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{arture, domenic}@student.chalmers.se,

{krister.blanch,ola.benderius}@chalmers.se).
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Abstract: Research into autonomous surface vehicles is noticeably limited in regards to the
functionality of the vehicles themselves. Specifically, testing and evaluation typically occurs at
speeds considerably lower than what is allowed in an operational setting. For a vessel to be able
to take advantage of higher speeds, there must be a robust and tested method for determining
localisation and navigation. With an emphasis of development for small vessels with higher
impulse capabilities, working in confined and restricted environments, the decision was made
to develop a method of navigation that relied solely upon lightweight sensors. For this, a single
light ranging sensor was utilised to develop both simultaneous localisation and mapping for the
vessel, using the normal distribution transform and iterative closest point methods. Evaluation
of the algorithm accuracy as the vessel moved above speeds greater than two metres per second
was conducted, and it was feasibly evaluated that there was no observable drift of mapping in
horizontal planes, however, there was a accumulated drift in the vertical plane and a transient
response in localisation deviation as the vessel changed impulse through the two metre per
second window.
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1. INTRODUCTION

Autonomous surface vehicles (ASVs) have the potential
to provide a robust alternative to routine tasks, espe-
cially within confined environments. For this to succeed,
however, there must be a robust method for determining
the vessels placement within the environment, as well
as an accurate representation of the environment itself.
This type of function, often referred to as simultaneous
localisation and mapping (SLAM), has a number of dif-
ferent implementations based on the type of vehicle and
environment. For the maritime sector, there are a number
of specific unresolved difficulties with forming such map,
typically assigned into the categories of speed, accuracy,
and validation.

As there are few datasets that tailor to the particular envi-
ronments that would be expected (Benderius et al., 2021),
the first concern is the lack of validation when building au-
tomation specifically for vessels. Another problem is that
sensors which are commonplace for autonomous land vehi-
cles, come with significant hindrances when moved to the
marine sector. For example, current SLAM methods util-
ising a light detection and ranging sensor (lidar), typically
coupled with global navigation satellite systems (GNSS)
and inertial measurement units (IMUs), have led to con-
sistent mapping in the horizontal plane while performance
in the vertical plane is less studied. The reason is natu-
rally that land based vehicles have a ground plane consis-
tent with the vehicles position, and vertical dynamics is
practically non-existent. In the marine sector, platforms

are subject to heave, which is traversal in the horizontal
direction, even when the vessel is stationary. This problem
becomes exacerbated when the vessel moves into a GNSS
obstructed environment, which is more typical for vessels
working alongside structures or within confined areas.

1.1 Marine Operations

Marine operations can be classified loosely into two cat-
egories, being restricted and unrestricted. Both of these
are still governed by the convention on the international
regulations for preventing collisions at sea (COLREGs),
as well as local laws. However the generalisation is that
there is some form of limit in restricted waters, which
for the purposes of this paper, is most likely a speed or
wake limit. The Gothenburg region, on the west coast of
Sweden, where the experiments of this paper took place
is no exception, with the local laws stipulating that in
restricted areas, a speed limit of eight or twelve knots
(depending on vessel size) is imposed. This translates to
four and six metres per second, respectively, and these
speeds will be used for the remainder of this paper. This
distinction is important, as whilst there has been research
into developing localisation and mapping for autonomous
watercraft, only limited works have looked at developing
a robust method for determining a vessels capability at
allowed speeds, and instead trends look at the 2m s−1

benchmark.

As autonomous surface vehicles start moving into roles
where impulse precision is a necessity, this shortfall will
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1. INTRODUCTION

Autonomous surface vehicles (ASVs) have the potential
to provide a robust alternative to routine tasks, espe-
cially within confined environments. For this to succeed,
however, there must be a robust method for determining
the vessels placement within the environment, as well
as an accurate representation of the environment itself.
This type of function, often referred to as simultaneous
localisation and mapping (SLAM), has a number of dif-
ferent implementations based on the type of vehicle and
environment. For the maritime sector, there are a number
of specific unresolved difficulties with forming such map,
typically assigned into the categories of speed, accuracy,
and validation.

As there are few datasets that tailor to the particular envi-
ronments that would be expected (Benderius et al., 2021),
the first concern is the lack of validation when building au-
tomation specifically for vessels. Another problem is that
sensors which are commonplace for autonomous land vehi-
cles, come with significant hindrances when moved to the
marine sector. For example, current SLAM methods util-
ising a light detection and ranging sensor (lidar), typically
coupled with global navigation satellite systems (GNSS)
and inertial measurement units (IMUs), have led to con-
sistent mapping in the horizontal plane while performance
in the vertical plane is less studied. The reason is natu-
rally that land based vehicles have a ground plane consis-
tent with the vehicles position, and vertical dynamics is
practically non-existent. In the marine sector, platforms

are subject to heave, which is traversal in the horizontal
direction, even when the vessel is stationary. This problem
becomes exacerbated when the vessel moves into a GNSS
obstructed environment, which is more typical for vessels
working alongside structures or within confined areas.

1.1 Marine Operations

Marine operations can be classified loosely into two cat-
egories, being restricted and unrestricted. Both of these
are still governed by the convention on the international
regulations for preventing collisions at sea (COLREGs),
as well as local laws. However the generalisation is that
there is some form of limit in restricted waters, which
for the purposes of this paper, is most likely a speed or
wake limit. The Gothenburg region, on the west coast of
Sweden, where the experiments of this paper took place
is no exception, with the local laws stipulating that in
restricted areas, a speed limit of eight or twelve knots
(depending on vessel size) is imposed. This translates to
four and six metres per second, respectively, and these
speeds will be used for the remainder of this paper. This
distinction is important, as whilst there has been research
into developing localisation and mapping for autonomous
watercraft, only limited works have looked at developing
a robust method for determining a vessels capability at
allowed speeds, and instead trends look at the 2m s−1

benchmark.

As autonomous surface vehicles start moving into roles
where impulse precision is a necessity, this shortfall will
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{arture, domenic}@student.chalmers.se,

{krister.blanch,ola.benderius}@chalmers.se).
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becomes exacerbated when the vessel moves into a GNSS
obstructed environment, which is more typical for vessels
working alongside structures or within confined areas.

1.1 Marine Operations

Marine operations can be classified loosely into two cat-
egories, being restricted and unrestricted. Both of these
are still governed by the convention on the international
regulations for preventing collisions at sea (COLREGs),
as well as local laws. However the generalisation is that
there is some form of limit in restricted waters, which
for the purposes of this paper, is most likely a speed or
wake limit. The Gothenburg region, on the west coast of
Sweden, where the experiments of this paper took place
is no exception, with the local laws stipulating that in
restricted areas, a speed limit of eight or twelve knots
(depending on vessel size) is imposed. This translates to
four and six metres per second, respectively, and these
speeds will be used for the remainder of this paper. This
distinction is important, as whilst there has been research
into developing localisation and mapping for autonomous
watercraft, only limited works have looked at developing
a robust method for determining a vessels capability at
allowed speeds, and instead trends look at the 2m s−1

benchmark.

As autonomous surface vehicles start moving into roles
where impulse precision is a necessity, this shortfall will
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unfortunately limit their capabilities. This paper therefore
provides a succinct look at the utilisation of a lidar-driven
SLAM at normal maritime speeds in restricted waters,
with the vessel moving at speeds greater than 2m s−1, and
subject to traversal in full three dimensional (3D) space.

2. RELATED WORK

Whilst there are many papers detailing the varying meth-
ods of SLAM, the most significant in the field of maritime
systems is the work conducted by Papadopoulos et al.
(2014) which has been the benchmark for single lidar
sensor 3D map building in a marine environment since its
iteration in 2014. However, this method is limited to an
operating speed of 2m s−1, which is far below the typical
operating speed of conventional watercraft. For a more
accurate representation of contemporary systems, teams
from Data61 and CERBERUS have recently published
findings on airborne unmanned vehicles operating in con-
fined GNSS restricted environments (Khattak et al., 2020;
Hudson et al., 2021). These systems are more relevant to
the proposed marine system, in that the vehicle has to
overcome three dimensional spatial awareness in sensor
deprived scenarios, with the ultimate goal of achieving
both a quick operating speed and a low error rate. The
CERBERUS team provided a solution that allowed their
system to operate closer to 5m s−1, which is in line with
the working speed of restricted maritime areas, however,
their system relied upon a multi-sensor method for success.

Alternatively, another method proposed by Nubert et al.
(2022) relies on a single sensor and was developed with
similar operating constraints. This method utilises a learn-
ing based approach on purely simulated data, and then
resolves validation by testing within the confined spaces
of a semi-symmetrical underground system. Whilst no
operational speed was detailed it is worth nothing that
their work focused on resolving navigation and mapping
with a single lidar in an environment that is symmetri-
cal in nature, which is comparable to the smooth edges
of marina pens, artificial shorelines, and the waterline
that this paper targets. Furthermore, the overall problems
found within their work were also confirmed from the
experiments promoting this paper. Other works that have
looked at specific marine environments include the works
by Han et al. (2019) and Ueland et al. (2017). However,
the former used a different sensor family, and the latter
worked in a two-dimensional plane and disregarded the
third dimension aspect, and neither looked at efficacy at
normal operating speeds.

3. METHOD

The methods proposed in this paper for localisation and
mapping are only utilising data from one lidar sensor,
meaning that the desired task is to find an estimate for
translating and rotating sets of points between frames.
The methods used in this paper are based on a combi-
nation of the normal distribution transform (NDT) and
the iterative-closest-point (ICP) algorithms. This paper
utilised particular versions of NDT and ICP, namely NDT-
OMP and ICP-OMP supporting parallel computation.
NDT was first introduced by Rosenblatt (1952) concerning
multivariate transformation. It is a common registration

Fig. 1. Two-dimensional illustration of the NDT algo-
rithm. Points from the reference frame are divided
into multiple voxels. The red ellipses illustrates the
Gaussian distribution in each voxel generated by the
points from the reference frame. When the new target
frame is generated it is then matched with the Gaus-
sian distribution from the reference frame. A trans-
formation is then performed between the target and
reference frame, maximising the overlapping score.

algorithm that is used in many fields for aligning poses.
The NDT algorithm provides a rough registration of point
clouds by matching the target cloud to a reference cloud
according to a Gaussian distribution. The Gaussian distri-
bution is generated by splitting up points from the refer-
ence cloud into voxels, where a voxel is a three-dimensional
equivalent of a pixel, see Fig. 1. The advantage of using
the NDT algorithm is that it provides a computationally
fast estimate compared to other methods (Huang et al.,
2021). Due to NDTs averaging effect, it is also robust to
noisy data. However, the performance of the algorithm is
sensitive to the size selection of the voxels, meaning that
the voxel size needs to be tuned depending on both the
sensor and environmental conditions. For data collected in
this work, a voxel size of 4.5 × 4.5 × 4.5 [m3] was used.
In previous work (Magnusson et al., 2015), NDT has been
concluded to provide accurate results when faced with scan
data that has little overlap and weak geometric features. It
is therefore, in this work, used as an initial transformation
before continuing further with more precise alignments,
see Algorithm 1.

ICP is a refine registration point-wise algorithm that
operates by matching different frames. The principle of
ICP is to compute the refine transformation between
the reference and target point cloud by minimising the
error of point-wise distances (Besl and McKay, 1992).
This is performed by minimising the sum of squared
differences between the coordinates of the matched pairs
through iteration, where the algorithm searches through
a combination of rotation and translation. By iteratively
updating and refining the relative poses, ICP is able to
provide a more precise fit compared to NDT, when there
is a sufficient overlap between the two scans. However, the
drawback is that it is computationally heavy, especially
when working with dense clouds. Due to the non-convexity
of the ICP optimisation, the performance of the algorithm
is strongly dependent on the initial estimate between
frames (Maron et al., 2016). This means that if the poses
in the ICP algorithm are too far apart, the algorithm may
fail to converge. In order for ICP to work efficiently the
alignment of two frames must have a sufficient overlap.
Therefore, NDT was executed prior to ICP as an initial
estimation before further refinement. It is noted that ICP
does not require having a point-wise correspondence since

Algorithm 1 Natural distribution transform (NDT)

Input: Pr, Pt

Output: Pt, T
(1) Divide Pr into voxels of a specified size
(2) Initialise T
(3) Compute the mean µ and covariance matrix Σ from
the points of each voxel
(4) Compute T
(5) Map Pr to Pt by rotating and translating each point
in Pr according to T
(6) Calculate the probability density of each point xi ∈
Ptar according to:

p(xi) =
1

(2π)
3
2


|Σ|

exp
−(xi − µ)TΣ−1(xi − µ)
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

(7) Calculate the sum of the score of the probability
density of each voxel according to:

Ψ =

i

p(xi)

(8) if (Ψ is not the smallest)
Use the Newton–Raphson method to compute the new
transformation parameters of T . Restart from (4)
(9) return Pt, T

Algorithm 2 Iterative-closest-point

Input: Pr

Output: Pt, T
(1) Match Pr with Pt

(2) Find T by minimising the root mean square cost
function:

R∗, t∗ = argmin
R,t
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(3) Map Pr to Pt by rotating and translating each point
in Pr according to T
(4) if (∆d > THRESHOLD or niter < MAX ITER)
where ∆d > denotes the change in mean distance.
Restart from (2)
(5) return Pt, T

it automatically takes care of differently sized point clouds
due to using the closest pair, see Algorithm 2.

For the proposed method, the reference point cloud Pr is
defined as the previous frame and the target point cloud
Pt as the latest frame. Both frames contain an arbitrary
amount of points (not necessary an equal amount). T , as
seen in Eq. 1, is a 4×4 transformation matrix that consists
of rotation and translation data, describing how points are
transformed from Pr to Pt.

T =



R0 R1 R2 tx
R3 R4 R5 ty
R6 R7 R8 tz
0 0 0 1


 (1)

Furthermore, the mean µ of a voxel is defined as

µ =
1

|Pv|

i

xi (2)

Fig. 2. Path followed in first run. The red path in the first
run highlights where the results are evaluated.

and its covariance matrix as

Σ =
1

|Pv|

i

(xi − µ)(xi − µ)T (3)

where Pv denotes the point cloud inside a voxel, xi ∈ Pv

is a three-dimensional point, and |Pv| denotes the total
number of points in the particular voxel. The final traversal
of the point cloud is then performed by combining the
transformation matrices of the NDT and ICP algorithm,
where the map is generated by translating the target cloud
Pr accordingly.

NDT and ICP were implemented using the PCL library
(Rusu and Cousins, 2011), using the DIRECT7 and
KD-tree-based neighbouring search methods (Magnusson,
2009, p.42). T was initialised to the identity matrix I for
Algorithm 1. The parameters THRESHOLD and MAX ITER
were set to 5 and 200, respectively, for Algorithm 2. An
overview of both algorithms is outlined in the following
sections.

3.1 Experimental setup

In order to evaluate the proposed algorithms, an experi-
ment was run along the coastline of Gothenburg, see Fig. 2.
The run took 25min and included multiple loops where
the vessel’s velocity varied between 0.5m s−1 to 3.7m s−1.
The total travelled distance was 3086m. The aim was
to analyse the algorithms in multiple scenarios, with a
primary focus on testing the function in the relatively
calm bay area. This was done in order to conclude how
the point cloud registration would perform under mild
conditions before moving on to rougher waters. The boat
was equipped with sensors on a rigid and compact tripod,
as illustrated in Fig. 3.

The lidar used in the experiment was an Ouster OS-2-
128, achieving a resolution of 128 beams in the vertical
axis and 1024 increments in the horizontal plane at a
frequency of 10Hz. The data was preprocessed using
several filtering steps in order to down-sample the data and
remove statistical outliers. The preprocessing step includes
random down-sampling of the point cloud to 15%, followed
by a voxelgrid down-sampling with a voxel size of 35 cm.
Along with the gathered point cloud data, a single antenna
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of the point cloud is then performed by combining the
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Fig. 3. The sensor platform setup containing an Ouster-
OS2-128 lidar and GNSS antenna.

GNSS was used as a ground truth to the measurements.
Data capture and hardware interfacing was achieved using
the OpenDLV software framework (Benderius and Berger,
2022) powered by libcluon. 1

Fig. 4. Diagonal view of the resulting point cloud gathered
from the coastline area.

Fig. 5. Lidar odometry compared to the GNSS signal.

1 https://github.com/chrberger/libcluon

Fig. 6. Size of the point clouds over different frames. The
green curve highlights where the run in Fig. 5 was
evaluated.

4. RESULTS

With the proposed method, the function successfully man-
aged to track the odometry of the lidar in regions with a
sufficient amount of points. The measurements were most
accurate in close proximity to features such as other ves-
sels, docks, and other points of reference such as buildings,
see Fig. 4. The results were validated by comparing the
odometry of the lidar with the tracked GNSS data. As the
SLAM algorithm does not use any further sensor infor-
mation from the GNSS, like heading, the lidar odometry
had to be rotated in order to fit the trajectory from the
localisation system. In Fig. 5, lidar odometry from a 360m
long strip of coastline is presented, and in Fig. 6 it can be
seen how the observed features varied along the run. A
top-down view of the generated map was used to verify
the measurements. It was compared to chart data taken
from OpenSeaMap (OpenStreetMap contributors, 2017),
see Fig. 7.

Fig. 7. Top view of the registered point cloud aligned with
the corresponding coastline. The red curve shows the
path that was traversed for the experiment.

To investigate the behaviour and accuracy of the algorithm
under different velocities, a plot of the SLAM deviation

was compared against a plot of the vessel speed in Fig. 8.
The deviation was computed by taking the square root
distance in the Cartesian plane between the lidar odometry
and the GNSS data. It can be observed that with increased
speeds, the deviation tends to increase.

Fig. 8. Deviations between lidar odometry and ground
truth over time compared to the velocity.

The deviation of the lidar z-position was plotted over the
entire run in Fig. 9 together with the drift. It can be
observed that the deviation is accumulated over time, and
that the drift was most stable between frames 0 to 1,450.

Fig. 9. The top panel show the lidar deviation [m] over
the entire run, while the bottom panel show the drift
[m s−1].

5. DISCUSSION AND CONCLUSION

With the proposed method, it was possible to successfully
map out a three dimensional environment around the
coastline, given that enough features were present. Fig. 4
depicts a diagonal view of the area. The method looks

promising around areas with enough reference points.
Although deviations were higher, this also performed well
for sections with velocities of up to 2.5m s−1. Looking
at the trajectory plot in Fig. 5, it is evident that the
lidar odometry in the horizontal plane is fairly accurate
compared to the GNSS signal with a root mean square
error of 2.11m over a total driven distance of around
360m.

While evaluating the point cloud from a side view, a drift
was noticed in the vertical axis that accumulated over
time. Arguably, two sources of error can be connected to
these deviations. As the kinematic state of the vessel is not
exactly aligned with the global world frame, slight errors
in the initial coordinate system could be observed. As the
function only relied on point cloud data, it is assumed that
the initial position matches the global frame. Even with a
slight offset, however, will result in vertical drift over time,
as was illustrated in Fig. 9. Another source of error occurs
when the lidar detects relatively few features. As the point
cloud gets more sparse, the alignment of point cloud frames
gets less accurate. If on a given frame the pitch angle gets
adjusted, this adds onto the described offset and thereby
distort the lidar kinematic state. By comparing Fig. 6 and
Fig. 9, it can be concluded that the drift is less significant
when the lidar registers a denser point cloud.

While the deviations in the z-axis result in some drift over
time, they are constrained to situations with few features
and observed at smaller time windows, for example when
passing other vessels, the algorithm performs well. For the
problem of an offset in the reference frame, a stabiliser like
a motorised gimbal can be used in order to keep the lidar
at a steady angle in all three dimensions. Furthermore, in
a real world application, the system can be improved by
performing sensor fusion with an altimeter and an inertial
measurement unit in order to keep track of the kinematic
changes. This could be accomplished by implementing an
unscented Kalman Filter (UKF) to estimate the vessel
pose. Adding an UKF into the system involves using a boat
motion model to predict the pose, to then be automatically
corrected in the filter using the measurements and pro-
posed algorithm. Nevertheless, the minimalistic method
as presented here aim to show general feasibility of the
involved algorithms, and is not directly approaching real-
world applications.

As the test platform moved from an asymmetrical to a
symmetrical environment (typically as the nose of the boat
angled away from the shoreline, and obscuring the lidar to
everything except water), there were significant deviations
between the GNSS and lidar odometry, regardless of
operating speed. For the envisioned working environment
of this system, being smaller, high-impulse watercraft
working alongside superstructures or in confined marinas,
the likelihood of a lidar losing sight of a reference object
is unlikely, however, further research could reduce this
error margin if it occurs. As noted previously, Nubert
et al. (2022), proposed a learning system for symmetrical
environments, and this method is a potential candidate for
such a solution.

Lastly, and arguably the most important is that the
analysis of the environment and odometry was done at
post-processing. The next major hurdle for this system
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was compared against a plot of the vessel speed in Fig. 8.
The deviation was computed by taking the square root
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and the GNSS data. It can be observed that with increased
speeds, the deviation tends to increase.
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observed that the deviation is accumulated over time, and
that the drift was most stable between frames 0 to 1,450.

Fig. 9. The top panel show the lidar deviation [m] over
the entire run, while the bottom panel show the drift
[m s−1].
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map out a three dimensional environment around the
coastline, given that enough features were present. Fig. 4
depicts a diagonal view of the area. The method looks

promising around areas with enough reference points.
Although deviations were higher, this also performed well
for sections with velocities of up to 2.5m s−1. Looking
at the trajectory plot in Fig. 5, it is evident that the
lidar odometry in the horizontal plane is fairly accurate
compared to the GNSS signal with a root mean square
error of 2.11m over a total driven distance of around
360m.

While evaluating the point cloud from a side view, a drift
was noticed in the vertical axis that accumulated over
time. Arguably, two sources of error can be connected to
these deviations. As the kinematic state of the vessel is not
exactly aligned with the global world frame, slight errors
in the initial coordinate system could be observed. As the
function only relied on point cloud data, it is assumed that
the initial position matches the global frame. Even with a
slight offset, however, will result in vertical drift over time,
as was illustrated in Fig. 9. Another source of error occurs
when the lidar detects relatively few features. As the point
cloud gets more sparse, the alignment of point cloud frames
gets less accurate. If on a given frame the pitch angle gets
adjusted, this adds onto the described offset and thereby
distort the lidar kinematic state. By comparing Fig. 6 and
Fig. 9, it can be concluded that the drift is less significant
when the lidar registers a denser point cloud.

While the deviations in the z-axis result in some drift over
time, they are constrained to situations with few features
and observed at smaller time windows, for example when
passing other vessels, the algorithm performs well. For the
problem of an offset in the reference frame, a stabiliser like
a motorised gimbal can be used in order to keep the lidar
at a steady angle in all three dimensions. Furthermore, in
a real world application, the system can be improved by
performing sensor fusion with an altimeter and an inertial
measurement unit in order to keep track of the kinematic
changes. This could be accomplished by implementing an
unscented Kalman Filter (UKF) to estimate the vessel
pose. Adding an UKF into the system involves using a boat
motion model to predict the pose, to then be automatically
corrected in the filter using the measurements and pro-
posed algorithm. Nevertheless, the minimalistic method
as presented here aim to show general feasibility of the
involved algorithms, and is not directly approaching real-
world applications.

As the test platform moved from an asymmetrical to a
symmetrical environment (typically as the nose of the boat
angled away from the shoreline, and obscuring the lidar to
everything except water), there were significant deviations
between the GNSS and lidar odometry, regardless of
operating speed. For the envisioned working environment
of this system, being smaller, high-impulse watercraft
working alongside superstructures or in confined marinas,
the likelihood of a lidar losing sight of a reference object
is unlikely, however, further research could reduce this
error margin if it occurs. As noted previously, Nubert
et al. (2022), proposed a learning system for symmetrical
environments, and this method is a potential candidate for
such a solution.

Lastly, and arguably the most important is that the
analysis of the environment and odometry was done at
post-processing. The next major hurdle for this system
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would be to implement it as a real time mapping system,
and then finally use this for real time navigation and
obstacle avoidance.
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