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Numerical Strategies for Mixed-Integer
Optimization of Power-Split and Gear Selection in

Hybrid Electric Vehicles
Anand Ganesan∗,1,3 Sébastien Gros2 Nikolce Murgovski3

Abstract—This paper presents numerical strategies for a
computationally efficient energy management system that co-
optimizes the power split and gear selection of a hybrid electric
vehicle (HEV). We formulate a mixed-integer optimal control
problem (MIOCP) that is transcribed using multiple-shooting
into a mixed-integer nonlinear program (MINLP) and then solved
by nonlinear model predictive control. We present two different
numerical strategies, a Selective Relaxation Approach (SRA),
which decomposes the MINLP into several subproblems, and
a Round-n-Search Approach (RSA), which is an enhancement of
the known ‘relax-n-round’ strategy. Subsequently, the resulting
algorithmic performance and optimality of the solution of the
proposed strategies are analyzed against two benchmark strate-
gies; one using rule-based gear selection, which is typically used in
production vehicles, and the other using dynamic programming
(DP), which provides a global optimum of a quantized version
of the MINLP. The results show that both SRA and RSA enable
about 3.6% cost reduction compared to the rule-based strategy,
while still being within 1% of the DP solution. Moreover, for the
case studied RSA takes about 35% less mean computation time
compared to SRA, while both SRA and RSA being about 99
times faster than DP. Furthermore, both SRA and RSA were
able to overcome the infeasibilities encountered by a typical
rounding strategy under different drive cycles. The results show
the computational benefit of the proposed strategies, as well as the
energy saving possibility of co-optimization strategies in which
actuator dynamics are explicitly included.

Index Terms—Mixed-Integer Nonlinear Optimal Control, Non-
linear Programming, Numerical Optimization, Hybrid Electric
Vehicle, Energy Management, Nonlinear MPC, Optimal Torque-
Split, Optimal Gear Selection.

I. INTRODUCTION

In the field of optimal control of hybrid electric vehicles
(HEVs), supervisory energy management control strategies
have been the subject of very active research [1]–[6], in
response to the exponential electrification of mobility [7]. A
typical HEV has an over-actuated powertrain, i.e., it consists
of an internal combustion engine (ICE) and one (or) more
electrical machines (EM) to deliver the requested power.
Depending on the powertrain configuration, these actuators are
connected to the wheels via a multispeed transmission with a
fixed set of gear ratios or a continuously variable transmission
that can change seamlessly through a continuous range of gear
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ratios [3]. An over-actuated powertrain offers certain degrees
of freedom to its control system to minimize fuel or energy
consumption during a driving mission. Key control decisions
that can be optimized are 1) the percentage allocation of total
propulsive/braking demand to each of its actuators, referred to
as power-split, torque-split or allocation [5], [6], 2) the choice
of the most suitable gear to meet that demand (gear selection)
[8]–[10], 3) the ICE ON-OFF decisions to avoid operating the
ICE at inefficient speeds [10], [11], and 4) the vehicle speed
variation around a reference set by a user or an autonomous
system like in a cruise controller [3], [9], [12], [13].

Among the control decisions listed above, gear selection
and ICE on-off are discrete decision variables, whereas the
other decisions are continuous. Hence, when any or both of
the discrete variable(s) is to be co-optimized either with the
actuator power-split or vehicle velocity or both, it most often
leads to a Mixed-Integer Nonlinear Programming (MINLP)
problem [8], [9], [14]. Such an MINLP needs to be solved
in real-time in an online controller to enable minimization
of fuel or energy consumption in an HEV. But mixed-integer
problems are generally NP hard (nondeterministic polynomial-
time hardness), i.e., any algorithm that guarantees to find the
global solution to such problems suffers from non-polynomial
worst-case time complexity (unless P=NP) [15]. Hence, nu-
merical strategies that can find ‘nearly-optimal’ solution(s) for
an MINLP and yet have less real-time computational demand,
are vital for online (or embedded) implementation of fuel or
energy minimizing co-optimization strategies in HEVs.

A. Global Algorithms for Mixed-Integer (MI) Problems
The widely used method to solve MI problems offline is

Dynamic Programming (DP) [4], [11], [16], [17], which is
based on the Bellman principle of optimality [18]. Though
DP can find the global optimum and handle non-convex
nonlinear problems effectively, the optimality of its solution
can be guaranteed only within the discretization accuracy of its
states and controls. Other direct methods capable of solving
MI problems to optimality are integer enumeration, branch-
and-bound, cutting planes, piecewise linear approximations,
etc., [19]–[22]. All these methods are computationally too
expensive due to the combinatorial nature of MI problems
and suffer from large run-time variations. Although these
computational and run-time aspects are less favorable, main
obstacles for the real-time implementation of these direct
methods are the limited memory and computational capacity
of the embedded or online control hardware in HEVs.
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Nomenclature ηγ , ηig Efficiencies: Transmission, and ignition angle.
s, t Coordinates: Spatial, and temporal. (·) A function dependant on several elements.
v, ω Velocities: Longitudinal, and angular. (·)∗ Optimum value.
a0, .., a8 Coefficients of ICE fuel power consumption model. (·)+ Value at next discrete time step.
b0, .., b8 Coefficients of ISG power consumption model. (·)min, (·)max Minimum value, and maximum value.
c0, .., c3 Coefficients describing the bounds of ICE power. ˙(·) First order temporal derivative.
cad, crr Coefficients of Air drag, and rolling resistance. (̂·) Initial estimate (guess) of a variable.
d1, .., d6 Coefficients describing the bounds of ISG power. (̃·) States, controls, and parameters of an MINLP.
e0, .., e5 Coefficients of gear ratio model. x, u, θ State, control, and parameter vectors.
Fmax
pt,brk Maximum breaking capacity of the powertrain. Γ,U Discrete feasible sets: Gear, and gear shift control.

F, r, J Wheel force, radius, and rotational Inertial. f, h A function of one or more elements.
α, g, τ Road slope, gravitational constant, and time constant. λb, λsr Battery co-state factor, and stoichiometric ratio.
Afa, ρair Vehicle frontal surface area, and air density. ϕ,L Cost functions of an MPC: Stage and terminal costs.
m,me Net laden mass and equivalent mass of vehicle. th, N Prediction horizon: Continuous and discrete time domains.
P Power consumed or delivered. W,wγ Gear shift penalty function, and its penalty factor.
Pice, γ States: ICE power delivery, and gear. ζ, j MPC update instance: Continuous, and discrete time domains.
Pice,req Controls: ICE power request, and ISG power delivery. k Discrete time instance of an MPC prediction window.
uγ , dγ Binary Controls: Function, and gear shift decision. (k | j) A vector element at current instant j and prediction instant k.
Uocv Open circuit voltage of the battery. ∆t Fixed sampling or discretization interval.
Rb Internal resistance of battery. t0, tf Start time, and final time of the driving mission.
Rpa Polynomial approximation of gear ratio. w.r.t. Abbreviation: With respect to.
R,Rdg Ratios: Current gear, and differential gear. Subscripts
ADMM Alternating Direction Method of Multipliers l Set describing the indices of the binary variable, dγ .
BMS Battery Management System. r A variable or a vector of variables in an MINLP
ECM, MCU Engine Control Module, and Motor Control Unit. whose integral constraint is relaxed.
ICE Internal Combustion Engine. brk, s Powertrain components: Friction brake, and drive shaft.
ISG, MPC Integrated Starter Generator, and Model Predictive Control. cl,whl Powertrain components: Transmission clutch, and wheel.
AMT Automated Manual Transmission. dm, aux Power demanded: Primary load, and auxiliary load.
TCM Transmission Control Module. ech, el Energy domain: Electro-chemical, and electrical.
MIOCP Mixed-Integer Optimal Control Problem f, b Energy Sources: Fuel, and battery.
MINLP Mixed-Integer Nonlinear Problem fes, ss Feasible value, and steady-state value.
SCC Supervisory Co-Optimization Controller. red Reduced feasible region or set.
SOE State-of-Energy of a battery pack. req, rgn Request (control signal), and regeneration.
NRMSE Normalized Root Mean Squared Error. up, dn Indices of binary variable, dγ : Up shift, and down shift.

B. Heuristics for MINLPs

Several methods have been proposed in recent years that
could approximately solve the MI problem to an acceptable
level of suboptimality and still remain computationally effi-
cient. For example, multiphase and parameteric methods were
proposed in [12], [23]–[25], hierarchical methods in [10], [26],
integer relaxation, decomposition and reformulation methods
in [27]–[29], and DP-based or other offline approaches in [30],
[31]. Since, this article focuses on real-time capable solution
approaches for the MI problem considered, we present below
some of the closely related work in this context.

Relaxation strategy in which the integer constraint is relaxed
to obtain an NLP, is a typical choice to solve such MI
problems. For example, strategies like relax-and-round or
‘rounding’ strategy, in which the integer feasible set is relaxed
to its convex hull, was found to be an effective method in
[32], [33]. It was shown in [32] that the method may not
converge to an integer feasible solution for some cases, as
is expected for heuristic methods. Another relaxation strategy
labeled ‘outer convexification’, proposed in [32] can guarantee
feasibility and showed promising real-time capabilities when
applied in MPC-based cruise controller. Moreover, this ‘outer
convexification’ strategy was used to solve the MI problem of
optimizing the torque-split, gear choice and ICE on/off in a
distributed control framework [8], but the optimality gap of
the results was not analyzed.

An alternate method proposed in recent works addresses
such MI problems using a distributed approach which exploits
the additional resources in control architectures, referred as
’hierarchical’ or ’multi-layered’ or ’sequential’ or ’distributed’
control frameworks. In such an approach, the continuous and

discrete decisions are decomposed as two subproblems and
addressed either separately in different layers (or different
entities in the same layer) of the architecture or iterated by
passing on the decisions between the layers (or entities). For
example, quadratic programming (QP), convex programming,
etc. were used to solve real-valued decisions, while a rule-
based (non-optimal) or DP (computationally heavy) strategy
was used for the discrete decisions in [9]–[11], [13]. Such
a distributed approach is real-time capable but it quite often
converges to a worse local optimum compared to a centralized
approach [9], [34]. The iterative schemes proposed in [9], [35]
showed that the optimality of such a distributed approach can
be improved by iteratively passing the suboptimal decision
values from one layer to the other layer(s).

Recently, other heuristic methods have shown promising
real-time capabilities. In [36] the continuous relaxed version of
MINLP is reformulated so that the solution of the reformulated
NLP is a local minimizer of the original MINLP in most
cases. In [36] the authors focused on co-optimizing vehicle
speed and gear ratio, whereas the power-split decision was
not considered. Furthermore, the mean computational time
required to solve the MINLP was in the range of 0.6 s− 1.9 s
in [36], which needs to be further improved for real-time
implementation in HEVs. In [37], a heuristic gear search
strategy was proposed, which searches the neighboring gears
of a reference gear trajectory (derived from a rule-based gear
map) to find a better solution. Although the strategy showed
promising results, the computational demand of the strategy
was not analyzed in [37]. Other strategies include an approach
based on Reinforcement Learning (RL) for stochastic prob-
lems [38] and an alternating direction method of multipliers
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(ADMM) based approach for deterministic cases [15], [39].
The RL based approach in [38] is yet to be applied to the
HEV MINLP whereas the strategies proposed in [15], [39]
co-optimize only the binary decision ‘ICE on-off’ and power-
split, but not the gear selection.

Besides the difficulty in solving MI problems faster to
enable real-time implementation, in the existing literature on
energy management of hybrid electric vehicles, a standard
approach to model the energy conversion dynamics of the
powertrain actuators is to approximate them as steady-state
efficiency maps [1], [3], [8], [32]. However, in [40]–[42]
it was shown that such approximations often result in lower
energy savings in an optimal torque-split controller and that
the savings can be improved by considering actuator dynamics.

C. Contributions of the Article
In this article, we focus on the centralized mixed-integer

optimal control problem (MIOCP) of optimizing the power-
split and the gear choice to minimize energy consumption in
HEVs. Although such optimization strategies are not novel
on their own [8], [32], [39], [41], they have not been
previously applied to an HEV energy management in which
engine dynamics is also considered. We show that considering
the engine dynamics with the proposed mixed-integer control
strategies provides a considerable benefit to fuel economy.
Furthermore, we show conceptually that proposed relaxation
strategies can find ‘nearly-optimal’ solutions for the MIOCPs
posed by hybrid electric powertrains and yet remain numeri-
cally sufficiently effective to ensure the real-time capability of
the algorithm for the considered application.

In particular, the main contributions of the article in the
context of the considered application are: 1) We show that
explicit inclusion of actuator dynamics in the energy man-
agement problem of co-optimizing the power-split and gear
selection enables realization of higher energy savings in an
HEV, by exploiting the predictive capabilities of the MPC
framework; 2) We propose relaxations and reformulations to
reduce computational demand while solving the MIOCP in
real time; 3) We propose two intuitive numerical solution
strategies, the Selective Relaxation Approach (SRA) and the
Round-n-Search Approach (RSA), to approximately solve the
MINLP (discretized MIOCP) without any feasibility issues un-
der different driving missions; 4) We analyze the performance
and computational demand of the proposed strategies against
benchmark strategies based on rule-based gear selection and
DP; 5) We quantity the optimality gap of the solutions of
the proposed strategies by comparing against the DP solution,
which we regard as the closest solution to the MI optimum
for the original MIOCP.

Furthermore, the results show the computational benefit of
the proposed strategies to solve MI problems efficiently and
to remain feasible for implementation in a core computing
unit onboard an electrified vehicle. These proposed mixed-
integer solution strategies can be extended and integrated into a
computer software in future intelligent transportation systems
to solve similar MI problems, including charge point selec-
tion for electric vehicles, fleet management, intelligent traffic
management, and a wide range of other mobility solutions.
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Fig. 1: The considered parallel HEV powertrain consists of an ICE and an
ISG connected to the wheels via an 8-speed auto-transmission, where Pbrk

is the braking power demanded. The Energy Management System hosts the
proposed supervisory co-optimization controller (SCC) which sends optimal
references to each of the lower-level controllers.

D. Article Outline

In Section II, control-oriented model of the considered
powertrain is described along with its decision variables, pa-
rameters, and constraints. Section III introduces the proposed
supervisory co-optimization controller with its architecture, as-
sumptions, and problem formulation. In Section IV, model and
constraint relaxations are proposed to improve the numerical
efficiency of the solution process, before transcribing the re-
formulated problem as a finite-dimensional MINLP. Section V
presents the numerical strategies proposed to approximately
solve MINLP. Section VI briefs the benchmark controllers
implemented for comparison. Finally, the relative performance
and energy savings of the proposed strategies are discussed in
Section VII, followed by the conclusion in Section VIII.

II. CONTROL-ORIENTED MODELLING

In this section, control-oriented models of different com-
ponents and sub-systems in the parallel HEV powertrain
used for this study are described. The considered power-
train, as shown in Fig. 1, has an internal combustion engine
(ICE), an integrated starter generator (ISG), an 8-speed auto-
transmission unit, a clutch, a battery, a differential along with
other driveline components, wheels, and low-level controllers
for some powertrain components.

A. Vehicle Dynamics: Power Demand at Wheels

Using a point mass representation, the longitudinal vehicle
dynamics can be modelled as in [3] as

v̇(t)me(·) = F (t) + Fbrk(t)−
cadAfaρairv

2(t)

2
−mg (sinα(s) + crr cosα(s)) ,

(1)

where cad is the aerodynamic drag coefficient, Afa is the
vehicle frontal surface area, ρair is the air density, s is the
travelled distance, m is the vehicle mass, α is the road slope,
crr is the rolling resistance coefficient, F is the traction force
of the ICE and ISG, Fbrk is the force dissipated within the
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friction brakes, v is the linear velocity of the vehicle and the
equivalent mass me is computed as [11], [43],

me = m+
Jwh1 + xcl(t)(Jice + Jisg)(R(γ)Rdg)

2

r2wh1

, (2)

where xcl is the transmission clutch engagement decision,
R(γ) is the ratio of current gear γ, Rdg is the fixed ratio of
differential gear, rwhl is the wheel radius, and Jice, Jisg and
Jwhl are the inertia of the ICE, ISG, and all other powertrain
components lumped together to reflect at wheels, respectively.
If the trajectories of v(t), α(t) are known a priori, then using
(1) and assuming that the brake controller always ensures
Fbrk = 0 when F > 0 and Fbrk < 0 otherwise, the power
demand at the wheels can be calculated a priori for ∀t as

Pdm(t) =

{
F (t)v(t), F (t) ≥ Fmax

pt,brk(t),

(F (t)− Fbrk(t)) v(t), F (t) < Fmax
pt,brk(t),

(3)

where, the maximum capacity of the powertrain (depends on
ICE braking and ISG regeneration capacities) is expressed as

Fmax
pt,brk = max(Fice,brk(v, γfes, t) + Fisg,rgn(v, γfes, t)), (4)

and the trajectory of sets of all feasible gears, γfes(t), is

γfes = {γ | γ ∈ {γmin(v(t), F (t)), γmax(v(t), F (t))}}. (5)

B. Transmission and Drivetrain Components
Assuming a clutch lock-up , i.e., xcl(t) = 1 | ∀t, power-

transfer through the auto-transmission (actuated by transmis-
sion control module, TCM) and other drivetrain components
(differential, axle shafts, and joints) can be modelled as

Ps(t) =

{
Pdm(t)/ηγ(γ), Pdm(t) > 0,

Pdm(t)ηγ(γ), Pdm(t) ≤ 0,
(6)

where ηγ(γ) is the net efficiency of current gear γ and a
fixed differential gear. Assuming a constant value for ηγ(γ),
the demand at the shaft Ps(t) can be precalculated ∀t, thus
reducing (6) to a simple power balance equation,

Pice(t) + Pisg(t) = Ps(t), (7)

where Pisg is the ISG power delivery and Pice is the power
delivered by the ICE [11]. The transmission gear dynamics is
represented as a discrete-time model with an integer gear shift
control input, uγ ∈ U, as

γ+(t) = γ(t) + uγ(t), (8)

uγ(t) ∈ U = {umin
γ , . . . ,−1, 0, 1, . . . , umax

γ }, ∀t, (9)

γ(t) ∈ Γ = {0, 1, .., γmax}, ∀t, (10)

where Γ and U refer to the discrete sets for the state and the
control, respectively. Then the ratio of current gear, R(γ), and
the angular velocity of the drive shaft, ωs, can be denoted as

R = f(γ)γ∈Γ, (11)

ωs(t) =

{
ωmin
s , γ(t) = 0,

v(t)R(γ)Rdg/rwhl, γ(t) ≥ 1,
(12)

ωs(t) ∈ [ωmin
s , ωmax

s ], ∀t, (13)

where ωmin
s refers to the idle speed of the engine. Furthermore,

as both the actuators (ICE and ISG) are connected to the same
drive shaft, their angular velocities are the same.

C. Internal Combustion Engine (ICE) Dynamics

Modelling the ICE dynamics accurately is quite challenging
due to the highly complex nonlinear interactions of its subsys-
tems. However, control-oriented modelling of both transient
and steady-state behaviours of an actuator-controller closed-
loop system is tractable [3], [40]. So, in this study, the dynam-
ics of the supercharged gasoline ICE with its integrated engine
control module (ECM) is modelled as a closed-loop actuator-
controller system as proposed in [40]. The ECM exploits
torque compensation mechanisms to ensure the delivery of
the requested ICE performance, as long as the request Pice,req

is within its bounds;

Pmin
ice (ωice) ≤ Pice,req(t) ≤ Pmax

ice (ωice). (14)

1) Dynamic Response Model: The simplified dynamic
model of the gasoline ICE proposed in [40] can be transformed
to its equivalent approximate representation in the power
domain, with a suitable response time constant τice, as follows

Ṗice(t) = (ηig(t)Pice,req(t)− Pice(t))/τice, (15)

Pice(t) ∈ [Pmin
ice (ωice(t)), P

max
ice (ωice(t))], (16)

where ηig refers to the ignition efficiency. The speed-
dependant bounds of the ICE power in (14) and (16) are
approximated as an affine function,

Pmin
ice = c1ωice + c0, Pmax

ice = c3ωice + c2. (17)

The model in (17) has a root mean squared error (NRMSE)
of about 2%−2.6% (normalized w.r.t. the maximum value of
data) within the speed range of interest, as shown in Fig. 2.

Fig. 2: Left figure shows the min-max limits of the ICE power. Its affine
models, Pmin

ice (dashed line) and Pmax
ice (solid line), have an NRMSE of about

2% and 2.6%, respectively in the operating speed range of 1500 rpm to
5000 rpm (grey shaded region). Right figure shows the min-max limits of the
ISG power. Its piece-wise affine models (Pieces: 1 and 2), Pmin

isg (dashed line)
and Pmax

isg (solid line), exhibit an NRMSE of about 2.1% each in the grey
shaded region. In both the figures, the power in y-axis and the NRMSE values
are normalized w.r.t. the maximum value of their respective measurements.

2) Dynamic Fuel Consumption Model: The static map of
the rate of gasoline energy consumption of ICE under steady
state (Pf,ss) is approximated as a nonlinear model as follows

Pf,ss = a0 + a1ωice + a2ω
2
ice + a3Pice + a4P

2
ice

+a5P
3
ice + ωicePice(a6ωice + a7 + a8Pice).

(18)

This model has an NRMSE of <0.5% (normalized w.r.t. the
maximum value of data) within the operating speed range,
as shown in Fig. 3(a). The dynamic energy consumption rate
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(a) Normalized values of the measured (dotted line) and the estimated (solid
line) gasoline consumption of the ICE, Pf,ss, illustrated as contour lines.
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(b) Normalized values of the measured (dotted line) and the estimated (solid
line) electrical power consumption of the ISG, Pisg,el, illustrated as contours.

Fig. 3: Gasoline consumption of the ICE and energy consumption of the
ISG. Both models exhibit a good fit, with a NRMSE of <0.5% in the
operating speed range of interest, 1500 rpm to 5000 rpm (shaded region in
grey). In both figures, the power in y-axis, the consumption contours and the
NRMSE values are normalized w.r.t. the maximum value of their respective
measurements.

Pf(t) can then be estimated using Pf,ss, ignition efficiency ηig,
the dynamic power response from (15), and the stoichiometric
ratio λsr, as [40]

Pf(t) =
Pf,ss (ωice(t), Pice(t)/ηig(t))

λsr(t)
. (19)

D. Integrated Starter Generator (ISG) and Battery Model

The electrical power transferred via ISG (Pisg,el) is rep-
resented by a nonlinear model and the bounds of the ISG
mechanical power delivery (Pisg) are approximated by piece-
wise affine functions as

Pisg,el = b0 + b1ωisg + b2ω
2
isg + b3Pisg + b4P

2
isg

+b5ω
3
isg + ωisgPisg(b6ωisg + b7 + b8Pisg),

(20)

Pisg(t) ∈ [Pmin
isg (t), Pmax

isg (t)], (21)

Pmin
isg = max{d3ωisg + d2, d1}, (22)

Pmax
isg = min{d6ωisg + d5, d4}, (23)

where ωisg is the ISG angular velocity. Figs. 2 and 3(b)
show that the models representing the bounds and power
consumption of the ISG have a good fit with an NRMSE of
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Inputs: Current states, speed and battery SOE limits, 

max trip time, and route information.
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Fig. 4: The Hierarchical Control Framework with the interfaces for the
proposed Supervisory Co-optimization Controller (SCC). Each layer operates
with different time scales, prediction horizons, and model abstractions. The
higher-level controller feeds the optimal trajectories of states and correspond-
ing dual variables as state references and co-state factors to the SCC. The
SCC then optimizes the power-split and gear trajectories, and orchestrates the
lower-level controllers by feeding them with optimal control targets.

∼2.1% and <0.5%, respectively, in the operating speed range.
The rate of energy consumption from the battery is given by

Pech(t) = Pisg,el(ωisg(t), Pisg(t)) + Paux(t)

+Rb(xb(t))P
2
ech(t)/U

2
ocv(xb(t)),

(24)

where xb is the state-of-energy (SOE) and Paux is the auxiliary
power. Since we optimize power-split instead of torque-split
in this work, the lumped internal resistance Rb and the open
circuit voltage Uocv of the battery are modelled as static
functions of SOE (based on experimental data similar to [44])
instead of battery state-of-charge (SOC) to avoid the need to
measure or estimate battery current in the HEV. The algebraic
solution for (24) is [40]

Pech(t) =
U2
ocv(xb)

2Rb(xb)

− Uocv(xb)

√
U2
ocv(xb)− 4Rb(xb)Pisg,el(t)

2Rb(xb)
.

(25)

III. OPTIMAL CONTROL PROBLEM FORMULATION

In this section, a supervisory control strategy is proposed to
minimize the energy consumption of the considered parallel
HEV powertrain by co-optimizing the power-split and the
gear selection. The ICE on-off decision, is not considered in
this work due to the absence of clutch between the ICE and
ISG in the powertrain configuration considered, see Fig. 1.
First, we describe the hierarchical control framework and its
assumptions considered in this study. Then we formulate the
energy management problem of the proposed controller as a
mixed-integer optimal control problem (MIOCP).

A. Supervisory Co-Optimization Controller (SCC)

We consider a hierarchical control framework as shown
in Fig. 4, where the controllers at different levels operate
with distinct time scales, prediction horizons, update rates
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and model abstractions. In this study, we focus only on the
supervisory co-optimization controller (SCC) that controls
different lower-level controllers by setting optimal targets.
Therefore, we only describe the SCC and its interface with the
controllers in other layers rather than describing the controllers
at higher and lower levels in detail.

In this study, it is assumed that the higher-level controller
(the oracle in Fig. 4) receives information of the road slope
α(t), speed limits, and traffic data from cloud-based navigation
service providers for both the current and future road segments
of a chosen route. Based on these predicted information, the
oracle optimizes the vehicle speed v(t), the battery SOE x∗

b(t)
and co-state λ∗

b(t) to minimize energy consumption for the
entire mission or over longer horizon with slower update rate
relative to SCC. This means that the higher-level controller
ensures the terminal constraints on trip time, battery SOE,
and distance are met. Since, such an optimization is performed
over long horizons, vehicle and powertrain models of higher
abstraction are used to ensure the problem is tractable. These
optimized predictions of speed and battery references are then
provided to the SCC, along with the internal battery parame-
ters, Uocv(x

∗
b) and Rb(x

∗
b). Meanwhile, lower-level controllers

transmit the current estimates of ignition efficiency ηig(t),
stoichiometric ratio λsr(t), and states Pice(t) and γ(t) to the
SCC for every MPC iterate. Among these, parameters ηig(t)
and λsr(t) are assumed to be constant within a single MPC
window. Then, the SCC uses these information to minimize
energy consumption by including models of actuator dynamics
and co-optimizing the future trajectories of power-split (Pice(t)
and Pisg(t)) and gear selection (γ(t)) in a shorter horizon
with faster update rate relative to the oracle. These optimal
trajectories of power-split and gear selection are used as opti-
mal control targets by lower-level controllers to control their
respective actuators. Representative values of horizon size and
update rates are provided in Fig. 4. Furthermore, we assume
a perfect prediction case to calculate the demand trajectories
and to optimize the decision variables subsequently.

Remark 1 (Optimization of co-state). As stated above, the
optimal co-state (equivalence factor) λ∗

b that relates the cost
of battery energy to fuel consumption is considered to be
optimized by the oracle. This co-state is a time-varying param-
eter for the SCC, which is explicitly shown in the parameter
vector θ(t) in (38c). The oracle could use methods based on
Pontryagin minimum principle which could ensure optimality
of the costate [6], [45]. Consequently, incases where the
battery limits could become active during a driving mission,
the co-state could typically be optimized iteratively or using
other adaptive or predictive methods based on the equivalent
consumption minimization strategy (ECMS) [6], [46].

Remark 2 (SOE dependence of battery parameters). The vari-
ation in internal battery parameters, Uocv(xb) and Rb(xb),
is negligible for small SOE deviations in an HEV [6]. Hence,
when the considered prediction horizon th is significantly
shorter than the fixed final time tf , i.e., th ≪ tf , it is reason-
able to neglect the SOE dependence in (25), and assume that
Uocv and Rb remain approximately constant for a prediction

horizon of a few seconds [6]. However, these constants are
updated each time the prediction horizon moves one step
forward in time t. In addition, the value of these constants
follows the SOE trajectory optimized by the oracle.

B. Mixed-Integer Optimal Control Problem Formulation

The objective of the SCC is to minimize the energy con-
sumption of the HEV powertrain over the control inputs uγ

(discrete) and Pice,req (continuous) while adhering to the state
dynamics x(t) defined in (8) and (15), for a specific horizon,
t ∈ [t0, th]. This MIOCP objective is stated as a Hamiltonian,

Hp = Pf(x, u, θ, t) + λ∗
b(t)Pech(x, u, θ, t), (26)

where the first and second terms aggregate gasoline fuel and
battery energy consumptions, respectively. While x, u, and θ
refer to the trajectories of the state, control, and parameter
vectors, respectively.

Furthermore, frequent gear changes are an unwanted side
effect when the gear is optimized to minimize energy or
fuel consumption [9], [32], [36]. To penalize this effect, an
additional cost is added to the objective as

W = wγ(|uγ(t)|), (27)

where wγ is an adjustable weight for penalizing gear changes
and the gear shift control input uγ is a function whose value is
non-zero only at instances of gear change and zero otherwise
[9]. It will be described in details in Section IV-F after the
discretization is performed. The energy management problem
to be solved by the SCC can then be formulated as an MIOCP,

min
x,u

∫ th

t0

{Hp (x, u, θ, t) +W (u, t)} dt (28a)

s.t. (7) to (10), (14) to (16) and (21). (28b)

IV. REFORMULATIONS FOR NUMERICAL EFFICIENCY

In this section, we describe numerically efficient reformu-
lation of the transmission models in (8) to (11), to reduce the
integer complexity in (28). In addition, we relax (7) to avoid
infeasibility due to resource constraints. Finally, we transcribe
the reformulated energy management problem into an MINLP.

A. Reducing the Size of Feasible Set of Gears

The TCM ensures the dependency of the transmission clutch
engagement decision (xcl) on the gear state (γ) as

xcl =

{
1 (engaged), γ ≥ 1, v ≥ ωmin

s rwhl,

0 (disengaged), γ < 1, v < ωmin
s rwhl.

(29)

Consequently, the neutral gear denoted by γ = 0 can then be
removed from (10) to reduce the set of feasible gears as

Γred = Γ \ {0}. (30)

Using this reduced set Γred in problem (28), instead of the
set described in (10), reduces the integer search space and, in
turn, the computational demand to solve (28).
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Fig. 5: Normalized gear ratio as function of gear. The black circles represent
the discrete data-set whereas the dashed-line shows the polynomial approx-
imation of ratio over γ ∈ Γred. The grey shaded region shows the reduced
operating gear range Γred considered for the reformulation of MIOCP.

B. Ratio Model as a Continuous Function of Gears

The integer complexity of the ratio model is reduced by
expressing it as a continuous function instead of a discrete
function. Fig. 5 shows the fit of such a ratio model Rpa, a
polynomial approximation of the ratio over γ, i.e.,

Rpa = e0 + e1γ + e2γ
2 + e3γ

3 + e4γ
4 + e5γ

5. (31)

The model (31) is monotonic over γ and exhibits an NRMSE
<0.001% at the integer values of γ ∈ Γred.

C. Reformulation of Gear Dynamics

The integer complexity is further reduced by transforming
the non-convex discrete gear dynamics in (8) to the continuous
domain, i.e., the gear dynamics is modelled as a continuous
state with a discrete control where γ ∈ [1, γmax]. Then, the
control input uγ is defined as a binary function [8], [32]

uγ(t) = dγ,up(t)− dγ,dn(t), uγ(t) ∈ U. (32)

To ensure that uγ still lies in the admissible control set U, an
additional constraint is added to the MIOCP as

dγ,up(t) + dγ,dn(t) ≤ 1, dγ,dn(t), dγ,dn(t) ∈ B, (33)

where B = {0, 1}. The constraint (33) ensures that the binary
control function in (32) satisfies the Special Order Set Property
(SOS-1) specified in [8], [32]. Such a constraint reduces the
admissible set by restricting umin

γ and umax
γ in (9) to values

−1 and 1, respectively, which means that the optimizer is only
allowed to effect a change of one gear lower or higher at once.
Although we present and validate our approaches with such a
restricted admissible set, it can be scaled to allow other values
for umin

γ and umax
γ stated in (9), by including additional binary

variables and combinatorial constraints. For example, to allow
change of two gears lower or two gears higher at once, (33)
can be replaced with

dγ,up,1(t) + dγ,up,2(t) + dγ,dn,1(t) + dγ,dn,2(t) ≤ 2, (34)
dγ,up,1(t), dγ,up,2(t), dγ,dn,1(t), dγ,dn,2(t) ∈ B, (35)

apart from the additional combinatorial constraints required to
restrict the feasible binary combinations to allowed values.

Notice that, even though the gear ratio is relaxed to a real-
valued function and the gear is relaxed to a real value, the gear
dynamics in (8) ensure that only integer gears are obtained as
long as the problem is initialized with an integer gear and all
following gear shifts are integer variables.

D. Relaxation of the Power Balance Constraint

To avoid feasibility issues due to actuator power limitations,
the equality constraint (7) is relaxed as

Pice(t) + Pisg(t) ≥ Ps(t). (36)

This relaxation entails that the net actuator power delivery
can be higher than the demand. However, such an allocation
is generally avoided by the optimizer, as it results in higher
cost. This implies that a strict equality is expected to hold
at the solution for all acceleration requests. However, in the
braking phase, strict equality of (36) cannot be guaranteed
at the solution ∀t due to the effect of dynamics on the ICE
braking capacity. This implies that the optimizer allocates or
requests less braking power from the actuators (ICE and ISG)
than the total demanded power. In such scenarios, the gap in
braking power is assumed to be compensated by a friction
brake controller that exists in the considered powertrain con-
figuration, but external to the SCC.

E. MPC Implementation of Reformulated MIOCP

Model Predictive Control (MPC) approach is used to im-
plement the SCC energy management problem, as MPC is an
effective online control framework to optimize a cost function
over a feasible set of constraints for a specific horizon in real-
time [5], [41], [42], [47]. The reformulated MIOCP can be
represented as

z = min
x,u

∫ ζ+th

ζ

{Hp (x, u, θ, t) +W (u, t)} dt (37a)

s.t. Ṗice(t) = f(Pice,req(t), Pice(t), θ(t)), (37b)
γ+(t) = γ(t) + dγ,up(t)− dγ,dn(t), (37c)
x(ζ) = x̂(ζ), (37d)
Pisg(t) ≥ Ps(t)− Pice(t), (37e)
dγ,up(t) + dγ,dn(t) ≤ 1, (37f)

umin(θ(t)) ≤ u(t) ≤ umax(θ(t)), (37g)

xmin(θ(t)) ≤ x(t) ≤ xmax(θ(t)), (37h)
γ(t) ∈ [1, γmax], (37i)
dγ,up(t), dγ,dn(t) ∈ B, (37j)

where the parameter x̂(ζ) denotes a vector of initial estimates
(guesses) for the states, i.e., [γ̂(ζ) P̂ice(ζ)]

T . Then, the state
x(t), the control u(t) and the input parameter θ(t) vectors are

x(t) =
[
γ(t) Pice(t)

]T
, (38a)

u(t) =
[
dγ,up(t) dγ,dn(t) Pice,req(t) Pisg(t)

]T
, (38b)

θ(t) =
[
v(t) α(t) Uocv(ζ) Rb(ζ) x̂T (ζ)

λ∗
b(t) λsr(t) ηig(t) Pdm(t) Paux(t)

]T
.

(38c)
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The problem is solved for t ∈ [ζ, ζ + th] and ζ ∈ [t0, tf − th]
where, t0 and tf represent the start time and the final time
of the driving mission, th refers to the chosen horizon and
ζ is the current time of the MPC. As mentioned earlier in
Section IV-C, initializing the gear state with an integer value,
i.e., γ(ζ) = γ̂(ζ) ∈ Γred, at ζ = t0, is vital to retain the integer
nature of the relaxed gear dynamics in (37c).

F. Transcribing the MIOCP to a Finite Dimensional MINLP

We use direct numerical optimization method, direct mul-
tiple shooting [48], to discretize the MIOCP (37) to a finite-
dimensional MINLP. This transcription enables exploitation
of the problem structure during the solution process [48]. The
resulting MINLP is represented as

min
x̃,ũ

L(x̃(N + 1|j)) +
N∑

k=1

ϕ(x̃(k|j), ũ(k|j), θ̃(k|j)) (39a)

s.t. x̃(k + 1|j) = f(x̃(k|j), ũ(k|j), θ̃(k|j)),∀k, (39b)

x̃(j|j) = ˆ̃x(j), (39c)

h(x̃(k|j), ũ(k|j), θ̃(k|j)) ≤ 0, ∀k, (39d)
γ̃(k|j) ∈ [1, γmax], ∀k, (39e)

d̃γ,l(k|j) ∈ B, l ∈ {up,dn}, ∀k, (39f)

where the equality (39b) represents the discrete form of
dynamics in (37b) and (37c), the inequality (39d) represents
the set of inequalities in (37e) to (37h). Similarly, the notation
(̃·) represents the discrete form of vectors in (38), L represents
the terminal cost, ϕ(·) represents the stage cost at each instant,
and (k|j) is the discrete form of continuous time notation, i.e.,

(t|ζ) 7−→ ((j + k − 1)∆t|j∆t) 7−→ (k|j) (40)

where ∆t represents fixed discretization or sampling interval,
k ∈ {1, 2, ..., N} refers to the instance within the prediction
horizon (th ⇔ N∆t) of N instances, and j refers to the cur-
rent (or update) instance of MPC in the mission. Subsequently,
the problem (39) is solved ∀j ∈ {1, 2, ..., (tf/∆t)−N}.

Notice that the objective term ϕ(·) in (39a) includes the
energy cost component (discretized form of Hamiltoninan in
(26)) and the gear shift cost component (to penalize frequent
gear changes). Furthermore, in problem (39), we use the binary
shift control function uγ as defined in Equations (32) and (33).
Consequently, the gear shift cost component becomes a simple
function of the binary variables as represented below,

wγ(d̃γ,up(k|j) + d̃γ,dn(k|j)). (41)

V. NUMERICAL SOLUTION STRATEGIES

In this section, we explain the two numerical strategies pro-
posed to approximately solve the finite-dimensional MINLP
(39) in a computationally efficient manner.

A. Proposal I: Selective Relaxation Approach (SRA)

In an MPC framework, only the first control action is used
among the optimal sequence for the current horizon [48].
Hence, when we solve the problem (39), we only need the

first control action to be an integer. We exploit this fact in the
SRA strategy and solve a ‘selectively-relaxed’ MINLP as

min
x̃,ũ

L(x̃(N + 1|j)) +
N∑

k=1

ϕ(x̃(k|j), ũ(k|j), θ̃(k|j)) (42a)

s.t. (39b) to (39e), (42b)

d̃γ,l(k|j) ∈

{
B k = 1, ∀l,
[0, 1] k ∈ {2, ..., N}, ∀l,

(42c)

where l ∈ {up,dn}. The top case in (42c) shows that the
binary constraint is enforced only on the first control ac-
tion, while the rest of the controls in the current horizon
are relaxed within the continuous range between [0, 1]. This
‘selectively-relaxed’ problem can be solved faster compared
to problem (39) using off-the-shelf MINLP solvers. To further
improve the speed of the solution, in a custom implementation
of MINLP solver, problem (42) is decomposed into several
subproblems such that an NLP is solved for each integer
combination of d̃γ,l(j|j) ∈ B, ∀l that satisfies (32) and
γ̃(j + 1|j) ∈ Γred at each time step j.

B. Proposal II: Round-n-Search Approach (RSA)
The attractive feature of the ‘relax-n-round’ strategy is

the low computational cost, whereas the inability to ensure
feasibility is the major limitation of the strategy [32], [33].
This ‘relax-n-round’ strategy, when applied on (39), induces
infeasibility in two cases: i) When the rounded optimal action
results in a gear in which the actuators cannot deliver the
power demanded in the original problem (39); and ii) When
the rounded optimal action results in an infeasible gear in
(39), which can occur when the current gear is at or close to
the feasible region boundary. We overcome these issues in the
proposed RSA strategy by searching the integer feasible space
around the solution of the relaxed problem. The motivation
is that if the relaxed problem has an optimal and feasible
solution, and the integer feasible region of (39) is non-empty,
then there exists at least one integer control action (∃uγ ∈ Z)
around that relaxed solution which is feasible in the MINLP
(39). Although theoretical proof to guarantee feasibility of
RSA is not provided in this article, the RSA strategy is able
to overcome the infeasibility issue faced by known ‘relax-n-
round’ strategies in a simulation study with different drive
cycles as explained later in Section VII-F. The RSA is a four-
step strategy:

Step 1 - Full Relaxation of the MINLP (FR-MINLP): At
time step j = 1, the binary constraint on the shift variables
(39f) is relaxed to obtain the continuous form of the MINLP
(39). This relaxation results in an NLP as

min
x̃r,ũr

L(x̃r(N + 1|j)) +
N∑

k=1

ϕ(x̃r(k|j), ũr(k|j), θ̃(k|j))

(43a)
s.t. (39b) to (39e), (43b)

d̃γ,l,r(k|j) ∈ [0, 1], l ∈ {up,dn}. (43c)

where the vector of relaxed control variables is given by,

ũr=
[
d̃γ,up,r d̃γ,dn,r P̃ice,req P̃isg

]T
, (44)
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Algorithm 1: Round-n-Search Approach (RSA)

Solution process for update index j and l ∈ {up,dn}.
Input: Initial estimate ũ(k|j) or solution ũ∗(k|j − 1),

and parameter θ̃(k|j), ∀k.

Phase-I: Preparation
if j = 1 then

Relax integrality constraint, d̃γ,l,r(k|j) ∈ [0, 1] | ∀l.
Compute lower bound solution, ũr(k|j).

else
Build an approximation of lower bound solution,

ũr(k|j) =

{
ũ∗(k + 1|j − 1), k = 1, ..., N − 1,

ũ∗(k|j − 1), k = N.

end

Phase-II: Solve for integer feasible solution
Compute integer feasible set Ursa(j) from ũr(j|j).
Parameterize the MINLP over ˆ̃u0 by fixing the binary
controls, i.e., d̃γ,up(j|j)− d̃γ,dn(j|j) = ˆ̃u0.

Minimize the resulting bi-level NLP to get x̃∗, ũ∗.
return x̃∗(k|j), ũ∗(k|j),∀k

=⇒ d̃∗γ,l(k|j) ∈

{
B k = 1, ∀l,
[0, 1] k ∈ {2, ..., N}, ∀l.

and x̃r represent the state trajectory due to the relaxed control,
ũr. This relaxed problem, referred to as FR-MINLP, is solved
using an NLP solver to obtain the lower bound solution of
(39) for a specific j, i.e., a single MPC update.

Step 2 - Round and Search: The solution of FR-MINLP
ũr(j|j) is used to find the closest integer admissible set Ursa(j)
for the shift variables in the control vector ũ(j|j) as

Ursa(j) ={ˆ̃u0 | γ̃+(γ̃(j|j), ˆ̃u0) ∈ Γred,

ˆ̃u0 ∈ {⌊uγ,r⌋, ⌈uγ,r⌉}, ⌊uγ,r⌋, ⌈uγ,r⌉ ∈ U,

uγ,r = d̃∗γ,up,r(j|j)− d̃∗γ,dn,r(j|j)},
(45)

where ⌈·⌉ and ⌊·⌋ represent the round-up and round-down
operations, respectively. Then the solution for MINLP (39)
at time step j is given by the minimizer of the problem

[x̃∗, ũ∗] = argmin
x̃(ˆ̃u0),ũ(ˆ̃u0)

zps(x̃, ũ, θ̃, ˆ̃u0), (46a)

s.t. (x̃(ˆ̃u0), ũ(ˆ̃u0)) ∈ π∗(ˆ̃u0), ˆ̃u0 ∈ Ursa(j), (46b)

which is a bi-level optimization (parametric NLP) version of
MINLP (39) parameterized over ˆ̃u0, where the cost zps(·) is

L(x̃(N + 1|j)) +
N∑

k=1

ϕ(x(k|j), ũ(k|j), θ̃(k|j), ˆ̃u0), (47)

and the implicit policy π∗ is a minimizer of the subproblem

π∗(ˆ̃u0) = argmin
x̃,ũ

zps(x̃, ũ, θ̃, ˆ̃u0), (48a)

s.t. (39b) to (39e) and (43c), (48b)

d̃γ,up(j|j)− d̃γ,dn(j|j) = ˆ̃u0, (48c)
ˆ̃u0 ∈ Ursa(j), (48d)

Note that the policy π∗(ˆ̃u0) has two candidate solutions, one
for each ˆ̃u0 ∈ URSA. Consequently, minimization over the
parameter space in problem (46) provides the optimal solution.
Furthermore, given the admissible set in (45) is nonempty,
the minimization process in (46) ensures the feasibility of the
solution of RSA ∀j and the closeness of the solution to the MI
optimum. Supportive results are provided in Section VII-F.

Step 3 - Shifting from One Solution to the Next: The
predicted control actions in the solution of problem (46), i.e.
ũ∗(k|j) for k ∈ {2, ..., N}, are close to the solution at j + 1.
This aspect is further exploited to avoid solving (43) again for
the next iterate(s) of the MPC. An approximate solution to the
problem (43) at j + 1 is built by shifting ũ∗ at j as

ũr(k|j + 1) =

{
ũ∗(k + 1|j), k = 1, ..., N − 1,

ũ∗(k|j), k = N,
(49)

where the case ũr(k|j + 1) = ũ∗(k|j), k = N, refers to the
additional element needed to ‘complete’ the approximation of
the vector of controls.

Step 4 - Repeat 2 and 3: Steps 2 and 3 are repeated, where
the built control sequence (49) is used to find the integer
admissible set Ursa(j) in (45), instead of using the sequence
ũ∗
r (j|j) of (43), for j ∈ {2, 3, ..., (tf/∆t)−N}.
Furthermore, to solve the original MINLP (39), the control

approximation in step 3 reduces the call to an NLP solver
by 30% − 45% compared to repeating step 1 for j > 1.
Detailed description of this reduction in computational demand
is presented in Section VII-D.

VI. BENCHMARK CONTROLLERS

This section explains the different benchmark controllers
that were implemented to obtain reference solutions, which
are further used to analyze the performance of the proposed
strategies in terms of optimality, effective energy savings, and
computational demand in the parallel-HEV.

1) Rule-Based Gear Controller: In this heuristic controller,
referred to as BMrk-RB controller, we assume that the TCM
uses an experimentally tuned map-based gear shifting algo-
rithm to decide the appropriate gear γ̃(k|j) based on velocity
ṽ(k|j) and power demand P̃dm(k|j), since it is a typical
approach in production vehicles. Using this shift map, the gear
γ̃(k|j) and inturn the angular velocities ω̃s(k|j), ω̃ice(k|j) and
ω̃isg(k|j), and the velocity-dependent actuator power limits
in (14), (16) and (21) can be estimated for the given mission,
prior to optimization. Hence, MINLP (39) is reduced to a
much simpler NLP where the objective is to find an optimal
control input ũ(k|j) that allocates the demand between the two
actuators while minimizing the overall energy consumption of
the HEV. This simplified controller is the exact optimal power-
split controller, dy-MPC, proposed in our previous work [40].
The solution of this controller is used as a reference against
which the rest of the strategies considered in this study are
compared to understand the benefit of co-optimizing the power
split and the gear decisions in parallel-HEVs, while consider-
ing the ICE dynamics explicitly in the control problem.
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TABLE I: Parameter Values of Control-Oriented Models.

Parameter Value Parameter Value

Afa 1.92 m2 R(γ = 1) 5.2500
cad 0.035 R(γ = 2) 3.0288
crr 0.66 R(γ = 3) 1.9500
m 2150 kg R(γ = 4) 1.4570
g 9.82 m/sec2 R(γ = 5) 1.2209
ρair 1.18 kg/m3 R(γ = 6) 1.0000
rwh1 0.37 m R(γ = 7) 0.8086
Jwh1 3.5 kgm2 R(γ = 8) 0.6731
Jice 0.4 kgm2 Rdg 3.1000
Jisg 0.05 kgm2 Pmax

ice 257 kW
τice 1.25 sec |Pmax

isg | 35 kW
wγ 18.00 λ∗

b(t) 2.22 ∀t
ηγ(γ = 1 : 8) 0.97 Engine idle 900 rpm

2) Dynamic Programming (DP): Among the states in (37),
since the gear dynamics (37c) is discrete in nature, we
discretize only the continuous ICE dynamics (37b) to solve
MIOCP (37) using the DP algorithm, as suggested in [3]. The
bounds of the P̃ice state grid are defined as,

P̃ice ∈ [P̃min
ice (ωmin

s ), P̃max
ice (ωmax

s )]. (50)

The cost criteria is a function of the initial state x̃(j|j),

JDP(x̃(j|j)) = L(x̃(N + 1|j)) +
N∑

k=1

ϕDP(·), (51)

where ϕDP(·), a function that penalizes both the infeasible
state (P̃ice) and the non-admissible controls, is defined as

ϕDP =

{
ϕ(x̃(k|j), ũ(k|j), θ̃(k|j)), x̃ ∈ χd, ũ ∈ Ud,

∞, otherwise,
(52)

where χd and Ud denote the feasible region and admissible
controls defined by constraints (39d), (39f) and (50). Then the
optimal control policy ũ∗(x̃(j|j)) is found as

ũ∗(x̃(j|j)) = argmin
ũ(x̃,k|j)

JDP(x̃(j|j)). (53)

During the solution process, we invert the linear dynamic
models in (37b) and (37c) to find the exact control signals,
Pice,req and uγ , required to move between the state grid
points. This approach avoids the need for discretization of the
control Pice,req and improves the speed of policy estimation.
Furthermore, this approach avoids the need for interpolation
by choosing the initial state to be exactly at a grid point.

The solution JDP(ũ∗) is a close approximation to the
optimum of MINLP (39). Therefore, the solution JDP(ũ∗)
is used as an effective measure to assess the optimality gap of
the solutions obtained using the proposed strategies.

VII. SIMULATION RESULTS AND DISCUSSION

A dynamic simulation of the considered SCC energy man-
agement problem was carried out using plant models of the
considered HEV platform, described in Section II.

A. Simulation Strategy and Setup

To validate the proposed numerical control strategies, a
hybrid approach (refer [1, p. 12] for pictorial representa-
tion) was adopted, i.e., a backward simulator is first used
to determine the optimal power split and gear choice using
predicted information (refer III-A for details on predicted
trajectories). These optimal controls are then applied to the
forward simulator plants to estimate the actual fuel and energy
consumption of the HEV. The forward simulator uses a feed-
back mechanism to compensate for vehicle speed deviations
arising from modelling inaccuracies and powertrain saturation.

The parameter values of the control-oriented models used
in this study are provided in Table I. Furthermore, elements
of the vector of initial estimate (guesses) ˆ̃x(j) are initialized
as ˆ̃γ(j) = 1 and ˆ̃Pice(j) = 0, when j = 1. Meanwhile,
the other decision variables in the current MPC window are
initialized as 0s. All these initial values are chosen to be within
the feasible region defined by the constraints (39d) to (39f)).
However, when j ̸= 1, the estimates (ˆ̃γ(j) and ˆ̃Pice(j)) of the
current states are provided by lower-level controllers as stated
in Section III-A. In this case, rest of the decision variables
in the horizon are initialized at the predicted values of the
previous MPC solution due to their closeness to the solution
of the current MPC iterate.

Other configurations and scenarios considered to evalu-
ate the strategies are: i) The solutions of problems (42)
and (46), referred to as ‘SRA’ and ‘RSA’ respectively, are
generated using a custom prototype implementation of the
proposed strategies, which inturn calls IPOPT to solve NLP
(43) and (48), and the decomposed version of (42); ii) To
compare the performance and optimality of the proposed
strategies, three additional variants of the HEV were sim-
ulated, where two of these variants use controllers BMrk-
RB and DP (described in Section VI), respectively, while the
third variant uses the FR-MINLP strategy in which (43) is
solved for ∀j assuming the transmission to be continuously
variable as in (31); iii) To evaluate the integer feasibility of
the proposed strategies (RSA and SRA) against the known
rounding strategies, the relaxed solution of FR-MINLP is
rounded using standard rounding (SR) and sum-up rounding
(SUR) strategies stated in [32], [33]. For all the simulations,
a discretization interval ∆t = 0.5 sec was used. A prediction
horizon th = 10 sec was used to evaluate the solution strategies
for the entire mission over multiple MPC updates, while a
prediction horizon th = tf − t0 was used only for single MPC
update cases. Furthermore, the time-varying parameter λ∗

b(t)
was optimized offline using methods stated in Remark 1. All
simulations were performed on a computer with 32GB of
RAM and an octa-core processor operating at 2.3GHz.

B. Solutions of the Proposed Strategies (SRA and RSA)

The proposed strategies, SRA and RSA, were evaluated
for the WLTC Class-3b drive cycle, and the corresponding
solution trajectories are shown in Fig. 6. The primary observa-
tion is that the solution, i.e., the state and control trajectories,
of both the proposed strategies (SRA and RSA) are exactly
the same. Secondly, the proposed strategies did not encounter
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Fig. 6: This figure shows that the solutions of both the proposed strategies,
SRA and RSA, are exactly the same, i.e., in the actuator dynamics and the
gear trajectories. All the states and control inputs are within bounds. The
power in the plots are normalized with a single scaling factor.

infeasibility issues during the solution process. Therefore, the
solution of RSA and SRA are within their respective min-max
limits (feasible region).

Furthermore, both strategies have allocated a higher per-
centage of propulsive demand to ISG at low vehicle speeds
and power demand (around 0 sec ≤ t ≤ 475 sec), where
ISG is highly efficient compared to ICE. This allocation to
ISG decreases as vehicle speed and power demand increase,
to the extent that ICE is widely used to deliver propulsive
demand at speeds greater than 90 kmph and power demand
greater than 25 kW. However, both strategies fully exploit the
regenerative capacity of the ISG at all speeds. Furthermore,
the gear selection is such that the actuator operating speeds
are in the range of 900 rpm to 3300 rpm.

C. Performance Comparison of SRA and RSA Strategies

Fig. 7 shows the comparison of the total cost reduction with
its two principal components, energy savings and shift cost
reduction, achieved by the evaluated strategies as a relative
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(a) This bar graph shows cost comparison over a single MPC update with
a prediction horizon th = tf − t0. The solutions of the proposed strategies,
SRA and RSA, lie between the solutions of the FR-MINLP (lower bound of
(39)) and the DP (upper bound of (39)) strategies, respectively.

(b) This graph shows cost comparison over the entire mission with th =
10 sec. The total cost reduction achieved by both RSA and SRA strategies
(3.6%) is only less by 1% compared to the reduction realized by DP, which
shows the closeness of their solution to the global optimum. FR-MINLP
solution is neglected as it is not integer feasible.

Fig. 7: Comparison of total cost reduction and its two principal components,
energy savings and shift cost reduction, of the evaluated strategies as a relative
percentage change w.r.t. the cost of the BMrk-RB strategy.

TABLE II: Reduction in gear changes (improvement of ride comfort) for the
entire mission (multiple MPC update case with th = 10 sec)

Control Strategies Total Gear Shifts Reduction in gear shifts

BMrk-RB 150 nos. Reference

DP 138 nos. 8 %

SRA 112 nos. 25 %

RSA 112 nos. 25 %

percentage change w.r.t. the cost incurred by the BMrk-
RB strategy. While Fig. 7(a) shows the comparison of cost
reduction in a single MPC update with a prediction horizon
th = tf − t0, a similar comparison for the entire mission over
multiple MPC updates with a prediction horizon of 10 sec
is shown in Fig. 7(b). Furthermore, since the shift cost is
a weighted sum of gear changes with wγ as weight as in
(27), the shift cost reduction in Fig. 7(b) correlates exactly
with the reduction in the number of gear changes in Table II.
However, due to the relaxed nature of the solutions (except DP)
in Fig. 7(a), the shift cost reduction of FR-MINLP should be
considered an effective upper bound for SRA and RSA.

There are two primary observations from Fig. 7. First, the
optimal objective value (the total cost) and the energy savings
of the RSA strategy were marginally less (<0.002%) than the
SRA strategy for both prediction horizon cases, th = 10 sec
and th = tf − t0. Second, as both RSA and SRA strategies
have exactly same gear trajectories as their solution, their gear
shift costs are same for the penalty considered, wγ .

Remark 3 (Effect of gear shift penalty wγ). When wγ is
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Fig. 8: Box plot showing the computational time statistics for a prototype
implementation of few algorithms evaluated conceptually in this study, with
th = 10 sec. RSA strategy has a mean computation time of 64ms, which is
36% less than the 100ms demanded by SRA. DP demands a mean time of
9890ms.

reduced by 45% the RSA strategy consumes around 2.4%
more energy but has around 2.5% less gear shifts compared
to the SRA strategy. Less shifts enhance the attribute ’ride
comfort’ for the RSA-based HEV.

These observations show that both the proposed strategies
perform equally well in terms of the two conflicting perfor-
mance objectives. These strategies can be further tuned to
enhance ride comfort (reducing gear changes) or minimize
energy consumption.

D. Computational Demand of SRA and RSA Strategies

From Fig. 8, the RSA strategy shows a considerable reduc-
tion in the mean computational load, around 36%, compared
to the SRA strategy. This is due to the fact that RSA solves
only two subproblems (i.e., RSA searches for the optimum
among two candidate solutions) while SRA solves three
subproblems to find an approximate solution to the MINLP
(39). Specifically, the RSA strategy minimizes the parametric
NLP (46) over two values of ˆ̃u0 at each j > 1, since the
admissible set Ursa(j) has a maximum of only two integer
feasible controls (round-up and round-down values of the
relaxed solution) over which (46) is minimized (also recall
that the control approximation in step 3 of RSA approach
in Section V-B eliminated the need for an additional call
to an NLP solver to solve (43) at each j > 1 to find the
lower bound solution). Whereas, the SRA strategy typically
solves a maximum of three subproblems (NLP) resulting from
any three binary combinations of candidate control actions
d̃γ,l(j|j) ∈ B,∀l, at each j to solve (42). Hence, SRA has a
higher computational load, whereas RSA performs relatively
better. However, both SRA and RSA are about 99 times faster
than DP.

Remark 4 (Implementation maturity). In this article, we have
focused on conceptually establishing the practical implications
and real-time capabilities of the proposed numerical strate-
gies. Consequently, the computational time statistics shown in
Fig. 8 are based only on a prototype implementation of the
algorithms considered. Therefore, these results should be seen
as a proof-of-concept rather than as a case of benchmarking
mature implementation of the algorithms. Furthermore, the
order of magnitude of the runtimes in Fig. 8 depicts pes-
simistic upper bounds for the algorithms, because a mature
implementation of these algorithms could be done differently.

For example, our prototype implementation in Matlab exten-
sively uses the routines in CasADi [49] and its harness for
solver IPOPT [50]. It is quite possible to achieve significant
improvements in runtime by using software tailored for real-
time MPC implementation with dedicated linear algebra and
QP routines like HPIPM [51].

E. Benefits of Co-Optimization Against BMrk-RB Strategy

To evaluate the benefit of co-optimization strategies in
HEVs, we analyze the performance of DP and the proposed
strategies against the BMrk-RB strategy, in which we optimize
only the power-split decision.

1) Over a Single MPC Update: Fig. 7(a) shows that all co-
optimization strategies were able to improve cost reduction,
energy savings, and ride comfort, compared to BMrk-RB.
Among the co-optimization strategies, DP has the least cost
reduction, as its solution is restricted to integer feasible values,
unlike the relaxed nature of the problems solved by RSA,
SRA and FR-MINLP. Although relaxed solutions appear to
have the same cost in Fig. 7(a), the actual cost reduction of
SRA and RSA was less than (<0.009%) that of FR-MINLP.
Such properties of the solutions show that FR-MINLP and
DP provide an effective lower and upper bound to the original
MINLP (39), respectively, within each MPC update.

2) Over Entire Mission with Multiple MPC Updates:
Fig.7(b) shows that all co-optimization strategies were able
to achieve >3.6% cost reduction compared to BMrk-RB
emphasizing the benefit of co-optimizing power-split and gear
selection. The proposed strategies were able to realize around
78% of the total cost reduction achieved by DP. Further
analysis shows that both SRA and RSA were able to realize
only 25% energy savings, while they managed about 68%
more gear shift reduction compared to DP, respectively. Such
high energy saving of DP is due to the integer feasibility of
its solution throughout the prediction window. Unlike the case
of a single MPC update, the relaxed nature of the problem
solved by the SRA and RSA strategies results in convergence
to local solutions over multiple MPC updates.

Actuator Operating Points Chosen by Co-optimizers: To
further understand the impact of co-optimization, the distribu-
tion of actuator operating points, i.e., the ICE and ISG power
delivery as a function of their angular velocity, is represented
as a heat map over the actuator efficiency contours in Fig. 9.
Furthermore, the black dashed line (Max. Efficiency) shows
the most efficient operating point of the actuator. The main
observations in Fig. 9 are: i) The rule-based gear map used
in BMrk-RB operates the actuators mainly in the range of
1700 rpm to 2100 rpm, whereas the co-optimization strategies
choose a velocity spread of 900 rpm to 3300 rpm, by exploit-
ing the additional freedom of gear selection; ii) Unlike BMrk-
RB, the co-optimization strategies operate the ICE (the least
efficient actuator) at the most efficient operating point possible
(relative to the power demand at each time step) which reflects
as the hotter region in the ICE operating point distribution
(i.e., higher number of instances a specific operating point
was chosen) being in parallel with the maximum efficiency
line; iii) Similarly, the hotter region in the ISG distribution
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Fig. 9: Distribution of the actuators operating points for the proposed and
benchmark strategies. The BMrk-RB strategy operates the actuators mainly
in the range of 1700 rpm to 2100 rpm, whereas the co-optimization strategies
choose a wider spread of 900 rpm to 3300 rpm by exploiting the additional
freedom of gear selection. The co-optimization strategies frequently chose
operating points that are close and parallel to the maximum efficiency line
(w.r.t. the operating speed) resulting in energy savings of 2.1% − 8.1%
compared to BMrk-RB. In the colorbar used, the numerical values 0 and 100
represent the minimum and the maximum number of instances an operating
point was chosen by the control strategy. Subsequently, these values indicate
the cold and hot regions in the heatmap, respectively.

shows that the co-optimization strategies allocate most of the
power demand to the ISG at low speeds where the ICE is the
least efficient and then gradually shift the load to the ICE as
the speed increases.

Effect of Co-state on Operating Point Selection: The consid-
ered co-state parameter λb (translates into a unit cost of battery
energy) has a considerable impact on actuator allocation and
gear selection. For example, the hot spot of the operating
speed range moves toward the high-speed region, as well as
the percentage of propulsive demand allocated to the ICE
increases as λb increases, as shown in Fig. 10. Furthermore,
since λb used in Fig. 10 is sufficiently high (3 times the λb

used in Fig. 9), the allocation is such that ICE is used to charge
the battery (ISG in generation mode) in addition to delivering
the entire or a large part of propulsive demand. Moreover,
the hot spots of the ICE operating points are closer to the
maximum efficiency line in Fig. 10 compared to Fig. 9.

Fig. 10: Actuator operating point distribution of the proposed strategies with
3λb, i.e., 3 times the value of co-state used to obtain the results in Fig. 9. The
hot-spot (colors in the range between red and orange) of the ICE operating
points are now closer to the maximum efficiency line and are grouped at
higher speeds (around 3000 rpm), compared to the values in Fig. 9. The ICE
delivers entire or major part of the propulsive demand whereas the ISG is
either in generation or regeneration mode.

Fig. 11: Plot showing the infeasibility issue in known standard rounding
(SR) and sum-up rounding (SUR) strategies [32], [33] against the proposed
strategies, under WLTC Class-3b drive cycle. Blue solid line shows the gear
trajectory for RSA and SRA strategies whereas the red dotted line shows the
trajectory for the known rounding strategies being compared. Black circles
around 140 sec and 390 sec show the instances where the usage of SR and
SUR resulted in infeasible gear values in which the actuators were not able
to deliver the demanded power. Notice that at these instances the proposed
strategies have chosen a gear lower than the rounding strategies to ensure
feasibility of the solution.

These observations show the superiority of co-optimization
strategies (DP, SRA and RSA) as they realize around 2.1%−
8.1% energy savings compared to BMrk-RB, by exploiting
the additional control freedom of gear selection.

F. Feasibility of Proposed Strategies Against Known Relax-N-
Round (Rounding) Strategies

Fig.7(b) shows that the proposed strategies, RSA and SRA,
managed to find a feasible integer solution for (39) which is
within 1% of the DP solution. However, when the relaxed
solution of FR-MINLP was rounded using known strategies
such as standard rounding (SR) and sum-up rounding (SUR)
stated in [32], [33], its resulting solution is not integer feasible

TABLE III: Feasibility of RSA and SRA against known rounding strategies.

Drive
Cycle

SRA / RSA
Strategy

Rounding Strategies
(SR / SUR) [32], [33]

WLTC (Class 3b) Feasible Infeasible

CADC (Urban) Feasible Infeasible

CADC (Rural Road) Feasible Infeasible

CADC (Motor Way) Feasible Infeasible

US06-SFTP Feasible Infeasible
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in the original problem (39). Therefore, the solution of FR-
MINLP is not included in Fig.7(b).

To further confirm this observation of improvement in solu-
tion feasibility, the proposed strategies were evaluated against
known rounding strategies (SR and SUR) for additional drive
cycles like Common Artemis Driving Cycles (CADC) and
US06 - Supplemental Federal Test Procedure (US06-SFTP).
The corresponding results in Table III show that both RSA and
SRA managed to find a feasible integer solution for (39) while
the known rounding strategies suffer from infeasibility for the
drive cycles considered. These results support the feasibility
argument proposed in Section V-B. For example, the reason
for the infeasibility of the known rounding strategies is that the
rounded control action resulted in a gear in which the actuators
were not able to deliver the demanded power in (39), as shown
in Fig.11 for the WLTC Class-3b drive cycle. This issue is
overcome by the proposed RSA strategy due to the presence
of the re-optimization process after the rounding action (Step
2 in Section V-B), which searches for feasible integer value
around the relaxed solution. Whereas, in SRA, the ‘selective
relaxation’ enforced by constraint (42c) ensures that the first
control action in each MPC horizon is, in fact, integer feasible.

G. Optimality of the Solution and the Effect of Horizon

To evaluate the optimality of the proposed strategies, RSA
and SRA, we intend that the solutions of FR-MINLP and
DP provide the respective lower and upper bounds for (39).
However, from Figs. 7(b) and 9 it is observed that DP provides
a closest approximation of the optimum of (39), due to the
integer nature of its solution. However, the solution of FR-
MINLP (z∗r ) is infeasible in the original problem (39). There-
fore, it is not obvious how to quantify the exact optimality
gap of the solutions of the RSA and SRA strategies without
knowing a lower bound solution. However, since the difference
in the total cost reduction achieved by the proposed strategies
and the DP is within 1%, the solutions of both RSA and SRA
are considered to be rather close to the optimum.

Furthermore, the above observations in the optimality of the
solutions of DP and FR-MINLP contradict that in Fig. 7(a)
where FR-MINLP and DP provide an effective lower and
upper bound, respectively, to (39) over a single MPC update.
This contradiction is due to the difference in the horizon size
in both cases. This shows that more studies are required to
understand the effect of the horizon and realize the maximum
potential of the proposed strategies.

H. Sensitivity of the Solution to Initial Estimates (Guesses)

As stated in Section VII-A, only the initial guesses for the
decision variables at the start of the mission (j = 1) can be
chosen. Therefore, its choice can affect the convergence to the
solution. For all other time steps (j ̸= 1), the MPC controller
uses the current state estimates from the lower-level controllers
and the predicted values from the immediate previous solution
as an initial guess for the remaining decision variables in each
MPC update. Since we used the previous solution at the time
steps j ̸= 1, the trajectory of the solution for the entire mission
is sensitive only to the initial guess at the first time step j = 1.

Fig. 12: Plot showing the effect of different initial guesses ˆ̃x(j) on gear state
evolution. For the feasible initial guesses shown, the resulting trajectories
converge to the same solution despite the initial differences. Other decision
variables were initialized with a feasible value during the evaluation.

To understand the effect of this first initial guess on the
solution of the proposed strategies under WLTC Class 3b
cycle, different feasible values were evaluated as initial guesses
for the decision variables in the problem (39), at j = 1.
Among them, the initial guess ˆ̃γ(j) of the gear state showed a
noticeable difference in the solutions of the proposed strategies
and is therefore presented in Fig. 12 while ignoring the rest.

Fig. 12, shows the variation in the evolution of the gear-
state trajectory during the first 50 sec of the WLTC Class 3b
cycle, when the problem (39) was solved for different values of
ˆ̃γ(j) while initializing the other decision variables to any fixed
feasible value at j = 1. All trajectories converge to the same
solution in a few time steps, despite differences in the feasible
initial guesses considered. Although the initial difference in the
solutions resulted in a marginal variation in total gear shifts,
in the range of 110 nos to 114 nos , the variations in total cost
and energy savings were negligible (<0.001%).

VIII. CONCLUSION

In this paper, the energy management problem of co-
optimizing the gear and power-split is formulated as an
MIOCP by explicitly including the continuous dynamics of
ICE and the discrete dynamics of gear (transmission). Then,
numerical relaxations and reformulations of the MIOCP are
proposed to reduce the computational demand of the solution
process. Two numerical solution strategies, the Selective Re-
laxation Approach (SRA) and the Round-n-Search Approach
(RSA), are proposed to approximately solve an MINLP, the
transcribed version of the MIOCP. The proposed strategies
are then evaluated against benchmark strategies based on rule-
based gear selection and DP, on an HEV simulation platform.

The results show that the proposed co-optimization strate-
gies, RSA and SRA, show superior performance with a cost
reduction of around 3.6% compared to the rule-based gear
selection strategy commonly used in production vehicles. This
shows the benefit of co-optimizing gear selection with the
power-split decision while considering the actuator dynamics
explicitly in the optimization. Among the proposed strategies,
the RSA strategy shows a reduction of around 35% in the
mean computation time compared to the SRA strategy. How-
ever, both proposed strategies perform equally well in terms
of conflicting performance objectives, as their cost difference
is negligible (<0.002%). In addition, both strategies can be
further tuned to enhance ride comfort (reducing gear changes)
or minimize energy consumption.
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Furthermore, both proposed strategies show superior per-
formance in terms of integer feasibility, i.e., both SRA and
RSA were able to overcome the infeasibilities encountered
by known rounding strategies under different drive cycles.
Furthermore, the cost reduction achieved by both RSA and
SRA (3.6%) is only less by 1% compared to the reduction
realized by DP, while remaining 99 times faster than DP. This
shows the computational benefit of the proposed strategies and
the closeness of their solutions to the optimum.

These results show that simple relaxation-based numerical
solution strategies are an efficient method to solve the mixed
integer optimal control problem in real-time on an online (or
embedded) controller in electrified automotive applications.
Furthermore, these proposed mixed-integer solution strategies
can be extended and integrated into a computer software
in future intelligent transportation systems to solve similar
MI problems, including charge point selection for electric
vehicles, fleet management, intelligent traffic management, and
a wide range of other mobility solutions.

As part of future work, understanding the effect of factors
like unique shift penalty for each strategy (or replacing penalty
with a hard constraint on number of gear changes), horizon
size, parameter variations, and prediction inaccuracies, on
optimality and computational demand is vital to maximize the
potential of the proposed strategies in a real world application.
Importantly, more work is needed on theoretical guarantees
for the feasibility and expected optimality gap. In addition,
evaluating the proposed strategies against approaches like
ADMM-based [15], [39], combinatorial integral approxima-
tion decomposition [32], [33], [52], [53], iterative [9], [34],
[35] and others [36], [37] is of key interest. Furthermore, we
intend to consider variations in actuator capability (similar
to [54]) and improve the maturity of implementation of the
proposed strategies to evaluate their performance in a concept
vehicle in the near future.
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