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Abstract:

With the international community pushing for a computer vision based option to the laws
requiring a look-out for marine vehicles, there is now a significant motivation to provide digital
solutions for navigation using these envisioned mandatory visual sensors. This paper explores
the monocular direct sparse odometry algorithm when applied to a typical marine environment.
The method uses a single camera to estimate a vessel’s motion and position over time and is then
compared to ground truth to establish feasibility as both a local and global navigation system.
Whilst it was inconsistent in accurately estimating vessel position, it was found that it could
consistently estimate the vessel’s orientation in the majority of the situations the vessel was
tasked with. It is therefore shown that monocular direct sparse odometry is partially suitable
as a standalone navigation system and is a strong base for a multi-sensor solution.
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1. INTRODUCTION

With rising autonomous drive development in vehicles on
roads, in air, and at sea with both promising and demon-
strated results, there has been a plethora of developed
and proposed systems dealing with different pieces of the
problems and challenges within autonomous driving. For
such capabilities, self-localisation and pose estimation are
as vital as route planning and motion control. With the
market demand and regulations at play, there is a need
for a robust vision system that can fulfil or complement
the self-localisation of autonomous vehicles. For example,
the international community calls for clarity regarding
autonomous maritime vessels and Rule 5, which specifies
the need for a look-out (Zhou et al., 2020) in the inter-
national regulations for the prevention of collisions at sea
(COLREGS). This paper proposes that future autonomous
systems will likely stem from vision being a mandatory re-
quirement, and there is the need for a vision-based control
suite with the ability to perceive itself and its surrounding
environment robustly.

Since the conception of self-driving maritime vehicles,
this has been achieved mostly through internal gyroscopic
units, compasses, and satellite-based odometry. More re-
cent attempts also use sensors that are expensive, such as
light detection and ranging (LIDAR), or prone to noise,
such as radar. With compasses and satellite systems also
subject to interference, a solution is to use local systems
that are independent of such variables, making a camera
a reasonable alternative (Hayakawa and Dariush, 2019),
even if a vision-based watch would not be mandatory.

This method, known as visual odometry, is effective in
various land-based platforms but is still quite limited in
research on maritime platforms. From the little research
that has been conducted, systems typically use stereo or
composite imagery, or some form of cartography for com-
parison, which would not be feasible for micro navigation
or investigation of a naval structure. Composite cameras
would be an ideal setup, but for typical use cases, there
is an upper limit of data throughput and compute capa-
bility (Benderius et al., 2021). Therefore, this paper looks
at the use of a singular camera as a foundation, refines
the concept of direct sparse odometry (DSO), applies it to
a maritime platform, and provides analysis to show that
DSO is a viable solution to the aforementioned problems.

1.1 Visual odometry

Odometry, or ego-motion, is the concept of estimating
one’s position, pose, or motion over time in a tangible
and observable manner. For an observer, this odometry
can be defined as the relation between the observer and its
surroundings. In the case of visual odometry, the odometry
is mainly determined by visual input. Such a system would
greatly benefit from a visual feature-rich environment thus
increasing the performance. A dynamic environment with
independently moving objects would require a segmenta-
tion process in order to exclude them in visual odometry.
Thus, visual motion may be categorised into two different
types: the motion of the observer, and the motion of the
object in the environment. Both can be moving simulta-
neously or individually, and both will have to be resolved
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and segmented to provide accurate odometry. When this
is resolved with only a visual medium like a camera, this
system now provides visual odometry (Khan and Adnan,
2017).

1.2 Marine use-case

For an autonomous surface vehicle to maintain compliance
with the COLREGs, especially the aforementioned Rule
5, the vessel must maintain a proper look-out for the pre-
vention of a collision. There are numerous digital systems
aiding human operators, including radio-based automatic
identification systems (AIS), and doppler radar, but none
can work without some form of human supervision. A
completely digital method would therefore employ the
same capabilities of a human skipper, in that a visual
system needs to be employed for navigation and object
avoidance. The functional requirements for such a system
would include some form of vision traversal, the ability to
identify and diagnose objects of interest, and some form
of control logic to establish a safe path. Whilst not com-
pleting this entire setup, determining the vessel’s motion
through visual odometry resolves a section of the control
logic, and provides redundancy for the vessel’s other digital
systems whilst employing the sensors required by Rule 5
of the COLREGS.

1.8 Optical flow

In littoral waters, where the risk of collision is typically
highest, there is also the opportunity for the most data
capture in a visual-based system. The ever-changing land-
scape of shoreline, surface objects and the vessel’s orienta-
tion in three-dimensional (3D) space provides a significant
challenge for a visual system, especially as camera sen-
sors flatten this scene into a two-dimensional (2D) data
frame. One common method to develop visual odometry,
whilst resolving the issues of 2D data in a 3D space, is to
exploit optical flow. The definition of optical flow is the
changes of structural light caused by the relative motion
of the observer and its environment. The optical flows
emerge from spatiotemporal changes in a set of sequential
image frames. Quantifying this optical flow field through
estimations can therefore give further spatial information
about the observed objects in the frames and not least
the observer. The optical flow can be regarded as an
estimate or truncation of the motion field, which in turn is
a projection of 3D points in the scene space, or scene flow,
onto the 2D image space (Khan and Adnan, 2017). This
motion of the three-dimensional points, translated into the
vessel’s reference frame, provides the odometry estimation
of the vessel, and the solution to the COLREG use case.

1.4 Research questions

RQ-1 How well can a vision based odometry estimator
perform in marine settings for local navigation purposes
with respect to positioning and orientation of the vessel?

RQ-2 What are the ideal environment settings and pit-
falls for such monocular vision-based odometry deploy-
ment?

2. RELATED WORKS

Several approaches for a vision-based self-localisation of
autonomous boats have been studied. The majority of
these studies are focused on localisation within river set-
tings, since it may not be possible or feasible to use global
navigation satellite systems (GNSS) due to vegetation, and
man-made structures at the shores disrupting GNSS signal
strength. As all of these studies are within the definition
of a littoral environment, they are a fair comparison to
the methods presented here. However, it was noted that
the vast majority of the research used short data collection
runs. A comparison of feature-based and appearance-based
visual odometry algorithms on stereo-image data has been
investigated by Kriechbaumer and colleagues. Their results
showed the feature-based method had considerably better
performance (Kriechbaumer et al., 2015).

There have also been studies using a simultaneous locali-
sation and mapping (SLAM) algorithm for the localisation
of an autonomous boat. For example, Meier et al. de-
veloped a novel method which exploits the reflections in
a river to segment water from land. By matching the
symmetric features above and below the waterline, i.e.
water reflection, in each stereo image, they were able to
estimate the height and normal of the water surface. As
a result, a robust algorithm for detecting the waterline
from the height and normal was introduced. Incorporating
this newly introduced feature as an input for localisation
solving became the inception of Curve SLAM (Meier et al.,
2021).

Further studies have been extended to harbour area set-
tings and conducting localisation and mapping using a
monocular camera. Wang et al. included a feature-based
visual SLAM approach as well as an optical flow method
based on DSO in their study investigating the feasibility of
visual SLAM in such an environment. Since water occupied
a large portion of the image, the feature-based method had
difficulties finding suitable visual features, in contrast to
the optical flow method (Wang et al., 2018). Finally, works
conducted in 2017 (Terzakis et al.) looked particularly at
monocular visual odometry for a marine vessel, and are
the closest comparative work to the methods described in
this paper. However, their methodology is based on the
research of Kneip et al. (2011), which relies on an inertial
measurement unit (IMU) to complement the visual sensors
used in their experimentation.

3. METHOD
3.1 Data collection and pre-processing

As one of the more notable shortcomings with the re-
lated works was the lack of diverse experiment arenas, the
authors of this paper looked at conducting their marine
dataset collection through the littoral waters of Gothen-
berg, Sweden (Benderius et al., 2021). The vessel in use
is a 12.6 m pilot boat, with a combined sensor suite of LI-
DAR, radar, IMU, GNSS, and cameras. For this particular
methodology, the camera in use was a 10 bit monochrome
FLIR 10GigE Oryx with an Edmund 16 mm f/4, 17 HPr
FFL lens with global shutter. For validation, a modular
Trimble R9s connected to a single antenna was used to
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Fig. 1. The GNSS data of a completed route in the
Gothenburg region is shown above. A point on the
trajectory is placed every twenty seconds to give
a sense of velocity during the data collection. The
complete data set is further divided to smaller data

sequences and presented below.

capture GNSS position. The camera was mounted on the
fore-left region of the vessel and angled forward. A frame
rate of approximately 60 frames per second was captured
with a resolution of 1920 by 1200 pixels. The classical
pinhole model is used for intrinsic calibration in order to
eliminate radial distortions.

The GNSS antenna was mounted in the sensor mast of the
vessel. The distance between the antennas and the camera
was static throughout the testing period and accommo-
dated accordingly during validation. For the purposes of
this paper, the starting point of the initial run is defined
as the origin in an (z,y) Cartesian plot, with the true
north orienting in the positive y direction. An example of
an entire run can be seen in Fig. 1, and covers a region
of 8000m by 4000 m. The data collection was conducted
within the Gothenburg region in West Sweden, with an
emphasis on moving through regions that were vibrant in
static and dynamic objects, with varying weather and light
conditions. The vessel was also deliberately inconsistent
with speed and turning, as it was given a set of instructions
in line with a typical use case for the vessel.

3.2 Direct sparse odometry

In short, direct sparse odometry (DSO) optimises the
photometric error over selected keyframes. This section de-
scribes the details of the algorithm using monocular vision,
including the formulation of the model for the photometric
error, the windowed optimisation, and management of
image frames and points (Engel et al., 2017). The whole
algorithm is schematically illustrated in Fig. 2. Using the
library developed by Engel et al. (2017)1, the algorithm
has been integrated into the OpenDLV ? framework pow-
ered by libcluon® and a microservice architecture, where
small functional entities in software jointly comprise a
more complex software system to provide a service. This

1 https://github.com/JakobEngel/dso
2 https://opendlv.org
3 https://github.com/chrberger/libcluon
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2. A schematic illustration of the monocular direct
sparse odometry algorithm showing the steps from
receiving a new image frame to the odometry esti-

mation.

Fig.

implementation is in line with the Reeds data set collection
project (Benderius et al., 2021).

First, let the transformation matrix T € SE(3) denote the
camera pose and define the transformation from the world-
to the camera coordinate systems of the camera. In direct
models, every p in the 2D image 2 is described using a
single parameter of the inverse depth in the frame, while
the indirect counterpart uses three unknown (Engel et al.,
2017).

Next, the photometric error is explained. Let I;(x) denote
the observed pixel intensity for frame ¢ and pixel x €
Q. Further, denote I; as the reference image and I; as
the target image. For a point p € €; in the reference
image I; that is also observed in the target image I,
the photometric error is modelled as a weighted sum of
squared differences, where the sum is taken over a small
neighbourhood. This neighbourhood of pixel p is denoted
as N,. Let p’ denote the projection of p with inverse depth
dy as

P’ = IL.(RIL; * (p, dp) + 1) (1)
where R and t define the camera pose
Rt _
[0 1] =T;T; g (2)

Let the weight for point p be defined as

c2

Wp = 5———"75" 3

P VL@ )

Pixels with large intensity gradients are assigned small
weights as a result. Furthermore, in frame i, let a; and
b; be the brightness transfer function parameters. Finally,

for point p in frame j the photometric error may be defined
as

tje
Bpy= Y wpl|(1;(p) b)) = F (L) =) (4)
i€ Y
PEN,
Here, ||-]|5 is the Huber norm, ¢; and ¢; the exposure times

for frames ¢ and j.

Extending the photometric error per pixel per frame, let
F be the set of keyframes, P; the set of tracked points in
frame 4, and obs(p) the set of frames where the point p is
visible. Then, the full photometric error is modelled as
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Ephoto = Z Z Z Ep,j

i€F pEP; jeobs(p)

The model defined is optimised using a sliding window in
combination with the Gauss—Newton method. Leutenegger
et al. (2015) proposed and implemented the optimisation
of a model over a set of keyframes which is later adapted
in to DSO. The set of variables, over which the model
is optimised, contains the camera poses of all keyframes
together with the brightness parameters, inverse depth
values, and camera intrinsic parameters.

()

Furthermore, there are mechanisms for managing keyframes
and points. More specifically, these decide on the sets F, P;
and obs(p), defined above, including the initialisation of
parameters. F contains up to Ny active keyframes and
all P; can together contain a total of IV, active points.
Each new frame is compared to the newest keyframe using
classical image alignment together with an image pyramid
and a constant motion model. It is enough to compare to
the latest keyframe since all active points are projected
into it. In the next step, the frame is either saved as a
new keyframe or discarded. There are three variables that
are considered when determining a keyframe namely, the
change in the field of view

F=CY w1, (6)
=1

the translation
I 1
fo= () llp = w2, (7)
i=1
and the change in camera exposure between frame ¢ and j

a = |log(t;t; e™ ™). ®)

These are then put together, forming a weighted sum
criterion when creating a new keyframe upon fulfilled

wyf+wy, fi +wqa > Ty (9)

for some value-defined threshold T ;. The Eq. (6) describes

the mean square optical flow, which indicates changes in

the field of view. In Eq. (7), p} is the projected point

attained when R equals the identity matrix i.e. no rotation.

The quantity in this equation measures the mean optical

flow only considering the pure translational contribution.

A keyframe in F is determined to be marginalised if
only a few of its points are found in the newest frame.
The latest two keyframes I; and I, are always kept in
consideration at all time. In addition, when the size of F
exceeds Ny, a keyframe is also marginalised. To this end,
let the Euclidean distance between two frames I; and I;
be d(i,7), and € a small constant. This quantity defines a
distance score I;
>

s(I;) = +/d(i, 1)
LEeF j#{1.2}j#i

where the keyframe with the highest distance score
is marginalised. The corresponding active points are
marginalised as well.

(d(i,j) +e)~", (10

The last section of the algorithm governs point manage-
ment. There are three types of points: candidate, active,
and marginalised. For each new keyframe, N, candidate
points are sampled and selected to be spatially well-
distributed and have a distinct image gradient magnitude

Bjornborg Nguyen et al. / IFAC PapersOnLine 55-31 (2022) 235-242

Fig. 3. A maximum of nine keyframes were used in the
DSO algorithm and they are shown in the figure.
The oldest keyframe is presented in the upper left
corner and the most recent in the lower right corner.
A large number of feature points are being tracked,
managed, and labelled as candidate, active, and fi-
nally, marginalised when lost. In the figure, it can be
seen that the crane provides a considerable amount of
possible visual tracking features.

compared to its neighbouring pixels. The procedure aims
to find uniformly spread candidate points in areas with a
high gradient and sparse points in regions with a lower
gradient. The algorithm is based on blocks with adaptive
sizes from which the pixel with the highest gradient is
chosen if the value also exceeds an adaptive threshold.

Through the epipolar line, the candidate points are tracked
in the succeeding frames with the help of a discrete search
by minimising the photometric error for that particular
point. The initial values for the depth are found and set
from this search. First, all active points and candidate
points are projected onto the newest keyframe. Then,
activation of candidate points with the largest distance
to already active points is made. The distance threshold
increases with the block size for every iteration made.
Finally, active points are marginalised once the corre-
sponding keyframe is also marginalised as described above
and in Fig. 2.

3.8 Validation

Validation for the estimations from the DSO is conducted
against the GNSS data in two different ways. Firstly,
estimating the positioning, the comparative Cartesian x,y
grid coordinates are chosen. These results of the DSO are
not properly scaled and not aligned at run-time but can
be made aligned with respect to e.g. GNSS data in post-
processing for error analysis. One such common method is
the Kabsch-Umeyama algorithm which attempts to align
point patterns in order to minimise the least-squares esti-
mation of the two sets of points (Kabsch, 1976; Umeyama,
1991). Such transformation is also known as similarity
transformation (Sim(3)) which is a Lie group like SE(3)
but SE(3) does not include the scaling of the dimensions.
For this paper, the Kabsch—Umeyama algorithm has been
applied with a chosen pivot point at the proximity of the
starting point instead of the mean of the point patterns.
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Secondly, whilst the units of distance are incompatible
due to the lack of proper scale at run-time, the angular
orientation is a definite computation and suffers consid-
erably less from the lack of depth vision due to dealing
with angles relying mainly on the intrinsic calibration of
the camera. Thus it may be aligned with the help of
similarity transformation as mentioned above to the GNSS
data for a close ground-truth comparison for correcting the
constant offset due to arbitrary orientation of the local
reference system. Therefore, the comparative heading is
computed through orientation and compared to the GNSS
for a tangible result. The heading data for the GNSS was
naively estimated and computed by retrieving the tangent
of the path.

4. RESULTS

The complete route of the data collection is shown in
Fig. 1 and has been divided in to six data sequences of
which four is presented below. A visualisation of the visual
feature tracking in the image keyframes using the DSO is
shown in Fig. 3. The colours of tracked features represent
different labels applied to them: candidate, active, and
marginalised points. These points are essential for the DSO
algorithm to determine an estimation of the odometry,
which is shown as position estimates in Fig. 4a and b5a,
and heading estimates in Fig. 4b and 5b respectively.

4.1 Position

There was significant variation in the absolute errors en-
countered over the six data sequences. In completely ideal
situations, where the majority of the keypoints covered
static objects, and there was little wind generating waves
or cloud movements, the final odometry generated by the
DSO was relatively smooth compared to the GNSS, see
Fig. 6a. However, when the orientation of the vessel angled
away from the shoreline, which occurred when conducting
a left-hand turn around the headland, the camera lost
vision of any static object. Instead, the DSO reinitialised
the keypoints on the primary object in the frame, another
vessel that was moving at the same speed and heading
relative to the camera. Due to this, the relative motion of
the camera to the registered keypoints started approaching
zero, depicted in the difference seen towards the end of
the plots in Fig. 7a. Each line marker is representative of
twenty seconds, giving a visual indication of the estimated
velocity. Markers further away from each other indicate a
higher velocity. It can be seen that the position derived by
the DSO shows the velocity dropping to almost zero, with
the markers converging on their neighbours, which is true
when compared to the relative velocity of the bulk carrier,
but not when compared to the global frame.

When encountering winds, there was significant water and
cloud movement. An example of this keypoint registration
can be seen in Fig. 4a. Noticeably, there is considerable dis-
connection when compared to the GNSS position. Whilst
there is some feasibility of DSO in a pristine, calm marine
environment, this present build is too volatile to be used
as a standalone positional suite.
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Fig. 4. Similarity aligned estimation odometry results from
the works of Engel et al. (2017) using a monocular
camera sensor is shown in (a) with the equivalent
GNSS data trajectory during the same time period.
A marker is placed every 20s to give a sense of speed
with the associated heading estimation depicted as an
arrow. The abrupt jump and discrepancies in position
can be partially explained where the algorithm placed
keypoints to a non-static object, such as clouds or
waves. In (b) the heading comparison of the GNSS
and DSO is shown along with the absolute error.
While the heading of GNSS is an estimation of the
true north heading, the DSO counterpart is unable
to bind to a global reference system at run-time
without additional external information. This results
in a constant offset when compared to the true north
heading while the error drift is explained by the
accumulative error and the problem of scaling in the
DSO itself.

4.2 Heading

In contrast to the positing estimates, there was notice-
able accuracy in the DSO heading when compared to the
GNSS. Fig. 5b shows the unaligned oriented DSO heading
alongside the GNSS heading counterpart during the same
time window. This is also consistent in Figs. 4b, 6b, and 7b
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Fig. 5. In this data sequence, the DSO struggles to cor-
rectly capture the position properly due to relatively
quick rotations causing the DSO to retrack its esti-
mate back to the starting point of the data sequence.
Sim(3) alignment of the odometry is not ideal for this
sequence, due to the lack of similarity of the position
points. While the position estimation of DSO is not
performing well, the orientation estimation is largely
unaffected and is still accurate during challenging
conditions. Sim(3) alignment has been omitted in (b)
for better visualisation and comparison.

which have significantly similar plots in both GNSS and
DSO orientation when aligned. This odometry, unlike the
previously mentioned position, was not impacted by wind,
weather or other moving objects, and it is quite robust over
the six different data sequences. In contrast to the posi-
tioning aspect of DSO, the orientation is quite feasible for
vessel odometry, except when the vessel uses current and
wind to change orientation whilst maintaining a stationary
position. In this scenario, there are significant deviations
in both position and orientation (see Figs. ba and 5b
respectively). There is also a slight deviation in Fig. 7b,
at approximately ¢ = 230s, which is likely caused by a
visual loss of static objects in the frame. However, the
track quickly re-establishes itself and continues to follow
the GNSS plot accordingly.
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Fig. 6. A fairly straight trajectory data sequence is fed
to the DSO with good performance under favourable
conditions. The DSO heading estimate performs quite
well in both position and heading albeit having a small
accumulative drift error in the heading estimate.

5. DISCUSSION AND CONCLUSION

The primary point of discussion is the lack of automatic
scaling and alignment at run-time, which is necessary
to complete the relative odometry to the global frame
during operation. As mentioned by Engel et al. (2017), the
rate of scale (both positioning and orientation) between
the reference frame of DSO and the reality is not fixed,
and may actually drift over time, which prevents single
frame initialisation for automatic scaling. Alternatively,
active automatic scaling can be resolved through the use
of a Kalman filter as the data progresses. It has further
been shown that a feature-assisted approach significantly
reduces this drift and may be a viable alternative (Younes
et al., 2018).

Locally, it is quite feasible to manoeuvre the vessel using
the unscaled and unaligned odometry output, based on
the initial frame taken in the data capture. This is shown
through the results, with all DSO positional plots taken
with the first frame oriented along the localised x-axis.
This also allows for easier observation of the known issues
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Fig. 7. This data sequence is towards the end of the
complete data collection of the route. It provides a
feature-rich shoreline including moving objects. The
moving objects in the image frame cause the DSO to
lose continuity and re-track, resulting in a very abrupt
change in its estimates of position and orientation.
The large jump may be seen in the DSO estimate
around ¢ = 230s while in reality, no rotation was
actually applied to the vessel.

with using DSO as a standalone navigation system. Firstly,
in Fig. 7a, it can be seen that as the vessel continues to
stay oriented in the same direction, there is a brief moment
where the DSO loses tracking, and attempts to reinitialise,
resulting in significant positional sway. Secondly, in the
same figure, with no found static keypoints, the DSO
has acquired the other moving vessel and the estimated
velocity drops close to zero due to this comparison in
relative velocities. As the lack of static keypoints is the
primary issue with velocity, there is a need for some form
of complementary vision and sensor fusion to ensure that
there remain some static keypoints in the frame, which
is feasible given the littoral environments the pilot boat
operates in.

5.1 Future work

The development of monocular visual odometry is a po-
tential first step in developing a visual framework suitable
for providing control logic in a navigation suite for marine
vessels. However, there needs to be some form of sky and
water segmentation to remove the current volatility, of
which there is potential with a method proposed by Stec-
canella et al. (2020). Moreover, further segmentation of
independently moving objects has to be performed in order
to exclude them from image scenery in odometry estima-
tion. The scaling and error drift challenges associated with
DSO can be accounted for and mitigated with the help of
a Kalman filter by fusing additional external sensor data
and process modelling. With that being resolved, the next
step would be to develop a complete visual coverage, in
line with Rule 5 of the COLREGS, which would be in the
form of composite imagery. For this, the sensor platform
will move towards a multi-camera setup, using an extrinsic
calibration method, similar to that of Horn et al. (2021).
From this, a thorough analysis of the merits of Composite-
DSO against monocular DSO is needed.
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