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Abstract—Container orchestration platforms automatically ad-
just resources to evolving traffic conditions. However, these scal-
ing mechanisms are reactive and may lead to service degradation.
Traditionally, resource dimensioning has been performed con-
sidering guaranteed (or request) resources. Recently, container
orchestration platforms included the possibility of allocating idle
(or limit) resources for a short time in a best-effort fashion. This
paper analyzes the potential of using limit resources as a way
to mitigate degradation while reducing the number of allocated
request resources. Results show that a 25% CPU reduction can
be achieved by relying on limit resources.

Index Terms—Cloud native services, Pod dimensioning, Ku-
bernetes, Best-effort resources, IaaS, Pod as a Service, soft-hard
isolation, service degradation.

I. INTRODUCTION

THE provisioning of services in today’s communication
paradigm generally involves two main entities, the cloud

provider and the service provider. Cloud providers are respon-
sible for the cloud infrastructure maintenance and updates,
including managing physical (e.g., CPUs) and virtual resources
(e.g., Virtual Machines (VMs), containers). These resources
are usually rented out to service providers upon request.
The cloud provider charges the service provider based on
the amount and time resources are reserved/used. Service
providers then use the rented VMs/containers to deploy end-
user applications.

Cloud native technologies (e.g., containers) allow to eas-
ily develop, deploy, and manage services in the cloud [1].
Many networking applications such as monitoring, automation,
Radio Access Network (RAN) and core virtualization have
been shown to benefit from using cloud native technologies
and containers [2]–[5]. Cloud native services are handled by
cloud orchestrators like Kubernetes (K8s), a widely used
open-source container orchestration platform [6]. In K8s, each
service runs on a set of Pods. Each Pod is a collection of one
or more containers, with a given amount of resources (e.g.,
memory, CPU, storage). The number of running Pods can
be scaled (i.e., increased or decreased) over time to allow a
service provider to match the time-varying end-user demands.
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Fig. 1. Deployment of cloud native services: VM-based vs. bare metal.

Pods can be deployed in VMs (Fig. 1a) in an infrastructure-
as-a-service fashion, where each service provider needs to
rent as many VMs as needed to compose its services. This
approach ensures hard isolation of resources among different
service providers, which need to pay for all the resources
associated with the VMs, regardless of the number of running
Pods. To fully take advantage of cloud native technologies,
Pods of different services can be deployed directly over
a common bare metal infrastructure without the need for
a virtualization layer (Fig. 1b). This approach reduces the
performance penalties introduced by hypervisors (e.g., for disk
and network input/output operations) [7] while simplifying
service deployment and operations [3]. Additionally, service
providers can rent resources in a Pod-as-a-service fashion,
paying only for what is needed to deploy and operate their
Pods. Finally, soft resource isolation is also offered, allowing
the use of both guaranteed (referred to as request) and shared
(referred to as limit) resources. By doing so, idle (i.e., not
used) resources initially set aside for one service can be used
by Pods of another service when needed, in a best effort way.

Service providers decide the amount of resources assigned
to each Pod they rent. If at any point in time, the re-
sources/Pods are under-dimensioned and can not satisfy the
end-user demands, the latter may experience degradation, e.g.,
an increased application response time, leading to a potential
loss of revenue for the service provider [8]. On the other hand,
if resources/Pods are heavily over-dimensioned, the service
provider will pay for resources that are most of the time
unused. Leveraging soft isolation might provide a third and
interesting opportunity. A service provider can avoid overpro-
visioning by counting on the use of limit resources whenever
needed. Since these resources are paid only when used, there
is an evident advantage in terms of cost savings. On the
other hand, since limit resources are not guaranteed, a service
provider might face the possibility of higher degradation fees.
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For this reason, it becomes crucial to investigate what is the
potential cost vs. benefits of soft isolation.

Different techniques for the Pod dimensioning have been
proposed in the past, considering mainly request resources
and different scaling thresholds in VM-based deployments
or bare metal deployments with only hard resource isolation
[9]–[11]. The scaling can be based on machine learning and
prediction techniques [12], [13], and include also application-
related metrics (e.g., response time) [14]–[16] to improve the
service performance. All these works focus on hard isolation
and do not investigate the possibility of using soft resource
isolation and limit resources to mitigate service degradation
and reduce the overall costs. In this paper, we focus on
the Pod dimensioning problem in bare-metal deployments,
where the use of limit resources among Pods of different
services is allowed. By leveraging on this, we analyze the
potentials and limitations of using limit resources to reduce
degradation without the need for over-dimensioning, by means
of simulations. A cost analysis is performed by comparing this
approach against a traditional scaling strategy relying only on
request resources and shows when it is beneficial for a service
provider to leverage limit resources.

II. SCENARIO DESCRIPTION AND USE CASE EXAMPLE

In the following, we focus our attention on bare metal
deployments of Pods handled by K8s (Fig. 1b). In K8s,
resources such as CPU and memory are assigned by means
of resource request and limit [17]. Request is the amount
of guaranteed resources that each Pod can access at any
time during its operation (hereinafter referred to as request
resources). K8s assigns Pods to nodes based on the amount of
request resources and the availability of resources on the node.
A service provider pays for this type of resource even if they
are not fully used by the running Pods (i.e., they are idle). On
the contrary, limit is the amount of resources that are accessed
on a first-come-first-served basis, in a best-effort fashion, only
when two conditions are met: (i) a Pod needs more than
the request resources, and (ii) there are unused resources at
the node. We refer to this amount as limit resources. Limit
resources usually take advantage of unassigned resources at a
node, or unused request resources (idle) left free by other Pods.
The amount of limit resources that Pods can access depends
on the resource contention level at the node, which varies
over time and depends on the amount of available resources,
deployed Pods, and service requests. The service provider pays
for limit resources only when accessed and for the time and
quantity that has been used.

Service providers must solve the Pod dimensioning prob-
lem, i.e., to define the Pod’s size (i.e., in terms of request and
limit resources), the Pod’s scaling parameters (e.g., desired
average CPU usage), and the minimum and the maximum
number of replicas. Pods can be replicated during the service
operation to allow a service provider to match the time-varying
needs of its end-users. Scale-out and scale-in operations
rely on the monitoring capabilities of K8s and its built-in
Horizontal Pod Autoscaler (HPA). The HPA uses periodical
measurements related to a specific metric (e.g., CPU and/or

RAM usage) from each one of the Pods [18] and computes
the number of Pod replicas needed as follows:

dR =

⌈
cR · cMV

dMV

⌉
, (1)

where dR is the (new) desired number of replicas, cR is
the current number of replicas, cMV is the current metric
value, and dMV is the desired metric value (as specified by
the service provider). In this work, we consider CPU as the
resource and CPU usage as the metric to drive the scaling
operations. In this case, cMV is the average CPU usage over
all current Pods and dMV is the scaling threshold. In K8s,
the threshold is indicated as the percentage of the request, and
can be easily converted into the corresponding CPU amount
dMV . To avoid frequent scaling operations, K8s establishes
a default tolerance value by which the system does not scale
if 0.9 < cMV/dMV < 1.1 When scaling is triggered, some
time is needed to adjust to the new desired state (i.e., to reach
cR = dR). This time, referred to as scaling delay, is required
to create/terminate Pods, update load-balancing components,
and set up the service(s) within the Pod.

Ideally, a service provider would like to dimension and scale
the number of running Pods in a way that allows renting just
enough resources to match the CPU demand (i.e., the CPU
required by the service provider to provide the services to the
end users) over time while avoiding too many idle resources
(i.e., CPUs paid for but unused) and degradation (i.e., number
of CPUs that could not be allocated to Pods e.g., due to lack
of resources). However, the scaling delay makes it difficult to
always match the CPU demand, thus generating degradation
for the users. As an example, let us consider the CPU demand
over time shown in Fig. 2a. When the service is running, the
number of Pods is adjusted by the HPA, and CPU allocation
can be categorized as degradation, used, or idle. Fig. 2b shows
the CPU allocation for a simple dimensioning case with 1 CPU
request per Pod and without the possibility to use limit CPUs.
The effect of the scaling delay (assumed to be 4 Time Units
(TUs) in this case) can be observed when the CPU demand
increases (Fig. 2c). At time step 93, 4.8 CPUs are used in
total while 0.2 CPUs are idle. The threshold, set 4.25 CPUs,
is exceeded, and cMV/dMV > 1.1. As a consequence, the
desired number of replicas is updated using (1), triggering a
scale out of 1 extra replica. Due to the scaling delay, this new
replica is available at time step 98. The demand continues
increasing and in the period between time steps 94 and 98 it
exceeds the request CPUs, resulting in degradation.

Different countermeasures can be taken to mitigate degrada-
tion, depending on the level of degradation that each service
can accept. During the dimensioning phase, the amount of
request resources assigned to each Pod can be set to a higher
value, allowing each Pod to access more resources. Another
option is to select a low(er) scaling threshold, anticipating the
scaling out process. However, both options lead to Pod over-
dimensioning, potentially resulting in a higher amount of idle
resources that must be anyway paid for. Another possibility
is to allow the use of limit CPU resources. Considering the
example in Fig.2, the area representing the degradation could
be replaced, in part or in full, by limit CPUs. A service
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Fig. 2. Sample case of a cloud native service operated using K8s. CPU demand varies with end-user traffic. Time is discretized and expressed in Time Units.

provider could bet on their availability during operation to
help reduce degradation, thus potentially lowering the amount
of needed request CPUs.

III. NUMERICAL RESULTS

In order to evaluate the benefits of using limit resources
while solving the Pod dimensioning problem, we developed
a custom framework written in Python. The framework re-
produces the HPA behavior explained in the previous section,
with the following general assumptions. We assume a discrete
amount of time instants in which we evaluate the service
provider CPU demand, to be divided among the active Pods.
We discretize the time in TUs that represents the monitoring
cycles performed by K8s to obtain the metrics from the Pods
and take actions (e.g., scaling). The CPU demand is considered
to be an average over a time interval and evaluated at each
cycle. This simplification is needed to avoid heavy simulation
of run-time CPU resources scheduling, and it allows to mea-
sure average CPU degradation and idle resources in a similar
fashion as K8s monitoring cycles.

A. Simulation settings

We consider a service provider with a CPU demand over
time according to the workload pattern shown in Fig. 2a.
This demand was gathered from Swedish University Network
(SUNET) [19], converted into CPU load and augmented to
mimic a real-world application. The traffic profile divides the
24 hours of a day into 1530 TUs. The obtained results are
an average of 10 days. At each simulation, we add to each
sample in Fig. 2a a random uniform value in the interval of
±20%. We assume a service composed of a single Pod type,
with two replicas deployed as the minimum number at time 0.
At each time step, the CPU demand is split equally among the
running replicas, simulating a perfect load balancing scheme.
The number of replicas is also calculated at each time step
according to (1), and the scaling delay is set to 4 TUs.
Moreover, resources are measured in CPU×TUs.

We use as a baseline a hard isolation deployment scheme
over bare metal with the following configuration. The request
CPU is set to 1 and no limit resources can be used, while the
scaling threshold is set to 85% of the request CPU. We then
analyze separately the two methods to mitigate degradation

based on a higher threshold and a larger CPU request. The
considered scaling thresholds are 85%, 75%, and 60%, while
the Pod request values (hereinafter referred to as sizes) are
1, 2, 5 CPUs.

To assess the potential benefits of limit resources, we simu-
late the case in which Pods can use as many limit resources as
necessary, as long as they are free. A parameter α is used to
represent the amount of available limit resources as a portion
of the request resources allocated for each Pod. For example, if
α = 10% and the CPU request is 1 CPU, each Pod can access
up to 110% of the CPU request resources, i.e., 1.1 CPU.

B. Resource usage and degradation analysis

Fig. 3a shows degradation experienced by a service as a
function of different scaling thresholds. We assumed that the
Pod size is 1 CPU. We observe that lowering the threshold
results in a lower degradation (i.e, from 726 to 30 [CPUxTU]
when the threshold goes from 85% to 60%). This can be
expected. With a more conservative value to trigger the scaling,
Pods can access more CPU resources during the scale out
process. However, there is a price to pay in terms of CPUs
that stay idle (Fig. 3b). 12031 extra [CPUxTU] are required to
reduce the degradation from 726 to 30 [CPUxTU], which is
equivalent to 40% extra request resources required to reduce
degradation by 96% with respect to the benchmark case.
However, 94% of these extra resources are idle, as they are
requested by the extra Pods, but not used most of the time.

Fig. 4a reports the degradation for different (request) Pod
sizes, with a fixed scaling threshold of 85%. Allocating Pods
with more resources results in lower degradation. Fig. 4b
reports the corresponding total resources. When the Pod size
increases from 1 to 5 CPUs, the amount of total resources
increases by 2822 [CPUxTU]. This corresponds to 9% extra
request resources to reduce degradation by 52% with respect
to the benchmark case.

In the following, we investigate whether limit resources can
be used to mitigate degradation without impacting significantly
idle resources. Fig. 5a depicts the degradation for different
amount of limit resources that each Pod can access (α).
The Pod request is 1 CPU and the scaling threshold 85%.
When α=10%, the degradation decreases by 60% down to
294 [CPUxTU] with respect to the case with α=0%. When
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Fig. 3. Hard isolation case: degradation and total resources (in [CPUxTU])
for different scaling thresholds.
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Fig. 4. Hard isolation case: degradation and total resources (in [CPUxTU])
for different Pod sizes.

α=50%, the degradation is 17 [CPUxTU], a value similar
to the case with a 60% threshold in Fig. 3a, and much
lower than the values in Fig. 4a. Fig. 5b reports the total
resources assigned to the service for different values of α.
The total amount slightly increases with α, due to the larger
amount of resources that can be accessed. When α=50%
the total resources are 31858 [CPUxTU], adding only 1464
extra [CPUxTU] out of which 865 are request (used+idle)
and 599 are limit. In this case, only 5% extra total resources
are needed to reduce degradation by 98% with respect to
the benchmark case. Compared to the value obtained with
a threshold of 60% (Fig. 3b), 10566 [CPUxTU] resources
can be saved, i.e., an improvement of 25%. These results
show that using limit resources is potentially more resource
efficient than relying on a high number of request resources. A
service provider, instead of using a 60% threshold, could bet
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Fig. 5. Soft isolation case: degradation and total resources (in [CPUxTU])
for different amount of limit resources assigned to each Pod (α).

on having access to the required limit resources (α), limiting
the extra resources assigned to Pods. However, relying only
on limit resources does not give any guarantees, since the
number of limit resources depends on the actual level of
resource contention at the nodes where the Pods are running.
Therefore, this approach is viable for service providers that
want to improve service performance at a low cost, but can
also accept some degradation. Conversely, service providers
with strict constraints on degradation should rather rely on
the resource over-provisioning strategies, such as using lower
thresholds or larger Pod sizes. The actual level of resource
contention is not under the control of the service provider as
it depends on the effects of the runtime dynamics (e.g., how
Pods are deployed, spikes in the CPU demand). The analysis
of these aspects requires dedicated studies and is outside the
scope of this paper.

To analyze the effects of the scaling delay on the results,
we simulated two additional cases, i.e., when the delay is 2
and 8 [TUs]. Figs. 6a and 6b report the degradation and total
resources (in [CPUxTU]) for different scaling delays, when
α = 0% and α = 50%, the Pod size is 1 CPU and the scaling
threshold is 85%. Results show that a lower scaling delay
corresponds to a lower degradation. This is due to a faster
response to CPU demand variations, increasing total resources.
By using soft isolation, degradation is compensated with a
small number of limit resources regardless of the scaling delay
value, which confirms the effectiveness of this approach.

C. Cost analysis

To analyze the costs, we compare an approach based on
limit resources (lim) with one that uses only request resources
(req) and one that just accepts degradation (deg). The lim
approach is beneficial if its cost (Clim) is lower than or equal
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Fig. 6. Degradation and total resources (in [CPUxTU]) for different scaling
delays in [TUs], when α = 0% and 50%.

TABLE I
AMOUNT OF REQUEST (R), LIMIT (L), AND DEGRADATION (D) IN
[CPUXTU] FOR THE THREE CONSIDERED CASES (lim, deg, req).

lim deg req
R 31858 30394 42425
L 599 0 0
D 17 726 30

to the deg cost (Cdeg) and the cost of the req solution (Creq).
The following system holds:{

Clim ≤ Cdeg , (2)
Clim ≤ Creq , (3)

Each cost depends on the amount of request resources (R),
limit resources (L), and degradation (D) and their unitary price
(pR, pL, and pD, respectively). For the lim case we have
Clim = RlimpR + LlimpL + DlimpD. Similar formulations
can be derived for Cdeg and Creq. We can use (2) and (3) to
determine the values of pR, pL, pD for which the use of the
lim approach is beneficial. As an illustrative example, let us
consider the case with α=50% in Fig.5 as lim, the benchmark
as deg and the case with 60% threshold as req (first and last
bars in Fig.3, respectively). The related amount of resources
is reported in Tab.I. Let us consider the worst case for lim,
i.e., the equalities in (2) and (3). By solving (2) for pD and
substituting it in (3) we find that pL = 18.02pR. Lower values
of pL make the lim approach appealing for a service provider
compared to the req approach. Similarly, we can solve (3)
for pR and substitute it in (2) to find that pL = 1.04pD. For
lower values of pL, using lim is more beneficial than deg (i.e.,
compensating degradation with limit resources is less costly
than accepting it).

IV. CONCLUSION AND FUTURE WORK

This work presents a performance analysis of different
Pod dimensioning strategies in cloud native scenarios from a

service provider perspective. A simulator has been developed
to mimic K8s behavior and evaluate the performance of these
strategies in terms of degradation and idle CPUs. Results show
that degradation can be mitigated by using limit resources
under the assumption that additional α% limit resources can
be accessed by the Pods. In particular, a strategy based only
on limit resources with α=50% can achieve the same level of
degradation as a conventional strategy with a scaling thresh-
old fixed to 60%, while requiring 25% less reserved CPUs.
Moreover, savings can be achieved if the unitary price of a
[CPUxTU] of limit resource is lower than 18 times the price
of a request [CPUxTU] resource. Since limit resources are
not reserved, this approach is viable for service providers that
can tolerate some degradation in case the limit resources are
not available. Nevertheless, intelligent Pod scaling strategies
can be developed to compensate for this, e.g., by monitoring
degradation and adding request resources only when needed.
Studies from a cloud provider perspective on how to price
resources and how to increase resource sharing are left as
future work.
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