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We analyze the qualitative properties and the order of convergence of a splitting scheme 
for a class of nonlinear stochastic Schrödinger equations driven by additive noise. The class 
of nonlinearities of interest includes nonlocal interaction cubic nonlinearities. We show 
that the numerical solution is symplectic and preserves the expected mass for all times 
(trace formula). On top of that, for the convergence analysis, some exponential moment 
bounds for the exact and numerical solutions are proved. This enables us to provide 
strong orders of convergence as well as orders of convergence in probability and almost 
surely. Finally, extensive numerical experiments illustrate the performance of the proposed 
numerical scheme.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of IMACS. This is an open 
access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Deterministic Schrödinger equations are widely used within physics, plasma physics or nonlinear optics, see for instance 
[2,24,64,79]. In certain physical situations it may be appropriate to incorporate some randomness into the model. One 
possibility is to add a driving random force and obtain a stochastic partial differential equation (SPDE) of the form

i
∂u

∂t
(x, t) = �u(x, t) + F (x, u) + ξ(x, t),

considered for x ∈Td , the d-dimensional torus, with periodic boundary conditions. The nonlinearity F and the white noise 
ξ are described in details below. See Equation (1) for the formulation of this problem as a stochastic evolution equation. 
The stochastic nonlinear Schrödinger equations are used as nonlocal models of wave propagation in several physical ap-
plications, see for example [44–46,48–50,65] and references therein for further details and applications. The nonlinearities 
we shall consider encompass for instance the cases of an external potential F (x, u) = V (x)u and of a nonlocal interaction 
cubic nonlinearity F (x, u) = (V � |u|2)u. The latter nonlocal interaction function is defined using the convolution of a suffi-
ciently regular interaction kernel V with the density function |u|2. The stochastic models that we consider have a structure 
similar to those of the deterministic Schrödinger–Poisson equations or Hartree equations, which are simplified models for 
fundamental equations in quantum transport where nonlocal interaction terms appear, see for instance [24,64] and refer-
ences therein. Such nonlinearities are also used in modeling deterministic problems arising in quantum physics, chemistry, 
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materials sciences, and biology, see for instance [7,14]. Nonlocal interaction terms for deterministic models can be obtained 
by mean-field limits starting from many body systems, see for instance [9,56]. We are not aware of similar derivation for 
stochastic models. Regarding the numerical treatment of nonlocal interaction terms for Schrödinger equations with white 
noise dispersion, we refer to the recent article [19].

It is worth mentioning that the error analysis below requires stringent regularity assumptions on the interaction ker-
nel V . These conditions are not satisfied, for instance, for the Schrödinger–Poisson case (where F (x, u) = ±( 1

4π |x| � |u|2)u), 
for the cubic case (where F (x, u) = ±|u|2u) or the more general power-law case (where F (x, u) = ±|u|2σ u with σ > 0). 
Note that some of the techniques presented below may be used to study numerical schemes for such nonlinearities. This is 
left for possible future works.

Let us now review the literature on temporal discretizations of stochastic Schrödinger equations, first for equations driven 
by an Itô noise. In [49], a Crank–Nicolson scheme is studied for the stochastic Schrödinger equation with regular coefficients. 
First order of strong convergence, resp. rate one half is obtained in the case of additive noise, resp. multiplicative Itô noise. 
In addition, convergence in probability as well as almost-surely are studied for the case of a power-law nonlinearity. Finally, 
in the case of smooth and bounded nonlinearity, weak order one is proved in [49]. Observe that the numerical scheme 
from [49] is implicit. The references [10,51] present thorough numerical simulations and numerically study the effect of 
noise in the stochastic Schrödinger equation with a power-law nonlinearity. The work [57] provides a strong convergence 
analysis of a splitting strategy to the variational solution of a stochastic Schrödinger equation with regular coefficients. The 
recent article [5] proves strong convergence of an exponential integrator for stochastic Schrödinger equations with regular 
coefficients. In addition, longtime behaviors of the numerical solutions of a linear model are investigated. The paper [60]
provides a convergence rate of the weak error under noise discretizations of some Schrödinger equations. The work [61]
shows convergence in probability of a stochastic (implicit) symplectic scheme for stochastic nonlinear Schrödinger equations 
with quadratic potential and an additive noise. The article [29] proves weak error estimates for a spatial as well as temporal 
numerical approximation of the stochastic cubic Schrödinger equation with damping and trace-class noise. The recent work 
[40] proves strong rate 1/2 as well as weak rate 1 of a splitting scheme when applied to a damped stochastic cubic 
Schrödinger equation with linear multiplicative trace-class noise and large enough damping term. The very recent preprint 
[39] provides several convergence results for a structure-preserving splitting strategy when applied to nonlinear stochastic 
Schrödinger equations with damping term and multiplicative noise. There is a vast literature on the numerical analysis of 
stochastic nonlinear Schrödinger equations with Stratonovich noise and power-law nonlinearities. Without being exhaustive, 
we mention the work [47] which proves convergence in probability of the Crank–Nicolson scheme applied to such equations 
with a spatially correlated noise. The work [68] provides first order of convergence in probability and in the almost-sure 
sense for a splitting scheme applied to the cubic case. The article [28] shows strong order one of convergence in the local 
sense of the θ -scheme when applied to the stochastic cubic Schrödinger equation with a trace-class noise. Strong rate of 
convergence one for a finite difference approximation of the stochastic cubic Schrödinger equation with a colored noise 
is shown in [41]. The recent article [42] shows optimal strong order of convergence of a splitting Crank–Nicolson scheme 
when applied to the spectral Galerkin spatial discretization of the stochastic cubic Schrödinger equation with trace-class 
noise.

In the present work, we shall analyze a splitting strategy for an efficient time integration of a class of nonlinear stochastic 
Schrödinger equations, see Equation (1). In a nutshell, the main idea of splitting integrators is to decompose the vector 
field of the original evolution equation in several parts, such that the arising subsystems are exactly (or easily) integrated. 
We refer interested readers to [15,58,74] for details on splitting schemes for ordinary and partial differential equations. 
Splitting schemes are also very popular and efficient numerical integrators for stochastic differential equations: we refer 
the interested reader to the articles [1,3,18,22,25,32,66,77], the list of references is not exhaustive. For stochastic partial 
differential equations, splitting schemes have been studied for instance in the following works [8,11,12,19–21,23,38,42,52,
57,69,72,73,78]. The splitting scheme considered in this publication is given by equation (8).

Despite the fact that splitting schemes are widely used for an efficient time integration of deterministic Schrödinger-type 
equations, see for instance [6,13,16,53,55,68,71], we are not aware of a numerical analysis of such integrators approximating 
mild solutions of nonlinear stochastic Schrödinger equations driven by an additive noise. In the present work, we intend to 
fill this gap for a class of nonlinear SPDEs and the main results of this paper are the following:

• bounds for the exponential moments of the mass of the exact and numerical solutions (Theorem 11);
• a kind of longtime stability, namely a so-called trace formula for the mass, of the exact and numerical solutions (Propo-

sition 6);
• preservation of symplecticity for the exact and numerical solutions (Proposition 9);
• strong convergence estimates (with order) of the splitting scheme (Theorem 15), as well as orders of convergence in 

probability and almost surely (Corollary 17).

Observe that, since the nonlinearity in the class of stochastic Schrödinger equation considered here may not be globally 
Lipschitz, we employ the exponential moments estimates mentioned above to obtain strong rates of convergence, see Propo-
sitions 13 and 14. In these propositions, we consider moments of the error multiplied by an exponential discounting factor, 
and obtain the expected rate of convergence for this quantity. This technique is similar to the approach in [63]. Combining 
those estimates with the above exponential moment bounds (Theorem 11) to remove the exponential discounting factor, we 
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can then obtain Theorem 15. Note finally, that the choice of a splitting strategy is crucial in obtaining exponential moment 
bounds for the numerical solution.

Let us mention that in Corollary 17 one obtains orders of convergence 1
2 and 1 in the sense of convergence in probability 

and almost sure convergence (depending on a regularity parameter) which are expected to be optimal, whereas in Theo-
rem 15 the orders of convergence in the strong sense may not be optimal. This is due to the exponential moment bounds 
used in the proofs.

We begin the exposition by introducing some notations, present our main assumptions and provide several moment 
bound estimates for the exact solution to the considered SPDE. We then present the splitting scheme and study some 
geometric properties of the exact and numerical solutions in Section 3. The main results of this publication are presented 
in Section 4. In particular, exponential moments in the L2 norm of the exact and numerical solutions are given, as well as 
several convergence results. More involved and technical proofs of results needed for convergence estimates are provided in 
Section 5. Various numerical experiments illustrating the main properties of the splitting scheme when applied to stochastic 
Schrödinger equations driven by Itô noise are given in Section 6. The paper ends with an appendix containing proofs of 
auxiliary results.

We use C to denote a generic constant, independent of the time-step size of the numerical scheme, which may differ 
from one place to another.

2. Setting

In this work, we consider the following class of stochastic nonlinear Schrödinger equations

i du(t) = �u(t)dt + F (u(t))dt + αdW Q (t),

u(0) = u0,
(1)

where the unknown 
(
u(t)

)
t≥0 is a stochastic process with values in the Hilbert space L2 = L2(Td) of square integrable 

complex-valued functions defined on the d-dimensional torus Td . Details concerning the regularity and growth properties 
of the nonlinearity F and the covariance operator Q are provided below. In addition, α > 0 is a real parameter measuring 
the size of the noise W Q . The initial condition u0 ∈ L2 is deterministic, however the results below can be adapted to 
random initial conditions, satisfying appropriate integrability conditions, using a standard conditioning argument. The space 
L2 is equipped with the norm ‖·‖L2 , where for all u, v ∈ L2,

‖u‖2
L2 = 〈u, u〉, 〈u, v〉 =

∫
Td

ū(x)v(x)dx.

The Sobolev spaces H1 = H1(Td) and H2 = H2(Td) are Hilbert spaces, and the associated norms are denoted by ‖·‖H1 and 
‖·‖H2 . The notation H0 = L2 will also be used below. For σ ∈ {0, 1, 2}, let also ‖·‖Cσ denote the norm in the Banach space 
Cσ = Cσ (Td) of functions of class Cσ defined in Td .

Solutions of (1) are understood in the mild sense:

u(t) = S(t)u0 − i

t∫
0

S(t − s)F (u(s))ds − iα

t∫
0

S(t − s)dW Q (s), (2)

where S(t) = e−it� . Let us state the following result (see e.g. [70, Lemma 3.1] and [49, Appendix A.1]).

Lemma 1. The linear operator −i� generates a group 
(

S(t)
)

t∈R of isometries of L2, such that for all σ ∈ {0, 1, 2}, all u ∈ Hσ , and all 
t ≥ 0, one has

‖S(t)u‖Hσ = ‖u‖Hσ .

In addition, for σ ∈ {1, 2}, there exists Cσ ∈ (0, ∞) such that for all u ∈ Hσ and all t ≥ 0,

∥∥(S(t) − I
)
u
∥∥

L2 ≤ Cσ t
σ
2 ‖u‖Hσ .

The Wiener process W Q , with covariance operator Q , in the SPDE (1) is defined by

W Q (t) =
∑

γkβk(t)ek,
k∈N
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where 
(
ek
)

k∈N is a complete orthonormal system of L2, 
(
βk
)

k∈N is a sequence of independent real-valued standard Wiener 
processes on a stochastic basis (�, F , P , (F(t))t≥0), and 

(
γk
)

k∈N is a sequence of complex numbers such that 
∑
k∈N

|γk|2 <

∞. The linear operators Q and Q
1
2 are defined by Q ek = γ 2

k ek and Q
1
2 ek = γkek , for all k ∈N .

For a linear operator 
 from Hσ to Hσ , and any complete orthonormal system (εk)k∈N of Hσ , we define

‖
‖2
Lσ

2
=
∑
k∈N

‖
εk‖2
Hσ .

This definition is independent of the choice of the orthonormal system.

With this notation, 
∥∥∥Q

1
2

∥∥∥2

Lσ
2

=
∑
k∈N

|γk|2 ‖ek‖2
Hσ (whenever the sum is finite).

We now set the assumptions on the spatial Sobolev regularity of the noise as well as on the nonlinearity in the stochastic 
Schrödinger equation (1) required to prove well-posedness for the SPDE (1), to prove H1-regularity of the solution, and to 
show strong convergence of order 1/2 of the proposed splitting integrator in Section 4.

Assumption 1. One has∥∥∥Q
1
2

∥∥∥2

L1
2

=
∑
k∈N

|γk|2 ‖ek‖2
H1 < ∞.

The nonlinearity F satisfies F (u) = V [u]u for all u ∈ L2, where V : u ∈ L2 
→ V [u] ∈R is a real-valued mapping. Furthermore, 
it is assumed that V [u1] = V [u2] if |u1| = |u2| (i.e. the potential V is a function of the modulus).

In addition to the above, assume that the mapping F is locally Lipschitz continuous with at most cubic growth: there 
exists C F ∈ (0, ∞) and K F ∈ (0, ∞) such that for all u1, u2 ∈ L2, one has

‖F (u2) − F (u1)‖L2 ≤
(

C F + K F (‖u1‖2
L2 + ‖u2‖2

L2)
)

‖u2 − u1‖L2 . (3)

Finally, there exists C1 ∈ (0, ∞) and a polynomial mapping P1, such that for all u ∈ H1, one has

‖F (u)‖H1 ≤ C1 ‖u‖H1

(
1 + ‖u‖2

L2

)
|Im(〈∇u,∇ F (u)〉)| ≤ C1 ‖∇u‖2

L2 + P1

(
‖u‖2

L2

)
.

(4)

In the above and in the sequel, ∇u denotes the gradient of the mapping u.
Note that assuming that V [u] is real-valued for all u ∈ L2 implies that one has the equality Im(〈u, F (u)〉) = 0.
The value of the real number K F appearing in the right-hand side of (3) plays a crucial role in the convergence analysis 

below.
Let us recall the definition of the stochastic integral in the mild form (2) and the associated Itô isometry prop-

erty. If for all t ≥ 0, 
(t) is a linear operator from Hσ to Hσ , the stochastic integral 
T∫

0


(t) dW Q (t) is understood as 

∑
k∈N

γk

T∫
0


(t)ek dβk(t), and the Itô isometry formula is given by

E

⎡
⎢⎣
∥∥∥∥∥∥

T∫
0


(t)dW Q (t)

∥∥∥∥∥∥
2

Hσ

⎤
⎥⎦=

∑
k∈N

T∫
0

|γk|2 ‖
(t)ek‖2
Hσ dt =

T∫
0

∥∥∥
(t)Q
1
2

∥∥∥2

Lσ
2

dt.

Under Assumption 1, the stochastic convolution −i 
t∫

0

S(t − s) dW Q (s) is thus well-defined and takes values in H1. It solves 

the linear stochastic Schrödinger equation driven by additive noise

i du(t) = �u(t)dt + dW Q (t), u(0) = 0.

Most of the analysis can be performed when Assumption 1 is satisfied, in particular we will prove below that (1) admits 
a unique global solution, and that the splitting scheme has a convergence order 1/2. To get convergence order 1 of the 
proposed splitting integrator for the semilinear problem (1), we need further assumptions.
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Assumption 2. On top of Assumption (1), let us assume that one has∥∥∥Q
1
2

∥∥∥2

L2
2

=
∑
k∈N

|γk|2 ‖ek‖2
H2 < ∞.

Furthermore, let us assume that the nonlinearity F is twice differentiable, and there exists C ∈ (0, ∞) such that for all 
u, h, k ∈ L2, one has∥∥F ′(u).h

∥∥
L2 ≤ C(1 + ‖u‖2

L2)‖h‖L2∥∥F ′′(u).(h,k)
∥∥

L2 ≤ C(1 + ‖u‖L2)‖h‖L2 ‖k‖L2 .
(5)

Finally, let us assume that there exists C2 ∈ (0, ∞) and a polynomial mapping P2, such that for all u ∈ H2, one has

‖F (u)‖H2 ≤ Cσ ‖u‖H2

(
1 + ‖u‖2

L2

)
|Im(〈∇2u,∇2 F (u)〉)| ≤ C2

∥∥∥∇2u
∥∥∥2

L2
+ P2

(
‖u‖2

L2 ,‖∇u‖2
L2

)
.

(6)

In the above and in the sequel, ∇2u, resp. ∇2 F (u) = ∇2 (F (u)), denotes the Hessian matrix of the mapping u, resp. of 
the mapping F (u).

Next, we verify that the two examples of nonlinearities seen in the introduction, namely F (u) = V u and F (u) =(
V � |u|2)u, verify these conditions. First, the conditions in Assumption 1 or 2 are satisfied in the case of a linear map-

ping F (u) = V u, where the external potential function V : Td →R is a real-valued mapping of class Cσ , with σ = 1 (resp. 
σ = 2) to satisfy Assumption 1 (resp. Assumption 2). In that case, the mapping F is globally Lipschitz continuous, and (3)
holds with C F = ‖V ‖C0 and K F = 0. Second, the conditions in Assumption 1 or 2 also hold for the following class of nonlocal 
interaction cubic nonlinearities. Note that K F �= 0 in this case.

Proposition 2. Let σ ∈ {1, 2} and let V :Td →R be a real-valued mapping of class Cσ . For every u ∈ L2 , set

V [u] = V � |u|2 =
∫

V (· − x)|u(x)|2 dx,

where � denotes the convolution operator.
Then Assumption 1 (resp. Assumption 2) is satisfied for the nonlinearity F (u) = V [u]u = (V � |u|2)u when σ = 1 (resp. when 

σ = 2).

Proof. Observe that for any u ∈ L2, the mapping V [u] is of class Cσ , with ∇σ V [u] = ∇σ V � |u|2 for σ = 1, 2. It thus follows 
that ‖V [u]‖Cσ ≤ ‖V ‖Cσ ‖u‖2

L2 for all u ∈ L2.

First, assume that σ = 1. Let us check that (3) holds. Let u1, u2 ∈ L2, then one has

‖F (u2) − F (u1)‖L2 ≤ ‖V [u2](u2 − u1)‖L2 + ‖(V [u2] − V [u1])u1‖L2

≤ ‖V [u2]‖C0 ‖u2 − u1‖L2 + ‖V [u2] − V [u1]‖C0 ‖u1‖L2

≤ ‖V ‖C0

(
‖u2‖2

L2 + ‖u1 + u2‖L2 ‖u1‖L2

)
‖u2 − u1‖L2

≤ 3

2
‖V ‖C0

(
‖u1‖2

L2 + ‖u2‖2
L2

)
‖u2 − u1‖L2 .

Thus (3) holds with C F = 0 and K F = 3
2 ‖V ‖C0 . The conditions in (4) follow from straightforward computations.

Second, assume that σ = 2. The conditions in (5) follow from writing, for all u, h, k ∈ L2,

F ′(u).h = V [u]h + 2
(

V � Re(ūh)
)
u

F ′′(u).(h,k) = 2
(

V � Re(ūh)
)
k + 2

(
V � Re(k̄u)

)
h + 2

(
V � Re(h̄k)

)
u.

The conditions in (6) follow from straightforward computations.
This concludes the proof of Proposition 2. �
Note that the conditions in Assumption 1 or 2 are not satisfied in the standard cubic nonlinear Schrödinger case, where 

V [u] = ±|u|2, or for other (non-trivial) power-law nonlinearities, or for the logarithmic nonlinearity considered in the recent 
preprint [43], or for the stochastic Schrödinger–Poisson equation with a non-smooth potential V .
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Remark 3. The result of Proposition 2 remains valid if the domain Td is replaced by an arbitrary smooth bounded domain, 
and if homogeneous Dirichlet boundary conditions are imposed, instead of periodic boundary conditions, under appropriate 
assumptions on the potential V .

To conclude this section, let us state a well-posedness result for the stochastic Schrödinger equation (1) in terms of mild 
solutions (2), and several moment bound estimates. Note that additional bounds for the exponential moments in L2 of the 
exact solution are given in Section 4.

Proposition 4. Let Assumption 1 be satisfied.
For any initial condition u0 ∈ L2 , there exists a unique mild solution 

(
u(t)

)
t≥0 of the stochastic Schrödinger equation (1), which 

satisfies (2) for all t ≥ 0. In addition, for every T ∈ (0, ∞), σ ∈ {0, 1, 2}, u0 ∈ Hσ , and p ∈ [1, ∞), there exists C p(T , α, Q , u0) ∈
(0, ∞) such that one has a moment bound in Hσ

sup
0≤t≤T

E[‖u(t)‖2p
Hσ ] ≤ C p(T ,α, Q , u0),

with σ = 1, resp. σ = 2, when Assumption 1, resp. Assumption 2, is satisfied.
Finally one has the following temporal regularity estimate: for all t1, t2 ∈ [0, T ],

E
[
‖u(t2) − u(t1)‖2p

L2

]
≤ C p(T ,α, Q , u0)|t2 − t1|p .

The proof uses standard arguments and is postponed to the appendix.

3. Splitting scheme

In this section we define a splitting integrator for the stochastic Schrödinger equation (1) and show some geometric 
properties of this time integrator. The main idea of splitting schemes is to decompose the original problem, equation (1) in 
our case, into subsystems that can be solved exactly (or efficiently numerically). Splitting schemes are widely used for time 
discretization of deterministic cubic Schrödinger equations, see, e.g. the key early reference [59].

The definition of the splitting scheme studied in this article relies on the flow associated with the differential equation 
iu̇ = F (u) = V [u]u. For all u ∈ L2 and t ∈R, define

�t(u) = e−itV [u]u. (7)

Since V [u] is real-valued by Assumption 1, one has |�t(u)| = |u| for all t ≥ 0, which gives V [�t(u)] = V [u] using Assump-
tion 1 or 2. It is then straightforward to check that 

(
�t
)

t∈R is the flow associated with the differential equation iu̇ = F (u). 
Indeed, for all u ∈ L2 and all t ∈R, one has

i
d

dt
�t(u) = V [u]�t(u) = F (�t(u)) .

Observe that the flow of the above ODE preserves the L2-norm: one has ‖�t(u)‖L2 = ‖u‖L2 for all t ≥ 0 and all u ∈ L2.
The splitting scheme for the stochastic Schrödinger equation (1) considered in this article is then defined by the explicit 

recursion

un+1 = S(τ )
(
�τ (un) − iαδW Q

n

)
, (8)

where τ denotes the time-step size, and δW Q
n = W Q ((n + 1)τ ) − W Q (nτ ) are Wiener increments. Recall that S(τ ) = e−iτ�

is defined after equation (2). Without loss of generality, it is assumed that τ ∈ (0, 1). The scheme is obtained using a 
splitting strategy: at each time step, first one may write ũn = �τ (un), i.e. the equation iu̇ = F (u) with initial condition un

is solved exactly, second one has un+1 = S(τ )ũn − iαS(τ )δW Q
n , which comes from applying an exponential Euler scheme to 

the stochastic differential equation idu = �u dt + αdW Q (t). Observe that bounds for the exponential moments in L2 of the 
numerical solution are given in Section 4.

Remark 5. Alternatively, solving exactly the stochastic differential equation idu = �u dt + αdW Q (t) yields the following 
numerical scheme for the SPDE (1)

un+1 = S(τ )�τ (u) − iα

(n+1)τ∫
nτ

S((n + 1)τ − t)dW Q (t). (9)

Generalizing the results obtained below to this numerical scheme is straightforward and thus omitted in the sequel.
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The error analysis for the splitting scheme (8) presented in the next section will make use of the following additional 
assumption.

Assumption 3. There exists C ∈ (0, ∞) such that for all t ∈ [0, 1] and u ∈ L2 one has

‖�t(u) − u‖L2 ≤ C |t|
(

1 + ‖u‖3
L2

)
.

Note that Assumption 3 is satisfied for the two examples of nonlinearities described in Section 2. Indeed, one obtains 
‖�t(u) − u‖L2 ≤ t ‖V [u]‖C0 ‖u‖L2 . For the case of an external potential (V [u] = V ), one has ‖V [u]‖C0 = ‖V ‖C0 . For the case 
of a nonlocal interaction (V [u] = V � |u|2), one has ‖V [u]‖C0 ≤ ‖V ‖C0 ‖u‖2

L2 .
We now present some geometric properties of the splitting scheme (8).

3.1. Trace formula for the mass

It is well known that, under periodic boundary conditions for instance, the mass, or L2-norm or density

M(u) := ‖u‖2
L2 =

∫
|u|2 dx

of the deterministic Schrödinger equation i ∂u
∂t − �u − V [u]u = 0, where V [u] = V (external potential) or V [u] = V � |u|2

(nonlocal interaction) or V [u] = |u|2 (cubic nonlinearity), is a conserved quantity. In the stochastic case under consideration, 
one immediately gets a trace formula for the mass of the exact solution of equation (1) as well as for the numerical solution 
given by the splitting scheme (8).

Proposition 6. Consider the stochastic Schrödinger equation (1) with a trace class covariance operator Q and an initial value satisfying 
E[M(u0)] < ∞. We assume that the nonlinearity in (1) is such that F (u) = V [u]u, where V [u] is real-valued and a function of 
the modulus |u|. Furthermore, we assume that an exact global solution exists. Finally, we assume1 that the differential equation, 
iu̇ = F (u) = V [u]u, in the splitting scheme can be solved exactly.

Then, the exact solution (2) satisfies a trace formula for the mass:

E [M(u(t))] =E
[
‖u(t)‖2

L2

]
= E [M(u0)] + tα2Tr(Q ) for all times t.

Furthermore, the numerical solution given by the splitting scheme (8) to the nonlinear stochastic Schrödinger equation (1) satisfies the 
exact same trace formula for the mass:

E [M(un)] = E [M(u0)] + tnα
2Tr(Q ) for all times tn = nτ .

Observe that the above result for the exact solution is already available in the literature in different settings, for instance 
in [5,46]. However, to the best of our knowledge, the result for the numerical solution is one of the first results in the 
literature on a longtime qualitative behavior of explicit numerical solutions to nonlinear SPDEs driven by Itô noise. Such a 
longtime behavior is not satisfied for classical time integrators like the (semi-implicit) Euler–Maruyama schemes, see the 
numerical experiments in Section 6. Trace formulas for numerical schemes applied to stochastic linear Schrödinger, wave, 
and Maxwell equations driven by additive noise have been obtained in [5,34,36]. For implicit schemes applied to nonlinear 
stochastic wave equations, we refer to [62].

Proof. A formal application of Itô’s formula to the mass M(u(t)) gives

M(u(t)) = M(u(0)) +
t∫

0

〈M ′(u(s)), −iαdW (s)〉

+
t∫

0

〈M ′(u(s)),−i�u(s) − iV [u]u(s)〉ds

+
t∫

0

1

2
α2Tr

[
M ′′(u(s))

(
Q 1/2

)(
Q 1/2

)∗]
ds.

(10)

1 This is the case for instance when one considers an external potential, a nonlocal interaction, a cubic or power-law nonlinearity.
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The computation can be justified by truncation and finite-dimensional approximation arguments, see for instance [46, Proof 
of Proposition 3.2].

An integration by parts and the hypothesis on the potential V show that the third term on the right-hand side is zero. 
Taking expectation now gives

E [M(u(t))] =E [M(u(0))] + tα2Tr(Q )

which concludes the proof of the trace formula for the mass of the exact solution.
We next show that the above trace formula is also satisfied for the numerical solution given by the splitting integrator 

(8). Using the definition of the numerical scheme (8), properties of the Wiener increments δW Q
n , as well as the isometry 

property of S(τ ), one gets

E [M(un+1)] = E
[
‖S(τ )�τ (un)‖2

L2

]
+ α2E

[∥∥∥δW Q
n

∥∥∥2

L2

]

= E
[
‖�τ (un)‖2

L2

]
+ τα2Tr(Q ).

The isometry property of the flow �τ yields

E [M(un+1)] = E [M(un)] + τα2Tr(Q )

and a recursion completes the proof of the proposition. �
Remark 7. The same trace formula for the mass holds for the numerical solution given by the time integrator (9). Indeed, 
using the definition of the numerical scheme (9), Itô’s isometry, as well as the isometry property of the operator S(τ ) and 
of the flow �τ , one also gets

E [M(un+1)] = E
[
‖�τ (un)‖2

L2

]
+ τα2Tr(Q ) = E [M(un)] + τα2Tr(Q ).

Remark 8. It may also be possible to study the longtime behavior of the exact and numerical solutions along the expected 
value of the Hamiltonian of (1) with α �= 0. However, in general, the drift in the expected Hamiltonian will depend on the 
solution u, see for example [51, Equation (11)] for the cubic case. In particular, the evolution of this quantity will not be 
linear in time. Such a trace formula for the energy will thus unfortunately not be as simple as the one for the mass. Very 
recent studies have been carried on for (mainly) the Crank–Nicolson scheme in the preprint [75]. In particular, it is observed 
that this numerical scheme does not verify an exact trace formula for the mass, see also the numerical experiments below. 
We leave the question of investigating such trace formula for the Hamiltonian of the splitting scheme for future work.

3.2. Stochastic symplecticity

Symplectic schemes are known to have excellent longtime properties when applied to Hamiltonian (partial) differential 
equations, see for instance [30,31,33,35,54,58,67] and references therein. These particular integrators have thus naturally 
come into the realm of stochastic (partial) differential equations, see for example [4,17,26,27,37,61,76] and references 
therein.

The stochastic Schrödinger equation can be interpreted as a canonical infinite-dimensional Hamiltonian system, see [61]. 
The next result shows that the exact flow of the SPDE (1) as well as the proposed splitting scheme (8) are stochastically 
symplectic.

Proposition 9. Consider the stochastic Schrödinger equation (1) and assume that a global solution exists and is in H1. Under the same 
assumptions as in Proposition 6, the exact flow of this SPDE is stochastically symplectic in the sense that it preserves the symplectic 
form

ω̄(t) =
∫
Td

dp ∧ dq dx a.s.,

where the overbar on ω is a reminder that the two-form dp ∧ dq (with differentials made with respect to the initial value) is integrated 
over the torus. Here, p and q denote the real and imaginary parts of u.

Furthermore, the splitting scheme (8) applied to the stochastic Schrödinger equation (1) with initial value u0 ∈ H1 is stochastically 
symplectic in the sense that it possesses the discrete symplectic structure:

ω̄n+1 = ω̄n a.s.,
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for the symplectic form ω̄n :=
∫
Td

dpn ∧ dqn dx, where pn and qn denote the real and imaginary parts of un, and d denotes differentials 

in the phase space.

Proof. The symplecticity of the phase flow of the stochastic Schrödinger equation (1) can be shown using similar arguments 
as in [61, Theorem 3.1] for a stochastic cubic Schrödinger equation with quadratic potential, see also [27].

In order to show that the numerical solution is stochastically symplectic as well, we use the same argument as in the 
proof of [37, Prop. 4.3]. Taking the differential of the numerical solution yields

dun+1 = d
(

S(τ )
(
�τ (un) − iαδW Q

n

))
= d (S(τ )�τ (un)) .

Showing the symplecticity of the splitting scheme (8) is thus equivalent to showing the symplecticity of the composition of 
S(τ ) and �τ . These two mappings are symplectic as they are the exact flows at time τ of the deterministic Hamiltonian 
problems iu̇ = �u and iu̇ = V [u]u. Furthermore, the composition of symplectic mappings is symplectic. Thus, the Lie–Trotter 
splitting scheme (8) is stochastically symplectic. This concludes the proof. �
Remark 10. The exact same proof shows that the splitting scheme (9) possesses a discrete symplectic structure.

4. Convergence results

In this section, we study various types of convergence (strong, in probability and almost-surely) of the splitting scheme 
(8) when applied to the stochastic Schrödinger equation (1). In order to do this, we first show bounds for the exponential 
moments in the L2 norm of the exact and numerical solutions as well as two auxiliary results. The proofs of these results 
are given in Section 5 for the reader’s convenience. These proofs could also be obtained using tools from [63].

Theorem 11. Let us apply the splitting scheme (8) to the stochastic Schrödinger equation (1) with a trace class covariance operator 
Q and deterministic initial value u0 ∈ L2 . Assume that the nonlinearity in (1) satisfies F (u) = V [u]u, where V [u] = V [ū] is real-
valued and that Assumption 1 holds. One then has the following bounds for the exponential moments: there exists κ > 0 such that if 
μα2T < κ

Tr(Q )
, then one has:

sup
0≤t≤T

E
[

exp
(
μ‖u(t)‖2

L2

)]
≤ C(μ, T ,α, Q , u0) < ∞

for the exact solution and there exists τ � > 0 such that

sup
τ∈(0,τ �)

sup
0≤nτ≤T

E
[

exp
(
μ‖un‖2

L2

)]
≤ C(μ, T ,α, Q , u0) < ∞

for the numerical solution.

In the proof of Theorem 11, the lower bound κ ≥ e−1

2 is obtained, note that it does not depend on the nonlinearity. 
Furthermore, observe that the condition μα2T < κ

Tr(Q )
gets more restrictive when α and T increase. In addition, the proof 

of Theorem 11 reveals that one may choose any τ � ∈ (0, p(p − 1)
)

where p = e−1

μ2α2 T Tr(Q )
> 1.

It is immediate to deduce the following moment estimates for the exact and numerical solutions from Theorem 11.

Corollary 12. Under the assumptions of the previous theorem, for any p ∈ [1, ∞) and T ∈ (0, ∞), one has the following moment 
estimates for the L2 norm of the exact and numerical solutions: for any u0 ∈ L2 , there exists C p(T , α, Q , u0) ∈ (0, ∞) such that

sup
0≤t≤T

E[‖u(t)‖2p
L2 ] ≤ C p(T ,α, Q , u0)

and

sup
τ∈(0,1)

sup
0≤nτ≤T

E[‖un‖2p
L2 ] ≤ C p(T ,α, Q , u0).

In order to show the main convergence result of this article, we will make use of the following two propositions. Each 
one of these propositions are used to show strong convergence order 1/2, resp. 1, of the numerical solution given by the 
splitting scheme.
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Proposition 13. Consider the time discretization of the stochastic Schrödinger equation (1) by the splitting scheme (8). Let Assump-
tions 1 and 3 be satisfied. Assume that u0 ∈ H1 .

Let T ∈ (0, ∞). For every q ∈ [1, ∞), there exists τ � > 0 and Cq(T , u0) ∈ (0, ∞) (which depends on F , Q and on α), such that for 
every τ ∈ (0, τ �), one has

sup
0≤nτ≤T

E
[

exp(−qK F Sn)‖un − u(tn)‖q
L2

]
≤ Cq(T , u0)τ

q
2 ,

where Sn = τ

n−1∑
k=0

(
‖u(kτ )‖2

L2 + ‖uk‖2
L2

)
, and K F is given in (3) (see Assumption 1).

Proposition 14. Consider the time discretization of the stochastic Schrödinger equation (1) by the splitting scheme (8). Let Assump-
tions 2 and 3 be satisfied. Assume that u0 ∈ H2 .

Let T ∈ (0, ∞). For every q ∈ [1, ∞), there exists τ � > 0 and Cq(T , u0) ∈ (0, ∞) (which depends on F , Q and on α), such that for 
every τ ∈ (0, τ �), one has

sup
0≤nτ≤T

E
[

exp(−qK F Sn)‖un − u(tn)‖q
L2

]
≤ Cq(T , u0)τ

q,

where Sn = τ

n−1∑
k=0

(
‖u(kτ )‖2

L2 + ‖uk‖2
L2

)
, and K F is given in (3) (see Assumption 1).

The proofs of the technical results, Theorem 11 and Propositions 13 and 14, are postponed to Section 5.
We are now in position to state the main convergence result of this article.

Theorem 15. Let u(t) denote the exact solution to the stochastic Schrödinger equation (1) and un the numerical solution given by the 
splitting scheme (8). Let Assumption 3 be satisfied. Let also σ = 1, resp. σ = 2, if Assumption 1, resp. Assumption 2, is satisfied. Assume 
that u0 ∈ Hσ .

Recall the notation Sn = τ

n−1∑
k=0

(
‖u(kτ )‖2

L2 + ‖uk‖2
L2

)
. Let T ∈ (0, ∞). Assume that μ ∈ (0, ∞) and τ0 ∈ (0, τ �) are chosen such 

that

sup
τ∈(0,τ0)

sup
0≤nτ≤T

E [exp(μSn)] = C(T , u0,α, Q , τ0,μ) < ∞. (11)

Then, for all r ∈ (0, ∞) and all μ ∈ (0, μ), there exists Cr(T , u0, α, Q , τ0, μ) < ∞ such that for all τ ∈ (0, τ0) one has

sup
0≤nτ≤T

(
E
[‖un − u(tn)‖r

L2

]) 1
r ≤ Cr(T , u0,α, Q , τ0,μ)τ

σ
2 min(1,

μ
rK F

)
. (12)

The positive parameter r in Theorem 15 can be chosen arbitrarily close to 0. However, one needs to be careful when 
using values of r which are smaller than 1: indeed the mapping (X, Y ) 
→ (

E[|X − Y |r]) 1
r is not a distance. Being able to 

choose arbitrarily small positive values of r is important in the analysis, in order to prove Corollary 17 below.
As a consequence of Theorem 15 above, the convergence is polynomial in Lr(�), for all r ∈ [1, ∞). The rate of conver-

gence of the splitting scheme depends on r in (12), and vanishes when r → ∞. Note that for sufficiently small r > 0, one 
has min(1, μ

rK F
) = 1, thus the convergence rate of the splitting scheme is σ

2 when r is sufficiently small. Observe also that 
a sufficient condition for condition (11) to be verified is that

μ <
κ

α2T 2Tr(Q )
,

where κ > 0 is some positive constant (see Theorem 11 above and Remark 16 below). Thus the value of min(1, μ
rK F

)

depends on the quantity α2T 2 K F (considering that Tr(Q ) is fixed and that the size of the noise is given by α). The larger 
this quantity, the more restrictive the condition to have min(1, μ

rK F
) = 1 becomes.

In the external potential case V [u] = V u, one has K F = 0, thus there are no restrictions and the order of convergence is 
σ
2 in Lr(�) for all r ∈ [1, ∞).

Remark 16. Owing to Theorem 11 concerning exponential moments of the exact and numerical solutions, the set of 

parameters μ, τ0 such that (11) holds is non-empty. Indeed, recalling that Sn = τ

n−1∑
k=0

(
‖u(kτ )‖2

L2 + ‖uk‖2
L2

)
and using 

Cauchy–Schwarz inequality, one has
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E [exp(μSn)] =E

[
n−1∏
k=0

(
exp(μτ ‖u(tk)‖2

L2)exp(μτ ‖uk‖2
L2)
)]

≤
n−1∏
k=0

(
E
[

exp(2nτμ‖u(tk)‖2
L2)
]
E
[

exp(2nτμ‖uk‖2
L2)
]) 1

2n

≤ sup
0≤k≤n

E
[

exp(2Tμ‖u(tk)‖2
L2)
]

sup
0≤k≤n

E
[

exp(2Tμ‖uk‖2
L2)
]

≤ C(μ, T ,α, Q , u0),

if μ < κ
α2 T 2Tr(Q )

and τ < τ� , where κ and τ � are given in Theorem 11. The value of μ obtained by the argument above (as 

well as the values of κ = e−1

2 and τ �) may not be optimal.

Proof of Theorem 15. Set en = ‖un − u(tn)‖L2 . For every R ∈ (0, ∞), let χn,R = 1Sn≤R . Then

E[er
n] = E[er

nχn,R ] +E[er
n(1 − χn,R)].

For a given μ ∈ (0, μ), let p ∈ (1, ∞) such that μ = (1 − 1
p )μ.

On the one hand, applying the Cauchy–Schwarz and Markov inequalities yields

E
[
er

n(1 − χn,R)
]≤ (E [erp

n
]) 1

p
(
E
[
1 − χn,R

])1− 1
p ≤ (E[erp

n ]) 1
p P (Sn > R)

1− 1
p

≤ (E[erp
n ]) 1

p P (exp(μSn) > exp(μR))
1− 1

p

≤ (E[erp
n ]) 1

p

(
E[exp(μSn)]

exp(μR)

)1− 1
p

.

Using moment bounds for the exact and the numerical solution (Corollary 12) and the exponential moment estimate (11)
for Sn , then yield (for a constant C that does not depend on R)

E
[
er

n(1 − χn,R)
]≤ Ce−μR .

On the other hand, let q = pr for p introduced above. Applying the Cauchy–Schwarz inequality yields

E[er
nχn,R ] = E[er

ne−rK F Sn erK F Snχn,R ] ≤
(
E
[

eq
ne−qK F Sn

]) 1
p

(
E

[
e

rK F p
p−1 Snχn,R

])1− 1
p

.

Using Proposition 13 with σ = 1, or Proposition 14 with σ = 2, and the relation q = pr, for the first factor one has

(
E
[

eq
ne−qK F Sn

]) 1
p ≤ Cτ

rσ
2 .

For the second factor, using the exponential moment estimates and the upper bound Sn ≤ R when χn,R �= 0, one obtains

(
E

[
e

rK F p
p−1 Snχn,R

])1− 1
p ≤

(
E
[

eμSn
]

exp(max(0,
rK F p

p − 1
− μ)R)

)1− 1
p

≤ C exp (max(0, rK F − μ)R) ,

using the identity μ = (1 − 1
p )μ.

Finally, for all R ∈ (0, ∞), one has

E[er
n] ≤ C

(
τ

rσ
2 exp

(
max(0, rK F − μ)R

)+ exp(−μR)
)

.

It remains to optimize the choice of R in terms of τ . If rK F ≤ μ, there is no condition and passing to the limit R → ∞
yields E[er

n] ≤ Cτ
rσ
2 . If rK F > μ, the right-hand side is minimized when τ

rσ
2 erK F R = 1, i.e. e−R = τ

rσ
2K F and one obtains

E[er
n] ≤ Cτ

rσμ
2K F .

This concludes the proof of the theorem. �
To conclude this section, let us state results concerning convergence in probability, with order of convergence equal to 

σ , and almost sure convergence with order of convergence σ − ε for all ε ∈ (0, 1 ), with σ ∈ {1, 2}.
2 2 2
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Corollary 17. Consider the stochastic Schrödinger equation (1) on the time interval [0, T ] with solution denoted by u(t). Let un be the 
numerical solution given by the splitting scheme (8) with time-step size τ . Under the assumptions of Theorem 15, one has convergence 
in probability of order σ2

lim
C→∞ P

(
‖uN − u(T )‖L2 ≥ Cτ

σ
2

)
= 0,

where T = Nτ .
Moreover, consider the sequence of time-step sizes given by τM = T

2M , M ∈ N . Then, for every ε ∈ (0, σ2 ), there exists an almost 
surely finite random variable Cε , such that for all M ∈N one has

∥∥u2M − u(T )
∥∥

L2 ≤ Cε

(
T

2M

) σ
2 −ε

.

Proof. Let r be chosen sufficiently small, such that applying Theorem 15 yields

E
[‖uN − u(T )‖r

L2

]≤ C(r, T )τ
rσ
2 .

Then the convergence in probability result is a straightforward consequence of Markov’s inequality:

P
(
‖uN − u(T )‖L2 ≥ Cτ

σ
2

)
= P

(
‖uN − u(T )‖r

L2 ≥ Crτ
rσ
2

)

≤ E
[‖uN − u(T )‖r

L2

]
Crτ

rσ
2

= C(r, T )

Cr
→

C→∞ 0.

To get the almost sure convergence result, it suffices to observe that (again by applying Theorem 15)

∞∑
m=0

E
[‖u2m − u(T )‖r

L2

]
τ

r( σ
2 −ε)

m

< ∞,

thus 
∥∥u2M −u(T )

∥∥r
L2

τ
r( σ

2 −ε)

M

→
M→∞ 0 almost surely. �

We do not know whether the rates of convergence in Theorem 15 are optimal, indeed our arguments have limitations 
due to the use of exponential moment bounds from Theorem 11 which may not be optimal. In particular, the size α of the 
noise and the length T of the time interval have some influence, which may be unexpected.

Like in Theorem 15, in the proof of Corollary 17 it is possible to choose arbitrarily small positive parameters r, with the 
same care in the interpretation when r ≤ 1. This is an important result and the reason why we are able to obtain orders 
of convergence 1/2 or 1 (depending on the value of the regularity parameter σ ) for the convergence in probability and the 
almost sure convergence, even if in average or mean-square sense one may have lower orders of convergence.

5. Proofs of technical results

This section is devoted to giving the proofs to Theorem 11 and Propositions 13 and 14.
To simplify notation, we let Q α = α2 Q , where we recall that Q is the covariance operator of the noise in the SPDE (1).

5.1. Proof of Theorem 11

We start with the proof of Theorem 11.

Proof. Set λ = 1
2T Tr(Q α)

and define the stochastic process X(t) = e−t/T ‖u(t)‖2
L2 . An application of Itô’s formula gives

d
(

eλX(t)
)

= eλX(t)
(

−λ/T X(t)dt + λe−t/T Tr(Q α)dt + λ2

2
d〈X〉t

)

+ 2λeλX(t)e−t/T 〈u(t),dW Qα (t)〉,
where the quadratic variation 〈X〉t satisfies

d〈X〉t ≤ e−2t/T 4Tr(Q α)‖u(t)‖2
L2 dt ≤ 4Tr(Q α)e−t/T X(t)dt.

Taking expectation in the first equation above and observing that X(t) ≥ 0 a.s., one gets
68



C.-E. Bréhier and D. Cohen Applied Numerical Mathematics 186 (2023) 57–83
dE[eλX(t)]
dt

≤ λTr(Q α)E[eλX(t)] +E[eλX(t)
(

2λ2Tr(Q α) − λ/T
)

X(t)]
≤ λTr(Q α)E[eλX(t)]

by definition of λ.
By definition of the stochastic process X(t), the above reads

dE
[
exp

(
λe−t/T ‖u(t)‖2

L2

)]
dt

≤ λTr(Q α)E
[

exp
(
λe−t/T ‖u(t)‖2

L2

)]
and applying Gronwall’s lemma provides the following estimate

E
[

exp
(
λe−t/T ‖u(t)‖2

L2

)]
≤ exp

(
λ‖u0‖2

L2

)
eλTr(Qα)t .

Finally, let μ ≤ e−1

2T Tr(Q α)
= e−1λ. Then for all t ∈ [0, T ],

E
[

exp
(
μ‖u(t)‖2

L2

)]
≤E

[
exp

(
λe−t/T ‖u(t)‖2

L2

)]
≤ exp

(
λ‖u0‖2

L2

)
eλTr(Qα)T ,

where we recall that λ = 1
2T Tr(Q α)

= 1
2α2 T Tr(Q )

. This concludes the proof of the exponential moment estimates for the exact 
solution of the stochastic Schrödinger equation (1).

Let us now prove the exponential moment estimates for the numerical solution (8). Let p, q > 1 such that 1/p + 1/q =
1, and set λ = 1

2T pTr(Q α)
. Define rn = λ exp(− n

N ) for n = 1, . . . , N , where Nτ = T , and introduce the filtration Fn =
σ {δW Q α

k ; k ≤ n − 1}. Note that un is Fn-measurable. Let also τ � ∈ (0, p(p − 1)).
Using the definition of the scheme (8) and Hölder’s inequality, one has

E
[
exp
(
rn+1 ‖un+1‖2

L2

) | Fn
]

≤ E[exp
(

rn+1 ‖un‖2
L2

)
]
(
E[exp(2prn+1Im(〈�τ (un), δW Qα

n 〉)) | Fn]
) 1

p

(
E[exp

(
qrn+1

∥∥∥δW Qα
n

∥∥∥2

L2

)
]
) 1

q

.

On the one hand, since δW Q α
n is a centered Gaussian random variable and by definition of rn , one has

E

[
exp

(
qrn+1

∥∥∥δW Qα
n

∥∥∥2

L2

)]
≤
(

1 − 2qrn+1E

[∥∥∥δW Qα
n

∥∥∥2

L2

])− 1
2

≤ (1 − 2qλτTr(Q α))−
1
2 ,

under the condition that τ < 1
2qλTr(Q α)

= p2

q . This condition thus holds when τ < τ� .

On the other hand, conditional on Fn , the random variable 〈�τ (un), δW Q α
n 〉 is also Gaussian and centered, thus

E
[

exp
(

2prn+1Im(〈�τ (un), δW Qα
n 〉)

)
| Fn

]
≤ exp

(
2p2r2

n+1Var[〈�τ (un), δW Qα
n 〉]

)
≤ exp

(
2p2λrn+1τTr(Q α)‖un‖2

L2

)
.

Gathering these estimates and taking expectation yield

E
[

exp
(

rn+1 ‖un+1‖2
L2

)]
≤E

[
exp

(
rn+1(1 + 2pλτTr(Q α))‖un‖2

L2

)]
(1 − 2qλτTr(Q α))

− 1
2q .

Having chosen λ = 1
2pT Tr(Q α)

, one then gets rn+1(1 + 2pλτTr(Q α)) = rne− τ
T (1 + τ

T ) ≤ rn .
A recursion on n then gives the following estimate

sup
0≤nτ≤T

E
[

exp
(

rn ‖un‖2
L2

)]
≤ exp(λ‖u0‖2

L2)(1 − 2qλτTr(Q α))
− N

2q ≤ C(λ, u0) < ∞,

for τ < τ� , where the quantity C(λ, u0) does not depend on τ .
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We are now in position to conclude the proof of exponential moments estimates for the numerical solution. Let μ such 
that μ < e−1

2T Tr(Q α)
. Note that rN = λe−1, thus there exists p > 1 such that μ ≤ rN ≤ rn for all n ∈ {0, . . . , N}. This then implies 

that

sup
0≤nτ≤T

E
[

exp
(
μ‖un‖2

L2

)]
≤ C(μ, T , Q , u0) < ∞,

for all τ ∈ (0, τ �).
This concludes the proof of Theorem 11. �

5.2. Proofs of Propositions 13 and 14

Before we start with these proofs, it is convenient to introduce some auxiliary processes and provide the steps that are 

common for both proofs. Define w(t) = −αi 
t∫

0

S(t − s) dW Q (s) for all t ≥ 0 and wn = −αi 
n−1∑
k=0

S(τ )n−kδW Q
k for all n ≥ 0. 

Introduce also v(t) = u(t) − w(t) and vn = un − wn . Let tk = kτ . Recall that Sn = τ

n−1∑
k=0

(
‖u(kτ )‖2

L2 + ‖uk‖2
L2

)
.

Define εn = ‖v(tn) − vn‖L2 and en = ‖u(tn) − un‖L2 . Then the error between the numerical and exact solution reads 
en ≤ εn + ‖wn − w(tn)‖L2 .

Let us first deal with the error term ‖wn − w(tn)‖L2 for the stochastic convolution: employing the Itô isometry formula, 
with σ = 1 (resp. σ = 2) if Assumption 1 (resp. Assumption 2) is satisfied, one has

E
[
‖wn − w(tn)‖2

L2

]
= α2E

⎡
⎢⎣
∥∥∥∥∥∥∥

n−1∑
k=0

tk+1∫
tk

(
S(τ )n−k − S(tn − t)

)
dW Q (t)

∥∥∥∥∥∥∥
2

L2

⎤
⎥⎦

= α2
n−1∑
k=0

tk+1∫
tk

∥∥∥(S(τ )n−k − S(tn − t)
)

Q
1
2

∥∥∥2

L0
2

dt

≤ α2
n−1∑
k=0

tk+1∫
tk

|t − tk|σ dt
∥∥∥Q

1
2

∥∥∥2

Lσ
2

≤ C(T ,α, Q )τ σ ,

using properties of the semigroup S . Since the distribution of wn − w(tn) is Gaussian, for every q ∈ [1, ∞), there exists 
Cq(T , Q ) ∈ (0, ∞) such that one has

E[‖wn − w(tn)‖q
L2 ] ≤ Cq(T ,α, Q )τ

qσ
2 . (13)

It remains to treat the error term εn = ‖vn − v(tn)‖L2 .
Using the mild formulation (2) of the solution u(tn) and the definition of the splitting scheme (8) for un , one obtains

vn+1 − v(tn+1) =
⎛
⎝S(τ )vn − i

tn+1∫
tn

S(τ )F (�t−tn (un))dt

⎞
⎠

−
⎛
⎝S(τ )v(tn) − i

tn+1∫
tn

S(tn+1 − t)F (u(t))ds

⎞
⎠

= S(τ ) (vn − v(tn)) − i

tn+1∫
tn

(
S(τ )F (�t−tn (un)) − S(tn+1 − t)F (u(t))

)
dt

= S(τ ) (vn − v(tn)) + E1
n + E2

n + E3
n + E4

n,

(14)

where

E1
n = i

tn+1∫
(S(tn+1 − t) − S(τ )) F (u(t))dt
tn
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E2
n = i

tn+1∫
tn

S(τ ) (F (u(t)) − F (u(tn))) dt

E3
n = iτ S(τ ) (F (u(tn)) − F (un))

E4
n = i

tn+1∫
tn

S(τ )
(

F (un) − F (�t−tn (un))
)

dt.

For the first term, using properties of the semigroup S (see Lemma 1), for σ ∈ {1, 2}, one has

∥∥E1
n

∥∥
L2 ≤ Cτ

σ
2

tn+1∫
tn

‖F (u(t))‖Hσ dt.

The treatment of the second term E2
n is different for the two propositions, details are provided below.

For the third term, recall that ‖un − u(tn)‖L2 ≤ εn + ‖wn − w(tn)‖L2 . Using (3), one obtains∥∥∥E3
n

∥∥∥
L2

≤ τ
(

C F + K F (‖u(tn)‖2
L2 + ‖un‖2

L2)
)

‖un − u(tn)‖L2

≤ τ
(

C F + K F (‖u(tn)‖2
L2 + ‖un‖2

L2)
)
εn

+ τ
(

C F + K F (‖u(tn)‖2
L2 + ‖un‖2

L2)
)

‖wn − w(tn)‖L2 .

For the fourth term, using (3), the equality 
∥∥�t−tn (un)

∥∥
L2 = ‖un‖L2 , and Assumption 3, one obtains

∥∥∥E4
n

∥∥∥
L2

≤ C

tn+1∫
tn

(
1 + ‖un‖2

L2 + ∥∥�t−tn (un)
∥∥2

L2

)∥∥un − �t−tn (un)
∥∥

L2 dt

≤ C
(
1 + 2‖un‖5

L2

) tn+1∫
tn

|t − tn|dt

≤ Cτ 2 (1 + ‖un‖5
L2

)
.

At this stage, it is necessary to treat separately the proofs for Propositions 13 and 14.

Proof of Proposition 13. Assume that σ = 1. For the second error term E2
n , using the assumption on F and the Cauchy–

Schwarz inequality, one has

∥∥∥E2
n

∥∥∥2

L2
≤ C

tn+1∫
tn

(
1 + ‖u(t)‖2

L2 + ‖u(tn)‖2
L2

)2
dt

tn+1∫
tn

‖u(t) − u(tn)‖2
L2 dt.

Gathering all the estimates, and using the isometry property ‖S(τ ) (vn − v(tn))‖L2 = ‖vn − v(tn)‖L2 = εn , from (14) one 
obtains

εn+1 ≤ (1 + C F τ + K F τ�n)εn + Rn,

where we define �n = ‖u(tn)‖2
L2 + ‖un‖2

L2 and Rn = ∥∥E1
n

∥∥
L2 + ∥∥E2

n

∥∥
L2 + ∥∥E4

n

∥∥
L2 + K F τ�n ‖wn − w(tn)‖L2 . Using a discrete 

Gronwall inequality and the equality ε0 = 0, one gets for all n ∈ {0, . . . , N}

exp

(
−C F nτ − K F τ

n−1∑
k=0

�k

)
εn ≤

n−1∑
k=0

Rk.

Rewriting τ
n−1∑
k=0

�k = Sn and ‖un − u(tn)‖L2 ≤ εn + ‖wn − w(tn)‖L2 , applying Minkowskii’s inequality yields for q ∈ [1, ∞)

E
[

exp (−qK F Sn)‖un − u(tn)‖q
L2

] 1
q ≤ eC F T

n−1∑(
E
[

Rq
k

]) 1
q + eC F T

(
E
[
‖wn − w(tn)‖q

L2

]) 1
q
.

k=0
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We now estimate each of the terms above. Let us first recall that Rk = ∥∥E1
k

∥∥
L2 + ∥∥E2

k

∥∥
L2 + ∥∥E4

k

∥∥
L2 + K F τ�k ‖wk − w(tk)‖L2 . 

Using the triangle inequality, followed by Cauchy–Schwarz’s inequality, the assumption on the nonlinearity F as well as 
moment estimates in the L2 and H1 norms for the exact solution (Corollary 12 and Proposition 4), one obtains

E
[∥∥E1

k

∥∥q
L2

]1/q ≤ Cτ 1/2

tk+1∫
tk

E
[
‖F (u(t))‖q

H1

]1/q
dt

≤ Cτ 1/2

tk+1∫
tk

E
[
‖u(t)‖2q

H1

]1/(2q)

E
[
(1 + ‖u(t)‖2

L2)
2q
]1/(2q)

dt

≤ Cτ 1/2

tk+1∫
tk

dt ≤ Cτ 3/2.

For the second term, we use Cauchy–Schwarz’s inequality and moment bounds and regularity properties of the exact solu-
tion from Proposition 4 to get

E
[∥∥∥E2

k

∥∥∥q

L2

]1/q
≤ C

⎛
⎜⎝

tk+1∫
tk

E

[(
1 + ‖u(t)‖2

L2 + ‖u(tk)‖2
L2

)2q
]1/q

dt

⎞
⎟⎠

1/2

⎛
⎜⎝

tk+1∫
tk

E
[
‖u(t) − u(tk)‖2q

L2

]1/q
dt

⎞
⎟⎠

1/2

≤ Cτ 1/2

⎛
⎜⎝

tk+1∫
tk

|t − tk|dt

⎞
⎟⎠

1/2

≤ Cτ 3/2.

Similarly, using the Cauchy–Schwarz’s inequality and the moment estimates in the L2 norm for the numerical solution 
(Corollary 12), we obtain

E
[∥∥∥E4

k

∥∥∥q

L2

]1/q
≤ Cτ 2E

[(
1 + 2‖un‖2

L2

)2q
]1/(2q)

E
[
‖un‖10q

L2

]1/(2q)

≤ Cτ 2.

Thanks to the bounds for the moments in the L2 norm given by Corollary 12, as well as to the error estimate (13) for the 
stochastic convolution proved above, we obtain the estimate

E
[
(K F τ�k ‖wk − w(tk)‖)q

L2

]1/q ≤ CτE
[
�

2q
k

]1/(2q)

E
[
‖wk − w(tk)‖2q

L2

]1/(2q)

≤ CτE
[
‖wk − w(tk)‖2q

L2

]1/(2q) ≤ Cττ 1/2 ≤ Cτ 3/2.

With all these estimates at hand, we arrive at

n−1∑
k=0

(
E
[

Rq
k

]) 1
q ≤ Cq(T , u0,α, Q )τ

1
2 .

Finally, we obtain

E
[

exp (−qK F Sn)‖un − u(tn)‖q
L2

] 1
q ≤ eC F T

n−1∑
k=0

(
E
[

Rq
k

]) 1
q + eC F T

(
E
[
‖wn − w(tn)‖q

L2

]) 1
q

≤ Cq(T , u0,α, Q )τ
1
2 + Cq(T ,α, Q )τ

1
2 ,

using (13) in the last step.
This concludes the proof of Proposition 13. �
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We now turn to the proof of the second auxiliary result.

Proof of Proposition 14. Assume that σ = 2. As explained above, one requires to substantially modify the treatment of the 
error term E2

n . As will be clear below, some changes in the analysis of the error εn are required too.
Using a second-order Taylor expansion of the nonlinearity F and equation (5) (assumption on F ′′), one obtains the 

decomposition E2
n = E2,1

n + E2,2
n where

E2,1
n = i

tn+1∫
tn

S(τ )F ′(u(tn)).
(
u(t) − u(tn)

)
dt

∥∥∥E2,2
n

∥∥∥
L2

≤ C

tn+1∫
tn

(
1 + ‖u(tn)‖L2 + ‖u(t)‖L2

)‖u(t) − u(tn)‖2
L2 dt.

Using the moment and increment bounds in the L2 norm for the exact solution, see Proposition 4, and the Cauchy–

Schwarz inequality, one has 
(
E[
∥∥∥E2,2

n

∥∥∥q

L2
]) 1

q ≤ Cτ 2.

In addition, using the mild formulation of the exact solution (2), one has the decomposition E2,1
n = E2,1,1

n + E2,1,2
n + E2,1,3

n , 
where

E2,1,1
n = i

tn+1∫
tn

S(τ )F ′(u(tn)). (S(t − tn) − I)) u(tn)dt

E2,1,2
n = i

tn+1∫
tn

S(τ )F ′(u(tn)).

⎛
⎝ t∫

tn

S(t − s)F (u(s))ds

⎞
⎠ dt

E2,1,3
n = iα

tn+1∫
tn

S(τ )F ′(u(tn)).

⎛
⎝ t∫

tn

S(t − s)dW Q (s)

⎞
⎠ dt.

Owing to Lemma 1 and to equation (5) in Assumption 2, the first and second terms above are treated as follows: one has∥∥∥E2,1,1
n

∥∥∥
L2

≤ Cτ 2
(

1 + ‖u(tn)‖2
L2

)
‖u(tn)‖H2 ,

and

∥∥∥E2,1,2
n

∥∥∥
L2

≤ C
(

1 + ‖u(tn)‖2
L2

)
τ

tn+1∫
tn

‖F (u(s))‖L2 ds.

Using the stochastic Fubini Theorem, the third term is written as

E2,1,3
n = iα

tn+1∫
tn

S(τ )F ′(u(tn)).
( t∫

tn

S(t − s)dW Q (s)
)

dt

= iα

tn+1∫
tn

⎛
⎝S(τ )F ′(u(tn)).

tn+1∫
s

S(t − s)dt

⎞
⎠ dW Q (s)

= iα

tn+1∫
tn

�n(s)dW Q (s),

where we have defined the quantity �n(s) = S(τ )F ′(u(tn)). 

tn+1∫
S(t − s) dt .
s
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Applying Itô’s formula, one gets

E

[∥∥∥E2,1,3
n

∥∥∥2

L2

]
= α2

tn+1∫
tn

E

[∥∥∥�n(s)Q
1
2

∥∥∥2

L0
2

]
ds ≤ Cτ 3 (15)

using again (5) from Assumption 2 and the moment estimates in the L2 norm of the exact solution from Corollary 12.
However the estimate (15) is not sufficient to directly obtain the required error estimate for εn as in the proof of 

Proposition 13. Improving this estimate requires to modify the approach used above to deal with this error term.
Starting from (14), one obtains for all n ≥ 0

vn − v(tn) =
n−1∑
k=0

S(τ )n−k−1
(

E1
k + E2

k + E3
k + E4

k

)
.

Recalling the decomposition E2,1
k = E2,1,1

k + E2,1,2
k + E2,1,3

k and using the above bounds for the term E3
k then yields

εn ≤ τ

n−1∑
k=0

(C F + K F �k) εk

+ τ

n−1∑
k=0

(C F + K F �k)‖w(tk) − wk‖L2

+
n−1∑
k=0

(∥∥E1
k

∥∥
L2 +

∥∥∥E4
k

∥∥∥
L2

)

+
n−1∑
k=0

∥∥∥E2
k − E2,1,3

k

∥∥∥
L2

+
∥∥∥∥∥

n−1∑
k=0

S(τ )n−1−k E2,1,3
k

∥∥∥∥∥
L2

.

Applying the Gronwall inequality to get an almost sure inequality, then using the Cauchy–Schwarz and Minkowskii’s in-
equalities, one obtains for all n ≥ 0 and all q ∈ [1, ∞)

e−C F nτ
(
E[e−qK F Snε

q
n ]
)1/q ≤ τ

n−1∑
k=0

(
E
[
(C F + K F �k)

2q
])1/(2q) (

E
[
‖w(tk) − wk‖2q

L2

])1/(2q)

+
n−1∑
k=0

((
E
[∥∥E1

k

∥∥q
L2

])1/q +
(
E
[∥∥∥E4

k

∥∥∥q

L2

])1/q
)

+
n−1∑
k=0

(
E
[∥∥∥E2

k − E2,1,3
k

∥∥∥q

L2

])1/q

+
⎛
⎝E

⎡
⎣
∥∥∥∥∥

n−1∑
k=0

S(τ )n−1−k E2,1,3
k

∥∥∥∥∥
2q

L2

⎤
⎦
⎞
⎠

1/(2q)

,

where in the last term, we have used the inclusion L2q(�) ⊂ Lq(�). We recall that the term E2
k − E2,1,3

k can be written as

E2
k − E2,1,3

k = E2,1,1
k + E2,1,2

k + E2,2
k .

Using the same arguments as in the proof of Proposition 13 (in particular moment estimates of Proposition 4 and Corol-
lary 12, and the error estimate (13) for the stochastic convolution), the treatment of the error terms in the right-hand side 
is straightforward, except for the last one which requires more details that we now present.

One has the identity

n−1∑
k=0

S(τ )n−1−k E2,1,3
k =

n−1∑
k=0

tk+1∫
tk

S(τ )n−1−kiα�k(s)dW Q (s)

and using the Burkholder–Davis–Gundy inequality one then obtains
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⎛
⎝E

⎡
⎣
∥∥∥∥∥

n−1∑
k=0

S(τ )n−1−k E2,1,3
k

∥∥∥∥∥
2q

L2

⎤
⎦
⎞
⎠

1/(2q)

≤ Cq

⎛
⎜⎝E

⎡
⎢⎣(n−1∑

k=0

α2

tk+1∫
tk

∥∥∥S(τ )n−1−k�k(s)Q
1
2

∥∥∥2

L0
2

ds
)q

⎤
⎥⎦
⎞
⎟⎠

1/(2q)

≤ Cτ ,

where the last upper bound follows from the definition of �k(s), from Assumption 2 and from the moment bounds in the 
L2 norm for the exact solution, see Proposition 4.

Finally, recalling that ‖un − u(tn)‖L2 ≤ εn + ‖wn − w(tn)‖L2 , gathering all these estimates and using the bounds on the 
error in the stochastic convolution (13), we obtain

E
[

exp (−qK F Sn)‖un − u(tn)‖q
L2

] 1
q ≤ Cq(T , u0, Q )τ .

This concludes the proof of Proposition 14. �
6. Numerical experiments

We present some numerical experiments in order to support and illustrate the above theoretical results. In addition, we 
shall compare the behavior of the splitting scheme (8) (denoted by Split below) with the following time integrators

• the classical Euler–Maruyama scheme (denoted EM)

un+1 = un − iτ�un − iτ F (un) − iαδW Q
n .

• the classical semi-implicit Euler–Maruyama scheme (denoted sEM)

un+1 = un − iτ�un+1 − iτ F (un) − iαδW Q
n .

• the stochastic exponential integrator from [5] (denoted sEXP)

un+1 = S(τ )
(

un − iτ F (un) − iαδW Q
n

)
.

• the Crank–Nicolson–Euler–Maruyama (denoted CN)

un+1 = un − iτ�un+1/2 − iτ F (un) − iαδW Q
n ,

where un+1/2 = 1
2 (un + un+1). This is a slight modification of the Crank–Nicolson from [49].

6.1. Trace formulas for the mass

We consider the stochastic Schrödinger equation (1) on the interval [0, 2π ] with periodic boundary condition, the coef-

ficient α = 1, and a covariance operator with (γk)k∈Z =
(

1
1+k2

)
k∈Z and (ek(x))k∈Z =

(
1√
2π

eikx
)

k∈Z . We consider the initial 

value u0 = 2
2−cos(x) and the following nonlinearities: V (x)u = 3

5−4 cos(x) u (external potential), 
(

V � |u|2)u with V (x) = cos(x)

(nonlocal interaction), F (u) = +|u|2u (cubic). We refer to [46, Theorem 3.4] for a result on global existence of solutions to 
the cubic case. We use a pseudo-spectral method with Nx = 28 modes and the above time integrators with time-step size 
τ = 0.1.

Fig. 1 displays the evolution of the expected value of the mass on the time intervals [0, 1] (external potential) and [0, 25]
(other cases). The expected values are approximated using M = 75000 samples. The exact trace formulas for the splitting 
scheme, shown in Proposition 6, can be observed. The growth rates of the other schemes are qualitatively different than this 
linear rate of the exact solution: observe for instance the exponential drift of EM in the first plot, the fact that sEXP seems 
to overestimate the linear drift and the fact that sEM underestimates it. The CN scheme performs relatively well, except in 
the cubic case (not displayed), where it should use a much smaller step-size in order not to explode.

6.2. Strong convergence

In this subsection, we illustrate the strong convergence of the splitting scheme (8) as stated in Theorem 15.
To do this, we consider the stochastic Schrödinger equation (1) on the interval [0, 2π ] with periodic boundary condition, 

and a covariance operator with (γk)k∈Z =
(

1
1+k2

)
k∈Z . We consider the external potential V (x) = 3

5−4 cos(x) and nonlocal in-

teraction given by the potential V (x) = cos(x). We take the initial value u0 = 2 (external potential) and u0 = 1
2
2−cos(x) 1+sin(x)
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Fig. 1. Trace formulas for mass of the splitting scheme (Split), the Euler–Maruyama scheme (EM), the semi-implicit Euler–Maruyama scheme (sEM), the 
exponential integrator (sEXP), and the Crank–Nicolson (CN) schemes.

(nonlocal interaction). Additional parameters are: coefficient in front of the noise α = 1.5, time interval [0, 1], 250 sam-
ples used to approximate the expectations. We use a pseudo-spectral method with Nx = 210 modes and the above time 
integrators. Strong errors, measured with r = 1 at the end point, are presented in Fig. 2. For this numerical experiment, 
the splitting and exponential integrators give very close results. For clarity, only some of the values for the exponential 
integrator are displayed. An order 1/2 of convergence for the splitting scheme is observed. Note that, the strong order of 
convergence of the other time integrators is not known in the case of the nonlocal interaction potential. Observe that, in 
Fig. 2b, one sees that the order of convergence is less than 1

2 , however the exact value is not clearly visible. This may be 
due to numerical issues. It may also happen that the order of convergence is not 1

2 due to the possible dependence of the 
order of convergence with respect to the size of the noise and to the length of the time interval, see the conditions in 
Theorem 15.

In order to illustrate the higher order of convergence for the splitting scheme in the setting of Proposition 14, when 
σ = 2, we consider a smoother noise with covariance operator with (γk)k∈Z =

(
1

1+k4

)
k∈Z (the other parameters for the 

simulation are as above). In Fig. 3, one observes that order of convergence 1 may be obtained: this is indicated in Theo-
rem 15, in the case σ = 2 (smoother noise), if appropriate conditions are satisfied.

6.3. Convergence in probability

In this subsection we numerically demonstrate the order of convergence in probability for the splitting scheme (8). This 
order has been shown to be 1/2 in Corollary 17 above.

Numerically, we investigate the order in probability by using the equation

max
n∈{1,2,...,N}

∥∥un − uref (tn)
∥∥

L2 ≥ Cτ δ, (16)

where uref denotes a reference solution computed using the splitting scheme with step-size τref = 2−16. We then study the 
proportion of samples, P , fulfilling equation (16) for given C and δ and observe whether P → 0 for the given δ as τ → 0
and C increases.
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Fig. 2. Strong errors for the stochastic Schrödinger equations.

Fig. 3. Strong errors for the stochastic Schrödinger equations with a smoother noise (σ = 2).

Fig. 4. Proportion of samples fulfilling (16) for the splitting scheme (N denotes the number of step-sizes).

We simulate 50 samples of the splitting scheme applied to the SPDE (1) with the initial value u0 = 2
2−cos(x) , the non-

local interaction and the same noise as in the previous subsection (non-smooth case). In addition, we take the following 
parameters: t ∈ [0, 1], Nx = 28 Fourier modes and τ = 2n where n = −6, −7, . . . , −14. We then estimate the proportion P
of samples fulfilling (16) for each given τ , δ = 0.4, 0.5, 0.6, and C = 10c for c = 1, 2, 3. The results are presented in Fig. 4.
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Fig. 5. Computational time as a function of the averaged final error for the four numerical methods.

In this figure, one sees how the proportion of samples P quickly goes to zero for δ ≤ 1/2 and an increasing C . Further-
more, this property does not hold for δ > 1/2. This numerical experiment thus confirms that the order of convergence in 
probability of the splitting scheme is 1/2, as stated in Corollary 17.

6.4. Computational times

In this numerical experiment, we compare the computational costs of the above time integrators (expect the classical 
Euler–Maruyama scheme). To do this, we consider the SPDE (1) with the above nonlocal interaction potential for times 
t ∈ [0, 2]. We discretize this SPDE using Nx = 210 Fourier modes in space. We run 100 samples for each numerical scheme. 
For each scheme and each sample, we run several time steps and compare the L2 error at the final time with a reference 
solution provided for the same sample by the same scheme for a very small time-step τ = 2−13. Fig. 5 displays the total 
computational time for all the samples, for each numerical scheme and each time-step, as a function of the averaged final 
error. One observes better performance for the splitting scheme.
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Appendix A. Proof of Proposition 4

This appendix provides the proofs of properties of the exact solution to (1).
Global well-posedness. Let Assumption 1 be satisfied. Since the nonlinearity F is only locally Lipschitz continuous, a 

truncation argument is used to prove global well-posedness. Let us stress that the key property of (1) used in the argument 
below is the fact that V [u] is real-valued.

Let θ : [0, ∞) → [0, 1] be a compactly supported Lipschitz continuous function, such that θ(x) = 1 for x ∈ [0, 1]. For any 
R ∈ (0, ∞), set V R(u) = θ(R−1 ‖u‖L2)V [u] and F R(u) = V R(u)u. The mapping F R is globally Lipschitz continuous, and the 
SPDE

iduR(t) = �uR(t)dt + F R(uR(t))dt + αdW Q (t),

with initial condition uR (0) = u0, thus admits a unique global solution denoted by 
(
uR(t)

)
t∈[0,T ] . Since the mapping V R is 

real-valued, the trace formula holds, see (10): indeed, one obtains
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d
∥∥∥uR(t)

∥∥∥2

L2
= α2Tr(Q ) + 2αIm(〈uR(t),dW Q (t)〉).

Taking expectation, one obtains the trace formula

E

[∥∥∥uR(t)
∥∥∥2

L2

]
= ‖u0‖2

L2 + 2tα2Tr(Q ),

where the right-hand side does not depend on truncation index R . Using the Burkholder–Davis–Gundy inequality, one 
obtains

E[ sup
0≤t≤T

∥∥∥uR(t)
∥∥∥2

L2
] ≤ 3

(
‖u0‖2

L2 + α2T Tr(Q )
)

+ 3α2

T∫
0

∑
k∈N

|γk|2E[|〈uR(s), ek〉|2]ds

≤ 3
(
‖u0‖2

L2 + α2T Tr(Q )
)

+ 3α2
∥∥∥Q

1
2

∥∥∥2

L0
2

T∫
0

E[
∥∥∥uR(s)

∥∥∥2

L2
]ds

≤ C(T , Q , u0),

where one observes that C(T , Q , u0) does not depend on R , using the trace formula above for the term in the integral ∥∥uR(s)
∥∥2

L2 .
Setting the truncation argument is then straightforward. Let τ R = inf{t ≥ 0; ∥∥uR(t)

∥∥
L2 > R}. If R1, R2 ≥ R , then uR1 (t) =

uR2 (t) for all t ≤ τ R , by construction of F R . This allows us to define u(t) solving (1) for all t ∈ [0, τ ), where τ = lim
R→∞ τ R . 

Finally, τ = ∞ almost surely, indeed for every T ∈ (0, ∞), one has

P (τ ≤ T ) = lim
R→∞ P (τ R ≤ T ) = lim

R→∞ P ( sup
0≤t≤T

∥∥∥uR(t)
∥∥∥2

L2
≥ R2)

≤ lim
R→∞

C(T , Q , u0)

R2
= 0,

using the moment estimate above. This concludes the proof of the global well-posedness of (1).
Moment estimates in H1. Next, let us prove the moment bounds for the exact solution to (1). We provide details only 

for the moment estimates in the H1 norm (under Assumption 1)

sup
0≤t≤T

E[‖∇u(t)‖2p
L2 ] ≤ C p(T , Q , u0).

Indeed, the moment estimates for the L2 norm, namely

sup
0≤t≤T

E[‖u(t)‖2p
L2 ] ≤ C p(T , Q , u0),

can either be obtained using similar arguments, or be deduced from the exponential moment estimates for which a detailed 
proof is provided above. Likewise, the proof of moment estimates

sup
0≤t≤T

E[‖u(t)‖2p
H2 ] ≤ C p(T , Q , u0)

under Assumption 2 would follow from similar arguments.
Let us first consider ψ(u) = ‖∇u‖2

L2 for all u ∈ H1. Its first and second order derivatives are given by

ψ ′(u).h = 2Re(〈∇u,∇h〉)
ψ ′′(u).(h,k) = 2Re(〈∇h,∇k〉)

for h, k ∈ H1. Using Itô’s formula, one gets
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d‖∇u(t)‖2
L2 = dψ(u(t))

= ψ ′(u(t)).du(t) + α2

2

∑
k∈N

ψ ′′(u(t)).(γkek, γkek)dt

= 2Im(〈∇u(t),∇�u(t)〉)dt + 2Im(〈∇u(t),∇ F (u(t))〉)dt

+ 2αIm(〈∇u(t),∇dW Q (t)〉) + α2
∑
k∈N

|γk|2 ‖∇ek‖2
L2 .

The first term in the last equality vanishes, and when taking expectation the third term also vanishes. Using the condition (4)
to deal with the second term, one obtains

dE[‖∇u(t)‖2
L2 ]

dt
≤ C

(
1 +E[‖∇u(t)‖2

L2 ] +E[P1(‖u(t)‖2
L2)]
)

,

where P1 is a polynomial mapping, see equation (4). Note that one has the upper bound sup
0≤t≤T

E[P1(‖u(t)‖2
L2 )] ≤

C(T , Q , u0) due to moment bounds in the L2 norm. Using the Gronwall Lemma then yields

sup
0≤t≤T

E[‖∇u(t)‖2
L2 ] ≤ C(T , Q , u0).

Let p ≥ 1, then applying Itô’s formula for ψp(u) = ψ(u)p yields

dE[‖∇u(t)‖2p
L2 ]

dt
≤ C p ‖∇u(t)‖2(p−1)

L2 Im(〈∇u(t),∇ F (u(t))〉)
+ C pα

2
∑
k∈N

|γk|2 ‖∇ek‖2
L2 E[‖∇u(t)‖2(p−1)

L2 ]

≤ C
(

1 +E[‖∇u(t)‖2p
L2 ] + CE[P1(‖u(t)‖2

L2)
p]
)

using (4) and Young’s inequality. Using Gronwall’s lemma then concludes the proof of the moment bounds in the H1 norm.
Temporal regularity. It remains to deal with the temporal regularity estimate. Using the mild formulation (2), for any 

0 ≤ t1 < t2 ≤ T , one has

u(t2) − u(t1) = S(t1)
(

S(t2 − t1) − I
)
u0

− i

t1∫
0

S(t1 − s)
(

S(t2 − t1) − I
)

F (u(s))ds

− i

t2∫
t1

S(t2 − s)F (u(s))ds

− iα

t1∫
0

S(t1 − s)
(

S(t2 − t1) − I
)

dW Q (s)

− iα

t2∫
t1

S(t2 − s)dW Q (s).

Using Lemma 1, the first estimate of (4) and the moment bounds in the L2 and H1 norms, one obtains∥∥S(t1)
(

S(t2 − t1) − I
)
u0
∥∥

L2 ≤ C |t2 − t1| 1
2 ‖u0‖H1

E

⎡
⎢⎣
∥∥∥∥∥∥

t1∫
0

S(t1 − s)
(

S(t2 − t1) − I
)

F (u(s))ds

∥∥∥∥∥∥
2p

L2

⎤
⎥⎦

≤ T 2p−1|t2 − t1|p

T∫
E
[
‖F (u(s))‖2p

H1

]
ds ≤ C |t2 − t1| 2p

2

0
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E

⎡
⎢⎣
∥∥∥∥∥∥

t2∫
t1

S(t2 − s)F (u(s))ds

∥∥∥∥∥∥
2p

L2

⎤
⎥⎦≤ |t2 − t1|2p

T∫
0

E
[
‖F (u(s))‖2p

L2

]
ds

≤ C |t2 − t1|2p .

Using Itô’s isometry formula and Lemma 1, one has

E

⎡
⎢⎣
∥∥∥∥∥∥

t1∫
0

S(t1 − s)
(

S(t2 − t1) − I
)

dW Q (s)

∥∥∥∥∥∥
2

L2

⎤
⎥⎦= t1

∥∥∥(S(t2 − t1) − I
)

Q
1
2

∥∥∥2

L0
2

≤ Ct1|t2 − t1|
∥∥∥Q

1
2

∥∥∥2

L1
2

E

⎡
⎢⎣
∥∥∥∥∥∥

t2∫
t1

S(t2 − s)dW Q (s)

∥∥∥∥∥∥
2
⎤
⎥⎦= |t2 − t1|

∥∥∥Q
1
2

∥∥∥
L0

2

.

Since the stochastic integrals have Gaussian distribution, gathering the estimates above yields

E
[
‖u(t2) − u(t1)‖2p

L2

]
≤ C p(T , Q , u0)|t2 − t1|p,

for all p ≥ 1 and t1, t2 ∈ [0, T ]. This concludes the proof of Proposition 4.
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