
Tracking artificial intelligence in climate inventions with patent data

Downloaded from: https://research.chalmers.se, 2024-05-01 23:26 UTC

Citation for the original published paper (version of record):
Verendel, V. (2023). Tracking artificial intelligence in climate inventions with patent data. Nature
Climate Change, 13(1): 40-47. http://dx.doi.org/10.1038/s41558-022-01536-w

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



Nature Climate Change | Volume 13 | January 2023 | 40–47 40

nature climate change

Article https://doi.org/10.1038/s41558-022-01536-w

Tracking artificial intelligence in climate 
inventions with patent data

Vilhelm Verendel     

Artificial intelligence (AI) is spreading rapidly in many technology areas, 
and AI inventions may help climate change mitigation and adaptation. 
Previous studies of climate-related AI mainly rely on expert studies of 
literature, not large-scale data. Here I present an approach to track the 
relation between AI and climate inventions on an economy-wide scale. 
Analysis of over 6 million US patents, 1976 to 2019, shows that within climate 
patents, AI is referred to most often in transportation, energy and industrial 
production technologies. In highly cited patents, AI occurs more frequently 
in adaptation and transport than in other climate mitigation areas. AI in 
climate patents was associated with around 30–100% more subsequent 
inventions when counting all technologies. Yet AI-climate patents led to a 
greater share of citations from outside the climate field than non-AI-climate 
patents. This suggests the importance of tracking both increased invention 
activity and the areas where subsequent inventions emerge.

A range of artificial intelligence (AI) technologies are rapidly being 
developed with high expectations of technological innovation and 
economic growth1–3. AI could contribute to increasingly effective 
climate change mitigation and adaptation technologies in multiple 
areas4–6. However, an increasing capability to automate and trans-
form production, equip industries with new tools and draw increas-
ing commercial support also means that AI technologies could lead 
to a higher demand for computing power, larger carbon footprints, 
shifts in patterns of electricity demand and an accelerated depletion 
of natural resources7–10. High expectations of new technologies with 
limited experience suggest a risk of unjustified techno-optimism, which 
could delay effective climate policy11. Whether the net effect of AI on 
the climate system will be ameliorative or detrimental is currently an 
open question, and concerns about the impact of AI have been followed 
by calls for new regulations and increased international oversight12–16. 
This suggests a need for improved capabilities to track, examine and 
analyse these emerging technologies. Here I use large-scale patent data 
to track AI inventions in technologies that can contribute to climate 
adaptation and mitigation.

The initial research into the connection between AI and climate 
change has often been framed in terms of the United Nations Sustain-
able Development Goals and conducted as expert studies. These have 
indicated both positive and negative effects of AI4,17–19. For climate 
change, it has been suggested that machine learning could have broad 

potential in both mitigation and adaptation strategies, with a mixed 
message regarding the potential net effect on the climate system20–24. 
An advantage of expert-based reviews is the possibility to integrate 
knowledge from different domains, even when data are scarce. How-
ever, experts often find it challenging to unpack and fully explain their 
partially automatic judgement processes25. Moreover, expertise tends 
to be difficult to translate from one domain into another26. Scaling up 
to cover a larger literature is a challenge for any team of experts, and an 
interesting option would be to complement the analysis with other data 
sources. Here I investigate how to use large data sources from national 
patent offices and intellectual property organizations regularly used 
to monitor inventions and innovation in large economies.

Patents are possibly the most detailed track record of modern 
technological inventions27–29, allowing individuals and organizations 
to protect the use of their patented inventions typically for years. 
National patent offices have organized and classified millions of pat-
ents using international classification systems. The resulting clas-
sification codes provide the primary means to group patents and 
make them searchable: patent offices need to examine the prior art 
to judge whether claimed inventions are sufficiently novel before 
granting patents. Patents have previously been used as a data source 
and a proxy to study trends in both AI1,2,30 and climate technologies31–34 
separately. Here I combined classification data for climate inventions 
and AI technologies to find patents that are both. First, I used the Y02 
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States, patent claims that include abstract inventions for algorithms 
and computer software require a link to a practical application37. In the 
European Union, patents with abstract invention claims need to have a 
technical character—for example, controlling some physical process 
or providing an implementation or function that solves a particular 
technical problem38. The differences between what patent laws permit 
can sometimes be subtle, so patterns based on patentability might 
be specific to a country under consideration. Here I used data from 
the United States, which should be seen as one case study, although 
an interesting one. The approach used here is possible to extend for 
analysing patents from other countries. Besides variation in national 
patent laws, other factors could need to be controlled when investigat-
ing and comparing patenting trends. Such differences include technical 
expertise and specialization in countries and industries33.

Second, inventors do not always apply for patents, even when 
patenting is possible. Some AI inventions are being made available 
through an open-source culture where inventions are neither pat-
ented nor protected by secrecy, which can be seen in academia and 
public-interest AI research. However, an initial investigation of patented 

classification system initiated by the European Patent Office35 to moni-
tor selected technologies related to mitigating or adapting to climate 
change31. Second, I found AI patents with a recent method developed 
by the World Intellectual Property Organization (WIPO) that can be 
automated computationally1,36. The WIPO method classifies patents as 
AI on the basis of patent classification codes and by matching certain 
keywords from key sections in the patent texts, including terms such as 
‘machine learning’, ‘deep learning’ and ‘natural language processing’; 
more details can be found in the Supplementary Information. Third, 
I combined both of these classification approaches to find patents 
that are labelled as both. A few example patents that are classified as 
both AI and climate inventions are referred to and presented in the 
Supplementary Information.

As useful as patent data can be, it is also essential to understand 
some of the limitations of using patents and avoid unwarranted general-
ization from patented inventions to the population of all inventions, for 
reasons that follow. First, certain types of inventions may not even be 
possible to patent: it is currently not possible to patent entirely abstract 
inventions (for example, pure mathematical results). In the United 
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Fig. 1 | AI and climate patent counts and shares from 1976 and onwards.  
a, Granted patents per year, with a steeper rise starting around 2010. b, The rise 
in a can be seen as exponential growth in climate AI patents (linear on a log scale), 
and this holds for climate patents and AI patents separately. Within climate 
patents, however, AI patents are not growing exponentially: AI is associated with 
an approximately linear growth in shares (Supplementary Information).  
c,d, Transportation, energy and industrial production mitigation technologies 

have accumulated the most AI patents, while the smaller classes of energy-
efficient ICT and adaptation patents have larger shares of AI inventions. Energy-
efficient ICT cover inventions that reduce energy use within ICT equipment, 
but not ICT used to reduce energy use in a further piece of equipment. For 
readability, I have shortened the official names35. The official names and 
classification codes can be found in the Supplementary Information.
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AI inventions shows that these are increasingly related to commercial 
patent rights, and at the same time the share of patents that depend on 
public government support is getting lower (Supplementary Informa-
tion). Furthermore, firms and individuals also choose to protect some 
inventions with secrecy instead of filing patents. The incentives for 
secrecy vary between technological fields. For example, in the United 
States, the pharmaceutical and biomedical industries with high cost, 
high uncertainty and long innovation cycles rely more on patents than 
the software industry39. Software inventions often have lower costs and 
can have innovation cycles on a timescale of days or weeks rather than 
months or years. When patenting processes take longer than the innova-
tion cycle, patenting might lose some of the appeal of getting expected 
rewards from innovation. For these reasons, a share of AI inventions can 
be expected not to be found in patents. To the best of my knowledge, this 
share is unknown and is a knowledge gap in the literature. AI technolo-
gies are being invented and used in various industries1,2, so this share for 
AI probably depends on the incentives in several technological domains 
that may differ. That we do not know the share of inventions that are 
protected by secrecy suggests a need to be cautious about generalizing 
from patents to other non-patented inventions.

The data are as follows. First, I collected historical data on over 
six million granted patents publicly available40,41 from the US Patent 

and Trademark Office for the period from 1976 to 2019, up to when 
the WIPO method for finding AI patents was developed and evalu-
ated. I worked with data from the United States because it is a leading 
economy and because the US institutions have made patent full-text 
data readily available41. Previous work42 indicates that US patents have 
been found to well represent the frontier of technological innovation 
in low-carbon energy innovation, which is part of the scope. Second, 
I extracted technology classification data for the patents, including 
current labels for climate inventions43: the Cooperative Patent Classi-
fication (CPC Y02) code “covers selected technologies, which control, 
reduce or prevent anthropogenic emissions of greenhouse gases in the 
framework of the Kyoto Protocol and the Paris Agreement, and also 
technologies which allow adapting to the adverse effects of climate 
change”.35,44 Third, I applied the WIPO method1,36 described above to 
label the same patents as AI or non-AI for further analysis. For details 
about the classifications, see the Methods and the Supplementary 
Information. Precise summary metrics for AI and climate patents are 
also found in the Supplementary Information.

It is natural to first look at the data by aggregating mitigation and 
adaptation technologies, but then later disaggregate these into sepa-
rate groups. Both climate and AI patents have seen clear growth in the 
past decade (Fig. 1a). AI and climate invention patent counts, as well 
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Fig. 2 | Comparing AI and non-AI citation counts in climate patents (citations 
to patents granted between 2010 and 2017). AI patents are on average 
associated with more subsequent inventions when counting citations from all 
subsequent technologies. The total count of AI breakthroughs is smaller, as 
expected because of fewer AI patents overall. In each plot, the centre line is the 

median, and the red square shows the mean. The dashed vertical lines show 
the boundaries for breakthroughs (for forward citation counts above the 99th 
percentile) over all years. The box limits show the 25th and 75th percentiles, 
with whiskers at the 5th and 95th percentiles. For plotting, a log-plus-one 
transformation was used.
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as the climate AI patents, have undergone exponential growth during 
the past decade (Fig. 1b). However, note that this does not mean that 
the share of AI within climate patents is growing exponentially: the 
growth of the share of AI within climate patents has been approximately 
linear, and AI climate patent counts are actually lower than expected 
if AI and climate innovations had been statistically independent (Sup-
plementary Information). More than half of all AI inventions in climate 

patents since 1976 are found in technologies for transportation, energy 
and production (Fig. 1c). Climate adaptation and building/housing 
mitigation technology patents involving AI are somewhat lower in 
absolute numbers. For waste management and carbon capture/stor-
age, there are very little data on AI. Energy-efficient information and 
communication technologies (ICT) and adaptation patents are areas 
where AI has had larger overall shares in the past few years (Fig. 1d). 
The number of unique patents found to involve both climate and AI 
between 1976 and 2019 is 4,390. This is around 1.5% of the total climate 
patents and 2.7% of the AI patents.

To examine whether AI makes a difference in climate inventions, 
I chose to analyse the number of citations from subsequent patents 
that cite back to previously granted patents. For a given patent, the 
forward citation count reflects the number of subsequent patents 
that relate to or build on it—or, put differently, cite it. Forward citation 
counts have been considered to be important indicators of the techno-
logical impact of a patented invention45. Harhoff et al.46 found that the 
economic value of individual patents, measured through a survey with 
patent assignees, is positively correlated with the number of forward 
citations. Hall et al.47 also showed that the number of forward citations 
per patent correlated positively with the market value of firms, and 
they estimated that if a firm’s quality of patents increases so that the 
patents receive one additional citation, on average, the firm’s market 
value increases by 3%. Moreover, forward citations are positively cor-
related with patent assignees’ willingness to pay renewal fees48, which 
indicates the economic value of cited patents. Furthermore, forward 
citations can also be used to investigate knowledge spillovers, or how 
knowledge from technologies in one area is useful in different areas49,50. 
In the analysis that follows, I distinguished between technological 
domains that cite back to previously granted AI and non-AI patents. 
Finally, forward citations have been used to investigate highly cited 
technological breakthroughs by using the accumulated forward cita-
tions in the years after which a patent was granted. Squicciarini et al.51 
define breakthrough inventions as the top 1% cited documents for each 
year, and they use a three-year window from the patent grant date to 
accumulate forward citation counts. Benson and Magee27 constructed 
a metric that they term “immediate importance” as the average number 
of citations that a patent receives within three years of publication. 
Consistent with the previous literature, I examined the predictive dif-
ference associated with AI on a three-year horizon after patents have 
been granted. The breakthrough inventions were defined to be the top 
1% cited patents in a technical domain per year.

To examine whether AI is associated with a difference in forward 
citations, it is natural to distinguish between AI and non-AI in the groups 
of climate patents described in Fig. 1. An initial exploration revealed 
two aspects about the target variable, shown in Fig. 2. First, the average 
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forward citation count for climate AI inventions is greater than for 
climate non-AI inventions. Second, zooming in on the highly cited 
breakthroughs (the highest counts in Fig. 2), a large majority of the 
most highly cited breakthroughs appear to be non-AI inventions. In 
other words, AI patents are related to more subsequent inventions on 
average but seemingly fewer highly cited breakthroughs. However, 
this does not address the fact that AI has a much smaller share of the 
total patents. This suggests estimating the predictive difference of 
AI on the average forward citation counts by including controls and 
testing for differences in breakthroughs after adjusting for the group 
size. However, carbon capture/storage and waste technology patents 
were left out, as the number of AI patents is too small for reasonable 
statistical analysis.

To estimate the predictive difference of AI on patent forward cita-
tion counts, I used count regression modelling of the forward citations 
on a three-year horizon, limited to patents granted in the previous dec-
ade (a three-year horizon, so patents from 2010 to 2017). I controlled 
for the difference in year, technological areas that patents are from and 

other factors in line with previous work on modelling forward citations 
for patents29 (for details, see the Methods and Supplementary Informa-
tion). To use control groups for wider context, I repeated the regression 
modelling for the climate invention areas and control groups given 
by similar technological domains (based on CPC classifications). The 
control groups have related technological functions but broader than 
climate inventions: buildings, electricity, smart grids and transport 
technologies in general, not restricted to climate relevance.

For the climate patents as well as the control groups, AI seems asso-
ciated with more subsequent inventions even after controlling for other 
factors (Fig. 3). In groups of climate inventions, AI was associated with 
a 30–100% increase in forward citations, with predictive differences 
being statistically significant. Among the technologies with climate 
inventions, buildings and energy-efficient ICT showed the greatest 
increases related to AI, with adaptation and energy technologies on 
average showing a weaker difference. For the control groups, the rank-
ing and effect sizes are similar to the groups with climate inventions: 
the coefficients in Fig. 3 are in a similar range as those found for related 
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technologies such as electricity, transport and building technologies 
in general. An analysis for other control groups less related to climate 
inventions showed that differences between AI and climate inventions 
can be stronger or weaker than in other technological domains (Sup-
plementary Information).

So far the results show that AI inventions in climate patents were on 
average cited more from the group of all subsequent patents. However, 
this does not show us in which technological domains these subse-
quent inventions emerge. The idea that inventions can benefit some 
technologies by supporting subsequent inventions in certain techno-
logical areas more than in others can be framed in terms of knowledge 
spillovers50,52,53. In this case, one can examine whether AI patents get 
cited from technology domains that are either climate inventions or 
not. I examined whether AI and non-AI patents get cited to any different 
degree by climate patents as follows. For cited patents, I distinguished 
whether these are AI or non-AI climate innovations. For citing patents 
(the spillovers), I distinguished between climate and non-climate inven-
tions. Aggregate patent citation count networks between technology 
domains are known to depend on several factors, such as technology 
domain size and average age54. Recent work53,54 has shown that it is 
possible to control for domain size and average patent age and to test 
whether differences would arise just because of random patent cita-
tions with a null model based on the hypergeometric distribution.53

The results show that AI in climate patents is associated with a 
smaller share of spillovers to climate inventions than spillovers from 
other non-AI technologies (Fig. 4a). Within patents in general, it would 
be reasonable to expect AI spillovers to primarily be related to AI tech-
nologies rather than climate inventions (Fig. 4b). However, within 
climate patents, a larger share of spillovers than non-AI technolo-
gies are non-climate, suggesting that knowledge from the climate AI 
patents was more useful in other areas. Similar results hold when 

disaggregating patents into groups of climate adaptation and miti-
gation (Fig. 5). Taken together with the results above, this suggests a 
double association for AI in climate inventions: AI has been related to 
increased activity in subsequent inventions but also a smaller share of 
spillovers to climate patents than from non-AI technologies. Citation 
counts cannot be expected to always reflect the actual usefulness of 
individual technologies in practice, and citations are one of several 
ways to track the overall importance of new technologies. Therefore, 
tracking AI in climate patents will require distinguishing between the 
direct impact from more subsequent inventions and how knowledge 
spillovers are distributed between areas to improve our knowledge 
about the net effects of AI inventions.

Finally, I examined whether AI has any relation to highly cited 
patents, also termed as breakthroughs. An association between AI 
and highly cited breakthroughs would indicate where applications of 
AI have been more interesting or particularly valuable. Figure 2 shows 
fewer highly cited AI breakthroughs in total, possibly because of the 
smaller number of AI patents overall. I considered in each group of 
climate inventions the 1% patents per year with the most forward cita-
tions in the three years following publication. I then took the cumulative 
experience of AI inventions as the total count of AI patents in the area to 
compare technological domains of different sizes and the accumulated 
experience of patenting with AI.

Most groups of climate mitigation technologies have been asso-
ciated with similar AI breakthrough shares (defined as the number of 
AI-related breakthroughs per AI invention in that technology) as other 
technologies (Fig. 6). For adaptation technologies, AI breakthroughs 
were initially higher compared with other technologies; among miti-
gation technologies, transport is clearly leading in shares. A quantile 
test (Methods and Supplementary Information) also suggests that 
the share of AI breakthroughs has been higher in climate adaptation 
and transport technologies. Estimates for the other groups are more 
uncertain: wide confidence intervals (Supplementary Information) 
suggest that the current evidence is too weak to strongly rule one way 
or the other about AI breakthroughs in most areas of climate mitiga-
tion, besides transport patents and in contrast to climate adaptation 
technologies. For most groups of climate mitigation technologies, the 
uncertainty means that the jury is still out with respect to the role of 
AI in breakthroughs.

Taken together, the results show that AI in climate patents is associ-
ated with more subsequent patents but also a larger share of knowledge 
spillovers to non-climate technical domains than non-AI technologies. 
This suggests that the analysis of AI in climate inventions should also 
consider the impact on other technological fields that may benefit 
more from these inventions than from non-AI climate inventions. AI 
has been associated with a higher share of breakthroughs in climate 
adaptation and transportation patents than in other groups of tech-
nologies with a potential for climate mitigation. These results are for 
one country, but the approach can be used to study other countries and 
regions. Caution is also needed to avoid unjustified generalization to 
inventions and innovations beyond those covered by patents and being 
aware that the criteria for patentability can vary between countries.

New inventions and technological breakthroughs may meaning-
fully contribute to addressing climate change. More capabilities are 
necessary to track the emerging technologies for which both risks 
and promises exists but where the use of large-scale data is still scarce. 
Using patent data, we can better track AI in technologies to adapt and 
mitigate climate change.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41558-022-01536-w.
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Methods
The raw data are the texts of over six million US patents from 1976 to 
2019, from which most covariates were extracted and computed for 
the regression model. The conclusions crucially depend on patent 
classifications: patents were labelled as climate inventions (climate 
mitigation or adaptation technologies) if they were classified with 
a CPC code of Y02, and the WIPO method was applied to the patent 
classification codes and raw texts to classify patents as AI. I used cur-
rent and multiple CPC classifications per patent (where possible). 
Classifications were further disaggregated with one or more labels 
according to what part of climate change they relate to (the CPC Y02 
subclasses, described in the Supplementary Information). The analysis 
also included classifications of patented technologies according to 
their wider functions43.

For a statistical analysis with regression modelling, the follow-
ing restrictions were made by pre-processing the data. First, CPC 
subgroups so small that they lack patents in at least one of the years 
between 2010 and 2017 were removed (this is around 1% of subgroups, 
representing technology areas with very little patenting activity). 
Second, patent citation data between 2010 and 2020 was used to con-
sider the most recent period that represents a rise in AI patenting out 
of which a majority emerged in the past decade. Finally, it should also 
be noted that the same (specified below) regression model was fit to 
the separate groups of technologies when I estimated and compared 
the predictive difference of AI between technologies. This allows the 
influence of the different parameters to vary across different technolo-
gies, as expected.

An investigation showed that the target count variable of for-
ward citations is zero-inflated, heavy-tailed and related to grouping 
by different technologies. The Poisson model served as a natural 
starting point for count data, but a direct comparison of the mean 
and variance showed that the target variable is overdispersed. To 
adjust for this, I also fit negative binomial models. Here an additional 
size parameter controls the degree of overdispersion compared 
with a Poisson distribution, and a test showed it to be statistically 
significant. Despite this, an analysis of the residuals for model fits 
indicated a lack of fit as well as a grouping in the data. I therefore 
used a generalized inverse Gaussian distribution (a Sichel distri-
bution), as this has been used to model highly dispersed count 
data57,58 in other domains. To fit the model and adjust for grouping,  
the GAMLSS methodology59 was used. Here an analysis with the 
randomized quantile residuals58,60 indicated a good fit of the model 
to the data (for the details and model diagnostics see the Supple-
mentary Information).

The covariates include indicator variables as controls for patents 
being AI inventions, whether organizations are found in the list of pat-
ent applicants and whether patents have been classified as chosen CPC 
group/subgroup codes. Furthermore, I controlled for grant year, the 
number of patent claims, the number of inventors and three variables 
for the number of citations to other publications: to other patents, to 
research literature61 and to other literature. Finally, I included a tech-
nology cycle time62 (TCT, the median age of cited patents) as a factor. 
An exploration of the data (Supplementary Information) suggests that 
the relationship between TCT and the target variable is nonlinear and 
varies between groups of technologies.

The regression model for the number of forward citations y on a 
3-year horizon is specified as:

log E[yi] = β0 + aii × β1 +  organizationali × β2 + claims_logi × β3 + indi-
vidual_inventors_logi × β4 + patent_citations_logi × β5 + research_
citations_logi × β6 + other_citations_logi × β7 + ∑jgrantyeari,j × βj  
+ ∑ktct_typei,k × βk + ∑l,mtct_typei,l × grantyeari,m × βl,m + ∑ncpc_
classificationi,n × βnwhere the log transformation of the target captures 
the idea that the linear model describes a non-negative count vari-
able. For further details about the covariates, see the Supplementary 
Information.

To compare shares of highly cited breakthroughs, I tested whether 
there is a difference for the climate invention areas. For this, a quantile 
comparison across two groups was made, adjusted for their sizes by res-
ampling them using percentile bootstrap63,64, to compute confidence 
intervals for the difference between the two groups. If one distribution 
has a greater quantile than the other, it indicates that inventions from 
this distribution more often lead to breakthroughs. The null hypoth-
esis was taken to be H0: ϕq1 = ϕq2 for a specific quantile, where ϕq1 and 
ϕq2 are taken to represent the 99th percentile. By resampling the two 
distributions and examining the results under the null hypothesis65, I 
estimated whether there is a difference ϕq1 − ϕq2 for the 1% most cited 
patents (Supplementary Information).

Data availability
The datasets generated and/or analysed during the current study are 
available on Figshare at https://doi.org/10.6084/m9.figshare.21130173.
v1 (ref. 66).

Code availability
The program scripts (in R and Python) used for the statistical data 
analysis are available in a GitHub/Zenodo repository under a Creative 
Commons Zero v.1.0 Universal license67.
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