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Nadja Ramhöj Holtryd

Division of Computer and Network Systems
Department of Computer Science & Engineering

Chalmers University of Technology
Gothenburg, Sweden, 2023



Adaptive Microarchitectural Optimizations to Improve Performance
and Security of Multi-Core Architectures

Nadja Ramhöj Holtryd
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ISSN 0346-718X

Technical Report No 229D
Department of Computer Science & Engineering
Division of Computer and Network Systems
Chalmers University of Technology
Gothenburg, Sweden

This thesis has been prepared using LATEX.
Printed by Chalmers Reproservice,
Gothenburg, Sweden 2023.

ii



Abstract

With the current technological barriers, microarchitectural optimizations are increas-
ingly important to ensure performance scalability of computing systems. The shift to
multi-core architectures increases the demands on the memory system, and amplifies
the role of microarchitectural optimizations in performance improvement. In a multi-
core system, microarchitectural resources are usually shared, such as the cache, to
maximize utilization but sharing can also lead to contention and lower performance.
This can be mitigated through partitioning of shared caches.

However, microarchitectural optimizations which were assumed to be fundamen-
tally secure for a long time, can be used in side-channel attacks to exploit secrets, as
cryptographic keys. Timing-based side-channels exploit predictable timing variations
due to the interaction with microarchitectural optimizations during program execu-
tion. Going forward, there is a strong need to be able to leverage microarchitectural
optimizations for performance without compromising security.

This thesis contributes with three adaptive microarchitectural resource manage-
ment optimizations to improve security and/or performance of multi-core architectures
and a systematization-of-knowledge of timing-based side-channel attacks.

We observe that to achieve high-performance cache partitioning in a multi-core
system three requirements need to be met: i) fine-granularity of partitions, ii) locality-
aware placement and iii) frequent changes. These requirements lead to high overheads
for current centralized partitioning solutions, especially as the number of cores in
the system increases. To address this problem, we present an adaptive and scalable
cache partitioning solution (DELTA) using a distributed and asynchronous allocation
algorithm. The allocations occur through core-to-core challenges, where applications
with larger performance benefit will gain cache capacity. The solution is implementable
in hardware, due to low computational complexity, and can scale to large core counts.

According to our analysis, better performance can be achieved by coordination of
multiple optimizations for different resources, e.g., off-chip bandwidth and cache, but
is challenging due to the increased number of possible allocations which need to be
evaluated. Based on these observations, we present a solution (CBP) for coordinated
management of the optimizations: cache partitioning, bandwidth partitioning and
prefetching. Efficient allocations, considering the inter-resource interactions and
trade-offs, are achieved using local resource managers to limit the solution space.

The continuously growing number of side-channel attacks leveraging microarchi-
tectural optimizations prompts us to review attacks and defenses to understand the
vulnerabilities of different microarchitectural optimizations. We identify the four root
causes of timing-based side-channel attacks: determinism, sharing, access violation
and information flow. Our key insight is that eliminating any of the exploited root
causes, in any of the attack steps, is enough to provide protection. Based on our
framework, we present a systematization of the attacks and defenses on a wide range
of microarchitectural optimizations, which highlights their key similarities.

Shared caches are an attractive attack surface for side-channel attacks, while
defenses need to be efficient since the cache is crucial for performance. To address this
issue, we present an adaptive and scalable cache partitioning solution (SCALE) for
protection against cache side-channel attacks. The solution leverages randomness, and
provides quantifiable and information theoretic security guarantees using differential
privacy. The solution closes the performance gap to a state-of-the-art non-secure
allocation policy for a mix of secure and non-secure applications.
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Cache Partitioning, Side-channel Attacks, Multi-Core Architectures, Microarchitec-
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Chapter 1

Introduction

1.1 Background

Single core performance growth plateaued in the early 2000s, necessitating a shift
towards multi-core processors [1]. This shift was mainly prompted by the end of
Dennard scaling which meant that it was no longer practical to gain performance by
increasing core frequency [2]. In the current era, where performance growth is heavily
constrained by technological barriers (end of Dennard scaling [3] and slowdown of
transistor scaling according to Moore’s law [4]), microarchitectural optimizations are
expected to play an increasingly important role in ensuring performance scalability
of computing systems.

The emergence of processors with an increasing number of cores increases the
off-chip memory bandwidth demand. Memory references are increasingly expensive
and frequently limit processor performance. Consequently, microarchitectural opti-
mizations, in the core and in the memory system, play a crucial role in determining
overall system performance.

Modern multi-core processors have last level cache (LLC) banks distributed across
the chip, as shown in Figure 1.1. The on-chip distances increase with additional
cores, resulting in non-uniform access latencies to the cache banks. Microarchitectural
resources, e.g., the cache banks and off-chip memory bandwidth, are shared among
the cores in order to maximize utilization. Workload consolidation is also used where
multiple workloads are executed on the same physical system. However, multiple
co-running applications cause shared resource contention which can lead to destructive
interference and large performance variations across workload, detrimentally impacting
average memory access time.

In order to increase memory system performance, microarchitectural optimizations
have been proposed which aim to mitigate contention within a shared resource. To
mitigate contention, prior works have proposed partitioning of shared resources,
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NoC Router
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Figure 1.1: Overview of tile-based multi-core architecture.
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2 CHAPTER 1. INTRODUCTION

cache [5–11] and bandwidth [12–14], with the goal of reducing average memory
access time and improving performance. Prefetching [15], another memory system
optimization, fetches data before it is requested to hide the memory access time.
However, inaccurate prefetches have been shown to increase contention [16]. Prefetch
throttling [17, 18], adaptively tuning when and what prefetcher settings are used
based on application characteristics, has been shown to overcome the drawbacks.

Recent works have shown that coordination of optimizations for multiple microar-
chitectural resources is advantageous in order to avoid contention bottlenecks and
exploit trade-offs between resources [19–25]. It also enables coverage of more and a
wider range of applications compared to single resource optimizations. For instance
studies have combined cache and bandwidth partitioning [19–21], prefetching and
cache partitioning [22, 23], and prefetching and bandwidth partitioning [24, 25] to
provide additional performance gains.

The quest for increased performance using microarchitectural optimizations has,
however, lead to new and severe security vulnerabilities from side-channel attacks [26,
27]. Recent attacks [28–34] have demonstrated that microarchitectural optimizations,
which were assumed to be fundamentally secure for a long time, leak information
which can be exploited by an attacker to steal secrets, like encryption keys and user
data. These timing-based side-channel attacks exploit the timing variations resulting
from the microarchitectural optimizations during program execution. Research has
shown that microarchitectural optimizations, widely implemented in commercial
processors, like branch predictors [28,35–38], caches [39–41] and prefetchers [42–47]
among others, are prone to attacks. In addition, several not yet commercially
implemented optimizations, such as value prediction [48], has also been shown to
leak information [49]. Furthermore, efficient attacks continuously emerge targeting
defenses, thereby limiting their effectiveness or even rendering the defenses moot
altogether [50–61]. Consequently, there is a strong need to be able to leverage
microarchitectural optimizations without compromising security.

One of the most well explored categories of timing-based side-channel attacks
is through the shared cache LLCs. Efficient utilization of the LLC is essential
for processor performance. However, the LLC offers an attractive attack surface
because of the channel characteristics, i.e., low noise and high attack bandwidth [62].
Furthermore, cache attacks are challenging to eliminate efficiently because they
exploit the timing difference between hits and misses, which is an intrinsic property of
caches [63]. There exists three high-level attack categories: i) reuse-based [39,40,64,65]
where data is shared between adversary and victim allowing both to access it, ii)
conflict-based [41, 66–70] where an adversary creates conflicts to evict lines belonging
to the victim, and iii) observation-based [71,72], where the cache behaviour of the
victim leaks information. Current cache partitioning solutions can, in principle,
defend against all three categories of attacks by ensuring isolation between adversary
and victim processes. But, this comes at the cost of lower cache utilization.

This thesis proposes adaptive microarchitectural optimizations with the goal of
improving security and/or performance of multi-core architectures.

1.2 Problem Statements

This thesis is based upon the work presented in Papers I-IV. The goal of the work is
to provide better performance and/or security for multi-core architectures.

Scalable microarchitectural resource optimization: Prior works [9–11] have
shown that locality-aware placement of data in LLCs and fine-grained partitioning
are key to designing a well performing cache partitioning solution. Locality-aware
data placement reduces cache access times and fine-grained partitioning enables
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better adaptation to workloads with varying characteristics. Previous solutions have
focused on solving this problem in a centralized manner which have the drawback of
introducing an unacceptable overhead when considering frequent reconfigurations for
large core counts. Thus in Paper I, I aim to address the following question:

Question I: How can we design a scalable cache partitioning solution which supports
locality-aware and fine-grained partitioning?

Coordination of optimizations for multiple microarchitectural resources:
Previous works [19–25] have proposed coordinated management of only a subset of
the optimizations - cache partitioning, bandwidth partitioning and prefetch throttling
- with the key insight that managing two instead of one is beneficial since addi-
tional trade-offs are enabled. Coordinately managing cache partitioning, bandwidth
partitioning and prefetch throttling opens up new trade-offs and interactions, with
significant impact on performance, which are not available when considering only a
subset of the optimizations. The challenge of managing multiple optimizations is the
increased complexity of finding a good allocation, while also considering interactions
among resources, which further increases the computational complexity. In the con-
text of coordination of multi-resource optimizations, in Paper II, I aim to answer the
following question:

Question II: How to enable coordinated management of cache partitioning, band-
width partitioning and prefetch throttling, avoiding the complexity of evaluation of
all possible allocations, while exploiting the new interactions and trade-offs?

Side-channel attacks using microarchitectural optimizations: Prior works
have started the important task of analyzing attacks and defenses for microarchitec-
tural optimizations [49,73–80]. However, most of the works focus only on transient
attacks and defenses [74–76,79, 80] or on quantifying the information leakage [49]. In
addition, these analyses fall short of providing a systematic analysis of the similarities
across different microarchitectural optimizations, both transient and non-transient,
and the underlying root causes which make them vulnerable to attacks. Such an
analysis can assist computer architects in understanding the landscape of attacks
on a broad range of microarchitectural optimizations and categorize existing defense
strategies proposed to thwart such attacks. Thus in Paper III, I aim to answer the
following question:

Question III: Which are the necessary root causes for timing-based side-channel
attacks on microarchitectural optimizations?

Protection against partitioned cache side-channel attacks: Previous works on
secure cache partitioning have mostly focused on the enforcement mechanism while
assuming static allocation [81–83]. In addition, none of these works satisfy all the
requirements of an ideal enforcement mechanism: support for fine-grain partitions,
scalability and locality-aware partition placement to reduce average memory access
time while being secure. Secure allocation policies have received little attention, de-
spite their significant performance impact. Determining allocations both dynamically
and securely is challenging because allocations leak information on applications cache
demands. The two existing attempts [84, 85] to secure cache allocations both fall
short of providing a performance improvement compared to a shared LLC. To this
end in Paper IV, I aim to answer the following question:

Question IV: How to provide protection against side-channel attacks through the
shared cache, while still enabling high performance through adaptive and scalable
partitioning?
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1.3 Contributions

This thesis is based on four papers. In the context of single resource optimizations
Paper I answers the first question, Question I, and the main contribution is:

• A fully distributed and locality-aware cache-partitioning solution consisting
of a distributed allocation algorithm which asynchronously negotiates cache
allocation decisions together with a flexible enforcement mechanism. The
distributed nature of the solution, coupled with low computational overhead,
enables a hardware-based implementation. This allows the scheme to scale to
large core counts while permitting frequent reconfigurations without invoking
the operating system and interrupt program execution.

In Paper II, we consider coordination of optimizations for multiple resources and
answer the second question, Question II. The main contributions of the paper are:

• An in-depth characterization of the performance impact of cache, bandwidth
and prefetching on the entire SPEC CPU2006 suite. Our characterisation
results provide several insights: i) a majority of the applications (over 90%) are
sensitive to one or multiple optimizations, ii) managing cache, bandwidth and
prefetch opens up opportunities for exploiting more interactions and improving
performance, and iii) managing cache, bandwidth and prefetch jointly has the
potential to outperform combinations of two of the optimizations.

• A microarchitectural resource manager that dynamically coordinates cache
partitioning, bandwidth partitioning and prefetch throttling, considering the
interactions between them. The solution works by employing individual resource
managers to determine appropriate settings for each resource and a coordination
mechanism to enable inter-resource trade-offs.

In Paper III we consider security of microarchitectural optimizations and answer
the third question, Question III. The main contributions in this systematization-of-
knowledge paper are:

• Identification of the four root causes for timing-based side-channel attacks
using a wide range of microarchitectural optimizations: determinism, sharing,
access violation and information flow. For a specific attack a subset, or all, of
the exploited root causes are necessary for the attack to succeed.

• A framework and systematic analysis of both transient and non-transient execu-
tion attacks and defences on a broad range of microarchitectural optimizations,
highlighting similarities and differences across the attacks and defenses.

In Paper IV we consider protection against side-channel attacks for a single re-
source, the LLC, and answer the fourth question, Question IV. The main contributions
of the paper are:

• A holistic solution for secure, adaptive and scalable cache partitioning which
provides protection against cache side-channel attacks. The proposed cache
allocation policy leverages randomness to defend against attacks on the cache
allocation policy side-channel. The enforcement mechanism supports secure,
fine-grained and locality-aware partitioning of cache capacity.

• Demonstration of strong and quantifiable security guarantees within a con-
figurable range, leveraging differential privacy [86]. Outside this range, weak
security guarantees are provided while reducing cache allocation policy side-
channel bandwidth.
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1.4 Organization of the thesis

The rest of the thesis is organized as follows. In Chapter 2 a summary of each paper
is presented. Finally, Chapter 3 concludes the thesis, and discusses some possible
future research directions.
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Chapter 2

Summary of the Papers

This chapter provides summaries of Papers I to IV. All papers are provided as
appendices to the thesis.

2.1 Paper I

This section provides a summary of Paper I titled ”DELTA: Distributed Locality-
Aware Cache Partitioning for Tile-based Chip Multiprocessors” and published in the
proceedings of IEEE International Parallel and Distributed Processing Symposium
(IPDPS) 2020, New Orleans, LA, USA, 2020.

2.1.1 Summary

A cache partitioning solution consists of two parts: an allocation policy which decides
the size of the partitions for each application and an enforcement mechanism to
enforce them. Prior work have proposed allocation policies [5, 9,10,87,88], but the
drawback is their reliance on a centralized algorithm to determine allocations which
limits how frequently reconfigurations can be performed. Prior work on enforcement
mechanism has shown that fine-grained partitioning, i.e., support of many and varying
partitions, is beneficial [7, 8, 11,89–92] but the main shortcoming is that they do not
take locality into account. A few proposals [9,10] have tried to address the lack of
locality awareness, but their solutions either require costly broadcasts or rely heavily
on software support. Furthermore, the allocation policies in these proposals use
a centralized algorithm which affects the overhead. A high overhead presents two
problems: Firstly, limiting the frequency of reconfiguration which is important in
order to adapt to application phase changes, and secondly, introducing unpredictable
jitter in application execution.

An ideal cache partitioning, in the context of multi-core systems, needs to have a
number of different characteristics. Firstly, it needs to be locality-aware and place
partitions in a way which minimizes the on-chip distance. Secondly, it needs to
support fine-grained partition sizes and to adapt quickly to application-phase changes,
in order to at each instance of time have the most suitable allocation. Finally, it
needs to have low enough overhead for performing allocation decisions and cause
minimal OS intervention in order to be scalable.

In Paper I, we present DELTA, a scalable cache partitioning solution consisting
of a fully distributed allocation policy and a locality-aware enforcement policy. In
contrast to prior work, DELTA works with standard LRU-replacement policy and
is implementable in hardware. DELTA’s allocation policy consists of two parts:

7
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one intra-bank and one inter-bank mechanism. The inter-bank algorithm works by
asynchronous exchanges of so called challenges among cores. The challenges include
the potential performance benefit of increased cache capacity, and the inter-bank
algorithm helps applications with larger performance benefit to gain more cache
capacity. The intra-bank algorithm redistributes the cache capacity within a cache
bank, giving a larger allocation to applications with a larger potential performance
gain. DELTA’s enforcement mechanism combines bank- and way-level partitioning to
enable fine-grained and locality-aware partitions. In order to locate data in the LLC
a per-core Cache Bank Table (CBT) is used. The CBT contains mappings between
addresses and cache banks, and it is accessed in parallel with the L2 cache in order
to find the right LLC bank.

The distributed inter-bank allocation algorithm in DELTA uses two metrics, pain
and gain as part of the asynchronous negotiation. The pain estimates the potential
performance decrease with lost cache capacity while gain estimates the potential
performance increase with additional cache space. The challenge message contains
the potential gain that a given application would experience with additional cache
capacity. The challenged cache bank compares its own pain with the gain of the
challenging bank. If the gain is greater, a portion of the cache capacity belonging
to the challenged bank is remapped to the challenger. The inter-bank allocation
algorithm redistributes the cache capacity from applications which have a lower
performance decrease when giving up cache capacity to applications which have a
higher performance gain from additional cache space.

DELTA is evaluated with detailed simulations on both a 16- and 64-core tiled
multi-core architecture using the Sniper simulator [93]. The performance of DELTA
is compared against a private cache implementation, a shared NUCA implementation
and an idealized centralized solution. The ideal centralized solution is used in order
to evaluate the quality of the allocations performed by DELTA and uses the best
known cache partitioning algorithm, Lookahead [5]. It does not model the overhead
of computing allocation decisions. In the evaluation, an analysis of the overhead of
calculating the allocations for DELTA and the best centralized algorithm is shown
for different core counts. The analysis shows that the centralized algorithms overhead
in time per invocation makes them unusable for large core counts with frequent
reconfigurations.

The evaluation on a 16-core multi-core architecture shows that DELTA improves
performance by on average 9% compared to an unpartitioned S-NUCA and by 6%,
on average, compared to private caches (i.e., equal partitioning). The performance
of the allocation using DELTA’s is 2% lower than the idealized centralized solution.
On a 64-core architecture, DELTA improves performance by on average 16% over an
unpartitioned S-NUCA and is within 1% of the idealized centralized solution.

In summary, Paper I contributes with a distributed partitioning solution which
performs close to an ideal centralized solution. The distributed algorithm has low
computational overhead which permits it to be implemented in hardware and allows
for frequent reconfigurations while the enforcement scheme enables locality-aware
placement.
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2.2 Paper II

This section provides a summary of Paper II titled ”CBP: Coordinated management
of cache partitioning, bandwidth partitioning and prefetch throttling” and published
in the proceedings of 30th International Conference on Parallel Architectures and
Compilation Techniques (PACT), 2021.

2.2.1 Summary

Management of optimizations for multiple resources combining either cache and
bandwidth partitioning [19–21], or cache partitioning and prefetching [22, 23], or
prefetch and bandwidth partitioning [24, 25], has been shown to be beneficial in
reducing average memory access time and increasing performance. However, no
study so far has considered coordinated management of all three optimizations.
Coordinately managing all three optimizations provides several advantages. Firstly, it
can potentially enable improved performance in more applications and addressing a
broader range of application characteristics. Secondly, new trade-offs and interactions
are enabled which have significant impact on performance.

In Paper II, we show an in-depth performance characterization of the applications
in the SPEC CPU2006 suite. The results show that 90% of the applications have
performance sensitivity (over 10% change in IPC) to at least one of the optimizations,
and 70% are also sensitive to multiple optimizations. We make several observations
regarding the interactions and trade-offs between the different optimizations: i) the
allocation of cache and bandwidth affects the performance impact of prefetching,
ii) larger bandwidth allocation can compensate for inaccurate prefetches, iii) for an
application sensitive to both resources the same performance can be gained, by either
increasing cache size or enabling prefetching, or by either increasing bandwidth or
cache allocation. In Paper II we also show, using exhaustive search, that for more than
400 random workloads of four applications, coordinately managing three resources is
better than any combination of two resources.

In Paper II, we present CBP, a coordination optimization for adaptive management
of cache partitioning, bandwidth partitioning and prefetch throttling. The design
is guided by observations and results from the performance characterization. CBP
consists of three local controllers, one for each optimization, and a coordination
mechanism, see Figure 2.1. With CBP, the three local controllers are dynamically
tuned and guided by heuristics, to give a good allocation of the resources, considering
application characteristics and possible trade-offs and interactions. Recalibrations
are performed periodically. First, cache space is allocated since altogether avoiding
a memory access has higher impact than reducing the latency. As a next step,
bandwidth is allocated based on the queuing latency of the memory requests and

Cache resource  
controller

Coordination mechanism

Bandwidth resource  
controller

Prefetch throttling   
controller

Cache  
allocation per  
application

Bandwidth  
allocation per  
application

Prefetch  
setting per  
application

ATDs estimating  
misses for different  
cache sizes

Queuing delay per  
application

Sampled IPC  
with prefetch  
enabled/disabled  
per application

Figure 2.1: Overview of CBP resource manager.
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taking into consideration the cache allocation. Finally, the prefetcher setting is
determined based on the current allocation of cache and bandwidth. The cache
resource controller estimates the number of misses using auxiliary tag directories
(ATDs) and allocates the capacity in a way that reduces the aggregate number of cache
misses. The bandwidth resource controller uses the queuing delay per application in
order to allocate the capacity, where the application experiencing the largest queuing
delay will get the largest allocation. The prefetcher setting is determined by sampling,
for a short time interval, the IPC with prefetching active/inactive and enabling the
prefetcher only if the speedup is large enough.

CBP is evaluated against nine different single- and multi-resource managers. The
baseline configuration represents an unpartitioned shared cache with unpartitioned
bandwidth and prefetching disabled. The comparison points are CPpf [22] a state-
of-the-art scheme combining cache partitioning and prefetching, equal partitioning
of cache and bandwidth, as well as resource managers controlling only one resource
or two of the three resources. We also investigate the impact of using a different
prefetcher and changed coordination and ordering in the resource manager.

CBP is evaluated with multi-programmed workloads on a 16-core multi-core
architecture using the Sniper simulator [93]. CBP improves performance by 11%
on average compared to CPpf, and by 50% on average compared to the baseline.
We use the user-oriented fairness metric Average Normalized Turnaround Time
(ANTT) in order to show that CBP does not increase performance at the cost of
fairness. CBP increases fairness by 8% compared to CPpf and by 27% compared
to baseline. According to the experimental results, the proposed multi-resource
manager provides an effective solution for the main research problem. The evaluation
shows that coordinately managing cache partitioning, bandwidth partitioning and
prefetch throttling is better than any pair-wise optimization and improves upon the
state-of-the-art.

In summary, Paper II contributes with optimizations which allow for dynamic
and adaptive coordination of cache partitioning, bandwidth partitioning and prefetch
throttling to achieve better performance, both compared to the state-of-the-art and
any subset of optimizations.
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2.3 Paper III

This section provides a summary of Paper III titled ”SoK: Analysis of Root Causes
and Defense Strategies for Attacks on Microarchitectural Optimizations”. The paper
is currently under review.

2.3.1 Summary

Microachitectural optimizations are important for providing performance scalability,
but have also been shown to lead to security vulnerabilities. Previous works have
started the important task of analyzing attacks and defenses for different microarchi-
tectural optimizations [73–80]. However, most of the works focus only on transient
attacks and defenses [74–76, 79, 80], SW-based defenses [78] or cover a limited set
of non-transient attacks [73]. Pandora [49] considers a broader set of non-transient
microarchitectural optimizations and provides microarchitectural leakage descrip-
tors (MLDs) which quantify the information leakage. The MLDs show if a specific
optimization can leak and how much information is leaked (1-bit or a few bits).
Unfortunately, this information falls short of providing a systematic analysis of the
similarities across different microarchitectural optimizations and the underlying root
causes which make them vulnerable to attacks.

In Paper III, the four root causes for timing-based attacks on microarchitectural
optimizations are identified. The four root causes are: determinism, sharing, access
violation and information flow. Our key insight is that a subset (or all) of the
root causes are exploited by attacks and eliminating any of the exploited root
causes, in any attack step, is enough to provide protection. Here, determinism
causes microarchitectural optimizations to be triggered in the same way under
the same pre-conditions, leading to predictable microarchitectural state transitions
and timing variations. Sharing of microarchitectural state, which is accessible to
both the adversary and the victim, enables the creation of a side-channel. Access
violation enables access to a secret outside of the intended protection domain. Finally,
information flow refers to exchange of information through microarchitectural state.

We present a framework where the architecture model is represented as a finite
state machine (FSM) where the architectural state, comprising software-visible regis-
ters and memory, is the externally visible interface, that is accessible to a program.
A FSM transition is caused when instruction execution leads to a change in the
architectural state. The microarchitecture represents an implementation of the FSM
specification comprising typically several microarchitectural optimizations, which
uses a set of microarchitectural resources to implement the intended functional-
ity. We define microarchitectural state (MS) as a snapshot of the state of all the
microarchitectural resources in the system at a specific time.

Using this framework, we present an abstract model of an attack in Figure 2.2
which shows the different steps involved to communicate the secret from a victim to
an adversary. In our model, we define a step as a tuple of current microarchitectural
state and action which leads to a new state, {MScurrent, action}→MSnext. When
the setup step is performed the initial state (MSI) transitions to the primed state
(MSP). The setup step ensures that the necessary preconditions are in place to

MS I
setup

MS P MS E
MS T

interact

transmit receive

decode
MS R

receive

secret secret

Figure 2.2: MS transitions in different steps of an attack.
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encode the secret into MSP in the next step of the attack. When the interact step is
performed the secret is accessed and is encoded in the microarchitectural state, which
transitions to encoded state (MSE). The secret is encoded specifically through the
state of one or more microarchitectural resources. If the secret is encoded through
a microarchitecture resource state, which is accessible to both the victim and the
adversary, it can potentially be used as a side-channel to communicate the secret.
The transmit step is optional, and used in scenarios where the adversary does not
use the same microarchitectural state for encoding of the secret and for the side-
channel. Finally, when the receive step is performed, the adversary accesses the
microarchitectural state of the specific resource(s) and observes timing variations
based on the encoded secret while the state transitions to received (MSR).

We present a systematization of timing-based side-channel attacks available in
literature on an extensive set of microarchitectural optimizations: cache, prefetching,
branch prediction, computational simplification, speculative execution and value
prediction. The analysis covers both transient and non-transient attacks. For
the attacks using each optimization we answer the following questions: i) which
microarchitectural resource(s) is/are used? ii) which root cause(s) are necessary for
the attack to succeed in each step of the attack? iii) under which threat model(s) is
the attack possible?

We present a systematization of defenses for the timing-based attacks where we
show which root cause(s) and attack step(s) the defenses target. The analysis show
that the proposed defenses target one or more of the identified root causes. An attack
is stopped if any of the root causes are eliminated, in any attack step. We observe that
similar defenses can be/are applied across different microarchitectural optimizations,
with the same root cause vulnerabilities. Furthermore, there are commonalities in the
defense strategies used to protect against attacks on these diverse microarchitectural
optimizations. Some of these common defense strategies which we identify include
disabling the optimization, to restrict all the root causes; isolating the state related
to the optimization, to restrict sharing; applying randomization and/or restriction,
to limit information flow and introducing permission checks, to limit resources from,
exposing/accessing state outside of the intended domain.

In summary, Paper III contributes with the four root causes for timing-based
side-channel attacks on a wide range of optimizations, as well as a systematization of
published attacks and defenses, which highlights their commonalities.
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2.4 Paper IV

This section provides a summary of Paper IV titled ”SCALE: Secure and Scalable
Cache Partitioning”. The paper is accepted to IEEE International Symposium on
Hardware Oriented Security and Trust (HOST), 2023.

2.4.1 Summary

The challenge of defending against cache side-channel attacks is to provide protect
against both shared memory-based, conflict-based and occupancy-based attacks while,
preferably, providing performance improvement over a shared LLC. Initial works
propose to partition cache capacity statically among co-running applications [81].
However, static policies do not adapt to changing requirements of applications and
provide lower performance than dynamic cache partitioning policies [5, 8, 10, 94–98].
Prior works have mostly focused on the enforcement mechanism while assuming static
allocation [81–83]. In addition, these works do not satisfy all the requirements of
an ideal enforcement mechanism: support for fine-grain partitions, scalability and
locality-aware partition placement. Commercially available solutions, such as Intel
CAT [99], also do not satisfy these requirements and are furthermore not secure since
they allow leakage of information across partitions which can be exploited [82].

Dynamic and adaptive cache allocation, even though desirable from a performance
perspective, is challenging because allocations can leak information about individual
applications cache demands, which can be used in an attack. There are two existing
attempts to provide a secure cache allocation policy: SecDCP [84] and OPTIMUS [85].
SecDCP provides the notion of security tiers (confidential and public applications) and
permits one-way leakage from the public tier by only considering public applications’
cache demand for determining allocations. OPTIMUS, places a bound on the amount
of information leakage by only performing a reconfiguration once at the start of
the execution. However, neither solution improves performance over a shared and
unpartitioned LLC.

In Paper IV, we present SCALE, a dynamic cache partitioning solution that
enables secure allocation while considering the cache demand of both secure and
non-secure applications continuously during execution. The enforcement mechanism
can accommodate a wide range of partition sizes, is scalable and locality-aware.
SCALEs approach is based on insights from a detailed characterization of the cache
allocation policy side-channel and how it can be exploited to launch conflict-based
and occupancy-based attacks to obtain sensitive information. Our analysis shows that
information leaks, due to fine-grained changes in cache allocation for the victim, that
are caused and/or observed by an adversary, lead to exploits. Protecting against such
leaks is important since cryptographic libraries have small working set sizes [100–102].
Consequently, SCALE aims at providing strong guarantees against information leakage
due to fine-grained changes in allocation. Leaking high-level occupancy information,
e.g., showing that a co-running application is memory intensive, has not been exploited
for side-channel attacks. Furthermore, such occupancy information is also leaked by
defenses that protect the LLC side-channel through randomizing placement of lines in
the cache [103]. Consequently, SCALE therefore provides weaker security guarantees
in such cases by permitting controlled leakage about high-level cache occupancy.

SCALEs cache allocation policy leverages randomness to achieve the primary
design goals, of providing a secure and scalable solution. Specifically, the allocation
policy adds noise to the deterministically computed cache allocations. Leveraging
differential privacy, we provide quantifiable security guarantees that the amount of
noise will provide the requested security level, set by the system administrator. By
randomisation we make the allocations non-deterministic, i.e., the same input can
lead to different allocations.
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Figure 2.3: Overview of the components in SCALEs secure allocation policy.

An overview of SCALEs cache allocation policy is shown in Figure 2.3. Firstly,
utility monitors are used in order to estimate the utility of different cache allocations,
for the co-executing applications. This is used by the Lookahead algorithm to
compute new insecure allocations for the upcoming reconfiguration. Secondly, the
different defense mechanisms introduce randomness into the allocations. The process
is repeated at each reconfiguration period. The first defense adds random noise,
generated using a Laplace distribution, to update the allocations computed by the
non-secure policy. Although noise protects against conflict-based attacks, we notice
that patterns can still be observed, which can be leveraged in occupancy-based
attacks [71]. To address this, we introduce two additional levels of randomization.
The second defense randomizes the allocations change rate, which determines the
extent to which allocations can change, in a single reconfiguration period. The third
defense randomizes the length of the reconfiguration period, which randomizes the
timing of allocation changes while also reducing the channel bandwidth.

The security analysis leveraging differential privacy, demonstrates that SCALE is
secure and provides a method for system administrators to configure the randomization
according to the security requirements. SCALE allows configurability based on the
security requirements on a per application basis. SCALE provides strict security
guarantees for allocation changes within the configured range, while providing weak
security guarantees and lower channel bandwidth for larger changes. In addition,
SCALE also supports running a mix of secure and non-secure applications concurrently
while ensuring security and performance gains from cache partitioning.

The secure enforcement mechanism proposed in SCALE, builds on the DELTA
enforcement mechanism [98]. DELTA combines bank- and way-level partitioning to
support fine-grained partitions and locality-aware mapping of data. The adaptations
for SCALE enable secure enforcement, reduce the overheads associated with handling
shared data and simplify the design.

SCALE is evaluated on a 16-core tiled multi-core architecture and compared
against the state-of-the-art secure cache partitioning solutions, i.e., SecDCP [84],
OPTIMUS [85] and ScatterCache [104]. We show that SCALE outperforms prior
works and improves performance by 14%, on average, and by up to 39% compared
to an unpartitioned shared LLC. In addition, we evaluate SCALEs suitability for
commercial designs using an enforcement mechanism similar to Intel CAT [99]. The
evaluation shows that the proposed allocation policy leveraging randomization can
defend against cache allocation policy side-channel attacks while retaining most of
the performance benefits of a state-of-the-art non-secure allocation policy like UCP.

In summary, Paper IV contributes with a holistic solution for protecting the cache
against side-channel attacks which improves performance beyond state-of-the-art
and performs close to a non-secure allocation policy. In addition, SCALE provides
quantifiable security guarantees using differential privacy.



Chapter 3

Concluding Remarks and
Future Work

Microarchitectural optimizations, especially in the memory system, are important to
ensure performance scalability of multi-core architectures. However, microarchitec-
tural optimizations can also be exploited in side-channel attacks.

This thesis proposes adaptive microarchitectural resource management optimiza-
tions to improve security and/or performance of multi-core architectures and a
systematization-of-knowledge of timing-based side-channel attacks and their defenses.
Paper I concerns an optimization for the cache, where a distributed cache partition-
ing solution is proposed to avoid high computational overhead when determining
allocations. The results show that it is possible to design a distributed solution for
cache partitioning, which performs close to an idealized centralized solution. Paper
II concerns management of multiple microarchitectural resources and proposes a
coordinated scheme with cache partitioning, bandwidth partitioning and prefetch
throttling. Furthermore, the results for the coordinated multi-resource manager out-
perform any resource manager for two resources and improves upon state-of-the-art.
Paper III concerns timing-based side-channel attacks and identifies the four root
causes for such attacks. The paper also presents a systematization of attacks using
a wide range of optimizations, and their defenses. Paper IV concerns protection
against timing-based attacks and proposes a secure and scalable cache partitioning
solution. The results show that performance, close to a non-secure solution, can be
achieved with quantifiable security guarantees.

There are several interesting directions for future work. In the context of Paper
I, one direction would be to target fairness or Quality of Service (QoS), instead of
performance, as is currently done. Another future research direction would be to
extend the multi-resource management scheme in Paper II to also perform coordinated
management of more resources such as core frequency, memory capacity and disk
bandwidth, in order to further improve performance. The challenge with adding
additional resources would be how to take the additional interactions and trade-offs
into consideration without reaching an unacceptable overhead which would eliminate
the performance improvement. One interesting direction for future work, in the context
of Paper III, is to investigate and/or extend the root cause framework to include
microarchitectural optimizations for security, such as Intel SGX, and considering
power-based side-channels. Another potential direction would be to use a similar
approach as proposed in Paper IV to secure other microarchitectural optimizations
against timing-based side-channel attacks. For example, an optimization such as
branch predictor or a prefetcher which can use partitioning for protection, could use

15
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similar defenses to enable secure and high performance partitioning with security
guarantees from differential privacy. Likewise, also optimizations with only temporal
sharing such as ports, could use randomization backed by differential privacy to provide
protection. Another avenue to explore is to combine the distributed cache allocation
policy proposed in Paper I with the secure cache allocation solution proposed in
Paper IV. Using a distributed solution for allocation can open up new possible ways
to defend the cache, as opposed to a centralized solution. The distributed allocation
algorithm could, for example, only allow applications with the same security level to
exchange challenges and influence each others cache allocations.
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[53] P. Vila, B. Köpf, and J. F. Morales, “Theory and practice of finding eviction
sets,” in 2019 IEEE Symposium on Security and Privacy (SP), 2019, pp. 39–54.

[54] M. K. Qureshi, “New attacks and defense for encrypted-address cache,” in
Proceedings of the 46th International Symposium on Computer Architecture, ser.
ISCA ’19. New York, NY, USA: Association for Computing Machinery, 2019,
p. 360–371.

[55] R. Bodduna, V. Ganesan, P. SLPSK, K. Veezhinathan, and C. Rebeiro, “Brutus:
Refuting the security claims of the cache timing randomization countermeasure
proposed in ceaser,” IEEE Computer Architecture Letters, vol. 19, no. 1, pp.
9–12, 2020.

[56] A. Purnal and I. Verbauwhede, “Advanced profiling for probabilistic
prime+probe attacks and covert channels in scattercache,” CoRR, vol.
abs/1908.03383, 2019.



BIBLIOGRAPHY 21

[57] T. Bourgeat, J. Drean, Y. Yang, L. Tsai, J. Emer, and M. Yan, “Casa: End-to-
end quantitative security analysis of randomly mapped caches,” in 2020 53rd
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
2020, pp. 1110–1123.

[58] A. Purnal, L. Giner, D. Gruss, and I. Verbauwhede, “Systematic analysis
of randomization-based protected cache architectures,” in 2021 2021 IEEE
Symposium on Security and Privacy (SP). Los Alamitos, CA, USA: IEEE
Computer Society, may 2021, pp. 987–1002.

[59] W. Song, B. Li, Z. Xue, Z. Li, W. Wang, and P. Liu, “Randomized last-level
caches are still vulnerable to cache side-channel attacks! but we can fix it,” in
2021 2021 IEEE Symposium on Security and Privacy (SP). Los Alamitos, CA,
USA: IEEE Computer Society, may 2021, pp. 955–969.

[60] E. Barberis, P. Frigo, M. Muench, H. Bos, and C. Giuffrida, “Branch history
injection: On the effectiveness of hardware mitigations against Cross-Privilege
spectre-v2 attacks,” in 31st USENIX Security Symposium (USENIX Security
22). Boston, MA: USENIX Association, Aug. 2022, pp. 971–988.

[61] J. Wikner and K. Razavi, “RETBLEED: Arbitrary speculative code execution
with return instructions,” in 31st USENIX Security Symposium (USENIX
Security 22). Boston, MA: USENIX Association, Aug. 2022, pp. 3825–3842.

[62] O. Sibert, P. A. Porras, and R. Lindell, “The intel 80x86 processor architecture:
Pitfalls for secure systems,” 1995.

[63] Z. He and R. B. Lee, “How secure is your cache against side-channel attacks?”
in Proceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO-50 ’17. New York, NY, USA: Association for
Computing Machinery, 2017, p. 341–353.

[64] D. Gullasch, E. Bangerter, and S. Krenn, “Cache games – bringing access-based
cache attacks on aes to practice,” in 2011 IEEE Symposium on Security and
Privacy, 2011, pp. 490–505.

[65] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar, “Wait a minute! a
fast, cross-vm attack on aes,” in Research in Attacks, Intrusions and Defenses,
A. Stavrou, H. Bos, and G. Portokalidis, Eds. Cham: Springer International
Publishing, 2014, pp. 299–319.

[66] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis, “The spy
in the sandbox: Practical cache attacks in javascript and their implications,”
in Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’15. New York, NY, USA: Association for
Computing Machinery, 2015, p. 1406–1418.

[67] G. Irazoqui, T. Eisenbarth, and B. Sunar, “S$a: A shared cache attack that
works across cores and defies vm sandboxing – and its application to aes,” in
2015 IEEE Symposium on Security and Privacy, 2015, pp. 591–604.

[68] M. Kayaalp, D. Ponomarev, N. Abu-Ghazaleh, and A. Jaleel, “A high-resolution
side-channel attack on last-level cache,” in 2016 53nd ACM/EDAC/IEEE
Design Automation Conference (DAC), 2016, pp. 1–6.

[69] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermeasures:
The case of aes,” in Topics in Cryptology – CT-RSA 2006, D. Pointcheval, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 1–20.
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Abstract—Cache partitioning in tile-based CMP architectures
is a challenging problem because of i) the need to determine
capacity allocations with low computational overhead and ii)
the need to place allocations close to where they are used,
in order to reduce access latency. Although, previous solutions
have addressed the problem of reducing the computational
overhead and incorporating locality-awareness, they suffer from
the overheads of centrally determining allocations.

In this paper, we propose DELTA, a novel distributed and
locality-aware cache partitioning solution which works by ex-
changing asynchronous challenges among cores. The distributed
nature of the algorithm coupled with the low computational
complexity allows for frequent reconfigurations at negligible cost
and for the scheme to be implemented directly in hardware. The
allocation algorithm is supported by an enforcement mechanism
which enables locality-aware placement of data. We evaluate
DELTA on 16- and 64-core tiled CMPs with multi-programmed
workloads. Our evaluation shows that DELTA improves perfor-
mance by 9% and 16%, respectively, on average, compared to
an unpartitioned shared last-level cache.

Index Terms—cache partitioning, multicore architectures, per-
formance isolation

I. INTRODUCTION

Efficient use of cache resources on chip multiprocessors
(CMPs) is necessary in order to bridge the speed gap between
processor and main memory. The last-level cache (LLC) is
usually shared among all cores to maximize utilization. Uncon-
strained sharing, however, can result in destructive interference
between workloads and lead to large performance variation,
degrade throughput and violate per-application Quality of
Service (QoS) requirements. Cache partitioning can mitigate
destructive interference by isolating cache space between
cores/applications.

A partitioning solution typically comprises two components:
an allocation policy, to decide the size of the partitions
for each application, and an enforcement mechanism to en-
force the partitions. With regard to the allocation policy,
known approaches target different objectives, e.g. to maximize
throughput or improve fairness [1]–[3]. Utility-based cache
partitioning (UCP) [1] aims to maximize throughput by assign-
ing cache ways to applications that benefit most from the cache
capacity. To do so, UCP leverages the Lookahead algorithm.
The algorithm determines dynamic cache allocation based on
marginal utility and partitions ways in a monolithic cache
between applications but it has a high computational com-

plexity. Approaches to determine cache allocations with lower
computational overhead have been proposed [4]. However, as
our evaluation of the overheads (described in Section IV)
shows, the scalability of these proposals remains limited
by their reliance on a centralized allocation algorithm. This
reliance presents two problems. First, the execution time of the
allocation algorithm limits the frequency of reconfiguration,
especially as we scale to large core counts. And second, the
invocation of the algorithm introduces unpredictable jitter in
application execution. OS noise (jitter) has been identified as
a major cause of both execution time unpredictability and
untimely synchronization [5], [6]. This is particularly bad
for multithreaded applications that rely on bulk synchronous
parallelism (BSP) [6], [7]. As a consequence, centralized
allocation approaches cannot be utilized when scaling to large
core counts and requiring frequent reconfigurations.

Different enforcement mechanisms for cache partitioning
have been proposed. Way and set partitioning are proposed
in the context of monolithic caches with few cores [1], [2],
[8], [9]. These schemes have the drawback of only supporting
a limited number of coarse-grained partitions. Solutions have
been proposed to enable fine-grained partitioning [10]–[17].
The main shortcoming of these techniques is that they do
not take locality into account when partitioning LLCs in tiled
CMPs. A few proposals have tried to address this limitation
by enabling locality-aware placement [4], [18]. However, the
allocation policies used in these proposals rely on a centralized
allocation component and inherit its shortcomings.

An ideal cache partitioning solution should be fine-grained
to support many and varying partitions, be locality-aware to
place data close to where it is used, and adapt quickly to
changes in application-phase behavior while still ensuring that
allocation operations can be performed in a scalable manner,
with low overhead and minimal OS intervention. We propose
DELTA, a novel scalable cache partitioning solution for tile-
based CMPs, that utilizes a distributed allocation policy and
a locality-aware enforcement mechanism. In contrast to prior
work, our solution uses a completely distributed and asyn-
chronous allocation algorithm, works with a standard LRU-
replacement policy, does locality-aware enforcement and is
virtually transparent to the full software stack.

DELTA’s Allocation Policy: DELTA’s allocation algorithm
comprises an inter-bank and an intra-bank component. The
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inter-bank algorithm determines capacity allocations by asyn-
chronously exchanging challenges among cores. A challenge
represents the performance benefit of obtaining increased
cache capacity and helps an application with larger perfor-
mance potential to gain more cache capacity. The algorithm
uses coarse-grained shadow-tags to collect reuse-distance in-
formation with minimal overhead, which is used as the basis
for computing a challenge. The intra-bank algorithm peri-
odically redistributes the cache capacity within a bank by
giving more space to the application that has a larger potential
performance gain. The distributed nature of the algorithm
enables quick and incremental adaptation to program phase
changes without requiring a central entity to determine and
perform chip-wide reallocation of cache capacity for the
different applications.

DELTA’s Enforcement Mechanism: DELTA combines way
partitioning and bank-level partitioning to achieve a locality-
aware and fine-grained partition-enforcement mechanism. The
partitioning solution uses per-core Cache Bank Tables (CBTs),
where mappings between addresses and banks are recorded.
When a request needs to access the LLC, the CBT is used to
identify the cache bank that the address is mapped to. Inside
each bank, way partitioning is used to divide the capacity. The
flexibility of the enforcement mechanism makes it possible to
keep data close to where it is used.

In summary, we make the following contributions:
(a) We propose DELTA, a fully distributed and locality-

aware cache-partitioning solution. The distributed allocation
algorithm asynchronously negotiates and makes effective
cache allocation decisions. The flexibility of the enforcement
mechanism enables locality-aware mappings. The distributed
nature of the solution, coupled with low computational over-
head, enables a hardware-based implementation. This allows
the scheme to scale to large core counts while permitting fre-
quent reconfigurations without invoking the operating system.

(b) We describe a novel allocation policy consisting of
a coarse-grained and a fine-grained component which are
responsible for carrying out inter- and intra-bank allocations,
respectively. The inter-bank algorithm uses challenges to
expand into multiple banks, while the intra-bank algorithm
allows the allocation to grow within a bank.

(c) We present a reconfigurable NUCA enforcement mech-
anism that enables locality-aware mapping. The two-level
mechanism combines coarse-grained, bank-level partitioning
with fine-grained way partitioning. The CBT enforces flexible
mapping of addresses to cache banks, which enables placing
data close to where it is used.

We evaluate our solution on 16- and 64-core tiled CMPs.
With multi-programmed workloads on a 16-core CMP we
obtain speed-ups of up to 16% (geom. mean 9%) compared
to an unpartitioned S-NUCA and up to 11% (geom. mean
6%) compared to private caches (equal partitioning). On the
64-core CMP DELTA improves performance by up to 28%
(geom. mean 16%) over an unpartitioned S-NUCA.

The rest of the paper is organized as follows: Section II
describes our proposed solution in detail. Section III discusses

the methodology and Section IV presents the evaluation of the
proposal. We provide an overview of related work in Section
V and conclude in Section VI.

II. DELTA CACHE PARTITIONING

Section II-A provides an overview of DELTA, followed by
a detailed presentation of the algorithms and mechanisms in
subsequent sections.

A. Overview

Both the allocation policy and the enforcement mechanism
have an inter-bank and an intra-bank component. The inter-
bank component takes care of the allocation and enforcement
across cache banks, and the intra-bank part handles the allo-
cation and enforcement within the banks.

DELTA allocation policy: Figure 1 provides an overview of
the distributed allocation algorithm. The inter-bank allocation
algorithm works by tiles periodically sending out challenge
messages, as shown in Figure 1 (Step #1). The mechanism
relies on two metrics called pain and gain (see Table I). A
challenge message contains the potential gain that a given
application would experience if it were to get additional cache
capacity. The challenged tile compares its own pain, owing
to predicted decrease in performance because of lost cache
space, with the gain (Step #2), (see Section II-B2 for details
about pain and gain). If the gain is greater, the challenged tile
gives up space in the cache bank and informs the challenger
tile with a response message (Step #3). A portion of the
addresses ([Ak−Al] in Figure 1) belonging to the application
running in the challenger tile is remapped to the cache bank
in the challenged tile (Step #4). The addresses that have
been remapped to a different bank are then invalidated in
their previous location. The inter-bank allocation policy helps
applications acquire additional cache capacity by mapping data
to cache banks in other tiles.

The second part of the allocation algorithm, the intra-
bank algorithm, governs changes within a bank. The intra-
bank algorithm is invoked periodically in every cache bank.
In each interval some ways are transferred to the partition
with most gain from the partition with the least. This way,
reassignment has little overhead since it does not affect the
mapping of addresses to banks, and therefore does not lead to
invalidations. While the inter-bank allocation algorithm helps
an application to expand its working set into other tiles and get
a fixed capacity, the intra-bank algorithm helps in fine-tuning
the capacity in banks that an application has already expanded

Before

Application X Application Y CBT

After

painY vs gainX

gainX

1. Challenge 2. Comparison

3. Response

LLC bank 0 LLC bank 1

Challenger tile Challenged tile

4. Remapping

Core & L1 & L2Core & L1 & L2

LLC bank 1

Core & L1 & L2

LLC bank 0

Core & L1 & L2

[Ak-Al]    bank 0

[Ak-Am]    bank 0
[Am-Al]     bank 1

[Ak-Al]    bank 1

[Ak-Al]    bank 1

Fig. 1: Overview of steps in DELTA allocation.
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Gain Predicted performance increase due to increased cache space
Pain Predicted performance decrease due to lost cache space

TABLE I: Terminology

into. The intra-bank algorithm reports information about ways
that an application wins/loses in a cache bank outside the tile
and this acts as a feedback to guide inter-bank expansion. The
details about the DELTA allocation algorithm are discussed in
Section II-B.

DELTA enforcement mechanism: The inter-bank mecha-
nism uses a mapping table as shown in Figure 1, the CBT, to
map addresses to cache banks (see Section II-C for details).
On a private cache miss the CBT provides the mapping of each
address to the LLC bank where it resides. The mappings in
the CBT are changed when reconfigurations are triggered by
the allocation algorithm. The flexible mapping enabled by the
CBT is in contrast to S-NUCA which maps addresses to cache
banks statically. The intra-bank mechanism relies on hardware
support for way partitioning (discussed in Section II-C) similar
to that available in some commodity systems [19].

B. DELTA Allocation
1) Allocation Algorithm: Inter-bank allocation: The

pseudo-code for the inter-bank allocation algorithm is shown
in Algorithm 1. Each tile (Challenger) starts by comput-
ing the pain and gain at the beginning of every inter-bank
reconfiguration interval (iinter), which is set to 1ms. An
analysis motivating this interval is presented in Section IV-D.
A challenge message is only sent if the calculated gain is
above a threshold and the size of the allocation is larger than
the minimum limit (line 4). The requirement to be above the
minimum allocation limit is to avoid placing data far away
instead of expanding in the home bank. The choice of which
tile to challenge (Challenged) is based on the distance to the
tile. Each tile will start by challenging the closest neighbouring
tiles, with a hop distance of one, before choosing tiles further
away (line 5). A single challenge is issued by every tile in each
(iinter) interval if it satisfies the preconditions. The algorithm
will only pick a particular tile for a second challenge after
it has exhausted other candidates, regardless of whether the
previous attempt was successful.

When a challenge is received, the gain from the challenger
tile is compared to the pain of the challenged tile. The
algorithm uses pain, instead of gain, for comparison in order to
accommodate the potentially high impact on performance for
the application running on the challenged tile. Furthermore,
it also acts as a deterrent to prevent one tile from easily
invading and taking over the capacity of neighbouring tiles.
In case an application running on tile A is sharing its cache
bank with another running on tile B and receives a challenge
from a different application running on tile C, the algorithm
will compare the PainA, GainB and GainC to determine if
the challenge is successful (line 10). In case the challenge
is successful, a fixed capacity (number of ways) is allocated
in the challenged tile and a response is sent to the challenger
tile as a notification (line 12-13). On receiving a successful

Algorithm 1: Inter-bank allocation pseudo-code
Input: mlp, allocationForChallanger, interDeltaWays

1 In tile Challanger at time period iinter ;
2 pain = calculatePain(mlp, allocationForChallanger);
3 rawGain = calculateRawGain(mlp,

allocationForChallanger);
4 if rawGain >gainThreshold AND allocationForChallanger

>minWays then
5 challenged = getClosestNeighbour();
6 gain = rawGain / distanceTo(challenged);
7 challenge(challenged, challenger, gain);
8 end
9 In tile Challenged on receiving a challenge;

10 partition = partitionWithSmallestGainOrPainInChallenged(
challengedPain, challengerGain,
gainChallengedPartitions);

11 if partition then
12 updateWayPartition(challenger, partition,

interDeltaWays);
13 respondWithNewPartition(challenged, challenger,

true);
14 else
15 respondWithNewPartition(challenged, challenger,

false);
16 end
17 On response;
18 if success then
19 updateCacheBankTableWithNewPartitionIn(challenged);
20 invalidateAddressesWithChangedBankPlacement();
21 end
22 markAsChallenged(challenged);

response the CBT is updated and invalidations are triggered if
required (line 18-20). The intra-bank algorithm, described later
in this section, discusses how the allocation for the challenger
tile can grow to encompass the entire cache bank gradually
over time. If the challenged tile does not use its home cache
bank (i.e. the core is idle), the algorithm will allocate the
whole cache bank to the challenger tile immediately instead
of gradually. This is done to make it easier for applications
that are running alone to increase their allocation quickly as
the cache banks will otherwise remain underutilized.

Intra-bank allocation: The pseudo-code for the intra-bank
algorithm is shown in Algorithm 2. This is triggered in each
tile at every intra-bank reconfiguration interval (iintra) which
is set to 0.1ms. The algorithm works by comparing the gain
for each partition that shares the cache bank (line 2-3) and
reassigns some ways (intraDeltaWays) from the partition
that has the least gain to the one that has the most (line
5). Here, unlike the inter-bank allocation, the comparison
only considers the gain of every application to determine the
winner, for two reasons. Firstly, the application running on the
tile must have already demonstrated a significant gain, more
than the home bank’s pain, to have been allowed to expand
into a different tile. Secondly, intra-bank changes in allocation
are lightweight and do not introduce any invalidation-related
overheads (except when leaving a tile). In case an application
running on tile A is sharing its own cache bank with two others
running on tile B and C, a comparison will happen between
GainA, GainB and GainC, to determine which contending
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Algorithm 2: Intra-bank allocation pseudo-code
Input: intraDeltaWays

1 In each tile at time period iintra;
2 partitionSmallest =

partitionWithSmallestGain(gainsOfPartitionsInBank,
minWays);

3 partitionLargest =
partitionWithLargestGain(gainsOfPartitionsInBank);

4 if partitionWithLargestGain !=
partitionSmallestGain then

5 updateWayPartitioning(partitionLargest,
partitionSmallest, intraDeltaWays);

6 reportNewAllocation(partitionSmallest,
partitionLargest);

7 end

application will win/lose cache ways.
After reassignment the information about the number of

ways are sent back to the respective contending home tiles
(line 6). This acts as a feedback mechanism between the intra-
and inter-bank algorithm since the current allocation is an
important factor in determining the pain and gain, as will
be described in the next section. The inter- and intra-bank
algorithms are invoked periodically after an initial state where
cache capacity is equally partitioned among all tiles.

2) Computing Gain and Pain: The measure of pain and
gain is based on simple heuristics that lead to effective
allocation decisions. We use gain to predict how an application
will react to an increase in cache capacity (gainWays) by
expanding in/to other tiles. In order to compute gain we take
into consideration information about the number of misses pro-
vided by the shadow tags, memory-level parallelism (MLP),
current capacity allocation outside the home tile and the hop
distance. The potential gain for an application running on tile
i and expanding into tile j is calculated using the following
formula:

Gaini,j,gainWays =
againWays ∗ (k + 1)−1

m ∗ (l + 1)
(1)

where a is the number of misses that potentially can be
avoided with gainWays additional ways, k is the number of
ways outside of the home tile, m is the MLP of the application
running on tile i and l is the hop distance from tile i to j.

The rationale behind factoring in the aforementioned at-
tributes in the gain expression is as follows. Firstly, factoring
in the number of avoidable misses provides an estimate of
reduction in the number of long-latency memory accesses
which influences performance. This value can be read directly
from the shadow tags in the monitoring hardware for a given
core. MLP is factored in because this coupled with the number
of misses helps to get a better estimate of the performance
impact of cache allocation decisions. The MLP estimate is
obtained through performance counters. Lastly, we factor in
the current allocation in remote tiles and the hop distance
to introduce fairness and ensure that no single application
expands its allocation too aggressively.

We use pain as a heuristic measure to predict how an
application will react to losing available cache capacity
(painWays) on the home tile where it is running. The pain

value is never communicated to other cache banks. In order to
compute pain we only take information about misses provided
by the shadow tags and MLP into account. Unlike the formula
for gain, we do not take information about allocations outside
home bank and the distance into account because the goal here
is to protect the capacity allocation in the home tile where the
application is running. Since the pain is not scaled it will grow
faster, if there are more misses, which will enable the home
bank application to protect its allocation. The pain of losing
painWays for the application running on tile j is calculated
using the following formula:

Painj,painWays =
apainWays

m
(2)

where a is the number of misses that will be incurred if the
allocation is decreased with painWays and m is the MLP. Our
evaluation in Section IV shows that the pain/gain heuristics
leads to good cache allocation decisions. We leave further
optimization of the pain and gain measures used in this study
for future work.

3) Monitoring hardware: We adopt Qureshi’s UMON sam-
pled tag array [1] in this work. The original UMON mech-
anism can predict the number of cache misses under all
possible cache allocations (at a single way granularity) based
on the access pattern the application has exhibited before.
The coarse-grained UMONs, that we use, work by tracking
the number of accesses to a shadow tag at coarse-granularity
(corresponding to 4 ways). The number of tags required will
still be the same but the associated way-hit counter overheads
are reduced. The solution also uses dynamic set sampling to
decrease the overhead of the monitoring hardware, like the
original proposal.

4) Hardware-based implementation: The inter-bank and
intra-bank algorithms are implemented in hardware owing to
its low computational complexity (see Section IV-E for de-
tails). To implement the algorithms each LLC bank controller
is provisioned with an ALU capable of computing the pain and
the gain and for comparing the values. The inter-bank scheme
requires, for each bank, a register array with N+2 entries, with
log2(N) bits per entry, to store the pain values of other banks.
In addition, each bank also includes a register array with N+1
entries, with log2(N) bits per entry, to store the id of other
tiles in increasing order of distance to determine the next tile
to send the challenges to. The intra-bank algorithm leverages
the state used by the inter-bank algorithm for establishing
allocations.

C. DELTA Enforcement

DELTA’s enforcement mechanism has two components.
The inter-bank enforcement mechanism utilizes a CBT (the
detailed design is presented later in this section) which con-
tains the mapping between address ranges and cache banks.
The CBT permits the allocations to span multiple banks by
mapping portions of the address space to different banks. The
CBT is accessed in parallel with the L2 cache to determine
in which LLC bank a certain address is mapped to. The
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intra-bank enforcement mechanism comprises a standard way-
partitioning (WP) unit that keeps track of which ways in the
cache bank each core is allowed to insert lines into.

1) Bank partitioning: Each core has a CBT which is
organized as a small fully-associative range table that holds
the information of address range to bank translation. The CBT
works with physical block addresses. We use a simplified
version of the range based organization proposed by Gandhi
et al. [20]. The total amount of storage required for each CBT
is log2(N) × N bits, where N is the maximum number of
distinct ranges, which is equal to the number of cores/banks.
The number of used entries (i.e. ranges) in the CBT is equal
to the number of LLC banks allocated by the local core. Only
in the rare scenario in which a a single core is active, can a
core’s CBT grow to map the majority of the chip resources.
Therefore, in practice this value is much smaller than the total
number of banks and the cost of the associative look-up is
negligible.

The CBT is updated when the allocated capacity for a tile
expands to/retreats from another tile. When the CBT is updated
there is a remapping of address ranges to cache banks. The
size of the address range mapped to a bank is proportional
to the size of the allocation in that cache bank. Examples
illustrating when and how the CBT is updated as allocations
expand/retreat are presented in Section II-D.

There are two important design choices for the CBT: (i)
how many bits to use, and (ii) which bits to use, i.e. how
to map addresses to cache banks. We evaluated different
options and found that by using just 8 bits following the
set index, as shown in Figure 2, it is possible to effectively
distribute the footprint of the application across the different
banks. We reverse the bits before we index into the CBT to
obtain the bank mapping. The reversing operation turns the
least significant bits with the highest entropy to the most
significant, which proves to be a reasonable solution for
mapping addresses uniformly for the applications we consider.

061663

10010111

11101001

151 1

CBT

Reverse

Bits used

Tag

Physical address

Set index
Block 
offset

Fig. 2: Bits from physical address used for bank selection.

2) Way partitioning: During insertion, the WP unit uses a
bitmask to indicate which cores can insert into a given way in
a cache bank. All cores can however access data irrespective
of which way it resides. Way-partitioning enforced using
bitmasks is practical and has been implemented in commodity
systems [19]. The total amount of storage required for each
WP unit is N ×W bits, where N is the number of cores and
W is the number of LLC ways. DELTA can also work with
other fine-grained intra-bank partitioning schemes proposed in
literature [14], [15], [21].

3) Invalidation support: A common strategy to handle
change in the mapping of an address to a LLC location is

to invalidate the line in the cache bank where it currently
resides. This invalidation is done by flushing the cache line.
Several commodity systems provide ISA level support for this
[22]. This is widely used by page coloring mechanisms [23].
However when remapping a large range there is increased
overhead due to additional instructions needed for invalidating
each address. We therefore rely on hardware support for
performing bulk invalidation efficiently. The bulk invalidation
unit works by checking the tags to identify addresses that fall
in the specified range and invalidates them. This approach does
not incur the instruction overhead of cache flushes.

D. Putting it all together

We clarify how the partitioning solution works with the help
of two examples that illustrate the different use cases.

Example 1, Inter-bank expansion. The capacity allocation
expands to a different tile when a challenge is successful.
In Figure 3 we show the process of expansion into a new
tile, as well as the state of the CBT and WP before/after
the change. We assume that tile 4 has capacity allocated in
cache banks in tile 4 and 0, as indicated in the CBT for tile
4. Since, the core in tile 4 sees a considerable gain from
expanding its allocation it issues a challenge to tile 5 (#1).
Tile 5 compares the gain coming from tile 4 with its own
pain of losing cache capacity (#2). Since the gain for tile 4 is
considerably larger, tile 5 decides to assign interDeltaWays
of ways from its allocation to tile 4 and updates its WP unit
(#3). In this case, ways 12-15 are assigned to tile 4 and a
response message is sent to tile 4. On receiving the message
the tile updates its CBT to also include tile 5 (#4). This is
followed by remapping addresses in range 192-255 from tile
4 to tile 5, and invalidating them where they were previously
located (#5). Note that expansion process does not require
invalidations in tile 5.

CBT (Tile 4) Before
Adress range Bank id
0-64 0
64-255 4

L1

L2

L3

NoC Router

Way-partitioning HW

L1

L2

L3

Tile 5

NoC Router

Way-partitioning HW

4.
2.

3.

Tile 4

CBT (Tile 4) After
Adress range Bank id
0-64 0
64-192 4
192-255 5

WP (Tile 5) Before
Way Core id
0-3 6
4-15 5

WP (Tile 5) After
Way Core id
0-3 6
4-11 5
12-15 4

5.

CBTCBT

C4 C5

1.

Fig. 3: Example of expansion.

Example 2, Intra-bank algorithm and retreat. The intra-
bank algorithm determines whether allocations within a bank
expand or shrink. The decision on which partition expands or
shrinks is based on the gain of the different applications that
share the cache bank. Whenever a partition expands or shrinks
the WP unit is updated to reflect the new allocation for the
partitions. A shrink will result in a retreat if a partition loses
all the ways it was assigned in the cache bank. This scenario is
shown in Figure 4. After the intra-bank algorithm is triggered
in tile 5 the algorithm decides that tile 4 must give up the entire
capacity in the cache bank since it has the least gain among
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CBT T(il e4)ef orl A
Adress range Bank id
0-64 0
64-255 4
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Tile 4

CBTe T(il e4)eBl otAl
Adress range Bank id
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WPe T(il e5)eBl otAl
Way Core id
0-3 6
4-13 5
14-15 4 

3.

CBT

5C 51

L3

WP 

CBT

Fig. 4: Example of retreat.

those sharing the cache bank (#1). As a consequence, the WP
unit is changed to show the new configuration where ways
14-15 are reassigned to tile 5. The change triggers a message
back to tile 4 informing about the retreat. The CBT in tile 4
will now be updated (#2). The addresses previously mapped
to tile 5 are remapped, in this example addresses in range 224
to 255 are now remapped back to tile 4. All addresses in the
range will consequently be invalidated in tile 5 (#3).

The detailed evaluation of DELTA is presented in Section
IV. We show in Section IV-E that the overheads introduced
by DELTA are marginal.

E. Support for multithreading

When running multi-threaded workloads containing shared
data, accesses to the same line from two different tiles will end
up inserting the blocks in two different LLC banks, breaking
coherence. To address this, we propose to distinguish between
private and shared data at a page granularity and handle them
differently. Detection of shared pages including cross-process
sharing is performed by the TLB. We adopt a classification
scheme, proposed in R-NUCA [24] and used in other NUCA
schemes [4], to dynamically classify pages as private or as
shared incrementally and lazily. Lines belonging to shared
pages are mapped to the cache banks using a fixed S-NUCA
strategy whereas lines belonging to private pages are mapped
to banks based on the mappings available in the CBT. When
a page is first classified as shared all the lines belonging to
the page are invalidated.

The allocation algorithm also needs a minor change. On
receiving a challenge, the processIDs of the different threads
are compared, and the challenge will only be successful if
they are different. The rationale is to not let threads from the
same application (homogeneous multi-threaded) compete for
capacity since it can adversely impact application progress. We
expect the performance of this extension with multi-threaded
application to be similar to R-NUCA since private data and
most of shared data are dealt with in a similar way. Multi-
threaded workloads are analyzed in Section IV-C.

III. EXPERIMENTAL METHODOLOGY

A. Simulated Architecture

We evaluate our proposal on a 16/64 core tiled CMP
architecture modeled using the Sniper Simulator [25]. Details
about the baseline architecture are shown in Table II. Each tile
has an out-of-order (OOO) core with a private L1 data and
instruction cache, a unified private L2 cache and a LLC bank

of 512KB. The cache latencies assumed have been modelled
using CACTI 6.5 [26].

Cores 16 / 64 cores, x86-64 ISA, 4GHz, OOO,
Nehalem-like, 128 ROB entries, dispatch width 4

L1 caches 32KB, 8-way set-associative, split D/I,
1-cycle latency

L2 caches 128KB private per-core, 8-way set-associative,
inclusive, 6-cycle data and 2-cycle tag latency

LLC 512KB per-tile, 16-way set-associative, inclusive,
9-cycle data and 2-cycle tag latency, LRU

Coherence protocol MESIF-protocol, 64 B lines, in-cache directory
Global NoC 4x4 / 8x8 mesh, 4-cycles hop latency

(3-cycle pipelined routers, 1-cycle links)
Memory controllers 4 / 8 MCUs, 1 channel/MCU, latency 80 ns,

12.6GB/s per channel
DELTA parameters reconfiguration interval iinter=1ms iintra=0.1ms,

gainThreshold=0.5, minWays=4,
interDeltaWays=4, intraDeltaWays=1,
gainWays=4, painWays=4

TABLE II: Configuration of the simulated 16- and 64-core
tiled CMP.

In Section IV-E we demonstrate that state-of-the-art allo-
cation algorithms, Lookahead or Peekahead, cannot compute
locality-aware allocations in a scalable manner. This is because
the time needed to compute allocations and locality-aware
placement far exceeds the 1 ms reconfiguration interval that we
target in this study especially as we scale to larger core counts.
In order to fairly compare our distributed solution against the
centralized solutions, we model an ideal centralized solution
that calculates both allocations and locality-aware placement in
zero time (no overhead). The ideal solution represents an upper
bound on dynamic allocation decisions using the best known
centralized algorithm, Lookahead. We use Lookahead as a
reference since Peekahead too computes the same allocations
as Lookahead albeit with lower overhead. The ideal centralized
scheme uses the DELTA enforcement mechanism to support
locality-aware mapping in banked LLCs. UMONs are used in
each core to measure misses for all possible cache capacity
allocations for each application. The cost of invalidations that
occur due to remapping of addresses to banks (invalidation+re-
fetch) are modelled in detail for both DELTA and the ideal
centralized scheme. In addition, we also evaluate an unpar-
titioned, static NUCA implementation with line-interleaved
LLC addresses (unpartitioned S-NUCA), and private LLC,
with equal static partitioning of capacity per core (private)
for comparison.

DELTA dynamically considers allocations in increments of
32KB from a cache size of 128KB up to 6MB (per application)
for the 16-core configuration and 128KB to 24MB for the
64-core case. Each core reserves a minimum of 128KB (see
Table II) in the LLC to avoid potential back-invalidations due
to the inclusive cache hierarchy.

B. Workloads
We use the entire SPEC CPU2006 suite in our evalua-

tion. The applications are in the format of whole program
pinballs [27]. Workload mixes are constructed by classifying
applications in one of the four categories - cache-insensitive,
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cache-sensitive low, cache-sensitive low medium and thrash-
ing, depending on sensitivity to different cache sizes. The
classification is performed by running each application for 1B
instructions (after fast-forwarding for 1B instructions) with
cache sizes of 128KB, 512KB and 8MB. The applications
that show improvement in IPC of over 10%, as the cache size
increases, are classified as sensitive for a particular cache-
size region. Sensitive applications that show improvement in
the 128KB to 512KB region are classified as cache-sensitive
low and those that also show improvement in the 512KB
to 8MB are classified as cache-sensitive low medium. The
detailed classification is presented in Table III. Lastly, cache
insensitive and thrashing applications experience less than
10% improvement in the 128KB to 8MB range. Among these,
we classify applications with a number of Misses-Per-Kilo-
Instruction (MPKI) above five as thrashing and the rest as
cache insensitive.

Insensitive (I) povray(po),sjeng(sj),namd(na),
zeusmp(ze),GemsFDTD(Ge)

Thrashing (T) bwaves(bw),libquantum(li),milc(mi)
Cache-sensitive low (L) h264ref(h2),gromacs(gr),astar(as),

gamess(ga),lbm(lb),tonto(to),
wrf(wr),leslie3d(le),hmmer(hm)

Cache-sensitive low medium (LM) dealII(de),omnetpp(om),xalancbmk(xa),
gobmk(go),bzip2(bz),gcc(gc),mcf(mc),
soplex(so),perlbench(pe),sphinx3(sp),
calculix(ca),cactusADM(cac)

TABLE III: Classification of SPEC CPU2006 benchmarks.

Name Composition Benchmarks
w1 LM de,om(2),pe,ca,bz,go(2),ca,hm,le,go,bz,gc,so,mc
w2 L+LM bw,sj,na,ze,li,mi,ca,sp,de,om,go,go,bz,gc,mc,pe
w3 T+L to(2),bw(3),lb(2),li(3),h2,mi,gr,as,ga,mi
w4 T+LM delII,bw(3),so,li(2),hm,pe,mi(3),go,om,bz,go
w5 I+L+LM gc,po,Ge,as,pe,wr,ga,cac,to,hm,sj,h2,bz,ze,gr,so
w6 I+T+L+LM na,de,li,gr,wr,so,mi,as,mi,to,ze,om,bw,h2,Ge,hm
w7 I+T+LM sj,bw(2),bz,wr,li(2),gc,mi,de,na,om,ze,mi,go,Ge
w8 I+T+L po,bw(2),h2,sj,li(2),gr,na,mi,as,Ge,ga,wr,lb,mi
w9 I+LM po,om,sj(2),go,na(2),le,ze,go,Ge,bz,wr,ca,sp,gc
w10 I+L po,to,sj,h2(2),na,lb(2),ze(2),gr,Ge,as,wr,ga,po
w11 T+L+LM sp,bw,h2,om,li,gr,go,mi(2),as,hm,bw,ga,le,lb,calulix
w12 random go,lb,ca,sp,bw,go,li(2),ga,h2,ze,to,so,gr,mi,pe
w13 random lb,to,pe,go,gc,mi,li(2),na,h2,cac,ze(2),ca,so,as
w14 random de,bw,mc,li,pe,mi,ca,wr,go,po,hm,na,go,ze,so,Ge
w15 random to(2),po,lb,li,mi,lb,wr,h2,sj,gr,na,as,ze,ga,Ge

TABLE IV: Workload mixes.

We construct a total of 15 workload mixes by combining the
applications from the categories described above. Applications
from each category are picked randomly while not allowing
duplicates unless all applications in a category have already
been picked. Details about workload mixes are presented in
Table IV. We construct workload mixes for 64 cores by
replicating the 16-core workload four times. The applications
in a workload mix are mapped to cores randomly.

C. Methodology

We fast-forward for 8B/2B instructions for the 16/64 core
simulations. Detailed simulations are carried out until all
benchmarks have completed at least 500M/125M instructions
and statistics are reported based on the first 500M/125M
instructions for each application. We simulate fewer instruction
in fast-forward and detailed mode for 64-core CMP to reduce

simulation time. The methodology is in line with earlier works
[4], [14], [15].

D. Metrics

We use IPC as a measure of performance. We report the
geometric mean of IPCs of the applications in a workload,
as a performance metric for the workload. We also report the
following fairness and throughput metrics: average normalized
turnaround time (ANTT) and system throughput (STP) [28].
ANTT is given by 1

N

∑N
i=1

CPIi
CPIi,private

and STP is given by
∑N

i=1
CPIi,private

CPIi
ANTT and STP are commonly used for

performance evaluation of multi-programmed workloads.

IV. EVALUATION

We first compare DELTA against alternative cache organi-
zations and allocation algorithms (described in Section III-A).
Next, we show results for multithreaded applications followed
by the impact of reconfiguration frequency. Finally, we provide
an analysis of DELTA’s overheads.

A. Multi-programmed mixes on 16-core CMP

Figure 5 shows the performance for multi-programmed
mixes normalized to the unpartitioned S-NUCA. On average,
DELTA improves performance by 9% (up to 16%) over
S-NUCA whereas the ideal centralized solution shows an
average improvement of 12% (up to 22%). In comparison, the
private scheme shows an average improvement of 3% over S-
NUCA. The results for comparing the fairness and throughput
of DELTA and the ideal centralized scheme are shown in
Figure 6. On average, DELTA is 2% behind in terms of ANTT
and 5% behind in terms of STP, than the ideal centralized
scheme. Note that a lower value signifies greater fairness with
ANTT while a higher value is equivalent to larger throughput
with STP.

Fig. 5: Performance of workload mixes normalized to unpar-
titioned S-NUCA on a 16-core CMP.

As can be seen in Figure 5, the ideal centralized scheme
is better than DELTA in 11 out of 15 mixes. In four cases
DELTA performs on par or better. In order to understand the
performance gap between the ideal centralized scheme and
DELTA we investigate a single workload in detail. Figure 7
shows the performance of different applications in a single
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Fig. 6: Fairness comparison between ideal centralized and
DELTA.

workload using the ideal centralized scheme, normalized to
DELTA (in gray). In addition, it also shows the performance
of the private scheme normalized to DELTA (in blue). As
can be seen in the figure, most of the applications perform
almost identically with the exception of xalancbmk and soplex.
For these two applications, the ideal centralized solution
performs considerably better than DELTA, by 45% and 35%,
respectively. Note that DELTA performs better than the private
scheme for these two applications by 12% and 36%.

Fig. 7: Normalized performance for applications in w2 on a
16-core CMP.

To understand the trend for xalancbmk and soplex, we
compare the allocations of cache capacity, in terms of number
of ways, made by the ideal centralized scheme and DELTA,
for the different applications in the workload. The ideal cen-
tralized algorithm gives a larger allocation of 42 respectively
50 ways on average to xalancbmk and soplex in comparison
to DELTA which gives 26 and 20 ways. This behaviour can
be attributed to the farsighted nature of the ideal centralized
scheme i.e. it uses information about the entire miss curves for
all applications to determine allocations. DELTA, in contrast,
is nearsighted, i.e. uses a limited window of the miss-rate
curves to determine the pain/gain which influences allocations.
As xalancbmk and soplex do not see a considerable improve-
ment in the limited window, DELTA does not allocate as much
cache capacity as the ideal centralized scheme. The difference
in the size of allocations impacts the performance because

these applications are sensitive to additional cache capacity.
In Figure 8 we show the performance of individual applica-

tions in one of the workloads where DELTA is on par with the
ideal centralized scheme. We see that individual applications
mostly perform as well as or better than the centralized scheme
even though DELTA is nearsighted. The same trend holds also
for the other workloads (w3,w8,w10,w15).

Fig. 8: Normalized performance for applications in w3 on a
16-core CMP.

B. Multi-programmed mixes on 64-core CMP

To investigate how our proposal scales to larger core counts
we evaluate a 64-core CMP. Figure 9 shows the performance
for the individual multi-programmed workload mixes. DELTA,
on average, improves performance by 16% (up to 28%) over
S-NUCA, while the ideal centralized scheme improves per-
formance by 17% (up to 35%). The private scheme performs
better for 64-cores than for 16-cores, but is generally regarded
as an inefficient solution since it cannot handle underutilized
scenarios. The results for comparing fairness and throughput
between ideal centralized and DELTA indicate that the differ-
ence between the two schemes is 1% for STP and less than 1%
for ANTT (not shown). The results also indicate that DELTA
makes good allocation decisions, on par with an ideal scheme,
in spite of the distributed nature of the algorithm that increases
the number of re-configurations (steps) required to span across
all the banks in a CMP.

Fig. 9: Performance of workload mixes normalized to unpar-
titioned S-NUCA on a 64-core CMP.
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Fig. 10: Normalized performance for applications in w2 on a
64-core CMP.

The performance gap between DELTA and the ideal cen-
tralized scheme has diminished on average, compared to the
results for a 16-core CMP. For seven workloads (w3, w5,
w10, w11, w12, w13, w14) DELTA is on par or better than
ideal centralized. For workload w2, as shown in Figure 10, we
observe that DELTA falls behind the ideal centralized scheme
in the 64-core CMP experiments, similar to the trend seen
with the 16-core CMP. For many applications in this workload
DELTA is still better than the ideal centralized scheme but
in the few cases where the reverse is true, the difference in
performance is comparatively larger. For applications such as
xalancbmk and soplex the ideal centralized scheme surpasses
DELTA by giving a larger allocation, because it is farsighted.

We investigate one of the workloads (w13) where DELTA
performs better than the ideal centralized scheme, as shown in
Figure 11. The farsightedness of the ideal centralized scheme
results in it allocating over 250 ways to applications such as
lbm and libquantum. Moreover, the centralized scheme does
not consistently detect the benefit of giving these applications
a large allocation, and switches the cache capacity allocation
between a large and small allocation. In general, giving larger
allocation to a few applications puts severe constrains on the
allocations for the other applications and degrades the overall
performance. DELTA does not suffer from making these un-
advantageous allocations and performs better for the mixes
containing applications like lbm and libquantum.

In summary, the evaluation shows that DELTA performs
almost as well as the ideal centralized scheme as we scale to
64 cores. Furthermore, this demonstrates that a dynamic dis-
tributed scheme can give good allocations, without incurring
the overheads associated with computing allocations centrally.

C. Multi-threaded applications

We estimate the performance of DELTA using SPLASH2
suite in order to understand how the scheme performs with
multithreaded applications. Figure 12 shows the speed-up
obtained by DELTA over the S-NUCA implementation and
compares it to the private cache configuration. We execute
each application on the 16-core CMP and using large input
sets (from Sniper) to obtain performance data for the baselines.
We use number of cycles for the longest running thread within

Fig. 11: Normalized performance for applications in w13 on
a 64-core CMP.

the parallel region, which we identify as the region of interest
(ROI), as a measure of performance.

We follow a two step process to estimate the performance of
DELTA. Firstly, we measure the ratio of private/shared pages
and cache blocks. These results are shown in Table V. For this
we develop a pintool [29] that instruments all loads and stores
in the region of interest to measure inter-thread sharing at
page and cache block granularity. Next, we estimate the perfor-
mance of DELTA by performing a piece-wise reconstruction of
the execution in which private accesses are modeled according
to private LLC baseline’s performance, and shared accesses
are modeled according to the S-NUCA baseline performance.
To simplify, we assume that the LLC accesses are uniformly
distributed across pages. Private pages are reclassified at most
once, and the S-NUCA mapping is never reverted. Hence,
for long running applications this overhead is negligible. We
expect the estimation to be accurate since DELTA maps lines
from private-pages to the private bank and utilizes S-NUCA
mapping for lines from the shared pages.

By design (see Section II-E), the performance of DELTA is
usually between the performance of the S-NUCA and private
baselines, depending on the amount of private/shared pages.
Over the entire SPLASH2 suite, the average performance of
DELTA compared to both the private LLC configuration and
S-NUCA configuration is within 1% for both cases. The actual

Fig. 12: Normalized performance for splash2 on a 16-core
CMP.
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App. barnes cholesky fft fmm lu.cont lu.ncont ocean.cont
Page 8.2 62 33 73 0.5 0.5 38
Block 9.3 66 34 65 0.3 0.3 98.6
App. water.sp radiosity radix raytrace volrend water.nsq ocean.ncont
Page 10 3 5.2 17 5.7 99.8 1.1
Block 70 4.6 10 24 21 91 99

TABLE V: Percentage of private pages and blocks.

performance for each benchmark depends considerably on
the amount of sharing, with variations of up to 20%. For
example, in lu.ncont, which has high ratio of sharing
(>99%), DELTA’s performance is almost equal to the S-
NUCA performance, while the private LLC configuration
suffers performance loss of approx. 10%. On the other hand,
in water.nsq, where almost all pages are private, DELTA’s
performance is equivalent to that of the private LLC configu-
ration, achieving a speed-up of 6% over S-NUCA.

The results in Table V indicate that several benchmarks have
a low amount of private pages as opposed to private blocks.
On reason for this is the existence of shared data, such as
boundary elements in structured grid simulations, in pages that
are mostly private. In general, this will lead to less locality-
optimized cache access for these benchmarks. Due to the
additional costs associated with distant memory accesses (both
in DRAM and in caches), modern HPC software development
encourages programming styles that result in higher number
of private pages. This is designed to ensure threads operate
on local memory thereby reducing the amount of shared
pages [30]. Moreover, an important trend in algorithm design
are Communication-avoiding Algorithms (CAA) [31] which,
attempt to reduce sharing. Hence, we expect the architecture of
DELTA to achieve even better performance on modern multi-
threaded workloads with a considerable amount of private data
in comparison to S-NUCA. Detailed modeling and optimiza-
tion of DELTA for emerging multithreaded workloads is left
for future research.

D. Frequency of reconfiguration

In order to understand the impact of the frequency by which
cache allocations are computed, we simulate a cache partition-
ing solution that uses an ideal implementation of Lookahead
for computing allocations with zero overheads (see Section
III-A for details about the ideal centralized implementation)
at two cache allocation frequencies (1 ms and 100 ms), on

Fig. 13: Impact of frequency of reconfigurations on a 16-core
CMP.

the baseline system. Figure 13 shows the impact of allocation
frequency on performance of five different workload mixes
each comprising 16 SPEC CPU2006 benchmarks (see Table
IV). The results demonstrate that while frequent allocations do
not benefit all workloads, they do provide the opportunity to
improve performance for several of the workloads considered,
because of better adaptation to phase changes.

E. Overheads

We analyze the different sources of overheads in the cen-
tralized scheme and DELTA.

1) Computational overheads: The worst-case time com-
plexity of the Lookahead algorithm is O(N×W 2) where N is
number of cores and W is number of ways. We can consider
the algorithm to have cubic complexity, since the number of
ways needs to be at least as many as the number of cores (for
way-partitioning). The best case complexity is O(N×W ), i.e.
quadratic. Peekahead, which considers only the points of the
miss rate on a convex hull, has a complexity of O(N×W ), in
the best/average case and O(N ×W 2) in the worst-case. The
time to compute cache allocations for different core counts
using Lookahead and Peekahead, with 16 ways per core, is
presented in Table VI.

The Lookahead algorithm takes 5.32 ms on average to
compute allocations for a CMP with 16 cores (16-tile CMP
with each bank containing 16 ways). Peekahead takes 0.89
ms on average for the same scenario. For larger core counts
the overhead is even larger. Note that the data presented in
the table do not take into account the additional computations
needed to perform locality-aware data placement, which for
large core counts has been shown to exceed capacity allocation
overheads [32].

For DELTA the complexity can be attributed to the inter-
and intra-bank allocation algorithm. The pain and gain com-
putation step takes constant time, i.e. O(1) complexity. The
inter/intra bank allocation algorithm requires finding the core
with the MIN and MAX gain/pain values. This operation is
similar to finding the min. and max. in an unsorted array. The
simplicity of the DELTA reconfiguration algorithms enables a
hardware implementation with low overheads. Even if the al-
gorithms were to be implemented in software, the overhead of
DELTA’s inter- and intra-bank allocation algorithms assuming
a 64-core CMP would be 0.015 ms and 0.007 ms, three orders
of magnitude lower than state-of-the-art.

2) Message overheads: We calculate the number of addi-
tional messages sent in the worst-case at each reconfiguration
interval (assuming iinter = 1ms and iintra = 0.1ms) in a
16-core CMP. For the centralized scheme the total number
of messages is 2 × N , where N is the number of cores
in the system, and this results in 16 × 2 = 32 additional

Cores 2 4 8 16 32 64
Lookahead 0.02 0.05 0.46 5.32 73.07 1230
Peekahead 0.03 0.07 0.23 0.89 3.34 13.12

TABLE VI: Overhead for Lookahead and Peekahead in ms
per invocation.
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messages. DELTA however needs 2 × N messages for intra-
bank allocation and N×10×2 for inter-bank allocation which
results in a total of 352 messages. However, the number of
messages on the NoC pertaining to L2 misses alone, during
the same interval, is 320K on average. This indicates that
the overhead in terms of additional messages for DELTA is
marginal (∼0.1%), even in the worst-case.

3) Invalidation overheads: Invalidations are needed when
remapping addresses to LLC locations regardless of whether
the allocation algorithm is centralized or distributed. Invalida-
tion overheads can be primarily attributed to two causes: the
overheads of performing the invalidations and how often/much
data need to be invalidated. We address the first by performing
bulk invalidations (see Section II-C). We mitigate the second
by only requiring invalidations for inter-bank reconfigurations.
Intra-bank reconfigurations do not lead to invalidations except
when a retreat is triggered in rare cases (see Section II-D).

V. RELATED WORK

Cache Partitioning: Several solutions have been proposed
in literature for cache resource partitioning. Way partitioning is
the most popular and it is implemented in commodity systems
[2], [19], [33], [34]. It is a simple technique that works by lim-
iting which ways a core can insert into. The major limitation
is that it requires cache associativity to scale with the number
of cores, which is not easily done [35]. Set partitioning is
another approach, which can be implemented with hardware or
software support [8], [9], [23], [36]. Hardware based schemes
require flexible indexing of the cache. Software schemes use
page coloring and rely on OS support for partitioning. Page
coloring, however, cannot support superpages and incurs high
overhead for reconfiguration. The aforementioned solutions
also have the drawback of only supporting a limited number
of coarse-grained partitions.

Fine-grained partitioning solutions can be broadly classified
in three categories, i) hybrid techniques [10], ii) clustering
techniques [11], [12] and iii) replacement-based techniques
[13]–[16]. Hybrid techniques like SWAP, combine set and way
partitioning in order to get more fine-grained partitions. Clus-
tering techniques like KPart, group applications into clusters
and then assigns clusters to way partitions, to emulate fine-
grained partitioning. The replacement-based techniques adapt
the cache replacement policy to enable fine-grained partitions
with different sizes. However, in the context of tile-based
CMPs, these approaches leave room for further improvement
since they do not take locality into account.

A few proposals performs locality-aware placement for tiled
CMPs [4], [18]. CloudCache [18] uses virtual private cache
partitions that span across banks and performs locality-aware
placement of the partitions. The drawback of this proposal is
that it uses N-chance spilling [37] on evictions and requires
costly broadcasts. Jigsaw [4] lets software define shares and
then maps data to them by assigning a share id to every page
in the application. Allocation and enforcement is done at share
granularity instead of application/core granularity as in prior
proposals. The proposal relies heavily on software support.

Furthermore, in the aforementioned solutions the allocation
decision is made by a central hardware or software component
which limits scalability.

To lower the overhead of a central component, XChange
[38] uses a market-based approach where some of the com-
putations for multi-resource management are done in each
core/bank. However when used for partitioning a single re-
source, XChange will result in an equal partitioning. Moreover
the scheme is based on a shared L2 cache structure and thus
does not enable locality-aware placement, unlike DELTA.

Non-Uniform Cache Access (NUCA): Efficient usage of
NUCA caches has been an extensively researched topic [24],
[39]–[45]. The simplest approach, Static NUCA (S-NUCA),
spreads the data over all cache banks with a fixed mapping
and exposes variable access latencies.

D-NUCA schemes try to combine the best from private and
shared cache designs, where private designs have isolation
but suffers from under-utilization and shared designs have
dynamic utilization but suffers from long on-chip latencies
and interference.

A few proposals, like DELTA, try to minimize long on-
chip distance. They mostly focus on multi-threaded applica-
tions and achieve this by replication and placement, where
frequently used lines are copied and placed in the nearest
cache bank [42]–[44]. Spilling has been proposed as a way
to overcome the problem of underutilized private caches. It
works by inserting a copy of a line in another cache bank
before it is evicting from the cache hierarchy [37], [46].

Both spilling and replication have two problems. Firstly,
both operations decrease the capacity of the cache, where
a tradeoff is made between latency and capacity. Secondly,
costly directory lookups are needed in order to find data. In
our proposal, we avoid both these drawbacks since we place
data in a locality-aware way without replicating and do not
need a directory to find the data.

Some D-NUCA proposals implement a different partitioning
strategy, where separation is done between shared and private
regions instead of applications [47]–[50]. Elastic Cooperative
Caching (ECC) [50] uses a distributed approach to divide the
cache bank between shared/private using way partitioning. The
scheme also uses spilling to extend capacity to other banks and
therefore inherits the drawbacks of spilling. In contrast to this
work we enforce strict per application partitions that can span
multiple banks.

R-NUCA [24] classifies accesses into three categories (in-
structions, private data, shared data) and uses static rules
for placement and replication for each type. The drawbacks
of the scheme is that it uses a static placement scheme
for the different classes not taking dynamic nor application
specific behaviour into account, which DELTA does. Note that,
compared to DELTA, none of the aforementioned techniques
give strict interference protection for data.

Coherence framework: CDR [51] reduces the scope of cache
coherence from global to VM-, application-, or page-level to
enable shared memory between servers or to minimize on-
chip distances in a manycore. Unlike DELTA it does not
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provide strict cache partitioning. Furthermore, creation of
sharer domains does not take the cache requirements of each
application into account but instead allows the different threads
of the same application to form a domain.

To the best of our knowledge, DELTA is the first distributed
solution for fine-grained and locality-aware cache partitioning
which permits permits hardware implementation and scales to
many-core architectures.

VI. CONCLUSIONS

We present DELTA, a fully distributed and locality-aware
partitioning solution for tile-based CMPs. The solution is scal-
able through its novel challenge-based allocation algorithm,
which allocates cache capacity in a distributed way based on
the performance gain of each application.

We show that the distributed algorithm has low computa-
tional overhead which permits hardware implementation and
enables frequent reconfiguration. The allocation algorithm is
supported by a flexible enforcement mechanism that enables
locality-aware placement. Our evaluation demonstrates that the
distributed partitioning solution performs close to an ideal
centralized solution and scales to large core counts.
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Abstract—Reducing the average memory access time is crucial
for improving the performance of applications running on multi-
core architectures. With workload consolidation this becomes
increasingly challenging due to shared resource contention.
Techniques for partitioning of shared resources - cache and
bandwidth - and prefetch throttling have been proposed to
mitigate contention and reduce the average memory access time.
However, existing proposals only employ a single or a subset of
these techniques and are therefore not able to exploit the full
potential of coordinated management of cache, bandwidth and
prefetching. Our characterization results show that application
performance, in several cases, is sensitive to prefetching, cache
and bandwidth allocation altogether. Furthermore, the results
show that managing these together provides higher performance
potential during workload consolidation as it enables more
resource trade-offs. In this paper, we propose CBP a coordination
mechanism for dynamically managing prefetching throttling,
cache and bandwidth partitioning, in order to reduce average
memory access time and improve performance. CBP works by
employing individual resource managers to determine the appro-
priate setting for each resource and a coordinating mechanism
in order to enable inter-resource trade-offs. Our evaluation on a
16-core CMP shows that CBP, on average, improves performance
by 11% compared to the state-of-the-art technique that manages
cache partitioning and prefetching and by 50% compared to the
baseline without cache partitioning, bandwidth partitioning and
prefetch throttling.

I. INTRODUCTION

Memory access time has a significant impact on application
performance. Effective utilization of the memory system is
therefore necessary. Typically, resources in the memory system
(e.g., last-level cache (LLC) and off-chip memory bandwidth)
are shared among multiple cores as they help in improving
resource utilization during workload consolidation. However,
sharing can detrimentally impact average memory access time
and performance due to resource contention. Prior work has
proposed partitioning of shared resources – cache [1]–[5] and
bandwidth [6]–[8] – and prefetch throttling [9] to mitigate
contention, reduce or hide memory access time and improve
performance.
Recent work has proposed combining cache and bandwidth

partitioning [10]–[12], prefetching and cache partitioning [13],
[14] and bandwidth partitioning and prefetching [15], [16] to
provide additional performance gains. The key insight from
this work is that coordinated management of two techniques is
more advantageous than considering each in isolation because
of the trade-offs that are made possible. However, prior works

have not considered combining all three techniques. This
misses out on several opportunities. The goal of this paper
is to explore the potential of combining all three techniques
and thereby facilitate inter-resource interactions and tradeoffs.
In this paper we show that coordinated management of

cache partitioning, bandwidth partitioning and prefetch throt-
tling provides the following advantages. Firstly, it makes it
possible to address more applications and cover a broader
range of workloads, as shown in our in-depth performance
characterization (see Section II). The results show that 90% of
the applications in the SPEC CPU2006 suite have performance
sensitivity (over 10% change in IPC) to at least one of the
techniques, and 70% are also sensitive to multiple techniques.
Secondly, managing these techniques jointly opens up the
opportunity to new and improved trade-offs. There are syn-
ergistic interactions between the techniques and they cannot
be realized if cache partitioning, bandwidth partitioning and
prefetch throttling are not jointly managed.
As an example, consider the case of a workload comprising

of two applications. The first application, lbm, is sensitive
to bandwidth and prefetching while the second, xalancbmk,
is sensitive to cache size and has lower performance when
prefetching is enabled. The best solution when managing all
three techniques is to give xalancbmk a large cache alloca-
tion, small bandwidth allocation and disable the prefetcher,
while giving lbm a large bandwidth allocation, small cache
allocation while keeping the prefetcher active. Figure 1 shows
the performance from coordinated management of all three

Fig. 1: Workload with lbm and xalancbmk. Total bandwidth
16 GB/s, total cache size 2MB. Executing applications for
1B instructions, more details in Section IV. Settings: lbm-
prefething active, 12 GB/s, xalancbmk- prefetcher inactive, 4
GB/s, determined from characterization (Section II). Cache
partition sizes are decided dynamically.
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techniques (cache+bw+pref ) compared to managing a subset
of the techniques. The results show that the solution managing
all three techniques is better than others managing two of
the techniques, and leads to an additional performance gain
of 15%. The main challenge of coordinately managing all
three techniques is the complexity of evaluating all possible
allocations dynamically and determining the best possible
allocation while exploiting the large number of possible trade-
offs.
Guided by our characterization results, we propose CBP, a

technique for dynamic and coordinated management of Cache
partitioning, Bandwidth partitioning and Prefetch throttling
for multi-programmed workloads. CBP consists of three lo-
cal controllers, one for each resource, that together with a
coordination mechanism manages and allocates the resources.
CBP dynamically tunes the three local resource controllers
in an iterative fashion in order to address the complexity
of navigating the multi-resource search space. While we
explore different coordination policies, the one that works best
is the following: First, cache and bandwidth are allocated.
The cache and the bandwidth allocation controllers provide
a minimum allocation to all cores to ensure that requests
from non memory-intensive applications do not experience
significant delay because of requests from other co-running
applications. The remaining cache capacity is allocated with
the goal of minimizing the aggregate number of LLC misses
while the remaining bandwidth is allocated based on the
queuing delay. This allocation is carried out mainly based on
the statistics collected from the previous interval. As a next
step, the prefetch setting is determined for the current interval
by sampling the impact of different prefetch settings on
performance for the current allocation of bandwidth and cache.
The prefetcher performance influences the next reallocation of
cache space and bandwidth. The feedback mechanism between
the different techniques dynamically adapts the allocations
in order to reach a good configuration depending on the
characteristics of the individual applications in the workload.
Our approach of combining local resource controllers with a
feedback mechanism reduces the computational complexity.
In summary, we make the following contributions:
(a) We present an in-depth characterization of the perfor-

mance impact of cache, bandwidth and prefetching on the en-
tire SPEC CPU2006 suite. Our characterisation results provide
several insights: i) a majority of the applications (over 90%)
are sensitive to one or multiple techniques, ii) managing cache,
bandwidth and prefetch opens up opportunities for exploiting
more trade-offs and improving performance for consolidated
workloads, and iii) managing cache, bandwidth and prefetch
jointly has the potential to outperform combinations of two of
the techniques.
(b) We propose CBP, a technique to dynamically manage

the three resources in coordination. The solution is based on
simple heuristics in order to sidestep the complexity associated
with evaluating all possible configurations and choosing the
best performing configuration. CBP works by employing indi-
vidual resource managers to determine the appropriate setting

for each resource and a coordinating mechanism to enable
inter-resource trade-offs.
(c) We evaluate our solution with multi-programmed work-

loads on a 16-core tiled CMP. CBP improves performance by
up to 36% (geom. mean 11%) compared to the state-of-the-
art technique that manages cache partitioning and prefetching
in a coordinated manner and by up to 86% (geom. mean
50%) compared to an S-NUCA without cache partitioning,
bandwidth partitioning and prefetching.
The rest of the paper is organized as follows. Section II

motivates the need for a coordinated approach using cache
partitioning, bandwidth partitioning and prefetch throttling.
Section III describes our proposed solution in detail. We then
discuss the methodology in Section IV and Section V presents
the evaluation of the proposal. We provide an overview of
related work in Section VI and conclude in Section VII.

II. CHARACTERIZATION
In order to motivate the need for coordinated management

of cache partitioning, bandwidth partitioning and prefetch
throttling, we perform a detailed characterization study of
applications in the SPEC2006 CPU suite. The aim of this study
is to: i) characterize applications to determine the extent to
which they are performance sensitive to cache, bandwidth and
prefetch settings, ii) understand the different resource interac-
tions, their impact on performance and the inter-resource trade-
offs that are possible, and iii) demonstrate the performance
potential of coordinated management of all three resources
over a subset of resources.

A. Sensitivity to cache, bandwidth and prefetch settings
To understand the sensitivity of applications to cache, band-

width and prefetch settings, we model a system consisting of
one out-of-order core with a 3-level cache hierarchy using
the Sniper simulator [17]. Details about the methodology are
provided in Section IV. For this experiment, the baseline LLC
and bandwidth allocation is 512 KB and 4 GB/s, respectively.
We run the application in steady-state for 1B instructions and
use IPC as a measure of performance.
Figure 2 shows the performance impact of changing

the cache allocation, bandwidth allocation and enabling of
prefetching normalized to the baseline allocation without
prefetching. Note that we only change the setting for one
resource at a time. In Figure 2a, C-L and B-L represent low
allocation settings where the cache allocation is decreased to
128 KB and the bandwidth allocation is decreased to 1 GB/s,
respectively, while prefetching is disabled. Similarly, in Figure
2b, C-H and B-H represent high allocation settings, where
the cache allocation is increased to 2MB and the bandwidth
allocation is increased to 16GB/s, while prefetching is dis-
abled. Finally, P-B represents the setting where prefetching
is enabled with the baseline cache and bandwidth allocation.
We classify applications as performance sensitive to a specific
resource if the modified allocation results in a 10% deviation
from the baseline IPC. We refer to applications that are
performance sensitive to a change in cache allocation as cache
sensitive (CS), sensitive to change in bandwidth allocation as

214

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on September 12,2022 at 15:27:52 UTC from IEEE Xplore.  Restrictions apply. 



(a) Slowdown when decreasing the cache size to 128kB (C-L), and
slowdown when decreasing the bandwidth allocation to 1GB/s (B-L)
in comparison to the baseline allocation, with prefetching disabled.

(b) Performance improvement from increasing cache allocation to
2MB (C-H), and increasing bandwidth allocation to 16GB/s (B-H)
in comparison to the baseline allocation, with prefetching disabled.
Performance improvement from enabling prefetching for the baseline
allocation (P-B).

Fig. 2: Performance impact of changing cache size, bandwidth allocation and prefetcher setting. There are 6 CS-BS-PS
applications, 8 CS-BS, 6 BS-PS, 3 CS, 3 BS and 3 applications are insensitive (I) to all three techniques.

Application CS BS PS Application CS BS PS
astar bwaves
bzip2 cactusADM
calculix dealII
gamess GemsFDTD
gcc gobmk
gromacs h264ref
hmmer lbm
leslie3d libquantum
mcf milc
namd omnetpp
perlbench povray
sjeng soplex
sphinx3 tonto
wrf xalancbmk
zeusmp Count 17 23 12

TABLE I: Summary of performance sensitivity to cache,
bandwidth and prefetch setting. Note that the classification
of applications is based on the specific settings for cache,
bandwidth and prefetch that we have evaluated.

bandwidth sensitive (BS) and sensitive to prefetch throttling
as prefetch sensitive (PS). Table I summarizes the sensitivity
of the applications to the three resources.
The sensitivity results for cache size show that nearly 60%

of the applications (17 out of 29) are sensitive to changes in
cache allocation. The extent to which applications are perfor-
mance sensitive varies greatly with a performance increase
of up to 4x in some cases. Furthermore, a larger number
of applications are sensitive in the low allocation setting in
comparison to high allocation setting (17 compared to 11).
The sensitivity results for bandwidth allocation also shows a
similar trend, as more applications are sensitive in the low
allocation setting (23 compared to 15). Also, the extent of
performance sensitivity varies greatly with an increase of up
to 3x. The sensitivity results for prefetch throttling indicates
that nearly 38% of the applications (10 out of 29) are sensitive
to prefetching and experience a speedup. However, some
applications (2 out of 29) suffer from a slowdown due to
prefetching. In summary, we make the following observation:

OBSERVATION 1. In SPEC CPU2006 suite 90% of the
applications are sensitive to one resource, while 70% are
sensitive to multiple resources and the extent of sensitivity

varies greatly.

B. Inter-resource interactions and trade-offs
Next, we investigate inter-resource interactions and trade-

offs that are enabled when jointly managing cache, bandwidth
and prefetching. We focus on intra-application resource inter-
action initially. There are four possible types of interactions
within an application: cache-bandwidth-prefetch, bandwidth -
prefetch, cache - prefetch and cache - bandwidth.
Regarding the cache-bandwidth-prefetch trade-off, we want

to find out how the performance impact from prefetching
varies with the allocation of cache and bandwidth. Figure
3 shows the performance impact of prefetching for three
different cache/bandwidth settings normalized to the respective
baseline setting without prefetching. The cache and bandwidth
setting for an application in a low allocation scenario (P-L)
is 128KB and 1GB/s, the baseline allocation scenario (P-B)
setting is 512KB and 4GB/s while the high allocation scenario
(P-H) setting is 2MB and 16GB/s.
For some applications, lower bandwidth and cache allo-

cation leads to higher sensitivity for prefetching as seen in
hmmer. This is because avoiding a miss altogether, as a
consequence of accurate prefetching, can have a larger impact
in low allocation settings where the bandwidth is scarce and
the memory queuing delays tend to be longer. Also, there
are applications like gcc which experience higher prefetch
sensitivity with a larger cache and bandwidth allocation. The

Fig. 3: Performance impact of enabling prefetching relative
to allocation of cache and bandwidth, for allocation settings;
L:128kB,1GB/s B:512kB,4GB/s H:2MB,16GB/s
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(a) IPC with and with-
out prefetching for different
bandwidth allocation.

(b) Performance improvement
from prefetching depending on
cache allocation.

(c) IPC with and without
prefetching for different cache
allocation.

(d) Performance improve-
ment from increasing cache
allocation to 2MB depend-
ing on bandwidth allocation.

Fig. 4: leslie3d - example of interactions and its impact on performance within a single application.

results indicate that applications tend to be prefetch sensitive
in some settings and prefetch insensitive in others. We make
the following observation:
OBSERVATION 2. Allocation of cache and bandwidth
influences prefetch sensitivity. Furthermore, applications
tend to be prefetch sensitive in some settings and prefetch
insensitive in others.

In the interest of space we use leslie3d as a representative
example to illustrate the other pairwise resource interactions
and trade-offs, since it is sensitive to all three techniques.
Note that the baseline setting will be used for the resources
unless specified otherwise. The bandwidth - prefetch inter-
action manifests in two different ways. Firstly, prefetching
typically increases the number of memory accesses and this in
turn increases the bandwidth pressure. In the case of leslie3d
prefetching results in a 15% increase in the number of memory
requests in comparison to the baseline. Note that prefetch
misses, i.e. prefetched blocks that are evicted before use,
can result in a further increase in pressure on the mem-
ory bandwidth. Secondly, the performance improvement from
prefetching can be influenced by the bandwidth allocation.
The results in Figure 4a show the performance for different
bandwidth allocations with and without prefetching. We make
the following observation:
OBSERVATION 3. A larger bandwidth allocation can com-
pensate for increased bandwidth demands, due to inaccurate
prefetches, leading to increased performance with prefetching.

The cache - prefetch interaction also manifests in two
main ways. Firstly, the performance loss from reduced cache
allocation can be offset if prefetching is effective. Figure 4c
shows the IPC for different cache allocations with and without
prefetching. The results show that the performance of a 128KB
allocation with prefetching is better than a 512KB allocation
without prefetching. Secondly, larger cache sizes (if it is used
efficiently) can lead to higher speedup from prefetching. Fig-
ure 4b shows the performance improvement from prefetching
with different cache allocations normalised to the respective
cache allocation without prefetching. The results show that
prefetching is effective with lower cache allocation and that

its effectiveness can increase with additional allocation. The
reason for this behaviour is that a larger cache reduces the
number of memory accesses which has the same effect as
increasing the available bandwidth, i.e. a lower queuing delay,
which is more forgiving when there is an increase in memory
accesses caused by inaccurate prefetches (in leslie3d there is a
15% increase in dram accesses caused by prefetching). These
results lead to the following observation:
OBSERVATION 4. A trade-off can be made between either
increasing cache size or enabling prefetching, leading to the
same performance, for applications which are performance
sensitive to both cache and prefetching.

As for the cache - bandwidth interaction, a lower bandwidth
allocation can result in a larger sensitivity to cache size. Figure
4d shows the performance improvement from increasing the
cache allocation from 512kB to 2MB with different band-
width allocation settings. The results show that performance
improvement from additional cache allocation is much higher
in low bandwidth allocation settings (see the result for 1GB/s
bandwidth allocation). This is because the average cost of a
miss is much higher in the case of lower bandwidth allocation.
The results also show that a large cache allocation can reduce
the performance sensitivity to bandwidth allocation (see the
result for 16GB bandwidth allocation). These results lead to
the following observation:
OBSERVATION 5. A trade-off can be made between either
increased cache space or increased bandwidth allocation, for
applications which are performance sensitive to both cache
and bandwidth.

We now describe how the observed intra-application interac-
tions and trade-offs can be leveraged in the inter-application
setting for multi-programmed workloads. Let us revisit the
example of running a simple workload comprising two appli-
cation (lbm and xalancbmk) on a dual-core system with 2MB
LLC capacity and 16GB/s bandwidth, discussed in Figure
1. For achieving the best aggregate performance we expect
xalancbmk to get the majority of the cache (nearly 1.75MB),
while lbm is given a smaller cache allocation of 256KB. For
bandwidth, we would expect lbm to have a large allocation
(12GB/s) of the available bandwidth and xalancbmk to get a
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smaller allocation (4GB/s). This is reflected in Observation
5 about the trade-off between cache and bandwidth where
we would prioritize the application that shows the highest
sensitivity for the resource. Furthermore, as reflected in Obser-
vation 2, we expect prefetching to be more effective for lbm
since it has a large allocation of bandwidth. In the case of
xalancbmk, prefetching leads to lower performance regardless
of the allocation of cache and bandwidth.

C. Generalizability of performance characterization

The results in the performance characterization are based
on a range of configurations for cache (128KB up to 16MB)
and for bandwidth (1GB/s up to 16GB/s). This range of
explored configurations represents common design points in
existing multicore chips. We do not expect that a wider range
of configurations to fundamentally change the observations.
We investigate the impact of using two other prefetchers,
GHB [18] and AMPM [19]. The average performance impact
from prefetching increases from 6% using the stride prefetcher
to 10% with GHB and to 19% with the AMPM prefetcher.
With the AMPM prefetcher 16 applications are positively per-
formance sensitive compared to 10 applications with the stride
prefetcher. We show the impact of using these prefetchers
with CBP in Section V-A. The results show that using an
aggressive prefetcher increases the performance sensitivity and
the potential for coordinated management as well.

D. Potential for coordinated management
In order to show the potential for coordinated management

of cache, bandwidth and prefetch throttling we run 640 ran-
domly generated workloads each comprising 4 SPEC 2006
CPU applications. We compare the performance of jointly
managing all the three resources to other resource managers
that only manage a subset of these resources. For this ex-
periment the baseline allocation of cache and bandwidth for
each application is 512kB and 4GB/s. We use an exhaustive
search algorithm to find the best static configuration (over
1B instructions) for the different resources when running
each workload. Figure 5a shows average (geometric mean)
performance with different resource managers normalized to
the baseline settings without prefetching. equal on, depicts the
performance when prefetching is enabled for all applications
and improves performance by 6% while only pref, depicts
the performance when prefetching is selectively activated and
improves performance by 9%. cache+bw+pref results show
that coordinately managing cache partitioning, bandwidth par-
titioning and prefetch throttling improves performance by 5%
compared to the best combination of two techniques (22%
compared to 17%).
Figure 5b shows the number of workloads (among the 640

workloads considered) that experience a performance gain of
at least 10% using the different resource managers discussed
previously. The results show that 90% (597) of the workloads
are sensitive to the resource manager that jointly manages
all three techniques. A smaller fraction of the workloads are
sensitive to resource managers that manage a subset of these

(a) Performance potential of using
different resource managers.

(b) Fraction, of the work-
loads, with at least 10% per-
formance improvement.

Fig. 5: Potential for coordinated management measured using
640 random workloads of 4 SPEC CPU2006 applications. Per-
formance is obtained using an exhaustive search algorithm that
evaluates bandwidth settings (2GB/s, 4GB/s, 6GB/s), cache
settings (256kB, 512kB, 1024kB) and prefetching settings
(active/inactive), in conjunction, to determine the resource
allocation for each application in the workload that maximizes
aggregate performance.
techniques (77% are sensitive to cache+pref resource manager
and 69% are sensitive to the cache+bw resource manager).
In summary, the results from the characterization study

demonstrate that around 90% of applications in the SPEC
2006 CPU suite are sensitive to different resources and that
coordinately managing them opens up new possibilities for
improving performance by trading resource allocations. Fur-
thermore, jointly managing these resources has the potential to
cover a broader range of workloads and outperform resource
managers that manage a subset of resources. In the next section
we will discuss how the proposed resource manager, CBP,
determines cache, bandwidth and prefetch settings for different
applications in a workload.

III. CBP RESOURCE MANAGER

Section III-A provides an overview of the CBP resource
manager. Section III-B discusses the individual resource con-
trollers while Section III-C describes how the coordination
mechanism ties the local resource controllers together. Finally,
the implementation and overhead of the proposed mechanism
is discussed in Section III-D.

A. Overview

CBP is a coordinated mechanism for dynamically managing
cache partitioning, bandwidth partitioning and prefetch throt-
tling. The design consists of one local controller for each of
the three techniques, and a coordination mechanism, as shown
in Figure 6.
The cache allocation controller estimates the number of

misses for different cache sizes using auxiliary tag directories
(ATDs) [1] and uses this as input for determining cache
allocation. The cache allocation per application is determined
such that it reduces the aggregate number of cache misses for
the entire workload. The bandwidth allocation controller uses
memory request queuing delay experienced by the applications
as input and allocates the available bandwidth in proportion
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Fig. 6: Overview of CBP resource manager.

to the delay. The bandwidth allocation controller, assigns a
larger allocation of the available bandwidth to applications that
experience longer queuing delay, and a comparatively lower
allocation to those that experience shorter queuing delays.
Note that the cache and the bandwidth allocation controllers
provide a minimum allocation to all applications to ensure that
requests from applications that are not memory-intensive do
not experience significant delay because of requests from other
co-running applications. Lastly, the prefetch controller samples
IPC with and without prefetching to determine whether the
prefetcher should be enabled/disabled for each application.
The three techniques are dynamically tuned using the coor-

dination mechanism in an iterative manner such that the local
controller takes into consideration the decisions taken by the
other controllers.

B. Local resource allocation controllers
A partitioning solution for shared resources like cache and

bandwidth typically comprises two components: allocation
policy, that determines how a resource is divided among mul-
tiple co-running applications, and an enforcement mechanism,
that enforces the partitioning decision. Similarly, prefetch
throttling involves a policy to determine the best prefetch
setting to use and a mechanism implemented in hardware
to enforce the setting. In the context of CBP, the policy
component is of particular interest because it enables inter-
resource trade-offs. We discuss the allocation policy in this
section and defer the details of the enforcement mechanism to
Section III-D.

1) Cache partitioning: The cache allocation controller uses
the Lookahead algorithm [1], to determine cache allocation. In
a nutshell, the algorithm computes the utility for each appli-
cation where utility is the measure of how many additional
misses can be reduced with allocation of cache ways. It then
computes the number of ways that maximizes the utility for
each application (while ensuring this is less than the total
number of ways available for allocation). Finally, it compares
the utility values for the different applications, determines the
application that has the highest utility and assigns the pre-
computed number of ways that maximizes the utility for that
application. The process repeats, with recomputation of utility
for each application and reassignment of available cache ways
to the application that has the largest utility, until the rest of

Algorithm 1: Bandwidth allocation controller pseudo-code
Input : A list queuingDelayPerApplication
Output: A list bandwidthAllocationPerApplication

1 At time period reconfiguration interval;
2 remainingBandwidth = (totalBandwidth-

min bandwidth allocation*totalNumberOfCores
totalDelay = 0;

3 for i← 0 to totalNumberOfCores−1 do
4 totalDelay += queuingDelayPerApplication[i];
5 bandwidthAllocationPerApplication[i] =

min bandwidth allocation;
6 end
7 for i← 0 to totalNumberOfCores−1 do
8 bandwidthAllocationPerApplication[i] +=

(queuingDelayPerApplication[i]/totalDelay) *
remainingBandwidth;

9 end

the available capacity is distributed. The allocation controller
relies on sampled ATDs to estimate, based on past behaviour,
the number of misses that can be avoided with additional
allocation of cache ways for each application. In order to
adapt to an inclusive cache hierarchy, we assign a minimum
allocation of cache space (min ways) to all the applications
before distributing the remaining capacity.

2) Bandwidth partitioning: We propose a bandwidth al-
location algorithm, that partitions bandwidth proportional to
the memory queuing delay experienced by each application.
The pseudo-code for the proposed bandwidth allocation con-
troller is outlined in Algorithm 1. The controller assigns a
minimum bandwidth allocation (min bandwidth allocation)
for each application. The minimum allocation is important
because it ensures that the less memory intensive applications
have a low memory latency. A sensitivity study for the
minimum bandwidth parameter is presented in Section V-C3.
The remaining bandwidth is set for distribution among the
applications (see line 2). The algorithm computes the total
queuing delay by summing up the individual queuing delays
experienced by each application (line 4) while assigning the
minimum allocation to each application (line 5). As the next
step, the remaining bandwidth is allocated proportionally to
the queuing delay experienced by the application (line 7-9).
For precision we need performance counters for monitoring
queuing delays similar to the performance counters for L2
stall cycles (PMU event “STALLS L2 PENDING”) which are
available in Intel processors [20].

3) Prefetch throttling: The prefetch throttling policy deter-
mines the best prefetcher settings for each application. The
pseudo-code for the prefetch throttling controller is outlined
in Algorithm 2. The algorithm considers two possible settings
– the prefetcher enabled vs. disabled – but can easily be
extended to support other aggressiveness settings as well. The
algorithm uses the sampled IPC values, for each application
obtained, with different prefetcher settings over a sample pe-
riod (prefetch sampling period) as input. The algorithm first
computes the speedup from prefetching for each application
using the sampled IPC values. If the speedup is below a
threshold (speedup threshold) the prefetcher is deactivated
for the next prefetch interval (prefetch interval) (line 3-4). If
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Algorithm 2: Prefetch throttling controller pseudo-code
Input : Two lists ipcWithPrefetchingActive,

ipcWithPrefetchingInactive
Output: A list prefetchSettingPerCore

1 At time period prefetch interval;
2 for i← 0 to totalNumberOfCores−1 do
3 if (ipcWithPrefetchingActive[i]/

ipcWithPrefetchingInactive[i] >
speedup threshold then

4 prefetchSettingPerCore[i] = 0;
5 else
6 prefetchSettingPerCore[i] = 1;
7 end
8 end

the speedup is above the threshold prefetching is activated
for the next prefetch interval (line 6). The prefetch-throttling
controller is generic enough to support any type of prefetcher.

C. Coordination Mechanism

The goal of the coordination mechanism is to ensure that
each local controller takes into account the decisions taken
by other controllers. This is necessary to exploit the trade-
offs outlined earlier in Section II. There are two essential
tasks carried out in order to establish this: i) inter-controller
interaction ii) controller ordering.

Inter-controller interaction: Figure 7 provides an
overview of the interactions between the different resource
allocation controllers. Firstly, we describe how the bandwidth
allocation controller decisions takes into account the decisions
made by the cache and the prefetch controller. The bandwidth
allocation controller, makes decisions based on the queuing
delay of each application which is affected by the number
of memory accesses. The cache allocation controller through
a larger cache allocation can reduce the number of memory
accesses (Interaction #1). This leads to a lower bandwidth
allocation for applications that can efficiently use the cache.
The prefetch throttling controller influences the bandwidth
allocation decision mainly through prefetch misses (prefetched
data that is not used) (Interaction #2). This is because prefetch
misses lead to more memory requests and potentially a higher
queuing delay.
Next, we describe how the prefetch throttling controller

takes into account the decisions made by the other con-
trollers. The prefetch-throttling controller makes decisions by
sampling the IPC with different prefetcher settings over a
specific interval. The sampled IPC values, used to determine
the prefetcher setting, reflects the effect of cache and band-
width allocation decisions made by the respective resource

Fig. 7: Interactions among the different resource allocation
controllers in CBP .

controllers (Interaction #3-4). Finally, we describe how the
cache allocation controller is affected by the prefetch throttling
controller (Interaction #5). If an application benefits from
prefetching, this reflects on the miss count values monitored
in the ATDs. Since the cache allocation is computed based on
the counter values observed in the ATD, this ends up affecting
the subsequent cache allocation decision, resulting in a smaller
cache allocation for prefetch sensitive applications.
Section V-A evaluates alternate designs that only exploit a

subset of the interactions discussed above to understand the
performance impact of failing to exploit the different inter-
resource interactions and trade-offs.

Controller ordering: Since the decision taken by one
controller has the potential to influence those taken by others,
the order in which local controllers make allocation decisions
is important. We discuss the timeline showing when the
different resource allocation controllers are invoked and how
they interact with each other, in an iterative manner, using the
example illustrated in Figure 8. The three resource controllers,
are invoked after a specific interval that we refer to as the
reconfiguration interval in the sequence shown in the figure.
First cache and bandwidth are equally partitioned among

all applications at time 0, since information about misses and
queuing delays is initially unavailable, as shown in Step 0.
This is followed by sampling the IPC of applications with
different prefetch settings for a specific interval (twice the
prefetch sampling period) as shown in Step 1. Note that the
prefetch controller is ordered (invoked) after cache and band-
width allocation to exploit the observation that the prefetch
effectiveness is determined by the current allocation of cache
and bandwidth. Based on the sampled IPCs the prefetch throt-
tling controller determines the appropriate prefetcher setting
for each prefetcher for the current reconfiguration interval.
Cache and bandwidth allocation controllers are again in-

voked after the reconfiguration interval, as shown in Step 2.
Since the allocation of cache and bandwidth are based on
statistics collected during the previous interval, the relative
ordering among them has little impact. A cache allocation
decision for the next interval (shown in step 2.1) is influenced
by the number of hits and misses observed in the previous
interval. The ATD values will be halved after each reconfig-
uration, in order to be sensitive to changes in the last time
interval while the per application queuing delays are accu-
mulated with those from the previous interval. The bandwidth

Fig. 8: Timing and interactions of CBP resource manager.

219

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on September 12,2022 at 15:27:52 UTC from IEEE Xplore.  Restrictions apply. 



allocation decision shown in Step 2.2, is influenced both by the
previous bandwidth and cache allocation and prefetcher setting
in the previous interval as discussed previously. Finally, the
prefetcher throttling controller shown in Step 3 is influenced
by the new cache and bandwidth allocation. The impact of
using a different order between prefetch, cache and bandwidth
is evaluated in Section V-A. The interactions among the dif-
ferent resource allocation controllers take place over multiple
iterations, and are key to finding an effective solution.

D. Implementation
The computational overhead of CBP resource management

is low since the design uses heuristics to guide the alloca-
tion decisions instead of exhaustively evaluating the different
possible allocations.
The cache allocation controller needs hardware support in

order to estimate the number of misses with different cache
sizes. We use sampled ATDs [1] as discussed previously
to compute the effect of different cache allocations on the
misses. When enforcing cache partitioning there is an overhead
associated with invalidations due to reconfiguration decisions.
This is modelled faithfully by invalidating the addresses and
re-fetching them when accessed, this includes the latency and
impact on bandwidth from accessing memory. We have used
the enforcement mechanism proposed by Holtryd et al. [21]
since it is suitable for a modern tile-based CMP and is both
fine-grained and locality-aware. The enforcement mechanism
uses per-core Cache Bank Tables (CBTs), where mappings
between addresses and banks are recorded. When a request
needs to access the LLC, the CBT is used to identify the cache
bank that the address is mapped to. Inside each bank, way
partitioning hardware divides the capacity. The enforcement
results in a partition granularity of 32kB on our system, see
Section IV. We incur hardware cost for implementing ATDs
and cache partition enforcement [1], [21].
The bandwidth partition enforcement is done in likeness

with Intel Memory Bandwidth Allocation (MBA) technol-
ogy [22], [23] which is commercially available. The solution
uses delays as a way to allocate the bandwidth. An application
with a high delay has a low allocation, and experiences a
longer queuing delay for each memory access. In our solution
the additional delay is added after the LLC, instead of after
the L2, as in the original proposal.
The overhead of prefetch-throttling comes from sampling an

application with different prefetcher settings. This is because
deactivating prefetching for an application can be detrimental
for its performance, especially when prefetching is effective.
Likewise, it is detrimental to turn it on prefetching (for a
sample period) for an application whose performance is hurt
by prefetching.

IV. EXPERIMENTAL METHODOLOGY

A. Simulated Architecture

We evaluate our proposal on a 16-core tiled CMP archi-
tecture modeled using the Sniper Simulator [17]. Each tile
has an out-of-order (OOO) core with a private L1 data and

instruction cache, a unified private L2 cache and an LLC bank
of 512KB. The cache latencies assumed have been modelled
using CACTI 6.5 [24]. Details about the baseline architecture
are shown in Table II. A sensitivity study is provided for the
CBP parameters in Section V-C.

B. Methodology

We use the entire SPEC CPU2006 suite in our evaluation.
The applications are in the format of whole program pinballs
[25]. We create 14 workload mixes (each comprising 16
applications) by randomly selecting applications from the
entire SPEC CPU2006 suite. Details about workload mixes
are presented in Table III.
We fast-forward for 16B instructions (in total) and then

carry out detailed simulation until all benchmarks have com-
pleted at least 500M instructions. Statistics are reported based
on the detailed simulation of 500M instructions. After this
period the applications continue to run and compete for
resources to avoid having a lighter load on long running
applications. The methodology is in line with earlier works
[4], [5], [26].

C. Metrics

We report normalized weighted speedup over baseline for
each workload.This is computed by 1

N

∑N
i=1

IPCi,RM

IPCi,baseline
, in

order to evaluate system performance for multi-programmed
workloads. RM refers to the system with a resource manager
that manages cache, bandwidth and prefetcher settings and
the baseline refers to a system with unpartitioned cache and
bandwidth and without prefetching.
We also report average normalized turnaround time (ANTT)

for each workload since this is a user-oriented perfor-
mance metric which shows fairness. ANTT is given by
1
N

∑N
i=1

CPIi,RM

CPIi,baseline

Table IV shows the resource managers we evaluate, in
addition to CBP, and the corresponding settings they use for
cache, bandwidth and prefetching. The baseline configuration
represents a system with unpartitioned cache, unpartitioned

Cores 16 cores, x86-64 ISA, 4GHz, OOO,
128 ROB entries, dispatch width 4

L1 caches 32KB, 8-way set-associative, split D/I,
1-cycle latency

L2 caches 128KB private per-core, 8-way set-associative,
inclusive, 6-cycle data and 2-cycle tag latency

LLC 512KB per-tile, 16-way set-associative,
inclusive, 9-cycle data and 2-cycle tag latency,
LRU

Coherence protocol MESIF-protocol, 64 B lines, in-cache directory
Global NoC 4x4 mesh, 4-cycles hop latency

(3-cycle pipelined routers, 1-cycle links)
Memory controllers 4 MCUs, 1 channel/MCU, latency 80 ns,

16GB/s per channel
Prefetcher stride-based, located in L2, 4 prefetches

stop at page boundary, 8 flows/core
Alternative prefetchers GHB Distance prefetching(G/DC), width=4,

depth=1, GHB =512, Index table = 512
AMPM, 256 pages, degree 4

CBP parameters reconfiguration interval=10ms
prefetch sampling period=0.5ms,
speedup threshold = 1.05,
prefetch interval=10ms,
min bandwidth allocation=1, min ways=4

TABLE II: Configuration of the simulated 16-core tiled CMP.
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w# Types Benchmarks
w1 4CS-BS-PS,5CS-BS,3BS-PS,3CS,1BS xalancbmk(xa),gromacs(gr),libquantum(li)(2)

h264ref(h2),zeusmp(ze),tonto(to),soplex(so),
lbm(lb),perlbench(pe),calculix(ca),milc(mi)
sphinx3(sp),bwaves(bw),gobmk(go),gamess(ga)

w2 3CS-BS-PS,5CS-BS, lb,to,pe,go,gcc(gc),mi,li(2),namd(na),
5BS-PS,2CS,1BS h2,cactusADM(cac),ze(2),ca,so,astar(as)

w3 6BS-PS,CS,5BS,4I bw(2),povray(po)(2),sjeng(2),sp(2),na(2),ze,
GemsFDTD(Ge),cac,li,mi,wrf(wr)

w4 CS-BS-PS,2CS-BS,5BS-PS,3CS,2BS,3I po,bw(2),h2,sjeng(sj),li(2),gr,na,mi(2),as,Ge,
ga,wr,lb

w5 5CS-BS-PS,10CS-BS,BS-PS dealII(de),omnetpp(om)(2),go(2),hmmer(hm),xa
leslie3d(le),bzip2(bz)(2),gc,so,mcf(mc),pe,ca(2)

w6 3CS-BS-PS,5CS-BS,4BS-PS,2CS,2BS sp,bw(2),h2,om,li,gr,go,mi(2),as,hm,ga,le,lb,ca
w7 2CS-BS-PS,2CS-BS,3BS-PS,5CS,4I po(2),to,sj,h2(2),na,lb(2),ze(2),gr,Ge,as,wr,ga
w8 4CS-BS-PS,4CS-BS,2CS-PS,3BS-PS de,bw(3),xa,mi(3),om,li(2),bz,go,so,hm,pe

3BS
w9 2CS-BS-PS,5CS-BS,2BS-PS,3CS,BS,2I gc,po,to,hm,sj,h2,bz,ze,gr,so,Ge,as,pe,wr,ga,cac
w10 2CS-BS-PS,3CS-BS,6BS-PS,CS,2BS,2I sj,bw(2),de,na,li(2),om,ze,mi(2),xa,Ge,bz,wr,gc
w11 2CS-BS-PS,4CS-BS,4BS-PS,CS,2BS,3I po,om,sj,go,na(2),le,ze,xa,Ge,bz,wr,ca,sj,sp,gc
w12 6CS-BS-PS,8CS-BS,2CS de,to,go,h2(2),hm,gr,xa,as(2),bz,ga,gc,lb,so,ca
w13 3CS-BS-PS,2CS-BS,4BS-PS,4CS,3I to,po,h2,sj,gr,na,as,ze,ga,Ge,lb(2),li,to,mi,wr
w14 5CS-BS-PS,2CS-BS,5BS-PS,CS,BS,2I de,bw,go,po,hm,na,xa,ze,so,Ge,mc,li,

pe,mi,ca,wr

TABLE III: 16-core workload.

RM cache bandwidth prefetch
baseline unpartitioned unpartitioned disabled
equal off equal equal disabled
only cache dynamic unpartitioned disabled

(see 3.2.1)
only bw unpartitioned dynamic disabled

(see 3.2.2)
only pref unpartitioned unpartitioned dynamic

(see 3.2.3)
bw+pref unpartitioned dynamic dynamic
bw+cache dynamic dynamic disabled
cache+pref dynamic unpartitioned dynamic
CPpf dynamic unpartitioned enabled
CBP dynamic dynamic dynamic

TABLE IV: The settings for cache, bandwidth and
prefetch in the evaluated configurations.

bandwidth and with prefetching disabled. equal off config-
uration represents a system where cache and bandwidth are
equally partitioned and prefetching is disabled. only cache
represents the configuration where cache is partitioned as
described in Section III-B1, while bandwidth is unpartitioned
and with prefetching disabled. Likewise, only bw represents
the configuration where bandwidth is partitioned as described
in Section III-B2 while the cache is unpartitioned and with
prefetching disabled. As for only pref, prefetch throttling is
performed as described in Section III-B3 while cache and
bandwidth remains unpartitioned. The resource managers that
jointly manage two out of the three resources (bw+perf,
bw+cache, cache+perf ) in a coordinated manner can leverage
a subset of the interactions described in Section III-C. We also
compare against CPpf [13], a recently proposed technique for
jointly managing prefetching and cache partitioning. In CPpf,
prefetch friendly applications are allocated small partition
sizes (because the benefit from prefetching can offset the
performance drop from small allocation) while the rest of
the cache is allocated to the non prefetch friendly applica-
tions. In our implementation, we give minimum allocation
to the prefetch friendly applications and use UCP (see Sec-
tion III-B1), to partition the remaining capacity among the non
prefetch friendly applications. We use UCP and per application
partitioning, in order to not put CPpf at a disadvantage in
comparison to other schemes. Finally, CBP jointly manages
all the three techniques dynamically.

V. EVALUATION
We first compare CBP to other resource managers that man-

age a subset of resources. Next, we investigate the performance
impact of changing coordination, ordering and prefetcher.
Finally, we carry out sensitivity analysis for the different
design parameters, to understand its impact on the performance
of CBP.
A. CBP Performance Analysis
Figure 9 shows normalized weighted speedup for each of the

14 workloads with the bars representing the different resource

managers. We use normalized weighted speedup as a measure
of performance for the entire workload. equal off improves
performance in 12 of the mixes and improves performance
by 10% on average over the baseline. only bw improves
performance in 7 of the mixes and on average by 4% over the
baseline. only pref improves performance for 12 workloads
and provides an average improvement of 9%. only cache
improves performance for all the workloads and provides an
average improvement of around 28%.

Coordinated management of bandwidth partitioning and
prefetch throttling (bw+pref ) leads to higher performance in
comparison to the baseline in 12 workloads and an average
overall improvement of 10%. Coordinated management of
bandwidth and cache partitioning (cache+bw) improves per-
formance across all workloads and provides an average perfor-
mance improvement of 37% (up to 64%). Coordinated cache
partitioning and prefetch throttling (cache+pref ) improves
performance across all workloads on average by 39% (up
to 57%). CPpf, cache partitioning influenced by prefetching,
improves performance by 39% (up to 63%).

Among the resource managers that perform coordinated
management of two resources, cache+pref and CPpf achieve
the best performance. The results also show that the im-

Fig. 9: Performance results, shows normalized weighted
speedup over baseline.
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Fig. 10: Fairness results, shows average normalized turnaround
time (ANTT) over baseline, where lower is better.

provement achieved with coordinated management of two
techniques is larger than summing up the improvements from
individual techniques. This shows that coordinated manage-
ment helps exploit synergistic interactions among the different
techniques, which cannot otherwise be leveraged.
Finally, CBP, outperforms previous schemes. CBP turns out

to be the best performing coordinated resource manager in 14
of the 15 workloads and provides an average improvement of
50% (up to 86%). CBP improves performance by an additional
11% in comparison to the best performing resource manager
that does coordinated management of two techniques, as well
as state-of-the-art. In one workload, w3, CBP achieves slightly
lower performance (2%) in comparison to cache+pref. This is
because bandwidth partitioning is not very effective for this
specific workload.
Figure 10 shows the average normalized turnaround time

which shows the fairness of the different resource managers.
Note that a lower value signifies greater fairness. On average,
CBP shows 27% better fairness than the baseline and 4%
better fairness than the best combination of two techniques,
cache+pref. cache+pref has 4% better fairness than CPpf.

Case study: We investigate the performance of a single
workload in detail to understand how CBP improves per-
formance in comparison to resource managers that manage
a subset of the techniques. Figure 11 shows the IPC for
individual applications in a specific workload (w2) normalized
to the baseline IPC. We have classified the applications in this
workload into two groups. Group 1 comprises applications,
from lbm to gcc (in the figure), for which the cache+pref

Fig. 11: Results for workload 2.

resource manager performs better than the bw+cache resource
manager. Group 2 comprises the rest of the applications in
the workload, from soplex to namd, where the bw+cache re-
source manager performs better than the cache+pref resource
manager. cache+pref resource manager provides the best per-
formance for applications in group 1 because the applications
are comparatively more memory intensive and get a larger
share of the available bandwidth using this resource manager.
Applications in group 2 benefit from bandwidth partitioning
since they then get a fair bandwidth share, and in addition
are not sensitive to prefetching. When we perform coordinated
management of all the three resources, we would ideally prefer
to have allocation decisions made by cache+pref resource
manager for applications in group 1 and bw+cache resource
manager for applications in group 2. With CBP, some applica-
tions in group 1 end up with a lower allocation of bandwidth
(compared to cache+pref ) which hurts their performance (see
lbm, perlbench, cactusADM) while the rest of the applications
in the group see a performance improvement from getting
the right amount of the allocation. For the applications in
group 2, CBP manages to match the performance of bw+cache
resource manager. In summary, CBP enables better trade-offs,
resulting in a solution that improves overall performance for
the workload and outperforms other resource managers that
only manage a subset of the techniques.

B. Performance impact of changing coordination, ordering
and prefetcher

Impact of coordination: Figure 12 shows the performance
impact of coordination and ordering by comparing CBP to
resource managers that exploit only a subset of the interactions
of CBP, and to a variation of CBP that uses a different
ordering. First, we compare the performance of CBP with
another resource manager, RM1, that uses an accuracy-based
prefetch-throttling policy. Note that RM1 coordinately man-
ages cache and bandwidth and exploits the rest of the inter-
resource interactions as CBP except those with prefetching.
The lack of prefetch interaction is due to the design of the
prefetch throttling mechanism that determines the prefetch
setting based on the number of accurate prefetches without
being influenced by the cache and bandwidth allocation. Using

Fig. 12: Performance impact of changing coordination, order-
ing and prefetcher.
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RM1 results in a 7.5% slowdown compared to CBP since
it does not exploit bandwidth-prefetch and cache-prefetch
interaction. Next, we compare against a different resource
manager, RM2, that uses a new bandwidth allocation policy.
This bandwidth allocation policy only considers the number of
demand requests when determining the bandwidth allocations
without considering prefetch requests. Cache partitioning and
prefetch throttling is performed in a coordinated manner as
in CBP. RM2 leads to a 5.5% slowdown since it does not
exploit the interaction between prefetch and bandwidth. We
then combine these two policies for bandwidth and prefetch
with cache partitioning, which represents an uncoordinated
resource manager, RM3. RM3, leads to a performance decrease
of 15% compared to CBP, since it does not exploit a majority
of the interactions between cache, bandwidth and prefetch.
These results show the importance of exploiting the different
inter-resource interactions and the benefit of coordination in
the design of CBP.

Impact of ordering: Secondly, we investigate the impact
of ordering. In CBP, cache and bandwidth are first allocated
and then the prefetch setting is determined based on sampling
for the current allocation. In P-CB prefetch sampling is
first performed followed by the new allocation decision for
cache and bandwidth. This leads to 2% slowdown since the
decision about the prefetch setting is based on the previous
allocation. The impact of changing the order is limited since
the reconfigurations are performed frequently (every 10ms).

Impact of prefetcher: Lastly, we investigate the impact of
changing the type of prefetcher. Using the GHB prefetcher,
CBP GHB, leads to a speedup of 1.47× over baseline, while
using the AMPM prefetcher (CBP AMPM) leads to a speedup
of 1.49×. Although the single application performance is
better with the more aggressive prefetchers, the bandwidth
consumption is higher, which has a negative impact on the
overall workload performance. This results in nearly the same
performance as with the simpler stride prefetcher.
C. Sensitivity analysis

We investigate the sensitivity of CBP to different design
parameters in this section.

1) Impact of reconfiguration interval: The reconfiguration
interval, determines how frequently the different resource al-
location controllers are invoked when running a workload. We
investigate the sensitivity of CBP to different reconfiguration
interval values, in order to determine an appropriate interval.
Figure 13a shows the average (geo. mean) performance when
using three different reconfiguration intervals - 1ms, 10ms,
100ms and 1000ms. A shorter reconfiguration period has the
potential to adapt faster to phase change behaviour. However, it
also incurs a higher overhead of invoking the local controllers.
The results show that using a reconfiguration period of 1s
leads to a 20% slowdown compared to using 10ms, which
demonstrates the importance of frequent adaptation. Overall,
the results show that using a 10ms period provides a good
trade-off between quick adaptation and the overhead incurred
for IPC sampling.

2) Impact of cache size: The results thus far assume that
each tile has a baseline cache allocation of 512KB which leads
to a total LLC capacity of 8MB for a 16-core CMP. We next
study the impact of changing the cache capacity available
for a single tile to 1MB and 2MB. Figure 13b shows the
average performance achieved using CBP with different per-
tile capacity normalized to the baseline configuration with the
same capacity. The results show that increasing the total LLC
capacity to 16MB leads to a performance improvement of 43%
over baseline while increasing the cache size to 32MB leads
to a performance improvement of 41%.

3) Impact of changing bandwidth partitioning parameters:
We investigate the sensitivity to the minimum bandwidth
allocation, used in the bandwidth allocation algorithm pre-
sented in Section III-B2. Figure 13c shows the difference in
performance with a minimum bandwidth allocation of 0GB/s,
0.5GB/s and 1GB/s, normalized to the baseline. Not using
a minimum allocation leads to a 5% performance decrease
compared to using a minimum allocation of 1GB/s. This is
because a minimum allocation ensures a shorter queuing delay
for applications that are non-memory intensive. Note that the
majority of the bandwidth is still allocated to the bandwidth
intensive applications. Changing the minimum allocation from
1GB/s to 0.5GB/s did not have a considerable impact on the
performance of CBP.

4) Impact of changing cache partitioning parameters: We
investigate the sensitivity to the minimum cache allocation,
used in the algorithm presented in Section III-B1. Figure 13d
shows the difference in performance with a minimum cache
allocation of 64kB, 128kB and 256kB, normalized to the
baseline. Using a minimum allocation of 64kB leads to 7.5%
performance decrease compared to using a 128kB minimum
allocation. One reason for the importance of the minimum
allocation is that the cache hierarchy is inclusive and the L2
cache has a size of 128kB. Using a a minimum allocation
of 256kB leads to a 4.2% slowdown compared to using
128kB. This is because larger minimum allocation reduces
the effective capacity available for partitioning.

5) Impact of changing prefetch sampling interval:
We finally investigate the impact of changing the
prefetch sampling period used in the prefetch throttling
controller III-B3. Figure 13e shows the impact of changing
the sampling period on performance normalised to the
baseline. The intervals we use for evaluation are 0.25ms,
0.5ms and 1ms. The advantage of using a shorter sampling
period is that it carries a lower overhead, while the drawback
is the risk of over/under estimating the performance benefit
from prefetching. The results indicate the sampling interval
of 0.5ms achieves the best performance.

VI. RELATED WORK

Isolated Management: Several techniques have been pro-
posed in the literature that focus specifically on cache parti-
tioning, bandwidth partitioning and prefetch throttling. Cache
partitioning techniques [1]–[5] help improve performance and
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(a) Sensitivity for recon-
figuration period.

(b) Sensitivity for larger
cache size.

(c) Sensitivity for minimum
bandwidth allocation.

(d) Sensitivity for mini-
mum cache allocation.

(e) Sensitivity for sample
period in prefetch throttling.

Fig. 13: Sensitivity analysis.

achieve better utilization of available cache resources, by
avoiding interference among co-running applications and re-
ducing the number of accesses to memory. Bandwidth par-
titioning techniques [6]–[8], [27], reduce average memory
access penalty, by dynamically determining how bandwidth
must be shared among the co-running applications. Prefetching
can hide memory access latency by fetching the data before it
is requested [9], [28]–[32]. However, inaccurate prefetches can
impact application performance since it can increase the num-
ber and cost of demand misses [33]. Prefetch throttling [9],
[34], involves adaptively tuning when and what prefetcher
settings are used dynamically based on application charac-
teristics and has been shown to provide better performance
and address drawbacks of prefetching. The aforementioned
works, consider each of the techniques in isolation and leaves
room for improvement, as shown in this work, since they do
not take the interaction between cache partitioning, bandwidth
partitioning and prefetch throttling into account.

Coordinated Management: Several works have proposed
combining two of the techniques in order to exploit the benefits
from coordination. These works can be broadly classified into
the following groups: i) coordinated cache and bandwidth
partitioning [10], [12], ii) coordinated prefetching and cache
partitioning [13], [14], and iii) coordinated bandwidth parti-
tioning and prefetching [16]. Sahu et al. propose [10] a method
for cache and bandwidth partitioning, using a CPI model for
bandwidth and set partitioning for the cache. CoPart [12]
combines bandwidth and cache partitioning using a user-
level run-time. Unlike CBP, their goal is to improve fairness.
Recently, CPpf [13] and Sun et al. [14] propose a coordinated
approach for cache partitioning and prefetch where prefetch
friendly applications where given a smaller cache allocation.
Unlike CBP which maintains per-application partitions, cache
partitioning in these two proposals is performed for groups of
applications. Ebrahimi et al. [15] propose general mechanisms
to make memory scheduling techniques prefetch aware. How-
ever, these works cannot use the additional interactions and
trade-offs which are available when coordinately managing
all three resources, which we have shown is important for
performance.
Some works have also proposed coordinated management

of multiple resources. For instance, CLITE [35] uses bayesian
optimization to provide theoretically-grounded resource parti-

tioning to meet QoS targets of multiple resources (e.g., cores,
caches, memory bandwidth, memory capacity, disk bandwidth
etc.) among multiple co-located jobs. Bitirgen et al. [11] use
machine learning to manage power, cache and bandwidth
in a coordinated way to anticipate system-level performance
impact of allocation decisions. However, in neither of these
works is prefetch throttling considered, which we have shown
is important in order to realise the full potential of coordinated
resource management. To the best of our knowledge, CBP is
the first coordinated resource manager for cache partitioning,
bandwidth partitioning and prefetch throttling.

VII. CONCLUSIONS

We have presented CBP, a mechanism for coordinated
management of cache partitioning, bandwidth partitioning
and prefetch throttling. The design is motivated by our in-
depth characterisation of the performance impact of cache,
bandwidth and prefetch allocation and their interactions. CBP
combines local resource allocation controllers with a coordi-
nation mechanism that dynamically manages and allocates the
resources, in a way which considers both inter- and intra-
application interactions. Our evaluation on a tiled 16-core
CMP demonstrates that CBP improves performance by up
to 86% (geo. mean 50%) compared to a system without
partitioning and prefetching and by up to 36% (geo. mean
11%) over the state-of-the-art technique that manages cache
partitioning and prefetching in a coordinated manner.
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Abstract—Microarchitectural optimizations are expected to
play a crucial role in ensuring performance scalability.
However, recent attacks have demonstrated that microarchi-
tectural optimizations, which were assumed to be secure, can
be exploited. Moreover, new attacks surface at a rapid pace
limiting the scope of existing defenses. These developments
prompt the need to review microarchitectural optimizations
with an emphasis on security, understand the attack land-
scape and the potential defense strategies.

We analyze timing-based side-channel attacks targeting a
diverse set of microarchitectural optimizations. We provide a
framework for analysing non-transient and transient attacks,
which highlights the similarities. We identify the four root
causes of timing-based side-channel attacks: determinism,
sharing, access violation and information flow, through our
systematic analysis. Our key insight is that a subset (or all)
of the root causes are exploited by attacks and eliminating
any of the exploited root causes, in any attack step, is
enough to provide protection. Leveraging our framework,
we systematize existing defenses and show that they target
these root causes in the different attack steps.

1. Introduction

Computer architecture is facing a security crisis [79],
[80]. Recent attacks [28], [97], [100], [114], [149],
[170], [173] have demonstrated that microarchitectural
optimizations, which were assumed to be fundamentally
secure for a long time, leak information which can be
exploited to steal secrets. Furthermore, efficient attacks
continuously emerge targeting defenses, thereby limiting
their effectiveness or even rendering the defenses moot
altogether [20], [22], [27], [29], [52], [58], [137], [138],
[140], [161], [176], [184]. Simultaneously, with the slow-
ing down of Moore’s Law, microarchitectural optimiza-
tions are expected to play an increasingly important role
in ensuring performance scalability. Consequently, there
is a strong need to be able to leverage microarchitectural
optimizations without compromising security.

Microarchitectural optimizations, widely implemented
in commercial processors, like branch predictors [4], [5],
[49], [51], [100], caches [68], [136], [188] and prefetch-
ers [1], [40], [44], [66], [158], [175] among others, are
prone to attacks. A recent paper [146] demonstrates that
several optimizations proposed in literature, but not known
to be commercially implemented as yet, such as value
prediction [111], also are vulnerable. This underscores the

importance of conducting a thorough review of microar-
chitectural optimizations with an emphasis on security.

Prior works have started the important task of an-
alyzing attacks and defenses for different microarchi-
tectural optimizations [33], [35], [37], [54], [78], [82],
[118], [163], [185]. However, most of the works focus
only on transient attacks and defenses [33], [35], [78],
[82], [185], SW-based defenses [37] or cover a limited
set of non-transient attacks [54], [163]. Pandora [146]
considers a broader set of non-transient microarchitectural
optimizations and provides microarchitectural leakage de-
scriptors (MLDs) which quantify the information leakage.
The MLDs show if a specific optimization can leak and
how much information is leaked (1-bit or a few bits).
Unfortunately, this information falls short on providing
a systematic analysis of the similarities across different
microarchitectural optimizations and the underlying root
causes which make them vulnerable to attacks. Such an
analysis can also help with the categorization of existing
defense strategies and with the potential identification of
attacks and defenses.

Our goal, in this paper, is to perform a systematic anal-
ysis to highlight the common root causes which make mi-
croarchitectural optimizations vulnerable to exploits that
reveal secrets. In order to enable analysis of a diverse set
of microarchitectural optimizations, we present an abstract
model of the architecture and the microarchitectural state
transitions involved in an attack. Using this model as a
framework, we analyze several timing-based side-channel
attacks available in the literature on an extensive set
of microarchitectural optimizations: cache, prefetching,
branch prediction, computational simplification, specula-
tive execution and value prediction. We also analyse ad-
ditional microarchitectural optimizations like cache com-
pression, pipeline compression, register-file compression,
silent stores and computation reuse but omit them from
the discussion due to space constraints.

Our analysis reveals four root causes which are ex-
ploited in order to succeed with attacks targeting the
diverse set of microarchitectural optimizations covered.
The root causes are determinism, sharing, access viola-
tion and information flow. Here, determinism causes mi-
croarchitectural optimizations to be triggered in the same
way under the same pre-conditions, leading to predictable
microarchitectural state transitions and timing variations.
Sharing of microarchitectural state, which is accessible to
both the adversary and the victim, enables the creation of
a side-channel. Access violation enables access to a secret
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outside of the intended protection domain. Finally, infor-
mation flow refers to exchange of information through
microarchitectural state. We note that a subset of these root
causes have been identified individually in the context of
specific attacks [28], [43], [82], [116], [163]. However,
in our analysis we show that a subset of, or all, the
root causes are common across attacks on a broad set
of microarchitectural optimizations.

We show that the proposed defenses that focus on
the vulnerabilities in different microarchitectural optimiza-
tions can be classified as targeting one or more of the
identified root causes. We observe that similar defenses
can be / are applied across different microarchitectural
optimizations, with the same root cause vulnerability.
For instance, partitioning can thwart attacks using the
cache [98], [115], SMT [2] and branch prediction [177],
[193], by affecting sharing, information flow and deter-
minism. In addition, the defenses can also be applied to
address the applicable root causes in the different steps of
the attack. Eliminating any of the root causes, exploited
by an attack, in any of the attack steps can protect against
the attack. We also discuss potential attacks and defenses
for vulnerable microarchitectural optimizations.

Overall, our analysis demonstrates the versatility of the
framework to capture a diverse set of attacks and defense
strategies for different microarchitectural optimizations.
We expect that our framework can be easily extended
to study microarchitectural optimizations we do not ex-
plicitly cover in this paper. We also believe that it can
assist computer architects in understanding the landscape
of attacks on a broad range of microarchitectural optimiza-
tions, categorizing existing defense strategies proposed to
thwart such attacks, and in designing secure microarchi-
tectural optimizations.

In summary, we make the following contributions:

• We identify four root causes: determinism, shar-
ing, access violation and information flow, that
enable timing-based side-channel attacks on a
wide range of microarchitectural optimizations.

• We provide a framework and analyze both tran-
sient and non-transient execution attacks on a
broad range of microarchitectural optimizations,
highlighting similarities and differences.

• We analyze available defenses using our frame-
work and make a classification based on the root
causes they address. Based on the analysis, we
discuss potential attack and defense possibilities
for microarchitectural optimizations.

The paper is structured as follows. Section 2 presents
our framework and defines the root causes. Section 3 and 4
use the framework to systematize the attacks and defenses,
respectively. Section 5 discuss general observations before
we conclude in Section 6.

2. Systematization Framework

We first present an abstract architecture model and
outline the steps for carrying out attacks based on the
model. We then use this model as a framework to identify
the root causes that enable attacks. Finally, we present an
actual attack in the context of this framework.

2.1. Abstract model and side-channel attack

The architecture model is represented as a finite state
machine (FSM) where the architectural state (AS), com-
prising SW-visible registers and memory, is the externally
visible interface, that is accessible to a program. An FSM
transition is caused when instruction execution leads to a
change in the AS.

The microarchitecture represents an implementation of
the FSM specification and typically comprises several mi-
croarchitectural optimizations, denoted {O1,O2, ... ,On}, to
enable an efficient implementation. A microarchitectural
optimization uses a set of microarchitectural resources,
denoted R = {R1,R2, ... ,Rm}, to implement the intended
functionality. This model permits resources to be shared
across different optimizations. We define microarchitec-
tural state (MS) as a snapshot of the state of all the m
microarchitectural resources in the system at time instance
t, denoted MS = {state(R1), state(R2), ... , state(Rm)}t.

It is important to note that while the change in AS
caused by an FSM transition remains the same across
different implementations of a given FSM specification,
the change in MS varies depending on the optimizations
triggered, resources used and the implementation. Even
when considering a specific implementation, there is a
one-to-many mapping relationship between AS and MS;
i.e., a single AS can have several equivalent MS. Further-
more, the time it takes for an implementation to make a
transition between different MS (caused by an action) may
vary and this property is typically exploited by attacks.
As an example, executing a load instruction will cause a
change in the AS while the insertion of a corresponding
line in the cache hierarchy as a consequence of executing
the load instruction will cause a change in the state of the
cache(s) which is a microarchitectural resource.

We next consider an abstract model of an attack that
shows the different steps involved while leveraging MS as
the side-channel to communicate the secret from a victim
to an adversary. In our model, we define a step as a tuple
of current state and action which leads to a new state,
{MScurrent, action}→MSnext. Figure 1 shows the different
steps listed in this model and is based on the attacks
proposed in literature [33], [35], [37], [78], [82], [118],
[163], [185]. We assume MS is in the initial state (MSI)
before any of the steps in the attack are carried out. When
the setup step is performed MSI makes a transition to
the primed state (MSP). The setup step ensures that the
necessary preconditions are in place to encode the secret
into MSP in the next step of the attack. When the interact
step is performed the secret is accessed and is encoded in
the microarchitectural state (MSE). The secret is encoded
specifically through the state of one or more microar-
chitectural resources. If the secret is encoded through a
microarchitecture resource state, that is accessible to both
the victim and the adversary, it can potentially be used as
a side-channel to communicate the secret.

Attacks optionally utilize the transmit step in case the
encoded microarchitectural resource state is not accessible

MS I
setup

MS P MS E
MS T

interact

transmit receive

decode
MS R

receive

secret secret

Figure 1. MS transitions in different steps of an attack.



by the adversary or the specific MS based side-channel
is noisy (i.e. the channel is prone to high error rate and
has low channel bandwidth). When the transmit action is
performed the secret is usually re-encoded through the
state of a different shared microarchitectural resources
(MST) which can address the aforementioned transmission
limitations. When the receive step is performed, the adver-
sary accesses the microarchitectural state of the specific
resource(s) and observes timing variations based on the
encoded secret while the state transitions to MSR. Finally,
in the decode step, the timing variations observed are used
as the basis to infer the secret.

The steps outlined above that cause MS transitions and
secret information to be leaked can be performed by the
adversary, the victim or both, depending on the type of
attack. In the abstract model it is required that the state of
at least one microarchitectural resource is shared between
the victim and an adversary to enable information flow
and consequently communicate the secret. The microar-
chitectural resources that are shared between the victim
and the adversary are specific to the implementation and
the threat model (see Section 2.3 for details).

Prior works define attack steps differently which leads
to fewer/more steps. For example, Xiong et al. [118]
defines three attack steps while Hu et al. [82] use six
attack steps. In contrast, our attack model include five
steps where each step consists of action(s) performed by
adversary and/or victim on microarchitectural resource(s)
MS which leads to a new MS. Note that the difference
between the interact and transmit step is that the former
accesses and encodes the secret on MS while the latter
re-encodes the secret on shared MS.

We exemplify the abstract model by describing the
steps in the well-known flush+reload [188] attack. This
attack uses a single shared microarchitectural resource,
a shared cache (SC). The goal of the attack is to infer
the secret which is revealed through the victim’s cache
accesses because of data-dependent control flow. A pre-
requisite for the attack is that the cache lines of interest
are mapped to a shared page that is accessible by the
adversary as well as the victim. During the setup step,
the adversary uses the clflush instruction to evict the lines
belonging to the shared pages from the cache. The fact that
the pages are shared allows the adversary to evict data that
is accessed by a victim. The state of the cache after this
step is MSP{RSC[[target]=null]}. During the interact step
the victim executes and interacts with the secret which
is encoded in the SC state by the presence/absence of
the specific target cache line(s). The cache state changes
to MSE{RSC[[target]=A]}. Since the cache is shared the
adversary can detect the state change that has occurred as a
result of the interaction. The adversary, during the receive
step, accesses the cache line(s) (target) and measures the
time. Through timing the adversary deduces which line(s)
the victim has inserted and thereby infers the secret.

2.2. Root causes

We define the root causes of an attack in the context
of the abstract model and exemplify with an actual attack.

2.2.1. Determinism. We define determinism as the char-
acteristic of a microarchitectural optimization whereby

microarchitectural resource(s) used by an optimization,
under the same pre-conditions, is/are triggered in the same
manner and cause a predictable microarchitectural state
transition and timing variation. In other words, determin-
ism causes an expected MS transition and timing variation
upon an action by the adversary and/or the victim. In
the abstract model of the attack, determinism enables the
adversary to control MS transitions from MSI through to
MSR across multiple steps.

2.2.2. Sharing. We define sharing as the characteristic
of a microarchitectural optimization whereby the state of
the microarchitectural resource(s) used by an optimization
is/are shared between a victim and an adversary. In the
abstract model sharing allows for the creation of a side-
channel between the victim and the adversary’s protection
domain through MS.

2.2.3. Access violation. We define access violation as
the characteristic of a microarchitectural optimization
whereby one/many microarchitectural resource(s) per-
mit(s) access of secret data which is outside the protection
domain of the program on the microarchitectural level.
This consequently enables information to flow outside
the intended protection domain and occurs either in the
interact or the receive step of the attack which causes
secret information to be encoded into MS.

2.2.4. Information flow. We define information flow as
the characteristic of a microarchitectural optimization to
exchange information through the state of one or many
microarchitectural resource(s). Information flow enables
the adversary to infer the secret by observing the state
change of microarchitectural resource(s).

The flush+reload attack, discussed earlier, exploits
determinism, sharing and information flow in each of the
steps of the attack. Determinism guarantees that the three
state transitions occur in the attack. Firstly, the eviction
of the target line(s) from the cache in setup, followed by
insertion of a cache line in interact. Finally, timing differ-
ences are observed based on the presence and/or absence
of specific cache lines in receive. Likewise, information
flow and sharing guarantee that the secret is encoded and
communicated, through MS of the shared SC, from the
victim to the adversary, across the different steps. Access
violation is not exploited in this attack since the interact
step, executed by the victim, does not lead to an access
outside its own protection domain, i.e., there is not an
access violation on the microarchitectural level. In general,
attacks can exploit a subset or all the root causes as we
will show in Section 2.4 and 3.

2.3. Threat Model

We consider four types of threat models in our clas-
sification. Across the different threat models, the secret,
that the adversary attempts to steal, resides in a different
protection domain from that of the adversary.

An adversary can execute on a separate core from
the victim, referred to as CrossCore; be time-multiplexed
on the same core as the victim process, referred to as
SameThread; run on distinct SMT threads executing on
the same core, referred to as SMT or run in isolation,



referred to as Solo. In the Solo threat model the adversary
only needs to have a pointer to the location of the victims
data (kernel memory). The threat model determines which
set of microarchitectural resources are shared or private
in the attack setting on a given machine. A CrossCore
threat model leads to a scenario where fewer microarchi-
tectural resources are shared. In contrast, assuming the
SameThread or the SMT threat model leads to potentially
more microarchitectural resources being shared between
victim and adversary, leading to a broader attack surface.

Another dimension of the threat model is based on
whether the adversary or the victim performs the different
actions in an attack. In a typical attack the adversary
performs one or more steps. However, it has been shown
that an adversary can manipulate the victim to perform
some of the required actions through the use of specific
gadgets. This is especially useful in scenarios where the
adversary does not have access to a shared microarchitec-
tural resource state to facilitate the MS transitions. This
strategy increase the scope of possible attacks even in
cases where the threat models limit the attack surface.

One example is the Spectre v2 attack [100] which
requires training the Branch Target Buffer (BTB) as part
of the setup step. Without gadgets such attacks would
only be possible with the SMT/SameThread threat models
since the BTB is not shared between cores. However, when
the victim can be manipulated to perform the training, a
CrossCore threat model can be used. The manipulation
from the adversary can be performed by calling a function
in the victims code with a controlled input, i.e., the action
of triggering a gadget. The gadget can be constructed
using Return Oriented Programming (ROP) [155] where
code snippets ending with a return instruction are used by
changing the return address and thereby chaining the dif-
ferent snippets together. However, these attack scenarios
depend on the availability of gadgets and/or vulnerabil-
ities, such as buffer overflows, and most have not been
demonstrated outside of specific environments [35].

For some optimizations and attack scenarios the side-
channel can be noisy and/or obscured by other optimiza-
tions, thereby making it difficult to decode the secrets
based on MS transition and the consequent timing vari-
ations. Amplification gadget(s) can be used by the adver-
sary to enhance the timing differences and ease the decod-
ing of the secret. A simple example is on the cache side-
channel, where prefetching can obscure the secret-related
accesses. This can be circumvented by using a linked
list [168] or by spreading accesses across pages [100]
since most prefetchers only target linear or strided access
patterns and do not prefetch across page boundaries.

2.4. Case Study

Next, we will describe an actual attack, Spectre v1, us-
ing the abstract model, the root causes we have identified
and the threat model, as a framework.

2.4.1. Spectre v1. Spectre v1 [100] leverages three differ-
ent optimizations: branch prediction, speculative execution
and shared cache. The example code for the attack is

if(x < array1_size){y = array2[array1[x]*4096;}
Figure 2. Example code for Spectre v1 attack [100].
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Figure 3. MS transitions and actions in Spectre v1.

shown in Figure 2, where x is controlled by the adversary
and is used to represent the address delta between the base
address of array1 and the secret’s location. The attack
involves speculatively executing the if-clause code block,
by training the branch predictor to predict taken. When the
taken code block is speculatively executed the adversary
can cause speculative access to array2 indexed using
the adversary controlled x. Even when the speculatively
executed instructions are eventually rolled back this still
leaves a trace in the cache, as a consequence of the access
to array2, which is then used to infer the secret.

Figure 3 show an overview of the attack steps and MS
transitions. The setup step consists of (mis)training the
branch predictor Pattern History Table (PHT) by adver-
sary/victim to change the prediction for the targeted con-
ditional branch from MSI{RPHT[[target]=Not taken]} to
MSP{RPHT[[target]=Taken]}. The necessary (mis)training
can either be performed by the adversary, restricting the
threat model to SMT/SameThread, or be performed by the
victim. To make the victim perform the (mis)training of
the specific conditional branch a gadget must be located
in the victim binary containing instructions which execute
and train the target PHT entry to mispredict on the condi-
tional branch. Setup of the SC, as in flush+reload, is also
needed since it will be used later in the transmit step.

In the interact step the victim executes speculatively
and accesses the secret because of the (mis)prediction.
Speculative execution allows the CPU to temporar-
ily violate program semantics by transiently execute
code that accesses the secret and leave a trace in
the MS. In the transmit step the secret is re-encoded
in the state of another microarchitectural resource
through a secret dependent access to the SC (load (se-
cret*page size)). This access causes the SC to transition to
MST{RSC[(secret*page size)]}. The MS transition occurs
before the processor detects that the speculative execution
was erroneous and rolls back the register state, leaving
a trace in the state of the SC. In the receive step the
adversary accesses the cache, measures the time and infers
the secret based on timing variations for cache lines.

The root causes which enable this attack are deter-
minism, sharing, access violation and information flow.
Determinism guarantees that, the adversary can cause
a BTB state update in an intended entry in the setup
step, which is then used in the interact step. In addition,
determinism ensures that the SC becomes primed, as a
result of the flush, in setup and that the secret-dependent
loads will result in timing variations corresponding to
the lines presence/absence observed in the receive step.
Access violation enables access to the secret which resides
in a different protection domain, through speculative ex-
ecution. Sharing is exploited in both the BTB and the SC
during the setup step and in the cache during the receive
step. Information flow is allowed through each of the state
of the shared resources, across the different attack steps.



3. Systematization of Attacks

In this section we use the abstract model, the root
causes and the threat model as a framework to systematize
attacks on a broad set of microarchitectural optimizations.
We describe a typical attack on each optimization and
analyze the necessary root causes exploited in the different
steps of the attack. We group attacks wherever possible
and also discuss dissimilarities between the attacks on the
same microarchitecture optimization. Note that the goal of
this analysis is not to exhaustively discuss all the attacks
proposed in literature. Rather, through the discussion, our
aim is to highlight commonalities and differences across
different attacks that target a microarchitectural optimiza-
tion by discussing the following questions:

1) Which microarchitectural resource(s) are ex-
ploited in an attack?

2) Which root cause(s) are necessary to enable the
attack and in which attack step(s)?

3) Under which threat model(s) is/are the attacks
possible?

To simplify the discussion we categorize the microar-
chitectural optimizations into two broad groups – non-
transient and transient optimizations – and analyze attacks
on each of them. The systematization of attacks is pre-
sented in Table 1. Finally, we discuss microarchitectural
optimizations without any published attacks that are prone
to leaks.

3.1. Non-transient attacks

3.1.1. Cache. The last-level cache is typically shared
among cores to improve cache utilization and to reduce
costly off-chip accesses. The SC is vulnerable to side-
channel attacks and is an attractive attack surface because
of the channel characteristics (i.e., low noise and high at-
tack bandwidth [160]). There exist three high-level attack
categories: i) reuse-based [68], [72], [89], [188] where
data is shared between adversary and victim allowing
both to access it, ii) conflict-based [88], [93], [113],
[132], [133], [136], where an adversary creates conflicts
to evict target lines belonging to the victim, and iii)
observation-based [69], [159], i.e., brute-force conflicts.
In observation-based attacks the conflicts and observed
behaviour relates to any cache line and is not restricted to
a selected target, as in conflict-based attacks. We note that
the same categories are common across attacks on other
shared resources and have implications for the defense
strategies (see Section 4).

Prime+probe [136], a typical conflict-based attack
[88], [93], [113], [132], [133], [136], is used in the absence
of data sharing between an adversary and a victim. The
threat model is CrossCore, since the SC is shared between
cores. In the setup step, the adversary first finds the set
of cache lines (eviction-set) which will create conflicts in
the targeted index shared with cache lines belonging to the
victim and evict them from the cache. The state changes to
MSP{RSC[[index]=Aadversary]}. Next, in the interact step,
the victim accesses the secret during execution which is in
turn encoded in the SC state through the presence/absence
of the specific target cache line(s). The state changes to

MSE{RSC[[index]=Bvictim]}. In the receive step the adver-
sary accesses the target cache line(s) and based on the
timing variations infers the secret.

The root causes determinism, sharing and information
flow enable the attack, as shown in Table 1. Determinism
provides different guarantees in the three steps of the
attack. First, in the setup step it ensures that conflicts can
be created at a specific index in the cache which causes an
eviction of the targeted cache line. Second, in the interact
step it ensures the secret is encoded through the MS of the
SC. Third, it also causes timing variation corresponding
to the presence/absence of the cache line. Sharing and
information flow ensures that the secret is encoded and
communicated, through MS of the SC, from the victim to
the adversary, across the different steps.

Observation-based attacks [69], [159] work by observ-
ing set conflicts in all the sets in the cache instead of
actively causing them in a few sets like prime+probe.
These attacks leverage the observation that the same con-
flict patterns will re-occur because the cache behavior
of a program is deterministic. An alternative setup step
is used, without relying on using clflush or a specific
eviction-set, which involves accessing a large buffer [123],
[151], [159] to flush all cache lines in the SC and creating
conflicts across all the sets in the cache. This approach,
however, has the drawback of a lower bandwidth since
filling the SC is time consuming. These observation-based
attacks are challenging to defend against since they rely on
determinism and the shared MS of the SC in the interact
and receive steps. This limits the defenses which can be
used to avoid the attack (for details see Section 4.1.1).

A number of attacks show that other state can also be
used for attacks, such as the state of replacement meta-
data [98], way prediction [113], interconnect [134], [178],
cache banks [189], translation lookaside buffer (TLB) [3],
[61] or memory management unit (MMU) [172]. Using
other microarchitecture resource state (related to SC) en-
ables to circumvent defenses on the SC. Van Schaik et
al. [172] propose a prime+probe-like attack where an
eviction-set is found and used in the MMU instead of the
SC to overcome defenses targeting conflict-based attacks
in the SC. Wan et al. [178] show an attack using temporal
contention on the mesh interconnect, while Paccagnella et
al. [134] show an attack on the ring interconnect. These
attacks exploit determinism, sharing and information flow
as previously discussed in the SC attacks. However, the
sharing is of other microarchitectural resources as the
MMU or the mesh interconnect, instead of the SC. We
do not exhaustively cover all SC related attacks since our
goal is to discuss a representative set to demonstrate the
applicability of our framework.

3.1.2. Prefetching. Prefetchers predict addresses that will
be used by a program and proactively fetches them to
help hide memory access latency. The attacks exploiting
prefetching can be broadly grouped into two fundamen-
tally different categories, 1) SW-based and 2) HW-based.
Attacks that belong to the latter category exploit the avail-
ability of a HW prefetcher (microarchitectural resource)
and specifically utilize the MS of the prefetch tables and/or
the SC as the side channel while attacks that belong to
the former category exploits different prefetch instructions
directly which exhibits different timing depending on the



Microarchitectural Attack(s) Resource(s) Attack steps Threat
optimization AS AI AT AR model
Shared cache (SC) flush+flush [68], flush+reload [72], [89], [188] RSC D/S/I [A] D/S/I [V] - D/S/I [A] 1,2,3

prime+probe [88], [93], [132], [133], [136] RSC D/S/I [A] D/S/I [V] - D/S/I [A] 1,2,3
observation [159], C5 [123] RSC D/S/I [A] D/S/I [V] - D/S/I [A] 1

collide+probe [113] RSC D/S/I [A] D/S/I [V] - D/S/I [A] 2
load+reload [113] RSC D/S/I [A] D/S/I [V] - D/S/I [A] 3

xlate+probe/abort [172] RSC , RMMU D/S/I [A] D/S/I [V] - D/S/I [A] 1,2,3
TLBleed [3], [61] RSC , RTLB D/S/I [A] D/S/I [V] - D/S/I [A] 2,3
CacheBleed [189] RSCT

bank
D/S/I [A] D/S/I [V] - D/S/I [A] 3

MemJam [126] RSC D/S/I [A] D/S/A/I [V] - D/S/I [A] 2,3
LoR [134] RringT D/S/I [A] D/S/I [V] - D/S/I [A] 1

MeshUp [178] MeshAround [45] RmeshT D/S/I [A] D/S/I [V] - D/S/I [A] 1
CacheTiming [23], [169] RSC - [A] D/I [V*] - D/I [A] 1/-2̂

Prefetching (P) Prefetch SCAs [1], [67] RP ,RSC ,RTLB D/S/I [A] D/S/A/I [V] - D/S/I [A] 2,3
prefetch+reload, prefetch+prefetch [74] RP ,RSC D/S/I [A] D/S/I [V] - D/S/I [A] 1

LeakingControlFlow [40] RP ,RSC ,RTLB D/S/I [A] D/S/A/I [V] - D/S/I [A] 2,3
DMP [146], [175] RP ,RSC D/S/I [V*/A] D/S/A/I [V*/A] - D/S/I [A] 2
Unveiling [158] RP ,RSC D/S/I [A] D/S/I [V] - D/I [A] 1,2,3

FetchingTale [44] RP ,RSC D/S/I [A] D/S/I [V] - D/S/I [A] 2,3
Branch JumpOverASLR [49] RBTB D/S/I [A] D/S/A/I [V] - D/S/I [A] 2,3
prediction (BP) PredictingKeys [4]–[6], [49] RBTB D/S/I [A] D/S/I [V] - D/S/I [A] 2,3

BranchScope [51] RPHT D/S/I [A] D/S/A/I [V] - D/S/I [A] 2,3
BranchShadowing [109] RPHT ,RLRB D/S/I [A] D/S/A/I [V] - D/S/I [A] 2,3

Computational Subnormal FP [16], [102] RFPU (D/S/I)1 [A] D (S/I)1 [V] - (D/S/I)1 [A] -
simplification (CS) Early termination [63] RMUL - [A] D [V*] - - [A] 2,3
Transient attacks: Spectre v1 [100], [167], v1.1 [99] RSC ,RPHT ,RBHB D/S/I [A/V*] D/S/I [V*] D/S/A/I [V*] D/S/I [A] 1,2
Speculation-based Spectre v2 [20], [39], [100], [184] RSC ,RBTB ,RBHB D/S/I [A/V*] D/S/I [V*] D/S/A/I [V*] D/S/I [A] 1,2

Spectre v4 [124], LVI [171] RSC ,RSTL D/S/I [A/V*] D/S/I [V*] D/S/A/I [V*] D/S/I [A] 2
Spectre v5 (ret2spec) [104], [121] RSC ,RRSB ,RBTB D/S/I [A/V*] D/S/I [V*] D/S/A/I [V*] D/S/I [A] 1,2

BranchSpec [90] RPHT D/S/I [A/V*] D/S/I [V*] D/S/A/I [V*] D/S/I [A] 2,3
NetSpectre [151] RPHT ,RAVX2/RSC D/S/I [V*] D/S/I [V*] D/S/A/I [V*] D/S/I [A] -2

CROSSTALK [141] RSC ,RLFB ,Rstaging buf. D/S/I [A/V*] D/S/I [V*] D/S/A/I [V*] D/S/I [A] 1
SMoTherSpectre [26] RSC ,RPHT ,RportsT D/S/I [A] D/S/I [V*] D/S/A/I [V*] D/S/I [A] 3
SpectreRewind [52] RSC ,RBTB ,RportsT D/S/I [A] D/S/I [V*] D/S/A/I [V*] D/S/I [A] 2,3

Speculative interference [22] RSC ,RBTB ,RMSHR,RRS ,REUT D/S/I [A/V*] D/S/I [V*] D/S/A/I [V*] D/S/I [A] 1,2,3
ROB cont. [7] RPHT ,RROB D/S/I [A/V*] D/S/I [V*] D/S/A/I [V*] D/S/I [A] 1,2,3

Transient attacks: Meltdown [114], [167] RSC ,RBTB [PF-US] D/I [A] D/S/A/I [A] D/I [A] D/I [A] 4
Exception-based Foreshadow [170], [182] RSC ,RTLB [PF-P] D/I [A] D/S/A/I [A] D/I [A] D/I [A] 4

Spectre1.2 [99] RSC ,RTLB [PF-RW] D/I [A] D/S/A/I [A] D/I [A] D/I [A] 4
LazyFP [162] RSC ,RFPU ,RSIMD [#NM] D/S/I [V] D/S/A/I [A] D/I [A] D/I [A] 2,3
Fallout [125] RSC ,RSB D/S/I [A] D/S/A/I [A&V] D/I [A] D/I [A] 2,3

RIDL [173] ZombieLoad [149] RSC ,RLFB D/S/I [A] D/S/A/I [A&V] D/I [A] D/I [A] 2,3
LVI [171] RSC ,RFPU ,RSB ,RLFB [PF] D/S/I [A] D/S/I [V*] D/S/A/I [V*] D/S/I [A] 2,3,4

TABLE 1. ATTACK SYSTEMATIZATION. ROOT CAUSES: DETERMINISM (D), SHARING (S), ACCESS VIOLATION (A), INFORMATION FLOW (I).
ATTACK STEPS: SETUP (AS ), INTERACT (AI ), TRANSMIT (AT ), RECEIVE (AR), PERFORMED BY ADVERSARY [A] OR VICTIM [V]. GADGET*.

THREAT MODELS: 1) CROSSCORE, 2) SAMETHREAD, 3) SMT, 4) SOLO.1IN SW.2REMOTE.T TEMPORAL RESOURCE.

state of the TLB and/or the SC. The attacks exploiting
SW-based and HW-based prefetching mechanisms can
be further subdivided into two categories, 1A and 2A)
Attacks which exploit the lack of permissions check and
1B and 2B) Attacks which exploit a secret-dependent
prefetching pattern.

One typical attack from category 1A, a SW-based
attack that exploits the lack of permissions check, is the
address-translation attack by Gruss et al. [67] where the
goal of the full attack is to translate between virtual and
physical addresses from unprivileged user-space and over-
come the protection provided by user-space and kernel-
space Address Space Layout Randomization (ASLR). We
focus on the first phase of the attack where the adver-
sary searches through possible addresses and tests if two
virtual addresses, a and a′, map to the same physical
address by performing the attack. Here, address a′ can
be a kernel address or a non-mapped address and not
be directly accessible to the adversary. In the setup step
the adversary flushes the candidate collision address, a.
The state changes to MSP{RSC[[indexa]=empty]}. In the
interact step, the adversary prefetches the address a′,
and performs an access violation. The access violation is

due to speculative dereferencing of kernel-space registers
from user-space [152], and not because of the prefetch
instruction as suggested by Gruss et al. [67]. The state
changes to MSE{RSC[[indexa]=a’]}. In the receive step
the adversary accesses address a and based on the timing
variations infers if there is a match between a and a′.

The root causes exploited by the attack are determin-
ism, sharing, access violation and information flow, as
shown in Table 1. Determinism enables all the three steps
of the attack. First, in setup step, it causes the cache line
corresponding to a to be evicted. Second, in the interact
step, it causes the prefetch of a′ to be encoded through the
MS of the SC. Third, it makes timing variation to be ob-
served corresponding to the presence/absence of the cache
line. Access violation enables the attack by permitting the
adversary to prefetch inaccessible address(es). Sharing and
information flow guarantees that the secret is encoded and
communicated, through MS of the SC.

In the second category in SW-based attacks, 1B,
the attacks [74] use a SW-controlled prefetch instruction
(PREFETCHW), in the setup and the receive, to reveal
cryptographic keys through the data-dependent access pat-
tern of an application.



The attacks in category 2A, HW-based without per-
missions check, use HW prefetchers to prefetch addresses
outside of a sand-box [175] or in kernel-space [40]. The
prefetcher is trained in the setup step, in order to issue a
prefetch to the target address in the interact step. Chen
et al. [40] show that an adversary trained prefetcher can
prefetch kernel addresses. In [175] a data memory-
dependent prefetcher (DMP) is trained to perform out-of-
bounds reads on pointers, since the prefetcher is allowed to
use memory content to prefetch irregular address patterns.
The root causes exploited by the attacks are determinism,
sharing, access violation and information flow. In both the
attacks the state of the SC is used to encode the accesses
in the interact step and to measure the timing difference in
the receive step. There is no need of an additional transmit
step to encode the secret in the SC, since the prefetcher
directly interacts with the SC in the interact step. Access
violation is exploited in the interact step since the prefetch
is issued without permission checks.

Lastly, the attacks [40], [158] in category 2B, leak se-
crets through secret data-dependent prefetching pattern(s).
Shin et al. [158] show how data-dependent prefetch ac-
tivity can be used to leak secret keys through MS in the
SC. Similar to the previously discussed attacks using SW-
based prefetching, which also leak secrets through data-
dependent prefetch access patterns, the root causes are
determinism, sharing and information flow.

3.1.3. Branch prediction. Branch predictors record his-
tory of branch outcomes in order to predict the direction
of control flow after a branch instruction, to improve
instruction flow. There are two high-level strategies for
attacks using the branch predictor, reuse-based [51], [100],
[109] where entries set by one process may influence the
other and conflict-based [4]–[6], [49] where contention is
used to evict the entry inserted by the other process.

A typical conflict-based attack is JumpOverASLR [49]
where the goal of the adversary is to determine the po-
sition of a code block in the address space of a victim.
Knowing the position of a code block can help break the
protection provided by ASLR since the randomization is
based on an offset. The attack is launched multiple times
using different index values, searching for a collision in
the BTB. A collision in the BTB can be used to infer
the address used by the victim and the offset used by
ASLR. In the setup step, the adversary inserts an entry
in the BTB which might create a collision with the entry
later inserted by the victim code. This changes the MS to
primed MSP{RBTB[[indexI]=addr. A]}. Next, in the inter-
act step the victim executes and inserts a different target
address at the same BTB position, creating a collision.
The state transitions to MSE{RBTB[[indexI]=addr. B]}. In
the receive step the adversary executes code which will
trigger the BTB entry at indexI and measures the execution
time. If the BTB entry was changed by the victim it would
result in a longer execution time since the target address
is incorrect (B instead of A).

The root causes which enable this attack are determin-
ism, sharing and information flow, as shown in Table 1.
Determinism guarantees that, the adversary can cause a
BTB state update in an intended entry, induce a conflict
on the same entry when the victim executes and measure
timing variations due to the conflict. Likewise, information

flow and sharing guarantees that the secret is encoded and
communicated, through MS of the BTB, from the victim
to the adversary, across the different steps. Note that
this attack is restricted to the SameThread threat model
(although it can be applied in SMT) and does not extend
to CrossCore because BTB state is not shared across cores.

There also exist conflict-based attacks which exploit
that the branch predictions can reveal data-dependent con-
trol flow [4]–[6]. For example in [5] secrets are inferred
based on the predictions made in the BTB.

The reuse-based attack use the PHT instead of the
BTB [51]. In BranchScope [51], the branch predictor is
manipulated into using only the directional branch pre-
dictor, PHT, where the directional prediction inserted by
the adversary is changed by the victim which reveal the
direction of conditional branches. The attack can also
be used against SGX enclaves, since the PHT is shared
between processes executing in SGX and outside. The
same root causes as in JumpOverASLR enable the attack.

3.1.4. Computational simplification. Computational
simplification comprises techniques which eliminate
or simplify instruction execution. One example is the
zero-skip multiplier and the same principle can be
applied on different instruction types as square root,
AND/OR and to different pipeline stages. Attacks on
this type of optimizations have been studied [16], [43],
[63]. In [16] an attack is described using subnormals
in a floating-point division unit, to create visible timing
differences. Großschädl et al. [63] describe an attack
using early-termination of multiplication where the
multiplication is terminated when all remaining digits are
zero, creating observable timing differences. The goal of
the attack is to leak secret keys from cryptographic SW
such as RSA. There are two prerequisites of the attack,
firstly, that the adversary is able to control the plaintext
which will be encrypted and secondly, that the timing can
be observed on a side-channel. In the setup the adversary
calls the cryptographic function on the victim with a
plaintext. In the interact step the victim encrypts the
plaintext and will experience different timings depending
on the values of the key. Großschädl et al. does not
describe which side-channel could be used in order to
allow the adversary to observe the timing difference.
We note that either the MS of the SC or execution unit
contention could be used. A gadget is likely needed at the
victim for re-encoding of the secret to the side-channel.

The root cause exploited is determinism which enables
the data-dependent behaviour of the early-termination op-
timization and the timing variability. In addition, the side-
channel, which enables the adversary to observe the timing
differences, exploits sharing and information flow.

3.2. Transient attacks

We finally discuss transient execution attacks which
exploit speculative out-of-order (OoO) execution to exe-
cute code transiently (i.e. executed but never committed).
We use the categorization provided in related works [35],
which divide the transient attacks broadly into two groups,
speculation-based [7], [22], [26], [39], [52], [90], [100],
[121], [124], [141], [151] and exception-based [99], [114],
[125], [162], [167], [170], [171], [173] attacks.



3.2.1. Speculation-based Attacks. The attacks that fall
in this category exploit transient execution, due to branch
prediction and/or address/value speculation, to access the
secret. An overview of the attacks is shown in Table 1.
Spectre v2 [100] is a typical speculation-based attack.
The attack exploits an indirect branch to execute a gadget
which interacts with the secret in the victims protection
domain, leaving a trace in the MS. The prerequisites are
an indirect branch that can be (mis)trained and a known
gadget in the victim’s binary that can be manipulated to
interact with the secret. The threat models are SameThread
and SMT, since BTB is a resource private to a core. How-
ever, CrossCore can be used if a gadget is used to make
the victim perform the (mis)training. In the setup step
the adversary/victim (mis)trains the BTB to insert a new
entry containing the address of the gadget for the indirect
branch. The state changes to MSP{RBTB[[indextarget]=addr.
Agadget]}. The root causes in the setup step are determin-
ism, sharing and information flow. Determinism guaran-
tees that the adversary can cause a BTB state update in an
intended entry, while sharing and information flow enables
the state change caused in the BTB to be observed by the
victim. Note that setup of the SC is also performed, i.e.
clflush, since it will be used later in the transmit step.

Next, in the interact step the victim executes the
gadget speculatively, accesses the secret and changes the
MS. The root causes are determinism, access violation
and information flow. Determinism guarantees that the
(mis)trained BTB entry is used. Access violation enables
access to the secret through execution of the gadget which
results in temporary violation of program semantics, i.e.,
instructions that access the secret are executed and are
later squashed. In the transmit step the secret is re-encoded
in the state of the SC, by issuing load(s) to the target
address(es) by the victim. The root causes exploited are
determinism, sharing and information flow since the SC
contains the cache line(s) and the MS of SC is shared
between the adversary and the victim. Finally, in the
receive step the adversary accesses the target cache line(s)
and based on the timing variations infers the secret. The
root causes are the same as in the previous step, with
the difference that determinism ensures observable timing
variations based on the state of the SC, i.e., the pres-
ence/absence of the target cache line(s).

In contrast to Spectre v2, which uses the BTB, other
microarchitectural resources have been used to manipulate
the control flow, e.g., PHT [100] or the Return Stack
Buffer (RSB) [104], [121]. In addition, address specu-
lation can be targeted for manipulating Store-To-Load
(STL) forwarding that happens in the Load Store Queue
(LSQ) [124]. Many of these different attack variants still
use SC as the side-channel for transmission.

Next, we discuss attacks which are more restrictive
since other microarchitectural resource(s) (not SC) is/are
used for the transmission of the secret. One example is
BranchSpec [90] where the PHT is used in the transmit
and receive step. The root causes exploited by the attack
are the same as in Spectre v2, while the threat model is
more restrictive since the PHT, used as the side-channel, is
not shared between cores. Another attack, SMoTherSpec-
tre [26], uses port contention to encode the secret and
transmit to a co-running SMT thread. Likewise, temporal
contention in the floating-point division unit is exploited

in SpectreRewind [52]. Like SpectreRewind, the attack
proposed by Behnia et al. [22] shows that the secret can
be encoded by affecting the timing and order of older
instructions, which are issued before the secret dependent
instruction(s) in program order. This is in contrast to prior
works [95], [110], [186] that focused on studying the
secret-dependent effect on younger instructions, issued
after the secret dependent instruction(s). In the attack,
the non-speculative instructions timing is affected either
through the miss status handling register (MSHR) or exe-
cution unit contention. As an example, let’s consider the
attack using the MSHR described by Behnia et al. [22].
In the setup step the adversary evicts a number of cache
lines Y . In the interact step the a gadget, depending on the
secret value, either issues independent loads to the cache
lines Y (filling up the MSHR entries) or issues loads to
the same cache line (using one entry in the MSHR). When
the target victim load occurs it will experience different
timing depending on the MS of the MSHR.

3.2.2. Exception-based Attacks. The attacks that fall in
this category exploit transient execution, due to delayed
exception handling to access the secret. Meltdown [114]
is a typical attack from this category where the adver-
sary exploits transient execution due to delayed exception
handling, to read arbitrary kernel memory. In the setup
step the adversary causes an exception by accessing a
kernel address that resides in a kernel memory page
without suitable permissions causing a page fault, e.g.,
PF-US. Because of the deferred exception handling the
execution continues transiently. In the interact step the
adversary executes code that uses the loaded value from
the faulting kernel address. By suppressing the exception
can the transient execution continue [114]. In the transmit
step the secret is encoded in the MS of the SC, through
a load to the data buffer, in order for the adversary to
retain the information after the transient execution is rolled
back after exception handling. In the receive step the
secret is inferred from the state of the SC, through the
presence/absence of cache line(s). Note that all the steps
of the attack are performed by the adversary.

The root causes enabling the attack are determinism,
sharing, access violation and information flow (Table 1).
Determinism ensures transient execution due to delayed
exception handling in the setup step and that the secret is
encoded in the state of the SC in the interact step. Sharing
enables the access from the adversary to the victim kernel
address in the interact step. Information flow enables
the transiently accessed secrets to be communicated to
the non-transient execution, through the MS of the SC.
Access violation enables the adversary, in the interact
step, to access kernel data which it does not have the
right privileges to access.

Attacks have shown that different types of exceptions,
i.e., page fault (PF), can be used in the setup step. For
instance, Foreshadow uses PF-P [170], [182], Spectre
v1.2 [99] uses PF-RW while LazyFP [162] uses #NM
(device not available). Other types of page fault excep-
tions can also be used as shown by Canella et al. [35].
Furthermore, in addition to reading from kernel memory,
attacks have also exploited delayed exception handling to
leak data across addresses spaces, virtual machines and
even from secure enclaves [170], [182].



Another group of attacks, referred to as the microar-
chitectural data sampling (MDS) attacks, exploit the state
of internal buffers in the CPU, as the Line Fill Buffers
(LFBs) [149], [173] or the Store Buffer (SB) [125], in
conjunction with delayed exception handling. Specifically,
the attacks leverage the observation that values from these
buffers can be leaked as a consequence of accesses that
trigger an exception. In the ZombieLoad v1 attack [149]
the adversary uses the kernel virtual address (k) cor-
responding to the user-space address of the victim (u)
where the secret resides. Both virtual addresses k and u
map to the same physical address s. In the setup step,
the adversary monitors the victim by performing repeated
flush+reload attacks on the address corresponding to the
instruction just before the loading of the secret. This
enables the attacker to synchronize with the victim and
determine when it can start accessing the state of the
buffers to retrieve the secret. In addition, the contents
of the data buffer are also flushed from the SC. Next,
in the interact step, the victim performs the load of the
secret key, load u. This load operation will cause the
secret to be inserted in the LFB (on a cache miss). The
adversary performs a faulting load i.e. the ZombieLoad,
to the kernel address of the secret (load k), which causes
the adversary to retrieve the secret from the LFB. In the
transmit step the adversary uses the secret as an index
to a data buffer to encode the secret into the MS of the
SC, before the transient execution is rolled back. In the
receive step the adversary accesses the data buffer entries
to infer the secret based on the timing variations arising
due to SC state. In contrast to Meltdown, victim’s accesses
cause the secret to be inserted in the internal buffers
which are then leaked by loads that trigger exceptions. All
four root causes enable this attack. Determinism enables
all the steps of the attack while sharing the MS of the
LFB allows for information flow between the victim and
the adversary. Access violation occurs during transient
execution when the adversary is allowed to read stale
data from the LFB. Unlike the MDS attacks discussed
previously, Load Value Injection (LVI) [171] uses the
different types of exception-based vulnerabilities to inject
data/code and control victim’s execution by controlling the
values in the internal CPU buffers. This attack exploits the
same root causes as the MDS attacks discussed previously.

3.3. Vulnerable optimizations

Several microarchitectural optimizations available in
literature have not been reviewed in detail with an em-
phasis on security. We discuss possible attacks using our
framework for one such representative optimization, value
prediction. We also analysed vulnerabilities in a few other
optimizations, including the ones explored by Vicarte et
al. [146], but omit them due to page constraints.

Value prediction: This is a speculative optimization
that aims to increase instruction-level parallelism (ILP)
and hide memory access latency by predicting values
for load misses and consequently breaking instruction
dependencies [111], [112], [135], [154], [156]. Accurate
predictions can improve ILP by increasing the overlap
between memory access(es) and useful computation(s)
while mispredictions lead to pipeline squashes and re-
execution of instruction(s). In a nutshell, value prediction

is implemented using table-based structures and samples
history to enable prediction.

Both reuse-based and conflict-based attacks are possi-
ble, similar to the attacks described for the branch predic-
tor. One possible attack that exploits the reuse behavior is
to let the victim train the predictor leading to the secret
being encoded in the predictor state. The adversary can
then trigger a prediction and use this to infer the secret.
Another possible attack strategy is to let the adversary
(mis)train the predictor in order to induce the victim to
access a secret (cause an access violation) using a gadget,
akin to injection attacks. This can then be leaked to the
adversary through a side-channel, such as the SC. Finally,
conflict-based attacks could also be mounted by using
secret dependent predictor use behavior and monitoring
the state of the prediction tables to infer secrets. The root
causes exploited by the aforementioned potential attacks
are determinism, sharing and information flow. Determin-
ism permits the MS of the prediction table to be accessed
and manipulated depending on the attack requirements.
Sharing permits the MS of the prediction tables to be
accessible to both the adversary and the victim and enables
information flow between adversary and victim. Access
violation could also be exploited if the predictions cause
the adversary and/or the victim to access data from outside
the intended protection domain.

In summary, we observe that the necessary conditions
for most attacks are determinism, sharing and information
flow and that there are few variations in the combinations
of root causes. We also note that the goal of the attacks
is either to i) exploit data-dependent implementations to
leak encryption keys, or ii) circumvent privilege checks to
typically read kernel data. All attacks in the later category
exploit access violation.

4. Systematization of Defenses
We present a systematization of defenses against at-

tacks targeting different microarchitectural optimizations.
We specifically discuss optimizations for which several
attacks and defenses exist in literature: cache, prefetch-
ing, branch prediction, computational simplification and
transient execution attacks. For each of the defenses,
we discuss which root cause(s) and the attack step(s)
the defenses target. Eliminating any of the root causes,
exploited in a specific attack, in any of the attack steps
can provide protection. Table 1 show the different root
causes for each attack, which can be targeted by a defence.
We categorize defenses into groups, wherever possible,

in case there are similarities. In addition, we also describe
the protection level offered against the discussed attacks
using the optimization and the threat model targeted by
the defense. Our goal is not to exhaustively cover defenses
against all possible attacks targeting a microarchitectural
optimization. Rather, it is to explore broad defense strate-
gies, in which attack step and root cause they can be
applied and their limitations.

4.1. Defenses against Non-transient attacks

4.1.1. Cache. Several defenses have been proposed for
securing the shared cache against side-channel attacks. We
have classified the different defenses for the SC based on
the root cause(s) and attack step(s) they target, into five



broad categories, see Table 2. Each row in the table shows
which root causes are restricted by the defence, in which
attacks step using which microarchitectural resource.

Disabling clflush [187], [188] only addresses reuse-
based attacks which typically uses the instruction in the
setup step. This affects the three root causes determinism,
sharing and information flow primarily in the setup step.

The defenses in the next category, partitioning (part.),
target sharing and information flow, in all the attack steps,
by providing isolation between processes/threads in the
SC state using partitioning [30], [73], [75], [96], [98],
[115], [130], [131], [147], [153], [179], [180]. Partitioning
can, in principle, provide full protection against reuse-
based, conflict-based and observation-based attacks where
victim and adversary share the SC state. However, the
defenses provide different levels of protection depending
on the level of isolation, i.e., whether all or only some
of the data is partitioned. For example, MI6 and IRON-
HIDE [30], [131] statically partition both SC and DRAM
and can thereby enable full protection of the SC, albeit
at a comparatively higher performance cost. In contrast,
STEALTHMEM [96] only provides partial protection for
a limited number of cache lines per core, which are not
allowed to be evicted. This will lead to higher performance
but also a lower protection level, since the state of the
unprotected cache lines are shared.

The next category, randomization (rand.), targets
conflict-based attacks and is typically achieved by mod-
ifying the mapping of addresses to sets in the SC [117],
[139], [140], [164], [166], [183]. Randomization target
determinism and information flow. The strategy affects
determinism by complicating the process of creating an
eviction-set needed to evict a target cache line at a specific
address. The change in mapping leads to limited informa-
tion flow. This makes randomization effective especially
against conflict-based attacks. However, in spite of de-
fense, the SC is still shared and insertions by the adversary
can result in evictions for the victim process and vice
versa. This limits the effectiveness against observation-
based attacks since the working-set size of an application
can be observed and can be leveraged by attacks [55].

The category replacement-based defenses (repl.) – in-
sertion and/or eviction – leverage randomization to pro-
vide protection [47], [92], [94], [116], [143], [180]. These
proposals mainly target determinism and information flow
through the SC state. Specifically, through randomising
insertion and/or eviction, the SC do not react in the same
way under the same preconditions. Information flow is
limited by reducing/avoiding set conflicts, i.e., by pre-
venting an adversary from evicting data inserted by the
victim. These defenses offer protection but eventually leak
information since determinism, sharing and information

Defense Res. Attack step Threat P
AS AI AT AR model

disable clflush [187], [188] RSC D/S/I - - - 1,2,3 G#
part.: [46], [73], [115], [180] RSC D/S/I D/S/I - D/S/I 1,2 G#

[96], [147], [153], [179] RSC D/S/I D/S/I - D/S/I 1,2 G#
part.: static [30], [98], [131] RSC D/S/I D/S/I - D/S/I 1,2  
rand. [117], [139], [140], [166] RSC D/I D/I - D/I 1,2 G#

[164], [183] RSC D/I D/I - D/I 1,2 G#
repl. [47], [92], [94], [116], [143], [180] RSC D/I D/I - D/I 1,2 G#
const. time [24], [25], [43] - - D/I - - 1,2,3  
TABLE 2. DEFENSES FOR ATTACKS USING THE SC. PROTECTION

(P): FULL /PARTIALG#.

flow in the SC are not completely eliminated [163].
Lastly, constant-time programming paradigm [24],

[25], [43] can be used to avoid data-dependent implemen-
tations which affects determinism and information flow.
However, this is challenging to utilize in practice since it
cannot be generically applied.

4.1.2. Prefetching. Existing defenses to protect against
prefetch-based attacks can be categorized broadly into five
groups, as shown in Table 3. Disabling the prefetcher [1],
[40], [44], [158] impacts determinism, sharing, access
violation and information flow, in all the attack steps. This
strategy is equally applicable to attacks using HW- or SW-
based prefetching. However, the performance cost can be
high since prefetching can provide significant speedups.

The defense in the second group, by Gruss et al. [67],
propose introducing privilege checks on prefetch instruc-
tions. This would cause a segmentation fault when there
is an attempt to prefetch kernel data. This prevents access
violation in the interact step and affect all SW- and
HW-based attacks that exploit the lack of permission
checks [1], [40], [67], [146], [175].

Another strategy is to provide stronger isolation be-
tween kernel and user-space to protect against attacks that
leverage the lack of permission checks [65]. This approach
has been adopted in both Linux [57] and Windows [91].
This would provide protection against SW-based attacks
using the prefetch instruction [1], [67] and against HW-
based attacks [40], [146], [175]. This approach restricts
sharing and information flow through the page tables (and
TLB), in the interact step of the attack.

The next group of defenses target attacks that ex-
ploit the state of HW-based prefetchers (prefetch tables).
Specifically, these defenses replicate and flush prefetcher
state at context switches [40], [44]. This ensures that state
is no longer shared across context switches which restricts
sharing and information flow. This only affects the HW-
based attacks which rely on MS in the prefetcher. Further-
more, the threat model targeted is limited to SameThread
since the technique does not affect concurrently executing
SMT threads sharing prefetcher state.

Another strategy is to change the SW implementa-
tion to ensure that any prefetch activity is not dependent
on any secret. This would affect the attacks relying on
data-dependent execution paths and observing prefetch
patterns [40], [74], [158]. This can be achieved using
constant-time programming practices [24], [158], for ex-
ample rewriting table based look-ups to be immune to
prefetches [60], [158]. This strategy affects determinism
and information flow and can theoretically protect against
attacks that exploit prefetch patterns. However, it is chal-
lenging to implement this broadly in practice.

Defense Res. Attack step Threat P
AS AI AT AR model

disable [1], [40], [44], [158] RPref. D/S/I D/S/A/I - D/S/A/I 1,2,3  
privilege checks [67] RPref. - A - A 1,2,3 G#
kernel/user isol. [65] RTLB - S/A/I - - 2 G#
flush [40], [44] RPref. I I - I 2 G#
replicate [40], [44] RPref. S/I S/I - S/I 2 G#
const. time [25], [43], [60], [158] - - D/I - - 1,2,3 G#
SC defenses RSC D/S/I - - D/S/I 1,2,3 G#

TABLE 3. DEFENSES FOR ATTACKS USING THE PREFETCHER.



Defense Resource Attack step Threat P
AS AI AT AR model

if-conversion [41], [51] - D/S/I D/S/I - D/S/I 2,3  
enc.: [108], [192] RBTB /RPHT D/I D/I - D/I 2,3 G#

[50], [62], [193] RBTB /RPHT D/I D/I - D/I 2,3 G#
flush [177], [193] RBTB /RPHT /RBHB I I - I 2  
part. [177], [193] RBTB /RPHT S/I S/I - S/I 2 G#
rand. [81], [191] RBTB /RPHT D D - D 2,3 G#

TABLE 4. DEFENSES FOR ATTACKS USING THE BRANCH PREDICTOR.

Lastly, it should be noted that some of the attacks rely
on the shared state of the SC [40], [67], [74], [158], [175].
The defenses proposed for the SC could be used to defend
against these attacks as well.

4.1.3. Branch prediction. The defenses against branch
prediction based attacks can be grouped into five cate-
gories, see Table 4. The first group relies on SW-based
techniques, as if-conversion, where the compiler restruc-
tures code to avoid conditional branches and use predica-
tion instead [41]. This restricts determinism, sharing and
information flow since branching is avoided and is akin to
disabling the direction prediction. However, the applicabil-
ity to real-world code with complex control flow is limited
[51]. Furthermore, highly predictable branches have been
shown to perform poorly when if-converted [41].

The next category of defenses use randomization to
thwart attacks. Specifically, encryption of the BTB/BTB
have been proposed [50], [62], [108], [192] to prevent the
adversary from easily manipulating the branch prediction
logic. Encryption restricts determinism and information
flow, in all the steps of the attack. Determinism is affected
in the setup step because the target is encrypted which
makes manipulating collisions difficult. Information flow
is also hindered since a process can only access correct
entries in the presence of a valid key. The limitation
of these encryption-based solutions is that they cannot
guarantee protection against brute-force approaches.

Defenses in the next category flush the state of the
branch predictor i.e. BTB/BTB/BHB, on context switches
[177], [193]. This would affect information flow in the
context of the SameThread threat model. However, the
performance overhead is usually high [177] and the
effectiveness is restricted to the SameThread model.

Partitioning has been shown to thwart attacks on the
branch predictor [51], [193]. Partitioning affects sharing
and information flow, in all the steps of the attack, since
the state of the BTB/BTB is isolated. HyBP [193] com-
bines isolation and encryption, and selectively replicates
parts of the predictor state, while using encryption for the
larger tables. The focus of these proposals is to use parti-
tioning/replication to avoid the high performance cost of
flushing the entire branch prediction state upon a context
switch. Replicating the entire prediction state among SMT
threads, although a possibility, is prohibitively expensive.

The last category makes the state transition of the pre-
dictor probabilistic, by affecting the saturating counters,
as proposed by Zhao et al. [191]. This defense restricts
determinism in all the steps of the attack. However, the
protection offered by the technique is limited since an
adversary, through repeated measurements, can eventually
infer the secret from the state of the branch predictor.

4.1.4. Computational simplification. Two broad strate-
gies have been proposed for protecting against attacks us-

Defense Resource Attack step Threat P
AS AI AT AR model

disable [43], [63] RMUL/RFPU - D - - 2,3  
const. time: [17], [43], [63] RMUL/RFPU - D - - 2,3 G#

[16], [24], [25], [142] RMUL/RFPU - D - - 2,3 G#
TABLE 5. DEFENSES FOR ATTACKS USING COMP. SIMPLIFICATION.

ing computational simplification, see Table 5. One strategy
is to selectively disable the optimization for parts of the
program which accesses sensitive information [43], [63].
Disabling restricts determinism in the interact step.

The other strategy is to change the implementation
to avoid any data-dependent timing variations, even for
computational simplification. This strategy targets deter-
minism in the interact step. One way to achieve data-
independent implementation is to use constant-time pro-
gramming practices [16], [24], [25], [43]. In [16] a FP
library (LibFTFP) is shown, providing a fixed-point data
type with all library operations executing in constant time.

Lastly, in the case of the browser-based attack [16] the
SW-construct which enables the sharing and information
flow, can be disabled i.e. cross-origin SVG-filters [102].

4.2. Defenses against Transient Attacks

We describe defenses for transient execution attacks,
where we first discuss defenses for speculation-based at-
tacks, and then defenses for exception-based attacks.

4.2.1. Defenses against Speculation-based Attacks. The
defenses against speculation-based attacks can be broadly
grouped into four high-level categories based on the
defense strategy: localized defenses, disabling defenses,
restriction defenses and isolation defenses, see Table 6.

Localized defenses leverage the defenses available
for individual optimizations/resources that interact with
speculative execution, such as the BP and/or SC. Branch
prediction can be targeted in the setup step to stop the
adversary from being able to (mis)train the predictor,
see Section 4.1.3. The defense is only applicable for the
attacks which uses the specific predictor resource. Another
approach is to target the side-channel that permits infor-
mation flow across protection domain through transient
execution. In most attacks the SC is used since it can offer
the highest bandwidth, which makes the defenses in Sec-
tion 4.1.1 applicable. However, studies have demonstrated
that a large variety of microarchitectural resources can be

Defense Resource Attack step Threat P
AS AI AT AR model

local: BPU RBTB /RPHT D/S/I - - - 2,3 G#
SC RSC D/S/I - - D/S/I 1,2 G#

disable: IBPB [12], sb [18] RBTB /RPHT D/S/I - - - 1,2,3 G#
SSBD [12], [13] RSTL D/S/I - - - 1,2,3 G#
SMT [59], [76], [107] - D/S/I D/S/I - D/S/I 3  

restrict: IBRS,STIBP [12], [14] RBTB /RPHT D/S/I - - - 1,2,3 G#
retpoline [15], [87] RRSB I - - - 1,2,3 G#
randpoline [31] RRSB D - - - 1,2,3 G#
lfence, serial. [12] - - D/I - - 1,2,3 G#

fence: [105], [165], [174] RµOP Q - D/I - - 1,2,3 G#
[36], [129], [157] - - D/I - - 1,2,3 G#

delay: [19], [53], [148], [181] RROB , Rreg. - D/I/A - - 1,2,3 G#
[32], [190] RROB , Rreg. - D/I/A - - 1,2,3 G#
[110], [119], [145] RROB , Rreg. - - D/I - 1,2,3 G#

rollback [144] RSC - - D/I D/I 1,2 G#
isolate: [8], [9], [95], [186] Rbuf./RL0 - - D/S/I - 2 G#

TABLE 6. CLASSIFICATION OF DEFENSES FOR TRANSIENT ATTACKS.



used, such as execution units, ports, PHT, MSHR etc. This
is a challenge because multiple resources may need to be
protected, since they can all act as potential side-channels.
By defending the resource which enables the easily acces-
sible (high bandwidth and low noise) side-channels, the
attack bandwidth can be reduced. In addition, limiting the
threat model (for instance to CrossCore) can restrict the
number of resources which can be used as side-channels.

The second category involves disabling the optimiza-
tion. This approach has been proposed in specific sce-
narios where other defenses are not applicable. Support
for disabling indirect branch predictions using a barrier,
Indirect Branch Predictor Barrier (IBPB) [12], [14], has
been adopted in commodity HW. Likewise, to thwart
Spectre v4 attack, the STL mechanism can also be dis-
abled using Speculative Store Bypass Disable (SSBD)
microcode updates from Intel and AMD [12], [13]. These
techniques affect the root causes determinism, sharing and
information flow in the predictor, in all the steps where
it is used. However, the performance cost is potentially
high since the predictions are restricted. Another defen-
sive measure is to limit the threat model by disabling
SMT [59], [76], [107]. However, disabling SMT comes
at a potentially high performance cost.

The third category is restriction-based defences. Here,
the high-level idea is to restrict the speculative execution,
selectively, to avoid the attacks. Speculation restriction
can be performed in the different steps of the attack
and using different mechanisms in HW and/or SW. One
HW mechanism, adopted in commodity HW to avoid
(mis)training, is Indirect Branch Restricted Speculation
(IBRS) [12], [14], which affects the setup step. Using
IBRS restricts the training of indirect targets inside an
enclave. Likewise, using Thread Indirect Branch Predic-
tion (STIBP) restricts the use of prediction entries trained
in another SMT thread. Speculative execution have also
been restricted using micro-code updates [86]. SW-based
defenses [15], [31], [87] also aim to restrict speculation
by avoiding the state transition MSI→MSP, and preventing
the speculation triggered by the the branch prediction.
Here, the (exploitable) indirect branch is replaced by a
different retpoline sequence. This will cause the misspec-
ulated code to execute a controlled loop sequence until
speculation has been resolved. To lower the performance
cost of the technique both a probabilistic variant, rand-
poline [31], and a HW variant [15] have been proposed.
The root cause exploited is information flow. A recent
paper, RETBLEED [184], have shown that the retpoline
strategy only provides partial protection, since it can be
circumvented using manipulation of return instructions.

Another mechanism to restrict speculation is to intro-
duce fences to limit transient execution. Many existing
attack mitigations use the serializing lfence instruction
before sensitive parts of the code. In order to improve the
usability and performance cost, defenses have been pro-
posed which selectively and automatically choose when
to use fences, either in SW [105], [157], [165], [174] or
in HW [165]. For example Shen et al. [157] split code
into small blocks and insert fences between the entry point
and a potentially leaking memory access to defend against
Spectre attacks. The root causes affected are determinism
and information flow, depending on the solution. Another
example is Context-Sensitive Fencing (CSF) [165] which

uses customized decoding from instructions to micro-ops
to insert fences after a conditional branch instruction and
before a subsequent load instruction. The root causes
affected by fences are determinism and information flow,
in the interact step. Another way similar to fences is
Speculative Load Hardening (SLH) [36] a compiler-level
technique where the idea is to introduce a data dependency
on the condition, in order to guarantee that the control
flow is valid. The technique is supported in LLVM and
GCC [48]. Oleksenko et al. [129] restrict speculation by
introducing a data dependency in order to guarantee that
a load will only start if the comparison is in registers or
L1 cache. However, the technique is only effective if the
load is performed after the comparison.

Another method to restrict speculations is to wait for
authorization or until data is no longer transient [32], [53],
[110], [119], [145], [148], [181] which affect the execution
in the interact and/or transmit steps. Here, the defenses
delay to avoid the access violation which leads to leakage
(in interact) or stall the load which would update MS of
SC (in transmit). For example NDA (Non-speculative Data
Access) [181] provide different policies for controlling
control flow and data propagation in interact. The root
causes affected are determinism, sharing and information
flow. SpectreGuard [53] also affects the interact step and
proposes to mark secret data and selectively restrict spec-
ulation only for data from sensitive pages. These defences
affect the root cause determinism, access violation and/or
information flow in the interact step. CondSpec [110]
affects transmit by handling loads differently, a load that
hits in the SC can read the data and complete its execution
while a load that experience a cache miss will be stalled
and re-issued later. This affects the root cause access
violation and/or information flow. CleanUpSpec [144], on
the contrary, restricts how speculative updates are encoded
in the MS of the SC. Speculative accesses are allowed
to progress and make changes to the SC but these are
removed in case of miss-speculation. This has been shown
to be insufficient in certain conditions [22]. This defense
affects the root causes determinism and information flow,
in the transmit and receive step of the attack.

The performance cost of the restriction-based defenses
depends on how restrictive the rule set is, i.e., how much
execution differs from the unconstrained speculation sce-
nario. Introducing protections at a later attack step gener-
ally leads to more flexibility, since more speculation can
be allowed, and comes at a lower performance cost [82].
The trade-off is that more possible side-channels can be
used for the state transitions MSI→MST and MST→MSR,
which makes ensuring full protection challenging.

The last category targets isolation by introducing a
shadow structure to hold the speculative MS until it is
deemed safe [8], [9], [95], [186]. For example, in Moun-
Trap [9] an L0 filter cache is used for speculative data,
which is only allowed to propagate to the rest of the cache
hierarchy after commit. This allows the speculation and
potential access violation to occur but not affect MS of
the SC, for example. This restricts information flow from
the transient execution to the non-transient execution.

4.2.2. Defenses against Exception-based Attacks.
Exception-based attacks typically exploit implementation
oversights in HW. The Meltdown attack exploits a race



condition between authorization and access [77] which
enables transient execution to continue with an unautho-
rized value, leading to access violation. Newer CPUs con-
tain patches whereas existing ones are mostly protected
through microcode updates or other workarounds [33].
For instance, the issue has been addressed on newer Intel
microarchitectures [12], Whiskey Lake and onward, by
returning zero when accessing privileged memory [34].
In the case of the MDS-attacks the leaks is attributed to a
use-after-free vulnerability where stale data is read in the
internal registers [149], allowing unintended information
flow through shared CPU buffers. The issue is solved
by flushing the internal buffers to restrict the information
flow. Similarly, to defend against LazyFP, FPU registers
are flushed on context switches when changing protection
domains with SGX, for hypervisors and for logical cores.
In addition, since Linux 4.6 eager FPU switching is used
by default [120]. This disables the fault since the FPU
is always available. Foreshadow has been mitigated on
Intel CPUs through setting a physical page number field
of unmapped page-tables to refer to non-existing physical
memory [85], [182], thereby restricting access violation.
The LVI attacks [171] are no longer possible when the
corresponding fault or microcode assist is mitigated.

Another defense strategy is to provide stronger address
space isolation [56], [65], [84], [103], which mitigates
or limits the possible access violation in the attacks. For
example MemoryRanger [103] isolates drivers, kernel and
user space into separate address spaces using Extended
Page Table (EPT). This defense restricts access violation
in the interact step, by providing isolation.

4.3. System-level defenses

Broader system-level strategies for providing protec-
tion have also been proposed. Leveraging constant-time
programming paradigm is one such strategy where the
key idea is to rewrite the SW-implementation to avoid
timing variability. The challenge with constant-time pro-
gramming is to provide protection for all types of attacks.
Another strategy is to decrease the accuracy of timing
measurement [42], [83], [101], [122]. This strategy affects
determinism in the receive step, and can be used as a
defense against several attacks on different optimizations.
The strategy leads to lower attack bandwidth but has been
shown to be ineffective in providing complete protection
since many attacks can amplify the timing difference
[124] or use other timer mechanisms [150]. Another strat-
egy is to use formal models [38], [70], [71], [77], [127]
in order to automatically synthesize vulnerabilities. This
strategy could potentially find all exploitable scenarios in
the design phase itself. However, identifying all vulner-
abilities complicate the model building process and cur-
rent proposals therefore only target a limited set. Finally,
leveraging programming language based security [106] is
another option wherein defenses are co-designed leverag-
ing programming language annotations to mark sensitive
parts of the programs, along with suitable HW primitives.
However, a recent analysis performed by Naseredini et
al. [128] found that most programming languages and
their execution environments does not have support for
Spectre mitigations. This shows the challenge of relying

on programming languages and execution environments
to provide complete protection.

5. Discussion

Commonalities: We have shown that the root causes
that enable the attacks are common, across a wide range
of microarchitectural optimizations. Furthermore, through
our analysis of the proposed defenses, we have shown that
these target one or more root cause, across the different
steps of an attack. There are commonalities even in the
defense strategies used to protect against attacks on these
diverse microarchitectural optimizations. Some of those
include disabling the optimization, to restrict all the root
causes; isolating the state related to the optimization, to
restrict sharing; applying randomization and/or restric-
tion, to limit information flow and introducing permission
checks, to limit resources from, exposing/accessing state
outside of the intended domain.

Using these common strategies together with the root
causes, enable us to envision new defenses for vulnerable
microarchitectural optimizations. We apply these common
strategies to defend against potential attacks exploiting
value prediction (Section 3.3). Possible defenses against
those attacks could involve flushing the table at context
switches, isolating and/or partitioning the table to avoid
conflict and reuse-based attacks, introducing randomiza-
tion to limit information flow. Another option could in-
volve introducing non-determinism in the value prediction
mechanisms. Lastly, the simplest mitigation would be to
provide mechanisms to selectively disable the optimiza-
tion when running sensitive parts of the program.

Observations: Firstly, the ease of exploiting a microar-
chitectural optimization and the severity of the leak vary
widely. There exist limiting factors which are not easy
to quantify, such as the availability and capabilities of
gadgets in the victim code [35]. The link between attack
bandwidth and effectiveness in practical scenarios is also
difficult to quantify.

Secondly, we observe that, in several cases, vulnera-
bilities are not due to the fundamental behaviour of the
microarchitectural optimization but are rather a result of
design and/or implementation. This points in the direction
of promoting a deeper understanding of the root causes of
vulnerabilities and the potential defense strategies in the
design and implementation phases, which we hope can be
assisted by our framework, rather than as an afterthought.
We believe that microarchitectural optimizations can still
be a promising avenue to provide performance scalability
in future technology nodes without having to compromise
on security.

Future work: Our focus, in this paper, has been on
vulnerabilities in microarchitectural optimizations that tar-
get performance. We have not exhaustively covered all
microarchitectural optimizations and/or resources, for ex-
ample the NoC and DRAM. However, we expect our
framework to be easily extended to cover attacks and de-
fenses on other optimizations and resources. We have not
focused on SW vulnerabilities, such as buffer overflows,
which poses considerable security risks. Furthermore, we
have not investigated microarchitectural optimizations for
security, such as Intel SGX, nor power-based side channel
attacks nor performance degradation attacks [10], [11],



[21], [64]. Investigating and/or extending the root cause
framework to include optimizations for security and con-
sidering power-side channels is left for future work.

6. Conclusions
We identify four root causes that enable timing-based

side-channel attacks on an extensive set of microarchitec-
tural optimizations. We provide a framework and system-
atize both transient and non-transient attacks and defenses,
highlighting the similarities and differences. Based on our
analysis we discuss potential attacks and defenses for
vulnerable optimizations. We believe our framework can
assist computer architects in understanding the landscape
of attacks and defenses, and to provide guidance in de-
signing secure microarchitectural optimizations.
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nell, Daniel A. Jiménez, Tarun Nakra, Paul Kitchin, Ryan Hens-
ley, Edward Brekelbaum, Vikas Sinha, and Ankit Ghiya. Evo-
lution of the samsung exynos cpu microarchitecture. In 2020
ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), pages 40–51, 2020.
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Abstract—Dynamically partitioned last-level caches enhance
performance while also introducing security vulnerabilities. We
show how cache allocation policies can act as a side-channel and
be exploited to launch attacks and obtain sensitive information.
Our analysis reveals that information leaks due to predictable
changes in cache allocation for the victim, that is caused and/or
observed by the adversary, leads to exploits.

We propose SCALE, a secure cache allocation policy and
enforcement mechanism, to protect the cache against timing-based
side-channel attacks. SCALE uses randomness, in a novel way, to
enable dynamic and scalable partitioning while protecting against
cache allocation policy side-channel attacks. Non-determinism is
introduced into the allocation policy decisions by adding noise,
which prevents the adversary from observing predictable changes
in allocation and thereby infer secrets. We leverage differential
privacy (DP), and show that SCALE can provide quantifiable and
information theoretic security guarantees. SCALE outperforms
state-of-the-art secure cache solutions, on a 16-core tiled chip
multi-processor (CMP) with multi-programmed workloads, and
improves performance up to 39% and by 14%, on average.

I. INTRODUCTION

Shared last-level caches (LLCs) offer a broad attack surface
for an adversary to exploit timing side-channels and infer
secrets. There are three LLC attack categories: conflict-
based [39], shared-memory-based [68] and occupancy-based
attacks [52]. Current secure cache partitioning solutions can,
in principle, defend against all three categories of attacks by
ensuring isolation between adversary and victim processes. But,
this comes at the cost of lower cache utilization.

Initial works propose to partition cache capacity statically
among co-running applications [38]. However, static policies
do not adapt to changing requirements of applications and
provide lower performance than dynamic cache partitioning
policies [3], [20], [21], [27], [28], [33], [44], [47]. Dynamic
cache partitioning solutions comprise two parts: i) an allocation
policy which determines the partition allocations in order to
maximize an aggregate metric (e.g. cache hit rate), and ii)
an enforcement mechanism to maintain the partitions. Prior
works on secure cache partitioning have mostly focused on the
enforcement mechanism, while assuming static allocations [8],
[9], [25], [38], [45], [57]. In addition, none of these works
satisfy all the requirements of an ideal enforcement mechanism
– support for fine-grain partitions, scalability and locality-aware
partition placement to reduce on-chip access latency while
being secure. Furthermore, commercially available solutions,
as Intel CAT [19], do not satisfy these requirements and allow
information leakage across partitions [25].

Secure allocation policies have received little attention,
despite their significant performance impact. Determining
allocations both dynamically and securely is challenging
because allocations leak information on applications’ cache

demands. There are two existing attempts to secure cache
allocation: SecDCP [63] and OPTIMUS [35]. SecDCP provides
the notion of security tiers (confidential and public applications)
and permits one-way leakage from the public tier by only
considering public applications’ cache demand for determining
allocations. OPTIMUS, places a bound on the information
leakage by only performing allocation once at the start of
the execution. Our evaluation (in Section V) shows that both
proposals are ineffective and do not provide improvement
over the baseline. In summary, existing allocation policies and
enforcement mechanisms do not provide support for secure
and scalable cache partitioning.

This paper proposes SCALE – a novel dynamic cache
partitioning solution which protects the LLC against timing-
based side-channel attacks while considering the cache demand
of both secure and non-secure applications. The enforcement
mechanism can accommodate a wide range of partition sizes
and is scalable and locality-aware. SCALEs allocation policy is
based on insights from a detailed characterization of the cache
allocation policy side-channel and how it can be exploited to
launch conflict- and occupancy-based attacks.

Our analysis shows that information leaks, related to small
working set changes, which lead to predictable cache allocation
changes, enable exploits. Consequently, SCALE aims at pro-
viding strong protection against such exploits. This protection
is especially important for cryptographic libraries since they
have small working set sizes [22], [51], [64]. Leaking high-
level occupancy information (e.g, showing that a co-running
application is memory intensive) has not been exploited for
side-channel attacks. SCALE therefore permits leakage about
imprecise high-level cache demand, and provides quantifiable
and weak security guarantees in such cases. In contrast, exact
LLC occupancy is leaked by defenses that protect the LLC
through randomizing placement of lines in the cache [16].

SCALEs cache allocation policy leverages randomness, in
a novel way, by adding noise to cache allocation decisions
computed in a deterministic manner, to achieve its primary
design goals. This paper is also the first, to the best of our
knowledge, to apply differential privacy (DP) [13], [14] to
protect against cache side-channel attacks. Although noise
protects against conflict-based attacks, we notice that patterns
can still be observed, which can be leveraged in occupancy-
based attacks [52]. To address this, we introduce two additional
levels of randomization. The first randomizes the extent
of permitted change in allocation between two consecutive
reconfiguration periods while the second randomizes the period.

SCALE allows configurability based on the security require-
ments for each application. Our security analysis demonstrates

1



that SCALE provides strong and quantifiable information
theoretic security guarantees for allocation changes within the
configured range, while providing weaker guarantees and lower
channel bandwidth for larger changes. In addition, SCALE
supports a mix of secure and non-secure applications. Our
evaluation shows that SCALE defends against allocation policy
side-channel attacks while retaining most of the performance
benefits of a non-secure allocation policy like UCP.

The secure enforcement mechanism proposed in SCALE,
builds on the DELTA enforcement mechanism [20]. DELTA
combines bank and way partitioning to support fine-grained
partitions and locality-aware mapping of data. The adaptations
for SCALE enable secure enforcement, reduces the overheads
associated with handling shared data and simplifies the design.
SCALEs enforcement mechanism supports secure, fine-grain
and locality-aware partitioning of cache capacity. To show the
applicability of SCALEs allocation policy to commercially
available designs, we evaluate it together with an enforcement
mechanism comparable to a secure version of Intel CAT.

In summary, we make the following contributions:
• We demonstrate conflict- and occupancy-based attacks

on the cache allocation policy side-channel and propose
a framework, inspired by prior work [32], [66], for
characterizing the channel bandwidth and error rate.

• We propose SCALE, a holistic solution for secure and
scalable dynamic cache partitioning. SCALEs allocation
policy leverages randomness, in a novel way, to defend
against attacks on the cache allocation policy side-channel.

• Our DP-based security analysis shows that SCALE
provides quantifiable and information theoretic security
guarantees. SCALE outperforms state-of-the-art secure
cache partitioning solutions, on a 16-core CMP, and
improves performance by up to 39% and by 14%, on
average, compared to an unpartitioned shared LLC.

II. BACKGROUND AND MOTIVATION

A. Cache Allocation Policy
We use UCP [44], a dynamic cache partitioning solution

to illustrate the operations of a cache allocation policy. The
allocation policy in UCP consists of two steps. The first step,
estimates the utility for each application which helps determine
how much each application will benefit from additional capacity.
UCP uses utility monitors (UMONs) to estimate the utility
of different cache sizes, for each application. The second
step, compares the estimated utility for each application under
different cache sizes and calculates allocations using the
Lookahead algorithm [44], [56]. In a nutshell, Lookahead
compares the utility values for applications, identifies the
application with the highest utility and assigns the capacity
that maximizes the utility. These two steps are repeated after
a preset time (reconfiguration period), and the allocations are
determined based on the statistics collected in the previous
period(s). In commodity systems, utility is estimated using
performance counters or by using Intel’s Cache Monitoring
Technology [15], [19]. Note that utility estimation and capacity
allocation are predictable and deterministic, i.e., the utility and
the assignment always remain the same for a given input.

B. Cache Allocation Policy Side-Channel

A typical side-channel attack consists of three steps: interfere,
wait and analyse [25]. The cache allocation policy can act as
a side-channel and leak information from the victim to the
adversary.

Conflict-based attack: We illustrate a conflict-based attack
on the cache allocation policy side-channel, with the data
dependent square-and-multiply exponentiation algorithm used
in RSA and ElGamal decryption in GnuPG v1.4.13. In the
algorithm different values for the exponent bit lead to different
code execution paths. Specifically, a ’1’ in the exponent results
in a square-reduce-multiply-reduce step while a ’0’ results in
a square-reduce step, see Figure 1a.

For the purposes of illustration we assume that the victim
and the adversary share a 4-way cache, as shown in Figure
1c. In the interfere step, the adversary primes the allocation
policy, to equal allocation of two ways, to ensure that the utility
changes from executing the square-and-multiply exponentiation
algorithm with bit ’1’ in the exponent will lead to an allocation
increase, while executing the same with bit ’0’ will result in no
allocation change. Next, the victim executes the algorithm and
changes the cache allocation only in case it encounters a ’1’ in
the exponent. The difference in the code execution path reflects
on the utility estimate (see Figure 1b) and leads to predictable
allocation changes (see Figure 1c) due to the deterministic
nature of the allocation policy. Finally, by accessing data in
its own partition and measuring the timing, the adversary
can determine its own allocation, infer the allocation for the
victim and conclude if the bit accessed by the victim is a
’1’ or a ’0’. Leaking the exponent bits in this way can lead
to the recovery of the private key in both RSA and Elgamal
decryption [32]. We have omitted amplification/synchronization
details, which can be handled as in other side-channel attacks
[1], [53], [59]. One simple amplification step is to ensure that
the utility change, from the exponent calculation, will result
in an allocation change. This can be ensured by manipulating
the working set sizes of either the victim or adversary, by for
example accessing a data set of appropriate size.

Note that a non-secure and deterministic allocation policy
can be attacked and manipulated, in order to extract information
about a co-running victim process, even in the presence of a
secure enforcement mechanism. A coarse-grained enforcement
mechanism, as Intel CAT [19], does not provide protection
for the cache allocation side-channel. The example above
has shown how small and predictable utility changes can be
observed through the cache allocations and reveal secrets.

Occupancy-based attack: In addition to conflict-based
attack, observing changes to cache allocation can launch an
occupancy-based attack and reveal sensitive information, similar
to the attack in Shusterman et al. [52]. The previous example
illustrates this. Figure 1d shows how the cache allocation of the
adversary changes across two different runs of the algorithm
using a single exponent bit sequence. Here, the adversary
interferes and resets the allocation to equal partitioning before
waiting for the victim to transmit each successive bit. The
results show that different executions, using the same exponent
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Square-and-multiply for  
exponentiation e[0..n-1]: 
r = r 2  mod m 
if(e[i] ==1){ 
   r = r * b mod m 
}

(a) Pseudo-code for the
square-and-multiply expo-
nentiation algorithm.
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(d) Occupancy-based attack.
Fig. 1: Cache allocation policy side-channel attacks on the data dependent square-and-multiply exponentiation algorithm.

bit sequence, provide the same cache allocation sequence
due to the deterministic nature of the cache allocation policy.
Monitoring this information could allow an adversary to learn
the fingerprint of allocations made by the victim.
C. Threat model

Our threat model assumes that the victim and the adversary
code runs on different processes. We focus on cache timing
attacks, (i.e. conflict-based [39], shared memory-based [17],
[18], [68] and occupancy-based [30], [52]), on the LLC since
L1 and L2 caches are typically private. Furthermore, we also
consider cache allocation policy side-channel attacks described
in Section II-B. We assume that the victim is always classified
as a process with security requirements, while the adversary
can be classified as either secure or non-secure. In addition,
we consider that threads belonging to the same process (multi-
threaded application) cannot act as both adversary and victim.
Furthermore, we assume that the adversary can time its own
cache accesses.

Similar to prior work, our threat model excludes attacks
relying on contention in LLC ports or in the NoC, bandwidth,
and attacks on branch data structures, TLBs or shared functional
units etc. in the core. These attacks have other defences which
can be combined with ours [37], [49], [61]. In case the L1
and L2 are shared among distrusting hyper-threads, we assume
equal way-partitioning of private caches and use flushing on
context-switches. SCALE does not consider physical side-
channel attacks as power [26] or sound [2].

III. SCALE: SECURE PARTITIONING

A. Secure Allocation Policy
The allocation policy in SCALE builds upon the non-secure

allocation policy in UCP, outlined in Section II-A. We re-design
the allocation policy to provide security guarantees while giving
the performance benefit of dynamic cache partitioning. The key
idea is to secure the allocation policy by adding noise to the
allocations. This protects against conflict- and occupancy-based
attacks on the cache allocation policy side-channel.

Figure 2 provides an overview of SCALEs allocation policy.
We assume that all applications running on the system are
secure, and discuss changes to the allocation policy in the
presence of non-secure applications in Section III-A6. The
allocation policy in SCALE employs utility monitors to estimate

Random Noise
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Non-secure 
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Fig. 2: Overview of SCALE secure allocation policy.

the utility and the Lookahead algorithm to compute non-secure
allocations that are deterministic. SCALE utilizes the current
allocations and the new allocations computed for the upcoming
reconfiguration period, using the Lookahead algorithm, as input.
It then applies different defense mechanisms that introduce
randomness into the allocations. The process is repeated at
each cache reconfiguration period.

The first defense adds random noise, generated using a
Laplace distribution, to update the allocations computed by the
non-secure policy. Noise provides security guarantees against
information leakage, where strong guarantees are only provided
for a protected range. The protected range and the amount of
noise added is configurable based on the security requirements,
as discussed in Section III-A5. The second defense randomizes
the allocations change rate, which determines the extent to
which allocations can change, in a single reconfiguration period.
Randomizing the rate of change causes the change in allocation
to take place gradually, over several reconfiguration periods.
Furthermore, the allocation changes will be different, at each
reconfiguration period. The third defense randomizes the length
of the reconfiguration period, which randomizes the timing of
allocation changes while also reducing the channel bandwidth.

Security and performance evaluation of SCALE are provided
in Section IV and V, respectively. Note that while we propose
and evaluate SCALEs defenses by building on top of UCP, these
defenses could also be applied to other non-secure allocation
policies as [3], [15], [28], [33], [62]. We discuss the individual
defense mechanisms in detail below.

1) Noise using Laplace: We add noise generated using the
Laplace distribution [14] to the cache allocations computed
using the Lookahead algorithm. Laplace is used because it
has desirable security properties, see Section IV-B1. The
expression for computing allocation for interval t is given
by: A(t) = UCPallocation + noise, where UCPallocation is the
allocation computed using Lookahead for the current period
and noise represents the noise generated using the Laplace
distribution. The Laplace probability density function (PDF)
with mean equal to zero is defined as:

Lap(x|b) = 1
2b

exp(−|x|
b
) (1)

where b is the scale-factor which decides the shape of the
distribution. We use a separate parameterized Laplace model for
each core to generate noise. Details about noise configuration
to suit security requirements, are discussed in Section III-A5.

The pseudo-code for Noise is shown in Algorithm 1, where
noise is calculated in the function generateRandomNoise() (line
4). The output of this function is the amount of noise to be
added to or subtracted from the current allocation. The function
randRound() chooses to round up or down the noise value with
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Algorithm 1: Random Noise
1 Function Noise(allocations) is
2 sumOfAllocations=0;
3 for core in totalCores do
4 randAllocations[core] = allocations[core] +

randRound(generateRandomNoise(core));
5 sumOfAllocations += randAllocations[core];
6 end
7 adjustCapacity(randAllocations, sumOfAllocations);
8 return randAllocations;
9 end

10 Function adjustCapacity(randAllocations, sumOfAllocations) is
11 while (sumOfAllocations != totalNumberOfWays) do
12 core = generateRandomId;
13 if (sumOfAllocations > totalNumberOfWays) and

(randAllocations[core] > minWays) then
14 randAllocations[core]−−;
15 sumOfAllocations−−;
16 end
17 if (sumOfAllocations < totalNumberOfWays) then
18 randAllocations[core]++;
19 sumOfAllocations++;
20 end
21 end
22 end

equal probability which leads to better security guarantees
because of quantization, as shown in [10]. Since noise is added
to the allocations computed for each application independently,
the algorithm may reach a state where the sum of the adjusted
allocations exceeds the total available cache capacity. In order
to address this case, we adjust the capacity as shown in line
7. The function adjustCapacity() will subtract/add one way
from a randomly chosen application until the allocations match
the full cache capacity (lines 10-22) while ensuring that each
application gets a minimum allocation of minWays.

To illustrate how noise is added we use an example with
two applications, A and B, sharing a cache of 16 ways. First,
the Lookahead algorithm will determine the best allocation (4
and 12 ways for A and B, resp.). Next, noise is generated for
each application using Laplace. The noise generated for A and
B is -1 and +3, resp., resulting in a final allocation of 3 ways
for A and 15 ways for B. The sum of allocated capacity is 18
ways and this exceeds the total available capacity of the cache.
adjustCapacity() then decreases the allocations by (randomly)
choosing B followed by A, resulting in the allocations of 2
ways for A and 14 ways for B, which will fit in the cache.

2) Random Change Rate: The random change rate (Chang-
eRate) limits the extent to which allocations can change for
each application in a single reconfiguration period, and makes
the new allocation dependent on the previous allocation: A(t) =

Algorithm 2: Random Change Rate
1 Function RateChange(allocations, currentAllocations) is
2 sumOfAllocations,change=0;
3 for core in totalCores do
4 change = allocations[core] - currentAllocations[core];
5 randChange =

randRound(generateRandomChangeRate(change,core));
6 randAllocations[core] = currentAllocations[core] +

randChange;
7 sumOfAllocations += randAllocations[core];
8 end
9 adjustCapacity(randAllocations, sumOfAllocations);

10 return randAllocations;
11 end

A(t−1)+randRound((A(t−1)−UCPallocation)∗changeRate),
where A(t) is the allocation at time period t. The pseudo-
code is shown in Algorithm 2. This algorithm takes the
current allocation and the newly computed allocation for the
upcoming reconfiguration period as input, creating a feedback-
loop. The algorithm limits the extent of change by computing
the difference between the current and the new allocations (line
4) and using this as input to generateRandomChangeRate()
(line 5). The output of this function is the allowed amount
of change, drawn from a uniform random distribution. The
change determined through this process is added to the current
allocation to obtain the randomized allocation for the upcoming
period (line 6). To ensure that the entire capacity is allocated
we call adjustCapacity() (line 9) shown in Algorithm 1.

3) Random Reconfiguration Period: The defense RandRecon
randomly chooses a reconfiguration period for the next reconfig-
uration event after each event. This will randomize the timing of
when an allocation change is observable. Furthermore, using a
longer reconfiguration period decreases the channel bandwidth.

4) Combined defences: The allocation at a randomized re-
configuration interval t, with Noise and ChangeRate, is: A(t) =
randRound(A(t −1)+ randRound((A(t −1)−UCPallocation)∗
changeRate)+noise). ChangeRate is not used if UCPallocation
at current and last period is the same, A(t) = randRound(A(t−
1)+noise).

5) Configurability: SCALE is configurable based on the
security requirements determined by the system administrator.
For each secure application, the granularity of allocation change
that need to be protected, i.e., the protected range, as well
as the level of security, can be individually configured. The
Noise parameters capacitySetting and ε are used to specify the
protected range and the needed security guarantees, respectively,
(Section IV-B1). Using these parameters the amplitude, i.e., the
scale-factor b, of the noise will be determined. capacitySetting
can be set to any value between 32KB (1 way) and 512KB
(16 way), in steps of 32KB. SCALE provides strong security
guarantees for allocation changes within the protected range
and weak security guarantees and reduced channel bandwidth
for larger changes. Applications that only require smaller
protection granularity or weaker security guarantees, indicated
using capacitySetting and ε , can expect better performance.
For ChangeRate we limit the change rate interval between
10% to 25%. RandRecon is configured using the setting
reconfig period interval. The performance impact of the choice
of settings are shown in V-C while the security impact is shown
in IV-B. For an application with strict security requirements,
where any information about working set sizes cannot be leaked,
equal static partitioning can be used (ε = 0).

6) Secure and Non-Secure Applications: SCALE can con-
currently run applications with and without any security
requirement. Here, applications are grouped into secure and non-
secure applications. SCALE divides the total cache capacity
proportionally among them. For instance, if half of the
applications are non-secure then half the LLC capacity is
allotted to that group. SCALE invokes Lookahead separately
for the non-secure group and partitions the assigned capacity.
This provides fairness for non-secure applications in addition to
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ensuring that an allocation change in a non-secure application
will not impact the allocation of secure applications. Only the
secure applications will be affected by the defences in SCALE.

7) Utility Information and SW Support: The cache allocation
policy needs HW support in order to estimate the number of
misses with different cache sizes. We use sampled UMONs [44]
to estimate utility at a way granularity. The utility counters
are reset after each reconfiguration period. SCALE allocation
policy is executed as a low-level SW runtime and requires OS
intervention, at every reconfiguration period.

B. Secure Enforcement Mechanism

1) The DELTA Scheme: We assume the non-secure enforce-
ment mechanism in DELTA [20] since it is suitable for tile-
based CMPs, enables locality-aware placement of data and
uses fine-grain partitions (e.g. 256 partitions on a 16-core CMP
with 16 ways per bank).We first outline DELTAs enforcement
mechanism. Next, we explain how SCALE is adapted to ensure
security, reduce overheads and simplify the design.

DELTA overview: DELTA provides two major functions by
ensuring: (i) that capacity assigned to an application, by the
allocation algorithm, is placed in the bank(s) with the least
number of network hops and (ii) that a request for a physical
address is forwarded to the bank where data is mapped.

DELTA utilizes a per-core1 cache bank table (CBT) to store
the mapping of portions of physical address space to LLC banks,
see Figure 3. CBT allows the allocations to span multiple banks.
The design determines which bank an address maps to by using
a simple 1-cycle linear and inverted hash function that takes
8-bits of the address, after the set index, reverses it and uses the
result as an index for the CBT. Note that the hash function is
used for distributing addresses across occupied banks and that
CBT contents are private to each application. The CBT lookup,
using this index, yields the bank id to which the address is
mapped to. Once the request reaches the corresponding bank a
tag lookup is performed. On a miss, the way partitioning (WP)
table in the bank, that keeps track of mapping between cache
ways and core id, identifies the candidate ways for inserting the
line. On a hit, similar to Intel’s CAT [19], data is permitted to
be accessed across partition boundaries since DELTA enforces
the invariant that only a single copy of a cache line will reside
in the LLC. CBT and WP enable fine-grained partition sizes
by combining bank and way partitioning. The enforcement
supports a minimum partition granularity of 32KB on our
simulated system which is the size of a single way in a cache
bank. Details regarding the implementation and the storage
cost for CBT and WP are provided in DELTA [20].

The CBT is updated when the allocated cache capacity
expands/retreats across banks. As an example, consider the
allocation policy increases the allocation of an application
running on core0 from 512KB to 768KB. The mapping for
CBT on core0 should be updated from one bank (bank0) to span
across two banks (bank0 and bank1) resulting in a CBT update.
In this case, the original CBT entry for core0 changes from
0-255→0 to 0-191→0; 192-255→1 to ensure a fair distribution

1per-thread in case of simultaneous multithreading
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Fig. 3: Overview of SCALE secure enforcement mechanism.
New additions/modifications shown in green.

of addresses across both the banks. The address range mapped
to a bank is proportional to the size of the allocation.

The CBT update step is preceded by invalidation of all
addresses belonging to the remapped region from the cache
bank(s) where the data is initially mapped. In this case, cache
lines in the remapped address range (191-255) is invalidated
from bank0. The contents in WP table in bank0 and bank1 are
updated to reflect this change. However, contents in the newly
assigned ways in bank1 are not invalidated. All subsequent
requests that map to this index in the CBT on core0, will be
sent to bank1 instead of bank0. In addition, data associated
with a page are invalidated from the caches when a private page
becomes shared. This is because DELTA uses the CBT only
to determine the mapping of data in private pages. Information
about whether an access is part of a private or a shared page is
obtained from the TLB, during translation. To access lines in
shared pages DELTA resorts to the default SNUCA mapping.

Issues: Although DELTA enforcement provides support for
fine-grained and locality-aware placement of data, there are a
number of security issues in the design: (1) Accesses outside
partition boundaries are allowed, (2) Caches cannot differentiate
between accesses coming from different processes on the same
core, (3) The replacement policy leaks information through
metadata, (4) A single copy of shared data is retained, (5) Data
ways in the newly assigned banks are not invalidated.

Adaptations: Figure 3 provides an overview of SCALEs
enforcement mechanism. SCALE utilizes domain id, like other
secure cache partitioning proposals [25] for identifying the
user processes and the kernel (id:0). All cache requests will
be tagged with the domain id field. We modify the WP table
in each cache bank to store the mapping between cache ways
and domain id instead of core id. On a cache lookup and
insertion, information about domain id is used to restrict access
to specific ways, addressing issue 1 and 2.

Replacement metadata: We evaluate two variants to avoid
replacement policy metadata leaks. The first isolates the
replacement metadata by partitioning the LRU state [25]
while the second simply uses random replacement policy.
Both variants protect against replacement metadata leaks and
address issue 3, while offering different trade-offs with regard
to overhead and performance (Section V-C).

Cache coherence: In order to support multi-threaded applica-
tions, SCALE assigns the same domain id to different threads
of the same application. This will ensure that data shared
among the threads of the application will be cache coherent.
In other cases, when data is shared by different processes, it
is duplicated, even if a copy already exists in the same bank
since the domain id fields for the two requests are different.
Additionally, cache flush instructions (CLFLUSH,CLWB) are
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appended with the domain id, and only affect the partition
with matching id. These changes address issue 4.

Finally, in the original design CBT remappings only trigger
invalidation in the bank where address ranges are unmapped
(bank0 in the example above). In SCALE, we invalidate cache
lines in the ways which are reallocated to another process,
to address issue 5. In the example discussed before, ways in
bank1 which will be allocated to core0 are also invalidated.

Context switches: It is important to retain CBT mappings
across context switches. We therefore store the contents of
CBT along with the domain id for all processes in a specific
region in the kernel address space. The contents from each
process specific CBT are saved and restored at context switch
boundaries, like registers. Similarly, the contents of CBT are
also saved and restored when handling system calls that involve
switching to kernel mode from user mode. Note that these
switches do not require invalidating cache contents.

Inter-Process Communication: Data transfer between pro-
cesses needs to be handled in a special manner to ensure
security [25]. Data transfer between processes in different
partitions needs to be handled through system calls and
OS kernel involvement to ensure isolation. Data transfer
between kernel and user-space requires HW support to enable
functions, as copy from user and copy to user, to read data
from addresses mapped to a user’s domain id and write data
to addresses in the kernel’s domain id.

IV. SECURITY EVALUATION

This section characterizes the cache allocation policy side-
channel and analyses the security provided by SCALE.
A. Channel Characterization

1) Methodology: We use two willing collaborating processes,
the Sender and the Receiver, that exchange information using
a covert channel. Such an approach has been used in prior
works [32], [66], for characterizing other side-channels. In this
experiment, Sender transmits a sequence of message bits to
Receiver, using the cache allocation policy side-channel with
both a fine-grained and coarse-grained enforcement mechanism
(32 resp. 16 ways). We use a return-to-zero (RZ) self-clocking
encoding scheme, where the signal returns to a base value
before every transmission, since Sender and Receiver execute
concurrently without synchronization. We characterize the
channel using two metrics - channel bandwidth and error
rate. Channel bandwidth provides a measure of how much
information can be exchanged over a period of time, measured
in Nbits

time (Kb/s). The error rate provides a measure of the integrity
of information communicated through the channel, measured
in Nerrors

Nbits
. We also characterize the impact of SCALE defences

on the channel, with capacitySetting=128KB (4 and 2 ways
for fine- and coarse-grained, resp.) and ε = 1. The goal is to
demonstrate that SCALE can defend against a covert channel
which is implemented by inducing allocation changes that are
within the protected range.

Sender and Receiver follow a specific protocol to transmit
and receive information. Sender can transmit one of the three
possible messages: 1, 0 or new bit (indicating return to base
before new bit transmission). Each of the messages leads to
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Fig. 4: Measured timing at receiver for accessing data buffer.

a specific allocation in the LLC for Sender, which affects
Receiver’s allocation and the timing measured by Receiver. In
this experiment the total cache size is 1MB, transmitting 1
corresponds to accessing a 832KB data buffer, transmitting 0
corresponds to accessing a 576KB data buffer and transmitting
a new bit corresponds to accessing a 704KB data buffer.

Receiver accesses a 960KB data buffer slowly twice, both in
the forward and backward direction. It should be executed at a
slower rate to ensure that Sender’s access pattern determines the
cache allocations. Depending on the allocation for Sender, the
allocation for Receiver will change and impact the measured
Receiver’s access time for the buffer. Figure 4 shows the
measured access times for Receiver’s buffer. Here, we can
clearly see the timing values corresponding to the message
bit sequence 1,0,1,0,1,0,1,0. We classify the timing value
between 4.9ms to 4.75ms as 1, the value between 4.7ms and
4.55ms as new bit, and 4.5ms to 4.35ms as 0.

Receiver receives a bit by measuring the time to access the
data buffer. It compares the timing for accessing the buffer
with the thresholds for 1 and 0. If the measured time does
not correspond to a message or if the flag waitForNewBit is
set, it will continue in the loop and periodically access the
buffer. If the access time observed by Receiver matches the
thresholds set for 1 or 0 (and waitForNewBit flag is not set),
it exits the loop and registers the message. It also sets the flag
waitForNewBit to mark that the next message bit can only
be received after receiving a new bit signal. Once Receiver
observes a timing value for a new bit signal the flag is reset
which allows new message bits to be processed.

2) Results: Figure 5a shows the error rate for exchanging
a 32-bit message using the covert channel and fine-grained
enforcement. The results are the same for the coarse-grained
enforcement mechanism, which are omitted due to space
constraints. We plot the error rate for the undefended case and
when using SCALE (individual defenses and combined). The
two sets of bars denote the error rate while varying the length
of Ttransmit. The results show that a short transmit time leads to
a high error rate even for the undefended case. This is because
short transmit times do not leave room for Receiver to access
the data buffer fully before Sender starts to transmit the next
bit. However, when using a long transmit time the undefended
scenario has a very low error rate. In contrast, Noise introduces
a high error rate and has security guarantees. Therefore, it acts
as an effective defense against conflict-based attacks on this
side-channel and provides partial protection for occupancy-
based attacks. ChangeRate alone has a low error rate because
the long transmit time allows the allocations to eventually
reach the expected value over multiple reconfiguration periods.
Note that the main target for ChangeRate, unlike Noise, is
occupancy-based attacks. SCALE RN which combines Noise
with RandRecon introduces a high error rate, mostly due to
Noise. The effect of RandRecon will be to randomize the timing
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Fig. 5: Error rate and cache allocations.

of allocation changes as well as decrease the attack bandwidth
while mostly preserving the performance of a shorter period.
Finally, the results for SCALE CN show that combining Noise
and ChangeRate is also effective.

The bandwidth for an ideal covert channel, where the
transmission and synchronization for a single message bit
is done in one reconfiguration period, is 0.05Kb/s assuming a
period of 10ms. Our implementation of an undefended channel
achieves an attack bandwidth of 0.005Kb/s when Ttransmit is
100ms. This is several order of magnitudes smaller than the
1.2 Mb/s reported for LLC side-channel in prior work [32].

Figure 5b and 5c show the changes in cache allocations over
time for Sender for two different runs using the same message
bit sequence with the fine-grained enforcement mechanism.
Receiver can infer Sender’s allocation by monitoring its own
allocation and by subtracting it from the total available capacity.
The allocation trace for Undefended shows a clear pattern in
allocations for Sender (i.e., 26, 22 and 18 ways), corresponding
to sending 1, 0 or new bit) in both runs, as expected. The
intermittent changes to 2 ways is due to bookkeeping code in
Sender, not strictly part of the attack.

The red boxes in the figure show the range of allocation
change, the capacitySetting, where SCALE provides strong
security guarantees. For larger allocation changes the attack
bandwidth is decreased and weak security guarantees are
provided. Allocation changes with ChangeRate are smaller
compared to the undefended case, leading to a stepwise increase
to the larger allocations. SCALE CN shows the allocations
when combining ChangeRate and Noise. The intermittent
changes, however, allow us to show the impact of the defences
on large allocation changes. Over time these larger allocation
changes are observable, while exact information about the
actual working set size and allocation remains protected.

B. Security Analysis
We analyse and quantify the security provided by SCALE.
1) Security of SCALE allocation policy: In order to quantify

the security of SCALE’s allocation policy we use differential
privacy (DP), which can provide information theoretic privacy
guarantees. DP was proposed in the setting of public sharing of
information about a population dataset where noise is added to
ensure privacy for an individual in the dataset while providing
reasonably accurate statistics for the population [12]. DP has
also been applied in the context of continuous infinite streams
of data [14]. We use DP because SCALE also introduces
noise to ensure privacy of allocations assigned to an individual
application in a workload. In the analysis, we consider the worst
case scenario from a security perspective, of one adversary

and one victim process. A randomization algorithm Alg gives
ε-differential privacy for all neighbouring data sets D and D′,
(which differ by a single entry) for all S ∈ Range(Alg):

P[Alg(D) ∈ S]≤ eε P[Alg(D′) ∈ S] (2)
Using DP, we can provide an information theoretic security

guarantee regarding leakage across D and D′. The sensitivity
captures the maximum difference between the two data sets,
defined as: ∆ f = max|| f (D)− f (D′)|| [14]. In SCALE, the
sensitivity is configured using capacitySetting, which captures
the magnitude of the protected range. The amount of noise
added is determined based on the sensitivity requirement
specified using capacitySetting and ε . Specifically, the Laplace
scale-factor b, used in Noise, is determined using these two
attributes as follows: b = ∆ f

ε . By using random variables drawn
from Lap(b), Noise will preserve (ε ,0)-differential privacy [14].

The relationship between capacitySetting, ε , and the Laplace
scale-factor b is shown in Figure 6. If the sensitivity, i.e., the
difference between D and D′ that needs to be protected is large,
more noise need to be added (i.e. higher b) to maintain the same
ε value. Likewise, if a stronger security guarantee is needed
(lower ε), a higher b is needed. As an example, if ε = 0.5 is
required and ∆ f = 64KB (2 ways) then b = 4. This framework
allows us to quantify the security provided for allocation
changes. For example, if a 1-MB change occurs and b= 4, then
the corresponding value for ε = 32/4 = 8. An ε of 8 provides
a quantifiable measure of the given (weak) security guarantees.
Overall, the framework allows the system administrator to
configure SCALE based on the security requirements.

For a conflict-based attack to be successful, controlled
allocation changes are necessary in the two steps of the attack.
First, the adversary need to interfere with the victim’s allocation
in an intended manner. Second, when the victim changes the
allocations, these changed allocations need to be observable.
Even if we, as in the analysis above, conservatively assume that
the adversary can interfere as intended (noise=0), the framework
still guarantees that enough noise is added to safeguard the
privacy of the victims allocation, i.e., that an adversary cannot
determine the expected deterministic allocation of the victim.

Repeated queries: We have so far considered the security
guarantees for one reconfiguration period. In a replay-based
attack as shown in [53], the adversary can fix its allocation
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and make the victim re-execute using the same allocation
repeatedly, i.e., D and D’ can be kept constant over several
reconfiguration intervals. In such a scenario, the privacy budget
for the victim decreases after each reconfiguration until it is
eventually exhausted (noise added over long periods averages
to zero, thereby exposing the original allocation). The total
privacy budget under composition becomes the number of
repeated queries times ε . A memoized noise value (one for
each allocation) is used, instead of generating a new noise
value using the Laplace distribution at each reconfiguration
interval. The memoized noise value is not allowed to be 0. We
utilize this memoization mechanism to guarantee that we never
leak information as a consequence of overspending the total
privacy budget. This technique, involving caching responses, is
a proven way for providing event-level DP under continuous
observation without impacting the privacy budget [14]. The
performance impact of using memoized noise is shown in V-C.

Occupancy-based attack: An occupancy-based attack can
succeed if it is possible to create an observable and reproducible
fingerprint. In order to observe the same pattern of allocations,
the output of Noise, ChangeRate and randRound functions
at each time step need to be the same. The probability of
observing the same pattern over n reconfiguration intervals,
with UCPallocation changes, is Pr[ 1

(#randRound∗#changeRate)n ], even
in the conservative case when the output of the Noise function
remains the same due to memoization and the reconfigurations
occur at the same time (no RandRecon). The probability of
observing the allocation pattern at the same time period t is
Pr[ 1

(#RandRecon)n ], where #RandRecon is the total number of
possible reconfiguration intervals.

In summary, we provide quantifiable and information theo-
retic security guarantees, leveraging DP, against conflict-based
and occupancy-based attacks. For allocation changes within the
protected range, SCALE provides strong security guarantees
while for changes outside of the protected range, only weak
guarantees are provided and channel bandwidth is reduced.
Furthermore, the probability of observing the same allocation
fingerprint across repeated executions approaches zero as the
number of reconfiguration periods increases.

2) Security of SCALE enforcement mechanism: SCALE
guarantees protection against all timing based side-channel
attacks: conflict-based, shared-memory-based and occupancy
attacks, by enforcing strict isolation between partitions, in a
similar manner to prior work [25], [45].

Conflict-based attacks are prevented since replacement state
update and victim selection are only performed among the
cache lines of a single partition. Shared-memory attacks are
prevented since: i) LLC accesses are allowed to hit only if the
line resides within the partition, ii) cache flushes only impact
cache lines within a partition and do not affect any duplicate
lines for the same address in other partitions, iii) coherence-
related invalidations are only allowed within the same partition.
Occupancy-based attacks are prevented by SCALE allocation
policy, as described in Section IV-B1.

V. PERFORMANCE EVALUATION

A. Simulated Architecture
We simulate a 16-core tiled CMP architecture modeled using

Sniper [7]. Each tile has an out-of-order (OOO) core with a
private L1 data and instruction cache, a unified private L2 cache
and an LLC bank of 512KB per core. The cache latencies
assumed have been modelled using CACTI 6.5 [34]. Details
of the baseline architecture are shown in Table I.
B. Evaluation Methodology

We use the entire SPEC CPU2006 suite in our evaluation.
The applications are in the format of whole program pinballs
[50]. We create 21 workload mixes (each comprising 16
applications) by randomly selecting applications.

We fast-forward for 1-B instructions per application (16-
B in total) and then carry out detailed simulation until
all benchmarks have completed at least 500-M instructions.
Statistics are reported based on the detailed simulation. After
this period, the applications continue to run and compete for
resources to avoid a lighter load on long running applications.

1) Metrics: We report normalized weighted speedup over
baseline for each workload as a measure of performance. This
is calculated by 1

N ∑N
i=1

IPCi,new
IPCi,baseline

, in order to evaluate system
performance for multi-programmed workloads.
C. Performance Evaluation

1) Evaluated Configurations: We compare SCALE with
secure partitioning solutions, SecDCP and OPTIMUS. For
SecDCP, we randomly classify 50% of the applications as
confidential and belonging to different security classes and the
others as public. To understand the performance potential of
dynamic cache partitioning we also evaluate the non-secure
UCP. In Equal the capacity is equally partitioned among the
cores. We also compare against a representative randomization
proposal, ScatterCache [65]. To evaluate the suitability of
SCALE to commercial designs, we combine SCALEs allocation
policy with a coarse-grained (64-way) and non-locality aware
enforcement mechanism, similar to Intel CAT.

In total, we evaluate five versions of SCALE to understand
the performance impact of the individual defenses when they
are applied separately and when they are combined. To ensure
a fair comparison we use the partitioned-LRU variant of the
SCALE enforcement mechanism for all the evaluated solutions2

2SecDCP and OPTIMUS only propose an allocation policy while UCP’s
enforcement mechanism only targets monolithic caches.

Cores 16 cores, x86-64 ISA, 4GHz, OOO,
128 ROB entries, dispatch width 4

L1 caches 32KB, 8-way set-associative, split D/I, 1-cycle lat.
L2 caches 128KB private per-core, 8-way set-associative,

inclusive, 6-cycle data and 2-cycle tag latency
LLC 512KB per-tile, 16-way set-associative, LRU,

inclusive, 9-cycle data and 2-cycle tag latency,
Coherence protocol MESIF-protocol, 64 B lines, in-cache directory
Global NoC 4x4 mesh, 4-cycles hop latency

(3-cycle pipelined routers, 1-cycle links)
Memory controllers 4 MCUs, 1 channel/MCU, latency 80 ns,

16GB/s per channel
SCALE/OPTIMUS/ minWays 2, recon f iguration period 10ms
SecDCP/UCP
SCALE (default) capacitySetting 128KB (b = 4,ε = 1),

change rate interval 0.1-0.25
reconfig period interval 1-10ms / 100-400ms

TABLE I: Configuration of the simulated 16-core tiled CMP.
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Fig. 7: Performance comparison.

unless stated otherwise. We use an unpartitioned static non-
uniform cache architecture (SNUCA) as the baseline throughout
this evaluation. Details about the configuration parameters for
each solution are presented in Table I.

2) SCALE Performance Analysis: Figure 7 shows weighted
speedup normalized to unpartitioned SNUCA for each of
the workloads. Figure 7a shows a comparison of SCALE
against other cache partitioning solutions. UCP nsec is the best-
performing configuration since it uses a non-secure allocation
policy and enforcement mechanism and improves performance
by 21%, on average. In comparison, a secure enforcement
mechanism which uses the same non-secure UCP allocation
policy improves performance by 20%, on average (not shown).
Equal, where all data is mapped to the local LLC bank,
improves performance by 10% on average. Secure cache
solutions Scattercache and OPTIMUS, perform worse than
the baseline by 7% and 14%, respectively, while SecDCP
performance is equal to the baseline. In contrast, SCALE
improves performance for all workloads and provides an
average improvement of 14%.

Figure 7b shows the performance of the individual SCALE
defences as well as combined variants. Noise without and with
memoization mechanism improves performance by 17% and
16%, respectively. ChangeRate improves performance by 18%.
The reason why both Noise and ChangeRate perform compa-
rably well, is because i) there are often multiple allocation
options which give close to equivalent performance and ii) the
partition sizes are in the right range, i.e., large vs. small partition
sizes cache-friendly applications vs. applications with small
working set [20]. Furthermore, slowly changing the allocations
is sometimes more beneficial compared to abrupt changes
due to the overhead of invalidations, if allocations are later
changed again. SCALE CN, which combines both Noise with
memoization and ChangeRate defenses, provides an average
improvement of 14%. SCALE RN, combining the defence
RandRecon with Noise, evaluated in a period between 1-10ms
yields a performance improvement of 14%, on average, whereas
a longer period of 100-400ms leads to a lower performance of
13% (not shown). These results demonstrate that the individual
defenses have a small performance overhead and provide most

of the performance benefit of UCP. Furthermore, combining
these defenses increases the performance overhead slightly but
still provides benefit and outperforms the state-of-the-art secure
designs while ensuring security.

Coarse-grained enforcement: COARSE UCP (shown in
Figure 7b) uses an enforcement mechanism similar to a secure
version of Intel CAT, performs worse than the baseline by 1%.
This is due to the lack of locality-aware placement which leads
to longer access latencies to cache banks further away from
the executing core. Furthermore, coarse-grained enforcement
leads to worse fit between applications cache requirements and
partition sizes. COARSE SCALE RN performs worse than the
baseline by 4% but improves performance by 6% compared to
equal partitioning with the same enforcement (not shown). This
demonstrates that SCALE can also be used to secure cache
partitioning on commercial systems that support it.

3) Secure and Non-Secure Applications: Figure 8a shows
the average normalized weighted speedup over the baseline
for the 21 workloads having different configurations with
varying number of secure applications in the workload. We
randomly pick applications from the workload and mark them
as secure.The three different configurations each assume 4, 8
and 16 of the applications in the workload to be secure and the
rest to be non-secure. All the secure applications utilize SCALE
with capacitySetting of either 128KB or 64KB, in version a and
b, respectively. UCP sec improves performance by 20%, on
average, but is non-secure. S 16b assumes all the applications
in the workload to be secure, leading to on average 16%
performance improvement. S 8b with 8 secure applications
and S 4b with 4 secure applications, show a performance
benefit of 18% and 19%, respectively. The results show that
having more non-secure applications in the workload mix leads
to a higher performance since there is no overhead associated
with using the SCALE defenses for non-secure applications.

4) SCALE Enforcement Mechanism Variants: Figure 8b
shows the average normalized weighted speedup for all the
workloads over the baseline with Equal and SCALE, when
using the partitioned-LRU (LRU) and random replacement
variant of the enforcement mechanism. Equal, when using the
random replacement variant, shows an improvement of 5%
as opposed to 10% when using partitioned-LRU. As for S a
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using the random replacement variant reduces the performance
from 14% over partitioned-LRU to 10%, while for S b random
replacement reduces the performance from 16% to 12%. This
shows that although the random replacement variant has a
low hardware overhead in comparison to the partitioned-LRU
variant it also provides lower performance.

5) Sensitivity Analysis: Figure 8c shows the average normal-
ized weighted speedup for all the workloads over baseline with
different settings for Noise. The results show that the overhead
increases with more noise, thus enabling a trade-off between
performance and security. The performance improvement for
32KB, 64KB, 128KB, 192KB, 256KB and 512KB is 19%, 18%,
17%, 14%, 12% and 11%, respectively. These results indicate
that for even larger changes equal partitioning is a better option
since it provides an improvement of 10%.

Figure 8d shows the average normalized weighted speedup
for all the workloads over the baseline with different values for
change rate. The performance for 5%, 10%, 20%, 30%, 50%,
60% and 80% is 16%, 18%, 19%, 20%, 21%, 21%, and 20%,
respectively. The result shows that a change rate below 20%
leads to lower performance improvement while an interval in
the range of 25% to 60% leads to better performance. We
use an interval from 10% to 25%, which gives a reasonable
trade-off between security and performance.

In summary, we show that SCALE outperforms prior secure
cache solutions and provides a 14% improvement, on average.

VI. RELATED WORK

Two broad approaches have been proposed to defend the
shared LLC: randomization [23], [30], [31], [42], [43], [46],
[55], [58], [64], [65], [67] and isolation [6], [8], [9], [11], [24],
[25], [29], [36], [45], [48], [49], [57], [63], [64]. Randomization
is achieved by either randomizing the address to cache set
mapping, or by randomly inserting and/or evicting data. Recent
works have shown that randomization only delays an adversary
to infer the secret, especially as smarter and faster attacks that
thwart existing defenses are discovered [4], [5], [40], [41], [43],
[54], [60]. In addition, randomization cannot protect against
occupancy-based attacks. In contrast, SCALE combines isola-
tion with randomization and protects against occupancy-based
attacks. SCALE outperforms Scattercache [65], a representative
randomization-based proposal.

Isolation based techniques can be grouped into three cate-
gories. Firstly, prior works have focused on providing security
for selected data. CATalyst and STEALTHMEM [24], [29]

statically partition the cache into two regions, i.e. security
sensitive and non-sensitive. The sensitive partition is protected
by page-coloring, while the non-sensitive partition is shared
and insecure. In contrast, SCALE provides protection against
timing-based side-channel attacks for all the data in the LLC.

A second category provides solutions for only securing
the enforcement mechanism. DAWG [25] proposes a secure
enforcement mechanism which provides isolation using way-
partitioning. Scalability with DAWG is limited since it can
only support as many partitions as the associativity. BCE [45]
provides a secure and scalable enforcement mechanism, using
a configurable cache indexing strategy for mapping addresses.
The drawback is that even small allocation changes require
invalidating and remapping all partition data to accommodate
changes to the indexing logic. CC [57] proposes a secure
enforcement mechanism based on combining way and set
partitioning in HW. MI6 [6] and IRONHIDE [36] provide static
partitioning of DRAM and LLC. In contrast, SCALE secures
both the allocation policy and the enforcement mechanism,
enabling better performance through dynamic partitioning and
supports fine-grained partitions.

Finally, the last category provides dynamic cache partition-
ing using coarse-grain cache allocations to provide security.
Jumanji [49] proposes a bank-level secure partitioning between
VMs but does not provide security between processes sharing
a VM, as opposed to SCALE. Furthermore, the solution is
prone to attacks on the cache allocation policy side-channel
since the allocation policy is deterministic.

Generalizability: Many prior works on cache partition-
ing [3], [15], [28], [33], [47], [62] have focused on improving
performance and scalability. However, the allocation policy
and the enforcement mechanism proposed are prone to side-
channel attacks. SCALE can be used together with these cache
partitioning solutions in order to protect the cache allocation
decisions from being exploited in an attack.

VII. CONCLUSIONS

We propose SCALE, a holistic solution for secure and
scalable cache partitioning. SCALE leverages randomness to
make allocations non-deterministic and protect against conflict-
based and occupancy-based attacks on the cache allocation
policy side-channel. We present a security analysis using DP
and in-depth characterisation of the cache allocation policy side-
channel. SCALE supports applications with varying security
requirements, as well as a mix of secure and non-secure appli-
cations. Our evaluation demonstrates that SCALE outperforms
state-of-the-art secure cache solutions. Furthermore, SCALE
closes the performance gap with non-secure dynamic cache
partitioning, for a mix of secure and non-secure applications.
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Distributed locality-aware cache partitioning for tile-based chip multipro-
cessors,” in 2020 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), 2020, pp. 578–589.

[21] D. Kaseridis, J. Stuecheli, and L. K. John, “Bank-aware dynamic cache
partitioning for multicore architectures,” in Proc. ICPP, 2009.

[22] M. Kayaalp, K. N. Khasawneh, H. A. Esfeden, J. Elwell, N. Abu-
Ghazaleh, D. Ponomarev, and A. Jaleel, “Ric: Relaxed inclusion caches
for mitigating llc side-channel attacks,” in 2017 54th ACM/EDAC/IEEE
Design Automation Conference (DAC), 2017, pp. 1–6.

[23] G. Keramidas, A. Antonopoulos, D. N. Serpanos, and S. Kaxiras, “Non
deterministic caches: a simple and effective defense against side channel
attacks,” Des. Autom. Embed. Syst., vol. 12, no. 3, pp. 221–230, 2008.

[24] T. Kim, M. Peinado, and G. Mainar-Ruiz, “STEALTHMEM: System-
level protection against cache-based side channel attacks in the cloud,”
in 21st USENIX Security Symposium (USENIX Security 12), Bellevue,
WA, 2012, pp. 189–204.

[25] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer,
“Dawg: A defense against cache timing attacks in speculative execution
processors,” in 2018 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2018, pp. 974–987.

[26] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Advances
in Cryptology — CRYPTO’ 99, M. Wiener, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1999, pp. 388–397.

[27] W.-C. Kwon, T. Krishna, and L.-S. Peh, “Locality-oblivious cache
organization leveraging single-cycle multi-hop NoCs,” in Proc. 19th
Int. Conf. Archit. Support Program. Lang. Oper. Syst. - ASPLOS ’14.

[28] H. Lee, S. Cho, and B. R. Childers, “CloudCache: Expanding and
shrinking private caches,” in Proc. HPCA-17.

[29] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B.
Lee, “Catalyst: Defeating last-level cache side channel attacks in cloud
computing,” in 2016 IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2016, pp. 406–418.

[30] F. Liu and R. B. Lee, “Random fill cache architecture,” in 2014 47th
Annual IEEE/ACM International Symposium on Microarchitecture, 2014,
pp. 203–215.

[31] F. Liu, H. Wu, K. Mai, and R. B. Lee, “Newcache: Secure cache
architecture thwarting cache side-channel attacks,” IEEE Micro, vol. 36,
no. 5, pp. 8–16, 2016.

[32] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in 2015 IEEE Symposium on Security
and Privacy, 2015, pp. 605–622.

[33] R. Manikantan, K. Rajan, and R. Govindarajan, “Probabilistic shared
cache management (PriSM),” in Proc. ISCA-41.

[34] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing
nuca organizations and wiring alternatives for large caches with cacti
6.0,” in Proc. MICRO-40, 2007.

[35] H. Omar, B. D’Agostino, and O. Khan, “Optimus: A security-centric
dynamic hardware partitioning scheme for processors that prevent
microarchitecture state attacks,” IEEE Transactions on Computers, vol. 69,
no. 11, pp. 1558–1570, 2020.

[36] H. Omar and O. Khan, “Ironhide: A secure multicore that efficiently
mitigates microarchitecture state attacks for interactive applications,” in
2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2020, pp. 111–122.

[37] R. Paccagnella, L. Luo, and C. W. Fletcher, “Lord of the ring(s): Side
channel attacks on the CPU on-chip ring interconnect are practical,”
in 30th USENIX Security Symposium (USENIX Security 21), 2021, pp.
645–662.

[38] D. Page, “Partitioned cache architecture as a side-channel defence
mechanism,” 2005, page@cs.bris.ac.uk 13017 received 22 Aug 2005.
[Online]. Available: http://eprint.iacr.org/2005/280

[39] C. Percival, “Cache missing for fun and profit,” in
http://www.daemonology.net/papers/ htt.pdf, 2005, pp. 974–987.

[40] A. Purnal, L. Giner, D. Gruss, and I. Verbauwhede, “Systematic analysis
of randomization-based protected cache architectures,” in 2021 2021
IEEE Symposium on Security and Privacy (SP), 2021, pp. 987–1002.

[41] A. Purnal and I. Verbauwhede, “Advanced profiling for probabilistic
prime+probe attacks and covert channels in scattercache,” CoRR, vol.
abs/1908.03383, 2019. [Online]. Available: http://arxiv.org/abs/1908.
03383

[42] M. K. Qureshi, “Ceaser: Mitigating conflict-based cache attacks via
encrypted-address and remapping,” in 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2018, pp. 775–
787.

[43] M. K. Qureshi, “New attacks and defense for encrypted-address cache.”
New York, NY, USA: Association for Computing Machinery, 2019.

[44] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition shared
caches,” in Proc. MICRO-49.

[45] G. Saileshwar, S. Kariyappa, and M. Qureshi, “Bespoke cache enclaves:
Fine-grained and scalable isolation from cache side-channels via flexible
set-partitioning,” 2021.

11



[46] G. Saileshwar and M. Qureshi, “MIRAGE: Mitigating conflict-based
cache attacks with a practical fully-associative design,” in 30th USENIX
Security Symposium (USENIX Security 21), 2021.

[47] D. Sanchez and C. Kozyrakis, “Vantage: Scalable and Efficient Fine-Grain
Cache Partitioning,” Proc. ISCA-38.

[48] S. Sari, O. Demir, and G. Kucuk, “Fairsdp: Fair and secure dynamic
cache partitioning,” in 2019 4th International Conference on Computer
Science and Engineering (UBMK), 2019, pp. 469–474.

[49] B. C. Schwedock and N. Beckmann, “Jumanji: The case for dynamic
nuca in the datacenter,” in 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2020, pp. 665–680.

[50] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” in Proc. ASPLOS-10, 2002.

[51] Y. Shin, H. C. Kim, D. Kwon, J. H. Jeong, and J. Hur, “Unveiling
hardware-based data prefetcher, a hidden source of information leakage.”
New York, NY, USA: Association for Computing Machinery, 2018.

[52] A. Shusterman, L. Kang, Y. Haskal, Y. Meltser, P. Mittal, Y. Oren, and
Y. Yarom, “Robust website fingerprinting through the cache occupancy
channel,” in 28th USENIX Security Symposium (USENIX Security 19),
Santa Clara, CA, 2019, pp. 639–656.

[53] D. Skarlatos, M. Yan, B. Gopireddy, R. Sprabery, J. Torrellas, and C. W.
Fletcher, “Microscope: Enabling microarchitectural replay attacks,” IEEE
Micro, vol. 40, no. 3, pp. 91–98, 2020.

[54] W. Song, B. Li, Z. Xue, Z. Li, W. Wang, and P. Liu, “Randomized
last-level caches are still vulnerable to cache side-channel attacks! but
we can fix it,” in 2021 2021 IEEE Symposium on Security and Privacy
(SP), 2021, pp. 955–969.

[55] Q. Tan, Z. Zeng, K. Bu, and K. Ren, “Phantomcache: Obfuscating cache
conflicts with localized randomization,” in NDSS, 2020.

[56] D. Thiebaut, H. Stone, and J. Wolf, “Improving disk cache hit-ratios
through cache partitioning,” IEEE Transactions on Computers, vol. 41,
no. 6, pp. 665–676, 1992.

[57] D. Townley, K. Arıkan, Y. D. Liu, D. Ponomarev, and O. Ergin,
“Composable cachelets: Protecting enclaves from cache Side-Channel
attacks,” in 31st USENIX Security Symposium (USENIX Security 22),
Boston, MA, 2022, pp. 2839–2856.

[58] D. Trilla, C. Hernandez, J. Abella, and F. J. Cazorla, “Cache side-channel
attacks and time-predictability in high-performance critical real-time

systems.” New York, NY, USA: Association for Computing Machinery,
2018.

[59] P.-A. Tsai, A. Sanchez, C. W. Fletcher, and D. Sanchez, “Safecracker:
Leaking secrets through compressed caches.” New York, NY, USA:
Association for Computing Machinery, 2020.
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Microprocessors are an integral part of modern society. They contain billions of
tiny transistors which act as the fundamental building blocks. A large chunk of the
transistor budget is dedicated to holding data (caches) and another is reserved for
the computational units that process it (cores). In addition, there are separate chips
just dedicated to storing data (memory). Think of the data as books, the cache as a
desk and the memory as a library. If you need a certain book, finding it on your desk
as opposed to visiting the library saves both time and effort.

For an average user higher performance means faster execution and lower cost.
In the past this has primarily been achieved by shrinking transistors to fit more in a
given area and operating them at higher frequencies. Unfortunately, we’re reaching
atomic transistor dimensions which changes the physical properties of the transistors
making this approach infeasible. This has paved the way for multi-core processing
which achieves higher aggregate performance by running applications concurrently.

In a multi-core processor, sharing of cache space by concurrently running appli-
cations can lead to conflicts and become a problem, in the same way as your desk
would become awfully crowded if shared by too many people. With enough desk
intruders you’d be running back and forth to the library. This has fuelled the need
to have more optimized caching strategies. One solution to this problem is through
partitioning, which is akin to setting up rules for what parts of the desk each person
can use, how one can share books that multiple people need and what happens when
someone is happy with just a few books while others need troves of them. However,
determining appropriate space allocation for each person over time is challenging.

In addition to performance, security is also of paramount importance. Recent
discoveries have shown that many microprocessor optimizations which aim to improve
performance, such as caching, lead to new security vulnerabilities. Attacks exploiting
these vulnerabilities can reveal secrets, such as cryptographic keys, which can have
devastating consequences. In the desk analogy, this would be when information about
different people’s books and reading habits can be gathered by observing the shared
desk. The need to protect this information complicates the sharing of desk space.

This thesis tackles the issues of improving the performance and security of multi-
core processors with main focus on the cache and the memory system.


	Abstract
	Acknowledgement
	List of Publications
	Introduction
	Background
	Problem Statements
	Contributions
	Organization of the thesis

	Summary of the Papers
	Paper I
	Summary

	Paper II
	Summary

	Paper III
	Summary

	Paper IV
	Summary


	Concluding Remarks and Future Work
	Bibliography

