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Different hypotheses about a quantum system such as the logical state of a qubit or the value of physical
interaction parameters can be investigated by the interaction with a probe field. Such fields may be prepared
in particularly sensitive quantum states and we demonstrate here the use of quantum trajectories to model
the stochastic measurement record and conditional evolution of the state of the quantum system subject to its
interaction with a traveling pulse of radiation. Our analysis applies to different measurement strategies and to
arbitrary input quantum states of the probe field pulse and it thus permits direct comparison of their metrological
advantages. A theoretical lower limit to the mean discrimination error can be calculated in a deterministic manner
and we verify that it lies below the average inference error in all our examples.

DOI: 10.1103/PhysRevA.107.013705

I. INTRODUCTION

The motivation in quantum optics to study a variety of
so-called nonclassical states of light, such as number states,
squeezed states, entangled states, and Schödinger cat states
has been associated with their use in precision measure-
ment protocols. Very sensitive measurements may thus benefit
from the use of probe fields that are prepared in states that
change maximally upon the interaction with the object or
phenomenon under investigation while displaying minimal
variance of the observable measured [1,2]. More general ap-
proaches adopt advanced analyses of the information that can
be extracted by optimal general measurements on the quantum
state [3].

In this article we consider probing of a quantum system
by its interaction with an itinerant traveling wave packet of
quantum light or microwave photons, see Fig. 1. Propagat-
ing quantum states were proposed to mediate quantum state
transfer and quantum interactions between stationary physical
systems [4–8], but a practical theory for how a single-mode in-
put pulse of quantum radiation interacts with a local quantum
system was only presented recently [9–13]. The purpose of the
present study is two-fold: On the one hand, we shall extend
previous, simplified treatments and provide a description of
how the traveling quantum pulse interacts with matter in a
fully time-dependent manner, and, on the other hand, we shall
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present an analysis of the full measurement record from the
continuous probing of the radiation field after the interaction
with the system of interest.

A nonlinear scatterer generally produces a multimode out-
put field which does not have a manageable quantum state
description in terms of a state vector or density matrix. But,
in [11,12], it was shown that it is possible to calculate the
dynamics of the scatterer by a cascaded systems master equa-
tion where the output field is treated as a loss. We shall
incorporate the effect of measurements into this theory by a
stochastic unravelling of the master equation. The resulting
equation, in turn, forms the basis for a quantum filter theory
along the lines of [14]. The application of the filter approach
was so far restricted to systems probed or excited by classi-
cal fields, see, e.g., [15–18]. Our stochastic cascaded master
equation yields results that are equivalent to the ones obtained
in [10] by an alternative method. We believe that the deriva-
tion of our master stochastic equation is more straightforward
and its application is more readily extended and applied for
parameter estimation and hypothesis testing.

We present simple examples of our formalism for the
readout of the state of a qubit and for the discrimination
between discrete values of its physical interaction parameters.
We consider photon counting and homodyne detection of the
transmitted field and we supplement our inference among
different hypotheses by simulated detection records with the
calculation of a deterministic lower limit of the average error
by any possible detection scheme on the qubit and the emit-
ted radiation. While our examples deal with the distinction
between discrete hypotheses we note that the theory read-
ily applies also to the precision measurement of continuous
parameters cf. [18–20].

The article is structured as follows. In Sec. II we introduce
the description of the interaction between a quantum pulse and
a discrete quantum system. In Sec. III, we model the stochastic
dynamical equation of the quantum pulse and the quantum
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FIG. 1. Schematic of qubit state readout by an incoming quan-
tum pulse. The incident light pulse with shape u(t ) excites a closed
optical transition between the qubit state |1〉 and excited state |e〉.
The amount of absorption from the pulse and the field correlations
induced by the interaction with the qubit system are registered by
continuous photon counting or homodyne detection. By introduction
of a virtual cavity as the source of the incident pulse, we obtain
an effective single-mode open systems treatment of the physical
interactions; see text.

system due to the back action of the continuous counting or
homodyne measurements. In Sec. IV we present the Baysian
inference from simulated signal records about the initial state
of a qubit quantum system or a system parameter. In Sec. V we
present a lower limit for the average inference error based on
the ultimate distinguishability of the candidate quantum states
of the qubit and the emitted multimode field. We summarize
the results and some theoretical considerations on the applied
method in Sec. VI.

II. CASCADED MASTER EQUATION

There is a fundamental difference between the time-
dependent interaction of a quantum system traversing a field
eigenmode confined in a cavity and the time-dependent inter-
action of an incident single-mode pulse of traveling radiation
with a localized quantum system. In the first case, the field is
restricted to discrete eigenmodes and the single-mode Jaynes-
Cummings model may apply to an excellent approximation,
while in the second case, the field is free to explore a con-
tinuum of propagating modes and any nonlinearity in the
quantum system thus leads to population of a multimode
output field. Quadratic interactions, leading to linear equa-
tions for the field amplitudes, were dealt with by input-output
theory [21], while scattering of single- and two-photon wave
packets on a two-level system was solved by scattering theory
[22–25]. However, outside these exceptions, treatments of the
interactions between a quantum pulse and a scatterer seem
prohibitively complicated due to the dimensionality of the
multiphoton and multimode Hilbert space. It has been shown,
however, that the theory of cascaded input-output quantum
systems [26,27] permits treating the scatterer and a single
mode of the radiation field as an open quantum system. This
idea was first implemented in [9,10], where effective coupled
master equations of the scatterer were associated with each
Fock state of the pulse. In this article, we shall adopt a simpler
treatment with a virtual cavity that leaks the pulse towards the
target, as described by a more conventional cascaded master
equation [11,12]. Figure 1 shows a system with two stable
levels (|0〉, |1〉) and a state |e〉 that is excited from |1〉 by
the interaction with the incoming pulse with strength

√
γ and

decays spontaneously with rate γ . We assume, for simplicity,

that the input and output fields are transversally single mode
while populating a continuum of radiation modes propagating
from left to right in the figure (chiral coupling).

To obtain a traveling wave packet u(t ) as the output from a
one-sided quantum cavity with a single-mode annihilation op-
erator au, we must assume a time-dependent coupling strength

g(t ) = u∗(t )√
1 − ∫ t

0 dt ′|u(t ′)|2
, (1)

between the cavity and the input continuum field bin(t )

Hu,cavity = i[g∗(t )b†
in(t )au − g(t )bin(t )a†

u], (2)

where the initial state of the cavity mode can be chosen to
represent any Fock state or quantum superposition state of the
probe field pulse. In the examples in this article we assume
Fock states and coherent states and we assume a Gaussian
temporal shape of the pulse

u(t ) = 1√
τπ

1
4

e
−(t−tm )2

2τ2 , (3)

with a duration parametrized by τ and a peak occurring at time
tm.

We treat the quantum scatterer by a Hamiltonian Hs and
its exchange of quanta with the incident pulse can now be
equivalently described as a coupling to the u-cavity mode with
the interaction Hamiltonian

Hus = i
√

γ

2
[gu(t )a†

uc − g∗
u(t )auc†], (4)

where c and c† are raising and lowering operators of the scat-
terer by the absorption or emission of a quantum of radiation
(in our example, c = |1〉〈e|). Radiation propagating to the
right of the emitter is composed of the incident pulse (loss
by the cavity) and the emission by the quantum scatterer and
is described by the coherent lowering operator on these two
systems

L0(t ) = g∗
u(t )au + √

γ σ. (5)

Finally, the quantum state of the cavity and the system
is described by the density matrix �us(t ), which solves the
master equation

d�us(t )

dt
= −i[H, �us(t )] +

n∑
i=0

D[Li]�us(t ), (6)

where H = Hs + Hus and the Lindblad terms D[Li]ρ =
− 1

2 (L†
i Liρ + ρL†

i Li ) + LiρL†
i apply for both L0 in Eq. (5)

and for any additional dissipative local Lindblad operators,
Li, i = 1, . . . , n.

The interference of the two lowering operator terms in the
Lindblad operator L0 is responsible for the cascaded nature of
the master equation: Both D[L0]ρ and the commutator with
the interaction Hamiltonian contribute terms of the form a†

uc
(auc†), multiplying ρus from the left (right) in Eq. (6), but
these terms cancel each other out and, effectively, no atomic
excitation is returned to the source cavity mode.

An exemplary further dissipation mechanism is atomic
decay with rate κ by emission into a different, unobserved
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direction, see Fig. 1. Such decay is merely represented by one
of the separate Lindblad terms in Eq. (6), with

L1 = √
κ|1〉〈e|. (7)

III. QUANTUM TRAJECTORIES
FOR THE OBSERVED SYSTEM

We model the conditional dynamics of the system due to
measurement of the transmitted field by replacing the deter-
ministic master Eq. (6) by a corresponding stochastic master
equation [28,29]. For classical probe fields (coherent states),
the cascaded master equation reduces to a stochastic equa-
tion that involves only the conditional density matrix for the
driven scatterer [12,30], while for other states of the incident
probe field we must retain the stochastic evolution of the
combined virtual cavity and scatterer system.

A. Counting measurement

We consider first photon counting measurements on the
pulse transmitted by the quantum system as depicted in Fig. 1.
The stochastic evolution of the density matrix includes a con-
tinuous no-jump part for the (unnormalized) density matrix
�̃(t ),

d�̃(t ) =
[

− i[H, �̃(t )] +
n∑

i=1

D[Li]�̃(t ) − 1

2
{L†

0L0, �̃(t )}
]

dt

(8)

and the occasional quantum jump part

ρ̃ → L0�̃(t )L†
0, (9)

occurring with the probability δp = 〈L0(t )†L0(t )〉dt . Note that
the operator averages (and the jump probability) can be ob-
tained only after proper normalization of �̃. A realization of
the atomic and field dynamics in an experiment employing
photon counting according to Eqs. (8) and (9) is shown in
Fig. 2.

B. Homodyne measurement

In homodyne detection, the radiation is mixed on a beam
splitter with a strong local oscillator with the same frequency.
The difference between the photon flux at the two output-ports
yields a noisy and continuous signal dYt , with a component
proportional to, say, the first quadrature of the quantized field
represented by L0 and a white noise term dWt ,

dYt = Tr(L0� + �L†
0 )dt + dWt . (10)

dWt is a Wiener increment with zero mean and variance dt .
Note that the mean value of the field quadrature is calculated
according to the normalized density matrix �.

The measurement back action of the homodyne detection
can be incorporated together with the deterministic evolution
in the unnormalized stochastic differential equation

d�̃(t ) =
[

− i[H, �̃(t )] +
n∑

i=0

D[Li]�̃(t )

]
dt

+ [L0�̃ + �̃L†
0]dYt . (11)
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FIG. 2. Single trajectory of an atom initialized in the ground state
|ψ〉 = |1〉 interacting with an incoming n = 20 photon number state
pulse, where the output field is subject to unit efficiency photon
counting. We assume no further dissipation channels and that all
emission is in the forward direction, cf. Fig. 1. Panel (a) shows the
mean number of photons in the cavity mode representing the incident
Gaussian wave packet (black line) and the integral of the mean pho-
ton detection rate (red line). Panel (b) shows the Rabi oscillation-like
evolution of the excited state probability Pe of the two-level system.
Panel (c) shows the (20) individual photon detection events simulated
to occur during the passage of the pulse. The pulse shape is given in
Eq. (3) with the parameters τ = γ −1, tm = 4γ −1.

A realization of Eq. (11) is shown in Fig. 3.

IV. HYPOTHESIS TESTING

If a system is subject to dynamics according to different
candidate physical parameters, we may treat those as a set
of hypotheses, {hi, i = 1, . . . , m}, with corresponding prior
probabilities p0(hi ). Given the outcome of measurements, we
can use Bayes rule to update the probabilities and infer the
most likely among the hypothesis. To this end, the stochas-
tic master equation is solved in parallel for density matrices
ρ̃i(t ) for each candidate hypothesis i. These density matrices
directly constitute a Bayesian filter: the probability for a mea-
surement outcome is, for each different hypotheses i, given by
�̃i via Born’s rule. In fact, for a given data record, the relative
probabilities of different hypotheses are merely accumulated
in the norm of the unnormalized density matrices, p(D|hi ) ∝
Tr(�̃i) subject to the stochastic master equation, assuming the
measurement outcomes of the record.

According to Bayes rule, it thus follows that the likeli-
hood of the different hypotheses are updated as p(hi|D) ∝
p(D|hi )p0(hi ). Henceforth we shall write pi = p(hi|D) for the
normalized likelihood and we note that the Bayesian update
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FIG. 3. Single trajectory of an atom initialized in the ground state
|ψ〉 = |1〉 interacting with an incoming n = 20 photon number state
pulse, where the output field is subject to homodyne detection.
We assume no further dissipation channels and that all emission
is in the forward direction, cf. Fig. 1. Panel (a) shows the mean
number of photons in the cavity representing the input pulse. Panel
(b) shows the excited state population Pe of the atom. Panel (c) shows
the stochastic signal (10) obtained during the time interval [0,10].
The pulse shape is given in Eq. (3) with the parameters τ = γ −1,

tm = 4γ −1.

may be obtained iteratively over time, cf. the time evolution
of the conditional density matrices. The identification of the
stochastic master equation with the Bayesian filter [15–18]
applies straightforwardly to our quantum pulse master equa-
tion and we are hence able to directly assess how the probing
with quantum pulses can be employed for different sensing
tasks.

A. Qubit state readout

In the following, we shall consider the determination of
the state of a qubit in the {|0〉, |1〉} subspace of the atomic
system depicted in Fig. 1. We assume that the incident light
pulse interacts with the atom on the closed optical transition
|1〉 ↔ |e〉 and we shall show that this interaction is revealed
in the noisy signal records.

We thus deal with two hypotheses, namely, the two pos-
sible initial qubit states |0〉 and |1〉, and we assume equal
initial probabilities, p0(t = 0) = p1(t = 0) = 1/2. The best
estimate of the actual initial qubit state at any time during
the measurements is the one assigned the highest condi-
tional probability max[p0(t ), p1(t )]. That choice, however,
will be in error with the remaining probability Qe = 1 −
max[p0(t ), p1(t )].
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FIG. 4. Two realizations of photon counting signals. Panels
(a) and (b) show simulated photon counting signals for a Gaussian
pulse prepared in an |N = 10〉 Fock state, after its interaction with
a qubit system prepared in state |1〉 and |0〉, respectively. Panel
(c) shows the inferred conditional probability that the initial state was
|1〉. The upper solid red and the lower solid blue curves correspond to
the simulated detection record in panels (a) and (b), respectively. The
gray thin curves are obtained with other detection records, assuming
the initial state |1〉 and |0〉 with equal probability. The pulse shape is
given in Eq. (3) with the parameters τ = γ −1, tm = 4γ −1.

Since all incident photons are eventually detected in the
output, the total photon count is independent of the state of
the qubit, but the temporal distribution of detector clicks and
the correlations in the full detection record may still reveal the
interaction or not with an effective two-level transition. While
these may involve multitime correlations of a very complex
character, the strength of the Bayesian quantum trajectory
analysis is that it requires no prior knowledge or formal
analysis of such correlations. The quantum trajectory itself
constitutes a filter that extracts the maximum information
from all available data and their temporal correlations in the
detection record. Our analysis is readily applicable with more
complex investigations, e.g., of interferometric setups and
their exploration with general quantum states of light [31,32].

B. Results

Figure 4 shows the outcome of different realizations of
the photon counting record for a Gaussian wave packet with
ten photons interrogating the three level atom depicted in
Fig. 1. Sample detection records are shown in Figs. 4(a)
and 4(b) with initial qubit states |1〉 and |0〉, respectively.
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FIG. 5. Comparison of the mean error of the qubit readout with Fock and coherent probe pulses of light. The upper panels of (a) and (b)
show the results where the atom only emits in the forward direction while panels (c) and (d) show the results when the excited atoms is subject
to an extra decay channel with rate κ = γ . In all panels the solid lines correspond to the Bayesian approach averaged over 1000 simulated
trajectories, while the dashed lines refer to the solution of the two-sided master equation (15), which yields a deterministic minimum average
error of the parameter estimation; see text. In both left panels (a) and (b), the upper yellow and lower black curves represent Fock states with
five and ten photons while in panels (b) and (d), the upper blue and lower purple curves represent coherent states with α = √

5 and
√

10,
respectively. The pulse shape is given in Eq. (3) with the parameters τ = γ −1, tm = 4γ −1.

Figure 4(c) shows with solid red and blue curves the in-
ferred, conditional probabilities that the initial state was |1〉.
We see that despite the similarity of the detection records
in the upper panels, the inference clearly favors the correct,
different initial qubit states. While the total number of de-
tected photons is the same for both hypotheses, their temporal
distributions differ as the interaction with the atom can both
change the mean intensity profile and the intensity corre-
lations within the pulse. The thin light curves in Fig. 4(c)
show how the performance of the qubit readout varies for an
ensemble of simulated detection records, chosen with random
initial qubit states.

In Fig. 5, we show the average outcome over 1000 simula-
tions of the photon counting detection record (solid lines). To
compare how well different input probe states serve to distin-
guish the qubit state of the atomic scatterer, the figure shows
the average probability that the assignment fails (the average
error probability) for Fock states with N = 5 and 10 pho-
tons as well as coherent states |α〉 with α = √

5 and
√

10.
In Figs. 5(a) and 5(b) we assume that the atom only emits
radiation in the forward direction, while in Figs. 5(c) and 5(d)
we assume an extra atomic loss process with rate κ = γ . The
extra loss is only incurred, if the qubit is in state |1〉 and
hence the initial qubit state is revealed by the detection of a
statistically significant reduction in photon number. For the
Fock state input [Fig. 5(c)], we thus see a significant reduction
in the error probability, while the error is even increased in the
case of coherent state probing in Fig. 5(d). The lower dashed
curves are discussed in the subsequent section.

V. MINIMUM ERROR IN HYPOTHESIS TESTING

Instead of determining the state of a qubit, the distinction
of the detection records may equivalently be employed to
infer if a two-level system is coupled to the field with a
vanishing or finite coupling strength γ . For that system, these
two cases would yield two different time-dependent states
|ψall

0 (t )〉, |ψall
1 (t )〉, for the combined system of the incident

pulse, the two-level scatterer, and the multimode output field
environment. An experimentalist with measurement capabil-
ities limited only by the laws of quantum mechanics, may
distinguish among such states with a discrimination error

Qe = 1 −
√

1 − |α|2
2

, (12)

where α = 〈ψall
0 |ψall

1 〉 is the overlap between the states.
While these states involve unwieldy multimode field-state

components after the interaction with the scatterer, their state
vector overlap can be easily calculated. Following [33], we
assume the same initial incident state of the scatterer and
the u mode and we pretend that the interaction strength γ is
conditioned on the state of an ancillary control qubit control,
prepared in an initial superposition state, so that the combined
system evolves into an entangled state

|ψ (t )〉 = 1√
2

[|0〉∣∣ψall
0 (t )

〉 + |1〉∣∣ψall
1 (t )

〉]
. (13)

Equivalent to the derivation of Eq. (6), it is possible to obtain
a cascaded master equation for the reduced state of the ancilla
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qubit, the input cavity mode and the two-level scatterer and
hence determine the expectation value of the ancilla qubit
observable 〈σ+〉 = 〈(|0〉〈1|)〉. Note from Eq. (13) that this
quantity yields half the overlap of the complex scatterer and
input and output field states.

The ancilla-dependent system Hamiltonian, Lindblad op-
erators, and density matrix can be represented as block
operators in the qubit basis of the ancilla as follows: Htotal =
[H0 0

0 H1
], Ltotal = [L0 0

0 L1
], and �total = 1

2 [�00 �01
�10 �11

], respec-
tively. It follows that

α(t ) = 〈
ψall

0 (t )
∣∣ψall

1 (t )
〉 = 2〈σ+〉 = Tr[�01(t )], (14)

where it follows from the master equation that �01 solves a
two-sided master equation (TSME)

�̇01 = − i(H0�01 − �01H1) + L0�01L†
1

− 1
2 (L†

0L0�01 − �01L†
1L1). (15)

We can readily solve Eq. (15) with the Hamiltonian and Lind-
blad operators determined in Eqs. (4) and (5) with the two
candidate values of γ and the smallest possible value of the
estimation error, Eq. (12), achieved by any measurement on
the full quantum state, can hence be readily evaluated for all
times.

The result of the TSME for different Fock states and
coherent states are depicted as the lower dashed curves in
Fig. 5. In precision sensing with open quantum systems, pho-
ton counting and homodyne detection are sometimes capable
of saturating the quantum lower error bounds and thus extract
all relevant information about an unknown parameter [18–20].
Here, we see this is not the case. This is chiefly due to the
emitter being also part of the full quantum state. At certain
moments during the Rabi oscillation dynamics, the emitter
coupled to the pulse is predominantly in the excited state
and hence perfectly distinguishable from the ground state
pertaining to the case of the uncoupled emitter. This yields
the occasional vanishing of the error probability, following the
Rabi oscillations of the (coupled) system. The simulated error
is higher because the state of the emitter is assumed not to
be directly available for the photon counting scheme. Recall
that we explicitly want to employ the light probe to indirectly
perform the qubit readout.

VI. SUMMARY AND DISCUSSION

In this article we presented a general formalism for the
interrogation of a quantum system by a quantum probe pulse

of radiation. We established the stochastic master equation,
which provides the time-dependent state of the probe and the
scatterer conditioned on the measurement record (assuming
counting or homodyne detection). The master equation readily
translates to a filter equation providing conditional probabil-
ities for different hypotheses governing the initial state or
parameters in the evolution of the system. We illustrated the
stochastic formalism by simulating the detector signal follow-
ing the interaction between an incoming wave packet and a
qubit system, for which our Bayesian filter exhausts the infor-
mation available in the detection record about the initial qubit
state. Our analysis permits the first quantitative assessment
of probing of quantum systems with nonclassical multiphoton
pulses of light and our simulations confirmed the expectation
that Fock probe states may be superior over coherent states
for such tasks. Our method readily applies for a much wider
class of quantum states and measurement settings, i.e., pulses
incident on interferometer setups.

We characterized the achievements of the sensing schemes
by averaging the probability of error over many simulated
trajectories and we compared our results with a deterministic
theory by an extended master equation [33] that yields the
minimum error probability Qe obtained by any hypothetical
measurement on the scatterer and the emitted field. Such
analyses may be supplemented by extended master equa-
tion methods like the protocols developed to calculate the
(classical and quantum) Fisher information for continuous
measurement records in [18,19]. Further studies may guide
efforts to optimize probe quantum states and strategies and
we suggest this as a promising avenue for future exploration.

Note added. Recently, we became aware of a recent pub-
lication studying the limits to precision sensing of atomic
interaction parameters with pulses of radiation [34]. The use
of one-photon states is studied in detail, including the iden-
tification of the optimal detection scheme, while the general
pulse method employed in the present article is reviewed and
used to confirm the results.
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