altitude by 2
destruction. EDAC (the extremely destruction-avoidant cluster) is
correlated with a high weight of avoiding destruction and tends
to change its altitude more frequently (resulting in a correlation
with NumberDecAlt and NumberIncAlt). Moreover, it can be
een that RTC is correlated with a high cost of being destroyed,
hereas DAC and EDAC are correlated with a high number of
issed targets. These observations confirm our previous findings

egarding the tradeoff between detecting more targets vs. not
eing destroyed.
Fig. 13 gives further insights regarding the clusters’ character-

stics: RTC (the risk-taker cluster) has a slightly increased weight
f not missing a target, a high cost of destruction, a low weight
f avoiding being destroyed, and a low number of missed targets.
15
DAC (the destruction-avoidant), on the other hand, has a high
weight of avoiding being destroyed and a low weight of not
missing a target, resulting in a high number of missed targets
and a low cost of destruction. EDAC (the extremely destruction-
avoidant cluster) has similar weights as DAC, however, its weight
of avoiding being destroyed is even higher and the weight of
not missing a target is even lower. The extreme preference is
reflected in the low cost of being destroyed, the high number of
missed targets, and the increased numbers of steps in which the
altitude is increased or decreased.

The macro-averaged metrics were 0.993 for precision, 0.833
for recall and 0.885 for the F1 score. These values indicate that
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Fig. 13. Bar plot of the cluster means for DARTSim.
Fig. 14. Variables with the highest standardized residuals (positive or negative) for each cluster in DARTSim.
he clustering based on joint dimensionality reduction and k-
eans correspond to the clustering based on manual labeling.
he average silhouette width value was 0.875. It indicates that
he clusters were rather well-separated and that objects in the
ame cluster are closer to each other than to objects in other
lusters (Lengyel and Botta-Dukát, 2019).
These differences in quantitative variable values are also con-

ected to differences in policies and actions being taken. Fig. 14
hows the top ten categorical variables with the highest standard-
zed residuals for the three clusters. Policies in RTC (the risk-taker
luster) have negative standardized residuals for multiple vari-
bles with empty values (which indicate that the fleet does not
isit states in which the fleet is at an altitude of 1 with ECM
witched on). Note that the standardized residuals are negative,
hich implies that it is common for policies in this cluster to

ly at a low altitude and switch ECM off. This observation is
16
consistent with RTC being the risk-taker cluster, because it is
riskier to fly at a low altitude with ECM switched off, but it also
leads to a higher number of detected targets. Policies in DAC
(the destruction-avoidant cluster) tend to fly at an altitude of 3,
switch on ECM, and change their form to a loose formation and
lower their altitude to 2 in segment 3. This strategy increases
the probability of avoiding destruction. Policies in EDAC (the
extremely destruction-avoidant) tend to increase and decrease
the fleet’s altitude a lot and frequently fly at an altitude of 4.
This strategy leads to a higher probability of missing a target, but
also lowers the probability of being destroyed. One observation
when looking at these different strategies is that the decision
taken in segment 2 shapes the way for the subsequent steps of the
mission: policies in RTC tend to avoid flying in a tight formation
with ECM switched on at an altitude of 3, whereas policies in DAC
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Table 8
Information reduction and explained variance summary (numerical dataframe, with PCA).
System # data-frame

vars.
# relevant
PCA vars.

Information
reduction

Explained
variance

Residual
variance

Robot mission planning 22 20 9.09% 74.67% 25.33%
DART 16 15 6.25% 65.3% 34.7%
Fig. 15. Decision tree plot for DARTSim (showing the selected decision in the
tate seg.2.form.tight.ecm.true.destr.false.alt.3).

end to do exactly that, and policies in EDAC tend to be in that
tate and increase the altitude further.
The previous observation can be further explored using a

ecision tree depicted in Fig. 15. It can be seen what actions
re taken in the segment 2 depending on the selected utility
unction weights. In this case, the decisions depend on w_destr
robability. In the experiment we conducted, all policies visit
he state where the fleet is in segment 2 in a tight formation
ith ECM switched on and at an altitude of 3. For policies with
low weight of avoiding destruction (w_destrProbability <

.82), the decision in this step is to decrease their altitude by
(and thus increase the probability of not missing a target).

his action is common for policies in RTC (the risk-taker clus-
er). For policies with a high weight of avoiding destruction
w_destrProbability ≥ 0.91), the decision is to increase the
ltitude by 1, which makes it even more unlikely to be hit by a
hreat. Policies in EDAC tend to adopt this behavior. Policies with
weight of avoiding destruction in the interval [0.82, 0.91) fly

to the next segment and keep their altitude. From our previous
observations, we can see that this decision is common for policies
in DAC.

What can be concluded from the findings described in this
section is that the tradeoff explanation approach is applicable
to DARTSim. The main tradeoff lies in accepting the risk of
potential destruction vs. accepting potentially missed targets.
Based on the clustering analysis, we identified that the policies
could be categorized as either being part of the risk-taker cluster,
the destruction-avoidant cluster, or the extremely destruction-
avoidant cluster (that tends to increase its altitude a lot to ensure
that threats are avoided). Human stakeholders can leverage our
analysis methods to arrive at these conclusions and more signif-
icantly identify the thresholds in utility function weights leading
to differences in the clusters. In this case, the relevant utility func-
tion weight is the weight of avoiding destruction, with relevant
thresholds between 0.82 and 0.91. In the following subsection, we
describe how the tradeoff explanation approach can be applied to
other self-adaptive systems.
17
6.2.2. Tradeoff between information reduction and explained vari-
ance (RQ2)

Tables 8 and 9 summarize the amount of reduced information
and explained variance using PCA and MCA for the two systems
we used for evaluation. The tables indicate the number of vari-
ables in the dataframe, as well as the relevant variables indicated
by PCA and MCA. The relevant variables are those outside the area
that indicates 50% of the explained variance in the data (indicated
by a circle in the PCA plots). The column ‘‘information reduction’’
indicates the extent of information reduction if only the relevant
variables are considered. Explained variance is the sum of the
percentages that the first two principal components/dimensions
account for. Residual variance is the remaining variance that is
not explained by the first two components/dimensions.

From the tables, it can be seen that the reduction in the
information that needs to be processed by human stakeholders is
greatest for the categorical dataframe used for MCA, i.e., 28.57%
and 56.25%. In the case of PCA, many dataframe variables were
filtered out before applying PCA because they had constant or
empty values, leading to an information reduction of less than
10%. The tables also indicate that the first dimensions/components
explain a large amount of the variance in the data, with a residual
variance ranging between 22.19% and 43.91%. To decrease the
residual variance further, it can be useful to consider a third prin-
cipal component or dimension in the analysis. While 3D PCA plots
can be generated, considering more dimensions makes it more
difficult to create illustrative plots for analysis. Overall, the obser-
vations regarding information reduction and explained variance
indicate that the approach supports considerable information re-
duction, while maintaining a large amount of explained variance.
The combination of dimensionality reduction techniques with
clustering and decision tree learning can further facilitate the
focused analysis of tradeoffs, planning strategies, and thresholds
and reduce the information that needs to be processed by human
stakeholders.

Note that the information reduction obtained by PCA/MCA
is not the only benefit of our approach. The use of clustering
techniques also reduces the amount of information an expert
needs to analyze: instead of having to deal with all samples,
it is sufficient to analyze the characteristics of clusters/policy
strategies. DTL is especially useful to get insights into variable
thresholds impacting the generation of plans with many states
and actions. The example applications of robot planning and
DARTSim have large state–action spaces. For web-based systems
with few states, however, we expect the information reduction
achieved by decision tree learning to be less substantial.

6.3. Threats to validity

In the following, we discuss threats to validity:

Internal validity. This type of validity is concerned with con-
founding factors influencing quality tradeoff explanations that
we did not consider in this research. The feasibility of apply-
ing our approach could have been influenced by the concrete
sampling strategy (i.e., uniform sampling) that we applied when
collecting data or by specific characteristics of the systems under
study. To be transparent about potentially confounding factors,
we described the systems and method in detail.
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Table 9
Information reduction and explained variance summary (categorical dataframe, with MCA).
System # data-frame

vars.
# relevant
MCA vars.

Information
reduction

Explained
variance

Residual
variance

Robot mission planning 35 25 28.57% 77.81% 22.19%
DART 80 35 56.25% 56.09% 43.91%
Conclusion validity. Although we do not present any statistically
ignificant conclusions in this paper, we might have missed im-
ortant findings or presented findings that do not hold in practice.
o account for threats to conclusion validity, we present a clear
hain of evidence when presenting our method and findings.
or the feasibility of our approach, we describe our findings in
etail and trace them to the generated plots. For the enabled
nformation reduction, we quantify our findings. We also provide
xample dataframes and plots in our Github repository.

onstruct validity. The constructs that are relevant in our study
re subject to different interpretations. For example, the construct
f feasibility (RQ1) could be understood in different ways. We
efer to the extent to which it is possible to generate explana-
ions for automated planning systems and draw tradeoff-related
onclusions from them. We describe the conclusions we draw in
etail and aim to provide a chain of evidence from the conclusions
o the data in the plots.

eliability. Reliability is connected to the researchers impacting
onclusions presented in this paper. Given that there is no stan-
ard way of interpreting and describing plots, certain insights
ight be dependent on our interpretation and description. We
rovide a replication package to enable others to revisit our
onclusions and apply our approach to other systems.

xternal validity. One threat to external validity is that our pre-
ented findings might not generalize to other systems and con-
exts. We selected two systems to evaluate our findings, with
ne being concerned with robot mission planning and the other
ne with planning for a fleet of drones. For these systems, our
pproach was feasible and led to a considerable information
eduction while preserving relevant information. Other contexts
nd systems might come with varying degrees of feasibility and
nformation reduction. In Section 8, we discuss the expected
evels of feasibility for a set of self-adaptive exemplars.

. Related work

xplainability for self-adaptive systems. The need for explainable
pproaches for self-adaptive systems has been previously identi-
ied (Bencomo et al., 2012). In particular, our proposed approach
an help practitioners assess why an adaptation strategy is chosen
nd what the adaptation space can be characterized by Diallo
t al. (2021) presented an explainable framework relying on
onvolutional neural networks to reduce the adaptation space.
he focus of their approach is not on discerning and explaining
uality attribute tradeoffs, but rather on adaptation space reduc-
ion, which is related to the employed dimensionality reduction
echniques in our approach.

Given that humans should not be overwhelmed with informa-
ion, an approach has been designed to identify when to provide
xplanations to users (Li et al., 2020). The authors found that
xplanation can improve a system’s performance, especially for
uman users with intermediate training levels. The presented ap-
roach is agnostic with respect to the mechanisms employed for
xplanation and thus can complement our approach, providing
nsights about how it can be exploited in the best possible way
n some contexts.

Run-time goal-based models have been used as a basis to

reate natural language explanations about systems’ run-time

18
behaviors (Welsh et al., 2014). Another approach relies on prove-
nance graphs to collect data from a system at run time and
explain it to users (Reynolds et al., 2020). Similarly, historical
data can be used to provide explanations to users, either after
the system has finished running or as live explanations (Gar-
cia Dominguez et al., 2019). These approaches can be used to
create an explanation for a particular execution of a system at
a point in time. Our approach provides a high-level explana-
tion of quality tradeoffs in the design space based on data. To
the best of our knowledge, this high-level explanation based on
machine learning techniques has not been covered by previous
approaches.

Explainability of tradeoff spaces. In the field of software archi-
tecture, an approach to explaining architectural design tradeoff
spaces has been developed that relies on PCA to support human
designers in analyzing tradeoffs (e.g., between cost, reliability,
and performance) (Cámara et al., 2021). Our method is based
on similar ideas, but extends the scope and incorporates other
ML-based methods (i.e., MCA, clustering, and DTL) suitable for
tradeoff analysis.

Another related approach is focused on tradeoff-focused
contrastive explanation for MDP planning, which involves con-
trasting a selected policy to Pareto-optimal alternative plan-
ning solutions and arguing about their impact on quality at-
tributes (Sukkerd et al., 2020). A similar approach relies on
contrastive explanations for MDP planning, which focuses on
describing ‘‘critical states’’ and the impact of decisions on the
flexibility to replan the route at run time (Chen et al., 2020).
In contrast to these approaches, our research focuses on quality
attributes and strategies (i.e., clusters of policies sharing similar
characteristics) to explain the tradeoff space at a high level.

Explainable AI. In artificial intelligence, there is a growing body
of work in the emerging area of eXplainable AI (also referred
to as XAI and interpretable AI in the literature) that aims at
creating techniques that can yield more understandable mod-
els that enable humans to understand, appropriately trust, and
effectively manage emerging AI-based systems. However, the
field is constrained to black-box machine learning systems and
a recent extensive survey of the area does not show any XAI
approaches that target automated planning (Barredo Arrieta et al.,
2020). One approach in the area of XAI supports the extraction
of history-aware explanations on demand when using reinforce-
ment learning, including data on measurements and quality at-
tributes (Parra-Ullauri et al., 2021). While it does not focus on
automated planning, it is similar to our approach since historical
data is leveraged to generate explanations.

Explaining decisions in reinforcement learning. To explain the
decisions taken in reinforcement learning, an approach has been
developed that involves learning decomposed reward function
components for an MDP and using them to predict the expected
rewards in different quality attribute dimensions (Juozapaitis
et al., 2019). This approach learns the optimal policy at the same
time as the explanations (and the reward dimensions that the
system tries to maximize). Our approach is similar in the sense
that it helps to discern and explain different strategies with
different quality attribute characteristics.

The explanation of actions through hierarchical goals is an-
other direction in explainable AI. The Dot-to-Dot method (Beyret
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Table 10
Exemplars and inputs required to apply our approach.
Domain Variables Variables Quality attributes
(exemplars) (environment) (policies)

Web/Cloud/Service-based
Znn.com (Cheng et al., 2009),
Hogna (Barna et al., 2015), TAS
(Weyns and Calinescu, 2015),
Hadoop-Benchmark (Zhang et al.,
2017), CrowdNav and RTX
(Schmid et al., 2017), mRUBiS
(Vogel, 2018), K8-Scalar (Delnat
et al., 2018), SWIM (Moreno et al.,
2018), OCCI Monitoring (Erbel
et al., 2019), RDMSim (Samin
et al., 2021)

Request arrival rate, service
reliability, service availability,
network latency

Server/virtual machine pool size,
content fidelity, maximum service
invocation retries, timeout length,
service selection, allocation of
resources

Performance (response time,
throughput), cost, resource
consumption, content fidelity,
availability, reliability (e.g.,
number of failed service
invocations, mean time to
recovery)

Autonomous Vehicles/Robotics
ATRP (Wuttke et al., 2012),
Dragonfly (Maia et al., 2019),
DARTSim (Moreno et al., 2019),
UNDERSEA (Gerasimou et al.,
2017), TRAPP (Gerostathopoulos
and Pournaras, 2019), RoboMAX
(Askarpour et al., 2021)

Weather conditions, obstacles,
speed limits, traffic accidents, road
closures, desired fairness level for
planning, sensor reliability, map

Route selection, speed, sensor
configuration, planning frequency

timeliness, energy consumption,
safety, reliability, robustness,
scalability, usability, performance,
utilization of resources

Cyber–physical Systems/IoT
DEECo (Al Ali et al., 2014), FmFM
(Bennaceur et al., 2016), DeltaIoT
(Iftikhar et al., 2017), Intelligent
Ensembles (Krijt et al., 2017),
DingNet (Provoost and Weyns,
2019), AMELIA (Tsigkanos et al.,
2019), Platooning LEGOs (Shin
et al., 2021), Body Sensor Network
(Gil et al., 2021)

Traffic load, communication
interference, sensor reliability,
map, resources

Network settings (e.g.,
transmission power, spreading
factor), assignment of resources,
route selection

reliability, cost, energy efficiency,
travel speed, utilization of
resources, security
et al., 2019) uses hierarchical reinforcement learning with hind-
sight experience replay for robotic manipulation and breaks the
mission goal into smaller sub-goals whose rewards shall be maxi-
mized. The high-level representation can be presented to humans
and interpreted more easily, which is in line with our approach
that helps to abstract from the state–action pairs in policies and
describes them as clusters of strategies.

While the explanations provided by our method are global ex-
lanations at a high level of abstraction (Chakraborti et al., 2020),
hey also allow users to investigate local decisions using DTL. We
re not aware of any quality tradeoff explanation approaches for
elf-adaptive systems with these properties.

efining utility function weights. In the context of automated
lanning, our previous work presents a tool-supported negoti-
tion technique for preference and constraint elicitation, whose
nput is used to define the weights of a utility function (Wohlrab
nd Garlan, 2021a,b). While the approach helps stakeholders
ome to an agreement about utility function weights, users are
nable to determine what the consequences on system behavior
re. This paper addresses this issue by providing an explainability
pproach that can help humans identify how to best select utility
unction weights and achieve the desired adaptation behavior.

. Discussion

easibility (RQ1). The results of applying our approach to the
obot mission planning and DARTSim systems indicate that our
pproach is applicable to extract information regarding quality
radeoffs, strategies, and defining variable thresholds (e.g., in
tility function weights). Our findings are consistent with our
bservations when examining models and simulation results of
he systems.

To further evaluate the feasibility of our approach, we sys-
ematically went through the set of exemplars for self-adaptive
ystems curated by the Software Engineering for Adaptive and
19
Self-Managing Systems (SEAMS) community. The community sup-
ports a curated repository of example systems and problems
that can be used as a motivation for research, to showcase and
assess solutions and techniques, and to compare results.5 We
assessed what pieces of data would have to be extracted and
what additional steps are required to apply our approach to these
systems.

Table 10 gives an overview of our findings. Many of these
exemplars exhibit a high degree of commonality, so we consider
the categorization on the exemplar website, namely: web/cloud/
service-based systems, autonomous vehicles/robotics systems,
and cyber–physical/IoT systems. For each category, we indicate
the key environmental variables to consider, the variables that
our approach can collect from each generated policy, and the
quality attributes that are affected by the policies.

Adaptations in the domain of web/cloud/service-based sys-
tems are affected by environmental variables such as the number
of incoming requests per time unit, network latency, service
failure rates, and services becoming (un)available (e.g., in TAS).
Their adaptation policies are generally concerned with changing
the server (e.g., Znn.com, mRUBiS, SWIM) or virtual machine
(e.g., Hogna, K8-Scalar) pool size and the fidelity of the contents
served (e.g., text vs. multimedia mode in Znn.com, percentage
of requests served with additional content in SWIM). Relevant
quality attributes include performance, resource consumption,
cost, content fidelity, availability, and reliability.

Autonomous vehicles and (mobile) robotic systems are af-
fected by environmental variables that are often related to the
physical environment in which the system is operating (e.g.,
weather conditions, obstacles, e.g., in Dragonfly) and certain given
characteristics of the planning problem (e.g., whether the plans
should be optimized for fairness, e.g., in TRAPP). Policies gen-
erally indicate the routes to a target destination (e.g., in ATRP

5 https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/

https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/
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r RoboMAX), the sensor configuration and speed (e.g., in UN-
ERSEA), and the frequency at which planning shall be per-
ormed (e.g., in TRAPP). The quality attributes to consider are
elated to the timeliness, energy consumption, safety aspects
e.g., collision avoidance), reliability, robustness, scalability, us-
bility (e.g., in RoboMAX), performance, and the utilization of
esources (e.g., streets in TRAPP).

Cyber–physical/IoT systems need to consider a variety of envi-
onmental factors, depending on the concrete application context
e.g., traffic load, communication interference, or sensor reliabil-
ty, map, or the existence of resources). Policies are concerned
ith the assignment of parking spaces or other resources (e.g., in
EECo or Intelligent Ensembles), adjusting the network settings
e.g., in DingNet), routes, or the number and timing of lane
hanges and speed adjustments in Platooning LEGOs. Quality
ttributes range from reliability (e.g., the number of successfully
elivered packages in DeltaIoT), cost, and energy efficiency, to
he travel speed, utilization of resources, and security concerns
e.g., in DingNet).

Several exemplars rely on utility or cost functions for self-
daptation, i.e., UNDERSEA, TRAPP, and certain implementations
f DARTSim, RoboMAX, and DeltaIoT, as well as Znn.com, mRUBis,
nd SWIM. Other exemplars use goal models (e.g., FmFm) or
mplicit representations of the quality attributes to optimize for
nd the constraints to meet. Although our tradeoff explanation
pproach primarily focuses on systems that are based on utility
unctions, it is also potentially of use to applications that con-
ider multiple (competing) quality attributes. We consider the
pproach less useful if only one quality attribute is optimized
y a system. However, the overview of the exemplars indicates
hat there exists an inherent set of quality attributes for all exem-
lar categories which should be considered by realistic systems.
ystems relying on only one quality attribute appear to be less
ommon and useful in practice.
When collecting data and running our tradeoff explanation

pproach, certain techniques employed in the approach might
e more suitable to particular exemplars. For exemplars whose
olicies can be characterized by quantitative values (e.g., for
etwork settings, planning frequency, pool size, timeout length,
nd invocation retries), the most informative findings can be
eached when using PCA (instead of MCA) for joint dimensionality
eduction and clustering. In those cases, when creating a decision
ree, stakeholders might be mainly interested in understanding
hreshold values characterizing different policies and what they
epend on.
For exemplars whose policies are best described using cate-

orical variables (e.g., routes, allocation of resources, and service
election), it is advisable to use MCA for dimensionality reduction.
spects to focus on are decisions that differentiate one cluster of
olicies from another (e.g., in route planning).
For the exemplar categories of autonomous vehicles/robotics

nd cyber–physical systems/IoT, we expect a larger and more
eterogeneous set of variables to be collected than for web/cloud/
ervice-based systems. Environmental variables are less easy to
apture for systems that need to take the physical world into
onsideration than for web/cloud/service-based applications. Tak-
ng weather conditions as an example, one can imagine a vari-
ty of sensors capturing various aspects that might be relevant
e.g., temperature, cloudiness, pressure, precipitation, and wind).
n important step when applying our approach is to filter out
ariables that do not account for a large amount of the explained
ariance and reduce the dimensionality of the adaptation space.
With these insights in mind, researchers and practitioners

n the future can collect data in a targeted way and apply our
radeoff explanation approach to other systems. Since we do

ot expect the approach to be applicable as a one-size-fits-all

20
solution, we described the aspects requiring human input in this
section, including the focus on PCA/MCA, variable selection for
decision tree learning, and the variables to focus on during data
collection. The fact that humans might need to give input to
create dataframes and select variables of interest constitutes a
potential limitation of our approach. It is reasonable to expect
stakeholders to be able to provide the necessary inputs, given that
the general problem domain and potentially interesting quality
attributes should be known. Since the first steps of the approach
(PCA and MCA) provide a high-level overview of variables and
correlations, these insights can be leveraged when diving into
the details and creating decision trees. However, from our ex-
periences with several planning domains, we realized that it can
be difficult to correctly interpret the results if the semantics of a
variable is unclear. In these situations, it can help to explore the
policy generation and planning problem in further detail to better
understand the generated plots and explanations.

Our assessment of the applicability of our method to the
SEAMS exemplars identified the variables that need to be ex-
tracted, aspects to consider when tailoring the approach and
giving human input, and the use of utility functions. Our findings
show that not all exemplars rely on explicit utility functions,
and whether PCA or MCA is most adequate for dimensionality
reduction depends on the nature of the exemplar. While not all
exemplars employ utility functions, the systems we focused on
in this paper (robot mission planning and DARTSim) and many
others that require multiple quality attributes to be traded off
against each other do employ them. The weighted sum approach
is one that is commonly applied in related works (Ghezzi and
Molzam Sharifloo, 2013; Cheng et al., 2006; Esfahani et al., 2013;
Sousa et al., 2008). Even for systems not relying on utility func-
tions, our approach is applicable, as long as there are two or more
quality attributes of interest that can be traded off against each
other. Besides the weighted sum model, the weighted product
model is a common approach that also relies on utility function
weights (Triantaphyllou, 2000). Generally speaking, for any utility
functions that encode weights or preference orders, our approach
is likely to produce informative results. The primary assumption
that we make is that you can generate a variety of points in
the design space to explore the planning space. Future work can
investigate the applicability of our approach to other kinds of
utility functions.

Information reduction (RQ2). For our example systems, we iden-
tified an information reduction of 29%–56% with an explained
variance in the range of 56%–78%. These findings indicate that
there is a substantial level of information reduction while a large
amount of the explained variance is retained. Note that the di-
mensionality reduction techniques PCA and MCA are not the only
component of our method, but are complemented with clustering
algorithms and decision tree learning. Clustering algorithms help
to further improve the insights users can get by describing poli-
cies in terms of two to four categories for these example systems.
Decision tree learning supports understanding, e.g., by indicating
how values of utility function weights impact the actions to be
chosen.

Discussion of the approach’s evaluation and applicability in practice.
On a conventional laptop, the data generation took 42.93s for the
robot mission planning example with the dataframe dimensions
indicated in Table 5. Once the data has been generated, execut-
ing the script to create plots took 20.23s for the robot mission
planning example with a conventional laptop. For even larger
problems or higher values for the optimal number of clusters,
the execution time would be even longer. While the approach is
not very time-consuming, we do not envision this approach to
be applied continuously at run time. Rather, we intend it to be
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sed to train stakeholders in understanding tradeoffs and helping
hem to indicate their preferences appropriately to deliberately
et utility function weights. Currently, it is often obscure what the
mpact on the planned behavior is when defining utility functions.
ur approach aims to address this issue.
The current evaluation focuses on systems with up to three

uality attributes. When scaling the approach to larger systems
ith more quality attributes, the sampling strategy to collect data
ould likely need to be revised. We applied uniform sampling
f different combinations of utility function weights. Depend-
ng on the planner, the complexity of the problem, and the
umber of quality attributes, the sampling should be performed
n a more coarse-granular way. We recommend starting with
oarse-grained sampling and performing complementary sam-
ling around key threshold regions. Future work will identify
ppropriate data collection strategies for practical contexts.
The approach’s advantages are its applicability to large, com-

lex design spaces and the large reduction of information (RQ2).
he approach’s disadvantage in its current version is the re-
uired level of expertise needed to interpret and understand the
lots. While we found the conclusions to be understandable with
dequate additional explanations, further research is needed to
reate visualizations or natural language explanations that can
e used by stakeholders of various backgrounds and disciplines.
n the future, these approaches can be evaluated with respect
o how fast and accurately humans can assess explanations. For
xample, glitch detector tasks (Hoffman et al., 2018) can be used
o investigate humans’ mental models by asking them to find
litches/mistakes in explanations.

. Conclusions

In this paper, we have presented an approach to explain qual-
ty attribute tradeoffs in automated planning for self-adaptive
ystems. Our approach relies on machine learning methods to
escribe the relevance of quality attributes for automated plan-
ing, their relations, strategies (i.e., groups of planning policies
haring similar characteristics), as well as key thresholds in utility
unction weights and their impact on generated policies. We eval-
ated the approach with respect to feasibility (RQ1) by applying
t to two systems (robot mission planning and DARTSim) and
escribing the potential application to 24 exemplar self-adaptive
ystems. We also described the considerable level of informa-
ion reduction when applying our approach and the moderate
eduction in explained variance (RQ2).

We observed a number of limitations of our approach, for in-
tance, with respect to the use of PCA for joint dimensionality re-
uction and clustering. PCA is most applicable when correlations
etween variables are linear and would need to be replaced with
ther techniques when non-linear correlations are of interest.
An area of future work is to explore alternative sampling

trategies. The sampling approach used to generate adaptation
olicy data might influence the conclusions that are reached. For
he examples described in this paper, we sampled uniformly over
he space of parameters (i.e., the utility weights wi in the ranges
0, 1]). To be able to better approximate thresholds, e.g., for
ecision-tree learning, finer-grained sampling around key thresh-
ld regions could be beneficial. Future work will focus on al-
ernative sampling strategies based on previous work such as
ross-entropy methods (Moreno et al., 2017).
Finally, while the insights that can be obtained from applying

ur approach can help human stakeholders and system designers
etter understand the otherwise untamable complexity of auto-
ated planning, the generated plots might be difficult to grasp

or untrained users. To address this issue, we plan to develop
ools with appropriate user interfaces that can visualize and
21
explain tradeoffs in automated planning and help stakeholders
provide input to ensure that self-adaptive systems’ plans meet
their requirements (e.g., by selecting appropriate values for utility
function weights).
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