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A B S T R A C T   

Cyanobacterial blooms are becoming more frequent in freshwater sources, causing concern throughout the 
world. Cyanobacterial blooms affect human health and the entire environment. Numerical modeling is an 
effective tool for investigating aquatic systems. In this study, a 3D hydrodynamic and water quality (ecological) 
model was used to simulate eutrophication of a drinking water source, Lake Vomb, in Sweden under present and 
future scenarios. The hydrodynamic model was set-up in MIKE 3 FM software based on meteorological, hy-
drological, and water quality data. The hydrodynamic model performance was satisfactory in terms of the water 
temperature simulation, with root-mean-square-error (RMSE) ranging from 0.38 to 1.2 ◦C. In the ecological 
model, Chlorophyll-a (Chl-a) was used as a proxy for Cyanobacteria, and the model proved acceptable in 
simulating the Chl-a concentrations, with a Nash-Sutcliffe efficiency (NSE) of 0.93 and 0.87 for calibration and 
validation respectively. The findings revealed that external nitrogen loading and internal phosphorus loading 
had significant impact on the nutrient concentrations in Lake Vomb. The findings also showed a correlation 
between Chl-a levels and total phosphorus levels in the lake. To simulate future water quality in the lake, two 
Representative Concentration Pathways (RCP) for the year 2050 were used to make projections for changes in air 
temperature and precipitation. Under the projected future climate, the simulations showed a considerable rise in 
Cyanobacteria biomass independent of the changes in external nutrient loading. The model findings can assist 
water managers in planning mitigation strategies by identifying major nutrient sources.   

1. Introduction 

Cyanobacteria (often called blue-green algae) are microscopic or-
ganisms that can form dense, slimy, and sometimes toxic blooms in the 
aquatic environments (Huisman et al., 2018). The release of cyanotoxins 
has the potential to endanger the ecosystem as well as the human health. 
Toxin production by Cyanobacterial blooms varies in space and time 
(Huisman et al., 2018). Some toxins are released into the water after cell 
death; however, some Cyanobacteria species release toxins without cell 
death or rupture. Some toxins can harm the liver, while others can be 
lethal, such as Anatoxin-a, which causes death via neural damage within 
minutes (Méjean et al., 2014). Cyanobacteria thrive in environments 
where light, water, and nutrients (mostly nitrogen and phosphorus) are 
abundant (Chorus and Welker 2021). Cyanobacterial blooms in lakes are 
associated with the overgrowth under eutrophication with high nutrient 
loadings into water bodies (Conley et al., 2009). These blooms can form 

immediately at the surface and cover large areas of the water body and 
are most common in the upper layers where light is accessible for 
photosynthesis, but may form deeper inside the water column as well 
(Huisman et al., 2018). These blooms are increasing both in frequency 
and magnitude across the globe and pose challenges to freshwater sys-
tems ranging from aesthetics to serious human health risks (Huisman 
et al., 2018). 

Cyanobacterial blooms are known to be positively correlated to the 
total phosphorus (TP) levels in water bodies, and therefore phosphorus 
is often the limiting factor for growth (Xie et al., 2011; Li et al., 2018; 
Payen et al., 2021). Excess TP in freshwater is linked to agricultural and 
urban growth (Paerl and Barnard 2020) and is caused by, for example, 
manure in grazing grounds and fertilizer use in agricultural fields 
(Motew et al., 2017), as well as effluents from wastewater treatment 
facilities (Comber et al., 2015). Over time, TP accumulates in lake sed-
iments and can be resuspended and mixed in the water column; this 
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process is usually referred to as internal loading. On the other hand, 
nitrogen can be a co-limiting factor for algal growth. Some Cyanobac-
teria species can fix atmospheric nitrogen, allowing them to grow even 
when nitrogen levels are low in the water (Li et al., 2018; Chorus and 
Welker 2021). In addition to nitrogen fixation, Cyanobacteria can up-
take inorganic nitrogen (IN) from the water column for growth. Similar 
to TP, high IN levels in water bodies originate from anthropogenic ac-
tivities such as the use of fertilizers in agriculture, wastewater effluents, 
or nitrogen oxides emissions from industrial development (Erisman 
et al., 2013). 

Deterioration of Swedish waters due to eutrophication has been 
investigated since the second half of the 20th century (Willén 1972), and 
phytoplankton has been considered an important water quality variable 
since 1964 (Willén 2001). The investigations were mainly focused on 
large lakes (e.g., Lake Mälaren and Lake Vättern) near highly populated 
areas. The knowledge of phytoplankton before 1965 was limited; thus, 
these investigation projects were vital for assessment and future com-
parison. The blue-green algae were noticed to predominate in 
1969–1970 in Lake Mälaren corresponding to extremely hot summers 
(Willén 1972). Reports of early sight of algal blooms were even found in 
the 1940s in Lake Ringsjön with the first known algal poisoning in 1968 
(Cronberg et al., 1999). Over time, Cyanobacteria biomass were 
increasing even in nutrient-poor lakes under global warming. In their 
study of many nutrient-poor lakes in southern Sweden, Freeman et al. 
(2020) found a relative increase in Cyanobacteria biomass of 21% be-
tween the years 1998–2013. 

Climate change effects have been globally seen in higher air tem-
peratures, severe precipitation events, and altered hydrological cycles 
(Taranu et al., 2015; Meerhoff et al., 2022). Cyanobacterial proliferation 
can be affected by climate change in both direct and indirect ways. 
Warmer climate conditions result in increase in surface water temper-
ature (Piccolroaz et al., 2020) that can directly accelerate in-lake 
biochemical processes and in turn increase phytoplankton biomass 
(Thomas et al., 2017). Climate change can also influence nutrient 
loading by altering the hydrological and nutrient cycles affecting algal 
growth (Meerhoff et al., 2022). Kakouei et al. (2021) studied the impacts 
of changes in climate and land use on over 1500 lakes in Europe and 
North America and concluded that Cyanobacteria abundance is ex-
pected to increase with the increase in temperature and radiation with a 
decrease in wind speed and forest areas under urbanization. In Sweden, 
both the average precipitation and air temperature are projected to in-
crease under climate change scenarios (Jiménez-Navarro et al., 2021). 

Modeling of Cyanobacteria has a long history dating back to the early 
20th century when scientists first began studying these organisms in 
detail. In the 1950s and 1960s, researchers developed simple models to 
understand the basic biology and ecology of Cyanobacteria. These 
models focused on the role of Cyanobacteria in nutrient cycling and the 
factors that influence their growth and distribution. In the 1980s and 
1990s, advances in computer technology and computational biology 
allowed for the development of more complex models that took into 
account a wider range of biological processes and environmental factors 
and were used to better understand the role of Cyanobacteria in eco-
systems and to predict their responses to environmental changes (Guven 
and Howard 2006). Process-based modeling of aquatic ecosystems 
simulates the interaction between the complex physical, biological, and 
chemical processes (Anagnostou et al., 2017). Models vary intrinsically 
in their formulae, level of detail, simplicity, and applicability; however, 
all eutrophication models include the fate and transport of nutrients, 
dissolved oxygen dynamics, and temperature dependency of their pro-
cesses (Anagnostou et al., 2017; Vinçon-Leite and Casenave 2019). 
Multiple eutrophication modeling studies (e.g., Elliott et al., 2007; 
Markensten et al., 2010; Trolle et al., 2011; Elliott and Defew 2012; 
Tasnim et al., 2021) utilized Chlorophyll-a (Chl-a) as a proxy for Cya-
nobacteria biomass in lakes and rivers. Since Chl-a is an indication of all 
phytoplankton species, many models predict total phytoplankton 
biomass with the premise that Cyanobacteria dominate the growth 

(Vinçon-Leite and Casenave 2019). Several studies have investigated the 
effects of climate change on algal blooms (e.g., Markensten et al., 2010; 
Trolle et al., 2011; Yindong et al., 2021). Trolle et al. (2011), in their 
study area in New Zealand, found that future warmer air temperature 
can impact eutrophication equivalent to increasing external nutrient 
loading by up to 50%. Although predicted climate change impacts vary 
in magnitude and duration, most of the models predict more intense 
blooming under future warming conditions (Yindong et al., 2021). 

The goal of this study was to apply a hydrodynamic and water 
quality model to investigate mixing dynamics, in-lake nutrient dy-
namics, and Cyanobacterial bloom developments under present and 
future conditions in a drinking water source (Lake Vomb) in Sweden. 
The results of this study benefit the safety of the local drinking water 
supply and are useful for other temperate and eutrophic lakes. A 3D 
hydrodynamic model of the lake was created using MIKE 3 FM (Powered 
by DHI) and calibrated to describe the water temperature distribution in 
the lake. Then, a 3D ecological model was calibrated to simulate Chl-a as 
a surrogate for Cyanobacteria in the lake. The research questions that 
this study addresses are:  

• How accurate can a 3D model with an intermediate level of detail 
describe eutrophication conditions?  

• What are the driving forces of algal blooms in Lake Vomb?  
• How will the future changes in temperature and precipitation affect 

the future algal blooms in Lake Vomb? 

2. Materials and methods 

2.1. Study area 

Lake Vomb (55◦ 41′ N, 13◦ 35′ E) is a freshwater lake in Scania, 
Sweden’s southernmost region (Fig. 1). Lake Vomb has a surface area of 
around 12 km2 and an average depth of 6.6 m with a maximum depth of 
16 m. The lake serves as a drinking water source to approximately 350 
000 people in Malmö, parts of Lund, and other parts of Scania. Lake 
Vomb is located in Kävlingeån’s catchment with agriculture as the 
dominating land use and has three main tributaries, namely Björkaån, 
Torpsbäcken, and Borstbäcken. The water quality in the lake suffers 
from heavy nutrient loading through runoff from agricultural lands as 
well as wastewater effluents (Bergion et al., 2018; Li et al., 2018; Chu-
quimia et al., 2019). As a result, heavy algal blooms have been observed 
in the lake for decades with Cyanobacteria frequently dominating the 
algal blooms (Li et al., 2018). The most common species of Cyanobac-
teria are Microcystis spp. (Johansson et al., 2019). 

2.2. Model input data 

The model was set-up and calibrated on the year 2019 (baseline) and 
validated on the year 2020. The data required to set up the model 
included water temperature measurements used for calibration and 
validation, lake bathymetry data (provided by Sydvatten AB), hydro-
logical and water quality data for the tributaries, and meteorological 
conditions. 

The hydrodynamic model was calibrated and validated using the 
water temperature data from the lake profile monitoring program at 
Lake Vomb by Sydvatten AB. The data were measured at six locations 
(Fig. 1) in the lake with 1 m vertical resolution from the surface to the 
bottom of the lake. The temporal resolution of the data varied with 
season, from almost no data in winter to ten monitoring occasions per 
month in summer. 

The hydrological data for the three tributaries to the lake, Björkaån, 
Torpsbäcken, and Borstbäcken, were daily time-series of discharge and 
water temperature downloaded from the Swedish Meteorological and 
Hydrological Institute (SMHI) modeled data webpage (https:// 
vattenwebb.smhi.se/modelarea/) for the years 2019 and 2020. The 
water level at the lake outlet was used as a boundary condition, and the 
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data were obtained from the reports of Kävlingeån’s water council for 
the years 2019 and 2020 (Ekologigruppen Ekoplan AB 2020, 2021). A 
constant extraction of 1 m3/s was included in the model to account for 
the water withdrawal for drinking water production. 

The meteorological data used in the model were downloaded from 
SMHI for the years 2019 and 2020. The data for precipitation were 
obtained with daily resolution from the Vomb station (reference number 
53410). The data for wind speed and direction, air temperature, and 
relative humidity were obtained with hourly resolution from the Hörby 
A station (53530), which is located around 20.5 kms north of Lake 
Vomb. Furthermore, the data for hourly shortwave radiation were ob-
tained from the Lund station (53445), which is approximately 23 kms 
west of the lake, and hourly longwave radiation data were only acces-
sible at the Växjö station (64565), which is more than 100 kms north. 
The future projections for air temperature and precipitation were 
downloaded from SMHI’s Advanced Climate Change Scenario Service 
(https://www.smhi.se/en/climate/future-climate/advanced-c 
limate-change-scenario-service/met/skane_lan/medeltemperatur/rc 
p45/2041–2070/year/anom) for Scania County for the period between 
2041–2070 in the form of seasonal changes compared to a reference 
period 1971–2000. The year 2050 was chosen as the target year under 
two Representative Concentration Pathway (RCP) scenarios, namely 
RCP4.5 and RCP8.5. The RCPs depict scenarios for climate modeling and 
are labelled after possible future total solar radiative forcing by the year 
2100 resulting from greenhouse gas emission. RCP4.5 (4.5 W/m2) is a 
moderate scenario in which emissions peak around the year 2040 and 
subsequently drop, while the highest emissions scenario, RCP8.5 (8.5 
W/m2), assumes emissions will continue to rise throughout the century. 
As a result, climate change under RCP8.5 is expected to be more severe 
than under RCP4.5. We limit the future projections in this study to air 

temperature and precipitation. In addition to the data utilized for the 
baseline year 2019, the historical records of air temperature were ob-
tained for numerous sites in Scania County, i.e., SMHI stations 52230, 
53300, 53430, 53530, 54230, 54290, 62030, and 62040, to cover as 
much of the county’s geographical expanse as possible. These data were 
used to calculate seasonal average temperatures in the periods 
1971–2000 and 2015–2019 (the five-year period was deemed more 
representative than the single year 2019) to adjust the expected changes 
reported by SMHI with the changes that had already occurred up until 
2019. Likewise, the historical records for precipitation were obtained 
from SMHI stations 52230, 53260, 53290, 53320, 53410, 53500, 53540, 
54290, 62120, and 63080, and the changes in seasonal average pre-
cipitation (in mm/month) projected by SMHI were then adjusted with 
the changes that had previously occurred between the reference period 
1971–2000 and 2015–2019. The expected changes in 2050 were then 
expressed as a percentage increase over the baseline year 2019. To 
create input data for the year 2050 under RCP4.5 and RCP8.5 scenarios, 
the data-series for air temperature and precipitation of the year 2019 
were adjusted with projected seasonal changes as shown in Section 1 in 
the supplementary document. 

The water quality data were downloaded from the reports produced 
by Kävlingeån’s water council (Kävlingeåns Vattenråd) for the years 
2019 and 2020 (Ekologigruppen Ekoplan AB 2020, 2021) and from the 
database of the Swedish University of Agricultural Sciences (SLU) for 
lakes and watercourses (https://miljodata.slu.se/mvm/). The following 
data were extracted and combined from both datasets: biochemical 
oxygen demand (BOD), ammonium (NH4), nitrite (NO2), nitrate (NO3), 
TP, and dissolved oxygen (DO) in the three tributaries (Björkaån, 
Torpsbäcken, and Borstbäcken). The water quality data were available 
from April to December in both the calibration year 2019 and validation 

Fig. 1. Lake Vomb study area with sampling sites (red circles) and inflow tributaries (Björkaån, Torpsbäcken, and Borstbäcken); a web version of the study area can 
be found at: https://www.google.com/maps/d/edit?mid=1eqoEwQpNg4EtuP2_tnz-1npRMO1bg3mb&usp=sharing. 
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year 2020. The temporal resolution of the data was approximately 
monthly; therefore, linear interpolation was conducted to deduce daily 
concentrations of all the variables. The model simulations were 
compared to the observation data for these variables (except for BOD 
due to unavailability) at one location in the lake; the data were down-
loaded from SLU in the surface and bottom layer. Chl-a measurements 
were only available from SLU for the surface layer at the same location 
in the lake; SLU uses a spectrophotometer in accordance with Swedish 
standards (SS 22028146). All other variables were measured by SLU or 
Kävlingen’s water council in accordance with Swedish/European stan-
dards (Ekologigruppen Ekoplan AB 2020, 2021). 

The modeling results for Chl-a were compared to additional mea-
surements from satellite (Sentinel-3) data provided by DiCyano project 
partner, Brockmann Geomatics Sweden AB. Sentinel-3A and 3B are 
observation satellites within the Copernicus program launched on 16 
February 2016 and 25 April 2018 respectively. Chl-a levels in the surface 
water were extracted from all available images during 2016–2021 and 
used for the comparison with respective simulated years. All estimates 
were calculated as a mean of all valid (e.g., cloud free) pixels (9 at 
maximum) centered on the predefined station coordinate; the pixels are 
300 × 300 m in size. 

2.3. Model description 

MIKE 3 FM (powered by DHI https://www.mikepoweredbydhi.com/ 
products/mike-21–3) was used in this study for hydrodynamic and 
water quality modeling. MIKE 3 FM is based on the flexible mesh 
approach, which employs a cell-centered finite volume method to solve 
the Navier-Stokes equation for incompressible fluids in its Reynolds 
averaged form. The module’s governing equations are the shallow water 
equations, which are simplified Navier-Stokes equations. The compu-
tational mesh for Lake Vomb was created using the point elevations of 
the lake’s bottom. The mesh was composed of 536 nodes and 935 
triangular mesh elements with areas ranging from 2150 to 30 839 m2. 
Vertically, the lake was divided into 16 layers, two of which were set up 
using sigma coordinates (upper 1 m of the lake) and the others (of 1 m 
height each) using Cartesian z-coordinates. The water density in the 
model was defined as a function of temperature. Bed resistance rough-
ness height and wind friction coefficient were set to model default values 
of 0.05 m and 0.00125, respectively. The horizontal and vertical eddy 
viscosities were simulated using Smagorinsky and k-epsilon formula-
tions, respectively, using model default settings. Heat exchange between 
the water and the atmosphere was included in the model and contained 
latent heat, sensible heat, short and long wave radiation, as well as at-
mospheric conditions for air temperature and relative humidity. The 
hydrodynamic simulations spanned the period January-December of 
each year, whereas the water quality simulations covered April- 
December due to data availability. The initial conditions of water 
level, water temperature, and the water quality state variables were set 
to match the measurements in the lake on the corresponding simulation 
start dates. 

The water quality model was adapted by modifying the MIKE 21/3 
WQ with nutrients and chlorophyll-a template in the ECO Lab module. The 
template included the interdependent state variables: BOD, DO, TP, IN, 
and Chl-a. The model equations applied similar principles to other 
models, such as accounting for light and temperature dependency. The 
key distinction between the model equations and other models is that 
the stoichiometry of the photosynthetic process is used to calculate Chl-a 
growth rather than an empirical growth parameter. The full set of model 
equations and the calibrated parameter values can be found in the 
supplementary document (Section 2). The following is a brief overview 
of the main processes. In ECO Lab, each state variable is affected by the 
advection-dispersion and is also defined by an ordinary differential 
equation that models its rate of change under the applicable processes. 
The scaled eddy viscosity formulation was used to apply the dispersion 
in the model; the horizontal scaled constant was set to 1 for all the 

variables, whereas the vertical constant was 0.1 except for DO which 
was calibrated to 0.001. In the selected template, Chl-a production is 
modeled proportional to the net daily oxygen production. The template 
was modified from default to include phosphorus release from sediment 
(internal loading) and temperature dependency of Chl-a growth. To 
characterize the nutrient constraints for development, the Michaelis- 
Menten equation with half-saturation constants were utilized. To ac-
count for the temperature effect, the Arrhenius formula was used. The IN 
cycle in the model was simulated in terms of NH4, NO2, and NO3 com-
ponents and included the yield from BOD decay, uptake by plants and 
bacteria, nitrification, and denitrification processes. The TP cycle 
included the yield from BOD decay, uptake by plants and bacteria, and 
sediment release. The TP sediment release mechanism was included as 
temperature dependent, and the effect of bottom layer DO levels on the 
release was accounted for by multiplying by the inverse of Michaelis- 
Menten formula. Lastly, the DO variable included the net photosyn-
thetic oxygen production, reaeration with the atmosphere, nitrification, 
BOD decay, and sediment oxygen demand. The net photosynthetic ox-
ygen production is computed by subtracting phytoplankton respiration 
from light-dependent photosynthesis. 

In this study, the root-mean-square-error (RMSE) and Nash-Sutcliffe 
efficiency (NSE) coefficients were utilized as statistical performance 
metrics. The standard deviation of the prediction errors is represented 
by the RMSE (Eq. (1)). The NSE (Eq. (2)) computes a dimensionless 
number in the range {− ∞,1} where NSE = 1 indicates a perfect match, 
NSE = 0 indicates that the model performance is equivalent to assuming 
the mean actual value, and NSE < 0 indicates that the model fails to 
perform better than simply assuming the mean value. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i (Predictioni − Actuali)
2

N

√

(1)  

NSE = 1 −

∑N
i (Predictioni − Actuali)

2

∑N
i (Actuali − Mean Actual)2 (2)  

3. Results 

3.1. Model evaluation and temporal variations of state variables 

To calibrate the hydrodynamic model using water temperature 
measurements of the year 2019, the values for the heat exchange pa-
rameters, namely light extinction coefficient, heating coefficient, and 
cooling coefficient, were adjusted, and the final values were 0.45 (1/m), 
0.009, and 0.009, respectively. The model was then validated using the 
water temperature data of the year 2020. The simulated and measured 
water temperature time-series for the six sites can be found in the 
interactive Supplementary Figures T1 to T6. The simulated water tem-
peratures from the model were retrieved to compare with the available 
data from the six observation sites, and the RMSE and NSE were 
determined for each depth at each site. The modeling results of water 
temperature for the calibration year 2019 demonstrated close agree-
ment at all measurement locations (Table 1). Similarly, the modeling 
results for water temperature for the validation year 2020 were in fair 
agreement with the measured data, except for several instances when 
bottom layer temperature was underestimated. The simulations of water 
temperatures indicated that the lake mixes continuously throughout the 
year. During the summer season, particularly during the first three 
weeks of June, the temperature gradient with depth occasionally 
resembled stratification conditions at the lake’s deepest point (site 2, 
Supplementary Figure T2), but the gradient was not strong enough (less 
than 1 ◦C/m) to be classified as thermal stratification. 

Similar to the hydrodynamic model, the water quality model was 
calibrated using the observations of the year 2019 to determine the 
model parameters, and the model was then validated using the data of 
the year 2020. Among all the modeled water quality variables, the 
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simulated IN had the best agreement with the measurements (Table 1, 
Fig. 2). The high seasonal variability of surface IN concentrations found 
in both model results and measured data (Fig. 2) clearly demonstrates 
the influence of nitrogen provided by the external loading. In the spring, 
the tributaries discharge a significant load of IN which is reduced during 
the summer. 

In contrast, the input from the tributaries was shown to have minimal 
impact on the peak in TP concentrations in autumn 2019, and the major 
contributor to TP was found to be the internal loading. The sediment 
release rate of TP at 20 ◦C was calibrated to 20.5 mg/m2/d and varied 
with temperature and DO content. The addition of the DO influence on 
the sediment release of TP enhanced model performance, since TP 
concentrations were seen to increase following incidences of decreased 
bottom DO concentrations (Fig. 2). The statistical measures (Table 1) 
and the visual assessment of the findings (Fig. 2) showed that the model 
follows the overall trend of TP. 

The modeling results for surface DO showed general agreement with 
the observations, but failed to reflect fine local fluctuations in the sur-
face DO levels and instead fell within the season’s average, but the 
modeling results for the bottom layer showed better agreement with 
observations (Table 1, Fig. 2). It was critical that the model captures the 
events of low DO bottom concentrations (e.g., end of July and start of 
August 2019; Fig. 2) in order to accurately apply their impact on the 

sediment release of TP. Lastly, the simulated concentrations of surface 
DO were seen to be negatively correlated to Chl-a. 

Chl-a simulations were in agreement with the general pattern of 
observations from SLU (Table 1, Fig. 3); however, the satellite deduced 
Chl-a levels suggested high variability in the summer blooms (Fig. 3). 
The mortality and settling rates, and the growth temperature coefficient 
of Chl-a were calibrated. To account for the link between TP and Chl-a, 
the nutrient limitation function in the model was adjusted. The nutrient 
limitation function was calibrated to also reduce the nitrogen limitation 
on Chl-a growth. Chl-a concentrations in the lake increased during late 
spring and peaked at late summer with concentrations more than 20 μg/l 
(Fig. 3). 

3.2. Effects of climate change on the lake 

The simulated future scenarios showed a rise in water temperature 
that was proportional to the expected air temperature. The simulated 
water temperature time-series at the deepest section of the lake (site 2) 
can be found in Supplementary Figure T7. In 2050, the average annual 
rise in water temperature was +0.665 ◦C under RCP4.5 and +1.043 ◦C 
under RCP8.5 scenarios, relative to the baseline scenario. Summer, 
autumn, and winter changes were more dramatic than spring changes 
(Table 2). The days with a substantial water temperature gradient in the 

Table 1 
Model performance metrics during calibration (year 2019) and validation (year 2020) for the surface and bottom layers of the lake.  

Variable Surface Layer Bottom Layer 
RMSE NSE RMSE NSE 
2019 2020 2019 2020 2019 2020 2019 2020 

Temperature1 0.38–0.44 ◦C 0.42–1.2 ◦C 0.94–0.99 0.94–0.98 - – – – 
Inorganic nitrogen 284 μg/l 211 μg/l 0.98 0.99 247 μg/l 267 μg/l 0.98 0.97 
Total phosphorus 14.7 μg/l 31.0 μg/l 0.91 0.55 34.0 μg/l 35.9 μg/l 0.55 0.50 
Dissolved oxygen 1.52 mg/l 2.22 mg/l 0.69 0.34 1.62 mg/l 1.84 mg/l 0.91 0.88 
Chlorophyll-a2 8.28 μg/l 12.1 μg/l 0.93 0.87 – – – –  

1 Values represent the ranges from all measurement sites and are averaged across multiple depths. 
2 Values were calculated based only on the measurements from SLU. 

Fig. 2. Simulations (lines) and measurements (scatter) of a-b) total phosphorus (TP), c-d) inorganic nitrogen (IN), and e-f) dissolved oxygen (DO) at the lake surface 
(blue) and bottom (red) layers in Lake Vomb in the calibration year 2019 (left) and the validation year 2020 (right). 
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baseline simulation, exhibited a stronger gradient in the future scenarios 
(Section 3, supplementary document). 

Increased lake water temperatures accelerated the temperature- 
dependent water quality processes in the model. In comparison to the 
baseline year 2019, Chl-a surface levels under climate change scenarios 
RCP4.5 and RCP8.5 increased in all seasons, and this increase was most 
pronounced in fall and winter (Table 2, Fig. 4). This increase in Chl-a 
levels was caused by the increase in TP together with the increased 
water temperature. Similarly, TP levels increased over the summer, 
autumn, and winter (Fig. 4). This was a direct effect of the lake’s internal 
loading mechanism, which is temperature dependent. In contrast, the 
concentrations of IN and DO decreased under both scenarios (Fig. 4). 
This was expected since the IN levels of the baseline year were strongly 
controlled by external loading; thus, the higher temperature accelerated 
the nitrogen processes (e.g., denitrification) while the external loading 
remained unchanged. 

4. Discussion 

MIKE 3 FM was used in this study to model the hydrodynamics and 
ecological conditions of the eutrophic Lake Vomb. The model was 
created and calibrated for the year 2019 and validated on the year 2020. 
The model performance was satisfactory in representing all state vari-
ables (Table 1). To investigate the impact of projected changes in air 
temperature and precipitation for the year 2050, RCP4.5 and RCP8.5 
were chosen as medium and severe scenario, respectively. For 
simplicity, other input to the model (e.g., solar radiation, wind, and 

relative humidity) remained unchanged between scenarios. The future 
scenarios showed a projected increase in Cyanobacteria biomass 
(Table 2). 

Throughout the baseline year 2019, the simulated and measured 
water temperature indicated no obvious thermal stratification condi-
tions in Lake Vomb, i.e., the temperature gradient in the water column 
was always less than 1 ◦C/m. To investigate this behavior, the mixing 
depth was calculated using the empirical equation: (100.185log(A)+0.842 −

2.37)/1.05, where A is the lake surface area in km2 (Qin et al., 2020). 
The lake’s mixing depth was estimated to be 8.2 m, which is more than 
the lake’s average depth of 6.6 m, explaining the lake’s unlikelihood of 
stable thermal stratification. In the future scenarios, the projected rise in 
air temperature caused an increase in water temperature, however 
precipitation had essentially little effect on simulated water tempera-
ture. Interestingly, the increase in water temperature was rather uniform 
across the water column, with a similar shape of the temperature profiles 
to the ones from the baseline year 2019. This was mostly due to the solar 
radiation and wind conditions, which were kept the same in the model 
for the future scenarios as in the baseline. However, water temperature 
changes were not uniform in the summer season, and future projections 
appeared to favor larger thermal gradients. Using observed solar radi-
ation conditions improved the simulation of the lake hydrodynamics. 
The errors in the simulated temperatures can stem from the manual 
calibration of the multivariate model parameters (Li et al., 2017), as well 
as uncertainty in meteorological data due to errors in measurements or 
the absence of some data in the lake’s immediate vicinity. 

The modeling results for TP showed that when only external 

Fig. 3. Chlorophyll-a (Chl-a) concentrations in the calibration year 2019 (left) and the validation year 2020 (right) at the lake surface in the center of Lake Vomb: 
simulations (line) compared to measurements from SLU (crosses) and Satellite (circles). 

Table 2 
Seasonal projected changes in state variables at the surface of Lake Vomb under future scenarios compared to the baseline year 2019.  

Variable Winter Spring Summer Autumn 
RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 

Δ Water temperature ( ◦C) 1 +0.77 +1.07 +0.43 +0.76 +0.68 +1.0 +0.78 +1.26 
Δ Chlorophyll-a (%) +7.58 +11.8 +1.74 +3.15 +2.76 +4.24 +5.32 +7.90 
Δ Total phosphorus (%) +12.1 +19.9 +2.00 +3.70 +8.74 +14.0 +18.9 +30.2 
Δ Inorganic nitrogen (%) -1.96 -2.88 -1.36 -2.48 -15.6 -23.3 -15.4 -21.4 
Δ Dissolved oxygen (%) -2.61 -3.72 -1.07 -1.91 -1.91 -2.88 -2.27 -3.51  

1 Averaged across multiple depths. 
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phosphorus loading was considered, the TP levels in the lake were 
significantly lower than those observed. The internal loading mecha-
nism improved the model performance and allowed the model to 
reproduce the autumn TP peaks (Fig. 2). This finding is consistent with 
the findings of Qin et al. (2020), who showed that shallow and medium 
lakes have considerable interaction between the sediments and water 
column, influencing nutrient dynamics. The release of TP from sedi-
ments was modeled as temperature-dependent, according to the findings 
of several studies (Redshaw et al., 1990; Wu et al., 2014). Consequently, 
under warmer future conditions, higher TP levels were projected 
(Fig. 4); this increase can be expected since warmer temperatures affect 
phosphorus adsorption to sediments (Cornelissen et al., 1997) and 
enhance the exchange with the overlaying layers. Additionally, the in-
clusion of DO impact on the release mechanism slightly improved TP 
simulations. Furthermore, for simplicity and data availability, this study 
employed TP as the limiting nutrient of Cyanobacteria. While this 
method is commonly employed in research (Trolle et al., 2008; Chen 
et al., 2013; Huang et al., 2015; Cui et al., 2016), using TP remains a 
simplification since only a fraction of TP (e.g., soluble reactive phos-
phate) is available for Cyanobacteria uptake (Chorus and Welker 2021). 
In contrast to TP, the IN levels in the lake were shown to be controlled by 
the mass flow from the tributaries, rendering in-lake nitrogen generation 
insignificant. The lake receives elevated nitrogen loading over the 
winter to early spring, as seen in the two modeled years 2019 and 2020 
(Fig. 2). The model results showed exceptional agreement with observed 
IN for both the surface and bottom layers in the lake (Table 1). 

To account for the capacity of Cyanobacteria to fix nitrogen from the 
atmosphere, the effect of IN limitation on the Chl-a growth process in the 
model was lessened. Thus, Chl-a levels in the lake were observed to rise 
even when overall nitrogen concentrations decreased (given an increase 
in TP). The model findings demonstrated that Chl-a levels are positively 
correlated with TP; this is consistent with previous research studies that 
emphasize phosphorus as the most significant limiting nutrient (Xie 
et al., 2011; Schindler et al., 2016; Li et al., 2018; Payen et al., 2021). 
According to sensitivity analysis, TP internal loading had the major 
impact on Chl-a levels (Section 4, supplementary document). On the 

other hand, Chl-a was also noticed to be negatively correlated with IN 
(Fig. 2 and Fig. 3), but this was attributed to the seasonal variation of IN 
mass flow from the tributaries. Under future conditions, the biomass of 
Cyanobacteria (represented by Chl-a concentration) was shown to in-
crease even without any increase of nutrient loadings from the catch-
ment. Higher Chl-a concentrations were found in all seasons because of 
increased lake temperatures as well as the increase in TP content in the 
lake from internal loading. Because of the lower Chl-a levels in winter 
and autumn in the baseline scenario, the relative seasonal rise in Chl-a 
was more pronounced in these seasons compared to spring and sum-
mer (Table 2). In general, this projected increase was consistent with 
other research on the influence of climate change on Cyanobacterial 
proliferation in another part of Sweden (Markensten et al., 2010), New 
Zealand (Trolle et al., 2011), and China (Yindong et al., 2021). 

To the best of our knowledge, this study is the first attempt to model 
nutrients and Cyanobacteria conditions in Lake Vomb. Moreover, this 
study reports a further development of water quality modeling focusing 
on the release of phosphorus from sediments. To improve the simulation 
of the internal loading, the next step would be to collect data on 
resuspension of phosphorus from sediments. Furthermore, the lack of 
water quality data prevented extending the model outside of the simu-
lated periods. The sources of uncertainty in the model are the accuracy 
of the water quality measurements, the manual calibration method used 
in this work, as well as the relative simplicity of the water quality 
module. In further work, modules that include zooplankton, different 
phytoplankton groups, and other variables (e.g., iron, silica, phosphorus 
fractions) can be tested to expand and enhance the model. The current 
model can assist water managers to plan mitigation strategies for the 
lake. The model can also be coupled with a hydrological water quality 
model of the catchment making it possible to examine socioeconomic 
projections by simulating future nutrient loading scenarios. Finally, 
while ecological models are typically developed using area-specific 
parameterization (Anagnostou et al., 2017), the major findings of this 
model agreed with those of other models from different regions indi-
cating a wider applicability of the model following proper calibration. 

Fig. 4. Simulations of a) Chlorophyll-a (Chl-a), b) total phosphorus (TP), c) inorganic nitrogen (IN), and d) dissolved oxygen (DO) at the lake surface for the baseline 
year 2019 (black; dotted) and 2050 scenarios RCP4.5 (blue) and RCP8.5 (red). 
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5. Conclusions 

A 3D hydrodynamic and eutrophication model was used in this study 
to reproduce algal blooms in Lake Vomb seen in the baseline year 2019, 
as well as to estimate eutrophication conditions in the year 2050 under 
two climate change scenarios, RCP4.5 and RCP8.5. The hydrodynamic 
model was shown to be effective in recreating lake water temperature. 
The model showed that Lake Vomb did not undergo stratification in 
2019, whereas future scenarios predicted stronger vertical gradients in 
water temperature. The eutrophication model was adapted by modeling 
nutrients, dissolved oxygen, and biochemical oxygen demand processes. 
Cyanobacteria were successfully modeled in the lake represented by 
Chlorophyll-a. The model suggested that nitrogen levels in the lake were 
highly driven by external loading, but phosphorus levels in the lake were 
heavily impacted by internal loading via sediment release. According to 
future water quality predictions, Chlorophyll-a level is expected to rise 
up to 12% under warmer temperature conditions, regardless of external 
nutrient loading. Finally, uncertainties in the model range from the 
simplified description of processes to data availability and assumptions. 
This was the initial eutrophication model in Lake Vomb and therefore 
requires further improvement; nonetheless, the findings show that if no 
preventive management measures are taken, the lake will be susceptible 
to increasing harmful algal blooms in the future. 
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