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A B S T R A C T

Near infrared (NIR) and Raman spectroscopy combined with multivariate analysis are established techniques
for the identification and quantification of chemical properties of pharmaceutical tablets like the concentration
of active pharmaceutical ingredients (API). However, these techniques suffer from a high sensitivity to particle
size variations and are not ideal for the characterization of physical properties of tablets such as tablet
density. In this work, we have explored the feasibility of terahertz frequency-domain spectroscopy, with the
advantage of low scattering effects, combined with multivariate analysis to quantify API concentration and
tablet density. We studied 33 tablets, consisting of Ibuprofen, Mannitol, and a lubricant with API concentration
and filler particle size as the design factors. The terahertz signal was measured in transmission mode across
the frequency range 750 GHz to 1.5 THz using a vector network analyzer, frequency extenders, horn antennas,
and four off-axis parabolic mirrors. The attenuation spectral data were pre-processed and orthogonal partial
least square (OPLS) regression was applied to the spectral data to obtain quantitative prediction models for API
concentration and tablet density. The performance of the models was assessed using test sets. While a fair model
was obtained for API concentration, a high-quality model was demonstrated for tablet density. The coefficient
of determination (𝑅2) for the calibration set was 0.97 for tablet density and 0.98 for API concentration, while
the relative prediction errors for the test set were 0.7% and 6% for tablet density and API concentration
models, respectively. In conclusion, terahertz spectroscopy demonstrated to be a complementary technique to
Raman and NIR spectroscopy, which enables the characterization of physical properties of tablets like tablet
density, and the characterization of API concentration with the advantage of low scattering effects.
1. Introduction

The pharmaceutical industry needs new analytical tools for real-
time monitoring and control of their products in the manufacturing
area specifically suited for continuous manufacturing. Traditionally,
in batch manufacturing, random samples of the finished products are
transported to a laboratory to analyze and verify their quality. This
process is slow and costly, with a potential risk that the final product
should not meet its specifications, leading to batch failure. In this
context, there has been a shift from the batch manufacturing process
to continuous manufacturing (Plumb, 2005; Ierapetritou et al., 2016),
where there is an increasing need for process analytical technologies
that can be integrated into the manufacturing line and allow advanced
process monitoring and control of the process and product.

∗ Corresponding author at: Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
E-mail address: anismo@chalmers.se (A. Moradikouchi).

Over the years, scientific and technological progress has led to
several new techniques for the analysis of chemical and physical prop-
erties of drug products. Vibrational spectroscopy includes a series of
key technologies that allow non-destructive, non-invasive, and rapid
analysis of pharmaceutical materials (Ewing and Kazarian, 2018). NIR
and Raman spectroscopy are established reliable techniques in process
analytical technology for material analysis based on probing molecular
structure and interactions. The use of these techniques combined with
multivariate analysis such as partial-least-squares (PLS) and principal
component analysis enables qualitative and quantitative analysis of
pharmaceutical materials (Laske et al., 2017). NIR spectroscopy in
diffuse reflection mode has been extensively used for material quan-
tification (Berntsson et al., 2002) and probing blend uniformity (Lyon
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et al., 2002). However, this technique suffers from high scattering ef-
fects and low sample penetration depth (Berntsson et al., 1999), which
restricts the extracted information to the surface properties. Moreover,
its application for the analysis of low dosage material is limited (Sparén
et al., 2015). Raman spectroscopy has been used for synthesis monitor-
ing (Svensson et al., 2000), blend monitoring (Vergote et al., 2004),
determination of polymorphs (Aina et al., 2010), and quantification of
drugs (Jedvert et al., 1998). Raman spectroscopy offers more chemical
specificity than NIR due to probing the fundamental vibrational modes.
However, this technique is sensitive to particle size variations due to
high scattering effects (Townshend et al., 2012), and if the laser power
is too high, long exposure could burn the samples. Low-frequency
Raman spectroscopy provides access to the lower frequencies from
300 GHz to 6 THz, but performs poorly when applied to compounds
with strong fluorescence (Salim et al., 2020).

Terahertz spectroscopy (Siegel, 2004) is a complementary technique
to the spectral information from NIR and Raman spectroscopy for the
characterization and identification of materials (Bawuah and Zeitler,
2021). Spectroscopy in the terahertz region, 300 GHz to 10 THz,
identifies the low frequency vibrations associated with intermolecular
interactions and the morphology of formulated drugs (Claybourn et al.,
2007). Moreover, Terahertz spectroscopy enables the characterization
of the physical properties of materials like tablet density and poros-
ity (Bawuah et al., 2020; Moradikouchi et al., 2022). Taday (Taday
et al., 2004) demonstrated the use of terahertz pulsed spectroscopy
for the quantification of paracetamol and aspirin tablets using a PLS
calibration model. In a study by Zeitler et al. (2007), combined with
principle component analysis, the sensitivity of terahertz pulsed spec-
troscopy to anhydrous and hydrated pharmaceutical materials was
investigated. Hisazumi et al. (2012) demonstrated the applicability of
terahertz reflectance spectroscopy with partial least squares regression
for the quantification of API in tablets. Yang et al. (2021) used terahertz
time-domain spectroscopy (THz-TDS) combined with support vector
regression chemometric method to analyze the characteristic spectrum
of caffeine in medicine. Peng et al. (2018) proposed THz-TDS combined
with support vector regression chemometric method to characterize
substances in brain glioma.

In this paper, we propose terahertz frequency domain spectroscopy
(THz-FDS), based on electronic heterodyne techniques (Hübers, 2008),
in combination with multivariate analysis for the analysis of API con-
centration and tablet density of pharmaceutical tablets as a complemen-
tary technique to NIR and Raman spectroscopy (Sparén et al., 2015).
The high frequency resolution and stability of electronic heterodyne
techniques minimizes the propagation of systematic errors when per-
forming reference measurements (Hübers et al., 2011). A quantitative
analysis of the tablets was performed including the following steps.
First, the complex transmission coefficients in phase and amplitude
(𝑆21) (Pozar, 2012) of the tablets were measured and the attenuation
spectra were obtained. Then, the spectral data were pre-processed to
remove noise and baseline variations. Orthogonal partial least squares
(OPLS) regression was applied to the spectral data to establish a predic-
tion model for the tablets. Finally, an independent test set was used to
assess the performance of the prediction models for API concentration
and tablet density.

2. Methodology

2.1. Tablet preparation

We studied tablets consisting of Ibuprofen as an API, Mannitol as a
filler, and Magnesium stearate as a lubricant. A fraction of a full fac-
torial design from Sparén et al. (2015) was used for our experiments.
The API, filler, and lubricant were blended in a Turbula 2TF blender
(Glen Mills Inc., Switzerland). Tablets were manufactured through
direct compaction with a single punch press Korsch EK-0 (Korsch AG,
Germany) equipped with flat round 10 mm punches. The design factors
2

Fig. 1. A photograph of the experimental set-up showing THz S-parameter
measurements in transmission mode.

were Mannitol particle size, varied at two levels (𝑑50 ∼ 91, 450 μm), and
API concentration varied at five levels (∼16, 18, 20, 22, and 24 w/w%).
Tablets with the applied compaction force of 12 kN were used for the
experiments. The Magnesium stearate concentration was constant at ∼1
w/w% for all tablets. As shown in Table 1, our sample set included
11 tablet types (A, B, . . . , M), and for each tablet type there were
three replicate samples (A-1, A-2, A-3, B-1, . . . ) to account for the
variations in each tablet type, resulting in 33 samples. All tablets were
flat-faced, with a nominal weight of 300 mg, a diameter of 10.0 mm,
and a thickness, 𝑙, in the range of 2.97–3.25 mm, measured using a
digital micrometer. The tablet density was calculated from the tablets
dimensions and weight.

2.2. Measurement set-up

To obtain the attenuation spectra of the tablets, the complex trans-
mission coefficients were measured in frequency domain from 750 GHz
to 1.5 THz, with the frequency step of 0.925 GHz. The measure-
ment set-up consisted of a vector network analyzer (VNA) (Keysight
PNA-X), frequency extenders WM380 (750 GHz–1.1 THz) and WM250
(1.1–1.5 THz), horn antennas, and four off-axis parabolic mirrors, see
Fig. 1. The frequency range was selected based on the presence of
the absorption peaks of Mannitol and Ibuprofen in the spectra. During
measurements, the intermediate frequency bandwidth was set to 10 Hz
in order to minimize the measurement noise level. The signal was
focused on the center of the tablets using the parabolic mirrors with a
focal length of 76.4 mm. The estimated mid-band beam diameter at the
focal point is approximately 1.3 mm at 750 GHz to 1.1 THz and 0.9 mm
at 1.1–1.5 THz. Each sample was measured twice by dismounting and
mounting the tablets in the sample holder to account for the measure-
ment errors like the white noise of the VNA and tablet displacement in
the sample holder. This led to 66 measurements ranging from 750 GHz
to 1.5 THz. Before each tablet measurement, the empty sample holder
was measured as a reference for relative measurements, which was
the ratio between the transmitted signal in the presence of the tablets
versus the empty holder. The measurement environment could have
been purged with dry nitrogen gas to remove the water vapor and to
increase the SNR. In our case, we decided not to use this procedure in
order to mimic the production line conditions.

2.3. Data processing

The attenuation coefficient of the samples, 𝛼(𝑓 ), was calculated
from the measurement of the scattering parameters using equation
(1) (Chen et al., 2017):

𝛼(𝑓 ) = −1 𝑙𝑜𝑔
|

|

|

𝑇𝑠 |
|

|

2
, (1)
𝑙
|
𝑇𝑎 |
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Table 1
Design of experiments for the tablets, a fraction of a full factorial design from Sparén et al. (2015). Design factors are filler
particle size at two levels (91, 450 μm) and API concentration at five levels (16, 18, 20, 22, 25 w/w% ). There are three
replicates for each tablet type.
Tablet API particle Filler particle API concentration Tablet density

size d50 (μm) size d50 (μm) (w/w%) (g cm−3)

Type A
A-1 71 91 16.8 0.3061
A-2 71 91 16.8 0.3059
A-3 71 91 16.8 0.3058
Type B
B-1 71 450 16.0 0.3248
B-2 71 450 16.0 0.3248
B-3 71 450 16.0 0.3246
Type C
C-1 71 91 18.5 0.3033
C-2 71 91 18.5 0.3031
C-3 71 91 18.5 0.3042
Type D
D-1 71 450 18.4 0.3206
D-2 71 450 18.4 0.3198
D-3 71 450 18.4 0.3220
Type E
E-1 71 91 20.6 0.3043
E-2 71 91 20.6 0.3043
E-3 71 91 20.6 0.3042
Type F
F-1 71 450 19.5 0.3219
F-2 71 450 19.5 0.3209
F-3 71 450 19.5 0.3210
Type G
G-1 71 91 22.7 0.3014
G-2 71 91 22.7 0.3014
G-3 71 91 22.7 0.3021
Type H
H-1 71 450 22.9 0.3200
H-2 71 450 22.9 0.3207
H-3 71 450 22.9 0.3191
Type K
K-1 71 91 24.8 0.3025
K-2 71 91 24.8 0.3014
K-3 71 91 24.8 0.3023
Type L
L-1 71 450 25.0 0.3180
L-2 71 450 25.0 0.3167
L-3 71 450 25.0 0.3186
Type M
M-1 95 211 20.1 0.3010
M-2 95 211 20.1 0.3009
M-3 95 211 20.1 0.3003
where 𝑙 is sample thickness in cm, and 𝑇𝑠 and 𝑇𝑎 are the measured com-
plex transmission coefficients (𝑆21) of the sample and empty sample
holder (air), respectively, presented in supplementary data.

Noise, high-frequency oscillations, and a slanted baseline were
present in the measured THz spectra. The oscillations were caused
by standing waves in the set-up, and the slanted baseline was caused
by scattering effects and frequency-dependent absorption. In order to
reduce the effect of such phenomena, the spectra were pre-processed
using a combination of smoothing, baseline correction, and normaliza-
tion filters. It should be noted that in the case of amorphous materials,
the baseline contains information about the content and should not
be removed. The data pre-processing was performed in SIMCA 17
(Sartorius Stedim Data Analytics, Umeå, Sweden), which is a software
for multivariate data analysis.

In the next step, the treated spectra were used to create a model for
predicting the API concentration and tablet density, using multivariate
analysis. The measured samples were divided into two sets, including a
training set and a test set. The training set was used to build the model,
and the test set was used to evaluate the robustness of the model for
unknown samples. From the three replicates of each tablet type, the
first two samples were used in the training set, and the third sample
was used in the test set. This led to 44 samples in the training set and 22
samples in the test. The samples were labeled such that the first letter
3

shows tablet type, the second part shows the number of the replicate
sample, and the third part shows the number of measurements for each
sample.

2.4. Multivariate analysis

Multivariate analysis is an important tool for qualitative and quanti-
tative analysis of multivariate spectral data. We used orthogonal partial
least squares (OPLS) regression (Trygg and Wold, 2002) to establish a
prediction model for the quantification of API concentration and tablet
density. OPLS is a modification of the traditional partial least squares
(PLS) regression. OPLS separates the variability in the X spectral data
into two parts, one that is predictive of the Y response and another
that is orthogonal to Y. In the case of just a single Y variable and
with the condition of the same number of components, both PLS and
OPLS models fitted to the same data will give identical predictions. In
the calibration set, the variances explained for the calibration set (𝑅2)
and the cross-validation (𝑄2), the root-mean-square of the calibration
(RMSEC) and the cross-validation (RMSECV) were used to assess the
model performance. Cross-validation is a model validation method that
uses different portions of the calibration set iteratively to train and test
the model. In order to further challenge the robustness of the model
for the prediction of unknown samples, a test set was applied to the



International Journal of Pharmaceutics 632 (2023) 122545A. Moradikouchi et al.
Fig. 2. Spectral data for (a) Ibuprofen, Mannitol, and Teflon as a reference. (b) samples
from Table 1.

model. The root-mean-square error of prediction (RMSEP) and mean
bias error for the prediction (MBEP) were used to assess how well the
test samples fit the calibration model. Relative prediction error (RPE) is
the RMSEP normalized with the mean value of the response, measuring
the accuracy of the prediction regardless of the nature of the response.

3. Results and discussions

One tablet consisting of pure ibuprofen and one tablet of pure
Mannitol were measured to identify the absorption peaks of each
tablet ingredient individually across the frequency range. Fig. 2a shows
the attenuation spectra of pure Ibuprofen, pure Mannitol, and Teflon.
Ibuprofen showed two broad peaks centered around 1.05 THz and 1.47
THz. Mannitol showed two peaks centered around 1.10 THz and 1.48
THz, in agreement with Mannitol type 𝛽 (Allard et al., 2011). The peaks
occurring at around 1.10 THz were not completely resolved due to
the lower signal-to-noise ratio (SNR) at the beginning of the frequency
band of the extenders, the low SNR at absorption peaks, and water
absorption lines. Teflon was just used for reference and as expected, did
not show any absorption peaks. Fig. 2b shows the attenuation spectra
of all measured tablets, and like Mannitol, the peaks at around 1.10
THz were not completely resolved (see supplementary material). In the
THz spectra of the samples, the peak seen at around 1.1 THz and below
1.5 THz are the superposition of the Ibuprofen and Mannitol peaks that
heavily overlap. Therefore, simple univariate calibration method would
not be selective for this formulation.
4

Fig. 3. Pre-processed spectral data for API concentration, after noise effect reduction,
baseline correction, and normalization.

3.1. OPLS model for API concentration

To model the API concentration, first the attenuation data were pre-
processed, and then an OPLS analysis was applied to the data to obtain
a prediction model. For the pre-processing, a Savitzky–Golay smoothing
filter (Savitzky and Golay, 1964) was used to reduce the effect of noise
and oscillations. The filter was calculated from moving quadratic sub-
models with 31 data points long, and edge effects were excluded. Then,
an asymmetric least squares algorithm (Peng et al., 2010) was used
for each spectrum to correct baseline variations. Finally, each spectral
value was normalized with respect to the sum of the signal intensity
over the frequency range. The treated attenuation spectra of the tablets
are shown in Fig. 3, where different API concentrations are marked
with different colors.

In the next step, OPLS regression was applied to the scaled and cen-
tered training set to establish a prediction model for API concentration,
having the frequency points as the 𝑋 independent variables and API
concentration as the 𝑌 response variable. For the characterization of
API, the parts of the spectrum including the absorption peaks have the
dominant role in modeling. A first data evaluation revealed differences
in the THz spectra of the tablets measured on a second day under higher
humidity conditions, which complicated the modeling. After excluding
those measurements affected by humidity variation (tablets B and H),
we succeeded in developing a good model with 𝑅2 and 𝑄2 values of
0.98 and 0.92, respectively. The training set consisted of 36 samples
and the test set of 18 samples.

An OPLS score plot in Fig. 4 shows the clusters of the training
samples based on their similarity for modeling the API concentration.
The variations across the horizontal axes show the predictive compo-
nent for the response, and the variations across the vertical axes show
the orthogonal components, which are unrelated to the response and
express the variations within clusters. In this plot, the training samples
are clustered across the horizontal direction corresponding to the five
API levels. Tablets are ordered from left to right by increasing API
concentration. Moreover, the variations between replicate samples for
each tablet type (tablets labeled with the same first digit but different
second digit) and the repeatability of the measurements (different third
digit in the label) can be observed in this plot.

Fig. 5a shows the observed versus predicted values for API concen-
tration based on the OPLS regression. The 𝑅2 was 0.98, and the RMSEC
and RMSECV were 0.40 and 0.77, respectively. Five clusters of samples
are observed corresponding to the five levels of API concentration.
To challenge the robustness of the OPLS model, a test set was used.
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Fig. 4. Score plot for API concentration. Tablets are clustered with respect to the
API concentration across the horizontal axes. Tablets are labeled with three digits that
represent type, replicate, and measurement number, respectively.

Fig. 5. Prediction plot for API concentration (a) calibration set (b) test set. Tablets
are labeled with three digits that represent type, replicate, and measurement number,
respectively.
5

Fig. 6. Pre-processed spectral data for the quantification of tablet density after applying
Savitzky–Golay smoothing filter for removing the high frequency noise.

Fig. 5b shows the comparison between the reference and prediction
results for the test samples with five clusters corresponding to the API
concentration. For Sample G-3, we obtained predicted values about
3% lower than the expected API level. One possible reason for this
could be that the API may not have been evenly distributed across
the tablet, while the THz beam illuminated mainly the center of the
samples, which could lead to sub-sampling. The terahertz spectrum for
this sample indicated a lower level of API than expected (data not
shown), which supports this hypothesis. The relative prediction error
and RMSEP were 6% and 1.22, respectively, which were less good
than the results in paper (Sparén et al., 2015) because Raman and
NIR techniques spectra have more selective bands and contain more
chemical information than THz spectroscopy. It must be noticed that
in Sparén et al. (2015), a larger number of tablets were included in
the model. The quantification of the API concentration could probably
be further improved by measuring in a controlled environment and
completely resolving the absorption peaks. The latter can be achieved
by purging the measurement system to remove the water lines and/or
averaging the measurements over time, with the cost of increasing the
complexity of the system and the measurement time.

3.2. OPLS model for tablet density

To model the tablet density, the spectral data were treated to reduce
the noise and oscillations using the Savitzky–Golay smoothing filter.
In this case, the baseline correction and data normalization were not
conducted because of the correlation between the baseline and tablet
density through the particle size and porosity (Moradikouchi et al.,
2022). Fig. 6 shows the treated spectra after applying the smoothing fil-
ter, where different tablet densities were assigned with a different color.
As can be observed, the spectral data were clustered into two groups,
corresponding to the tablets with different initial particle sizes. The
attenuation for tablets with smaller initial particle sizes was lower than
those with larger particles. At the end of the band, tablets with larger
particle size showed higher attenuation due to scattering effects (Shen
et al., 2008; Wu et al., 2008).

Next, OPLS regression was applied to the 44 training samples,
having the spectral data centered, to establish a prediction model for
the tablet density. For the characterization of the tablet density based
on the attenuation, higher frequencies play the dominant role due
to the correlation between tablet density and particle size. The OPLS
score plot in Fig. 7 shows two clusters of training samples across the
horizontal direction with respect to the particle size, expressing the
correlation between tablet density and the variations in the particle
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Table 2
A summary of the OPLS models and their performance for the quantification of API concentration and tablet density.

Model Calibration set Test set 𝑅2 𝑄2 RMSEC RMSEP MBEP RPE
(test set) (test set) (test set)

API concentration 36 samples 18 samples 0.98 0.92 0.40 1.22 −0.06 6.0%
Tablet density 44 samples 22 samples 0.97 0.94 0.002 0.002 −0.0002 0.7%
Fig. 7. Score plot for tablet density. Tablets are clustered across the horizontal axes
with respect to particle size. Tablets are labeled with three digits that represent type,
replicate, and measurement number, respectively. Small and large particle sizes are
shown with small and large circles, respectively.

size. Tablets with larger particles are clustered on the right side marked
with larger circles, and tablets with smaller particle sizes are on the left
side marked with smaller circles. The vertical direction expresses the
variation within the clusters due to API concentration.

Fig. 8a shows the reference versus prediction values for tablet
density. The RMSEC and RMSECV for the obtained OPLS model were
both 0.002, and the 𝑅2 was 0.97. These values show the high accuracy
and the goodness of the regression model. It should be noticed that for
the quantification of tablet density, samples measured under higher hu-
midity condition (B and H) were not excluded, indicating that humidity
variation in the lab environment was not as critical as for quantifying
the API concentration.

The robustness of the obtained OPLS model was further assessed
by applying the 22 test samples to the model. Fig. 8b presents the
comparison between the reference and prediction results for the test
samples. The prediction of tablet density on the test samples gave
a relative prediction error of 0.7%, and RMSEP and MBEP of 0.002
and 0.0002, respectively. These results show that the OPLS model for
tablet density is significantly accurate and precise and performs better
than the OPLS model for API concentration. The summary of the two
models’ performance is given in Table 2. Moreover, in both Figs. 8 a
and b, we see two clusters of tablets corresponding to the small and
large particle sizes marked with smaller and larger circles respectively,
showing that initial particle size impacted the tablet density. Besides
that, the results show that within each cluster of tablets, as the API
concentration increased, the tablet density decreased being in line with
the results from our previous study (Moradikouchi et al., 2022). Also,
it can be observed that initial particle size has a higher impact than API
concentration on the tablet density.

4. Conclusion

In this paper, we explored the THz-FDS technique together with
multivariate data analysis for the characterization of pharmaceutical
6

Fig. 8. Prediction plot for tablet density (a) calibration set (b) test set. Tablets are
labeled with three digits that represent the type, replicate, and measurement number,
respectively. Small and large particle sizes are shown with small and large circles,
respectively.

tablets. A quantitative OPLS method was proposed to model the API
concentration and tablet density based on terahertz transmission mea-
surements at a frequency range of 750 GHz to 1.5 THz. The OPLS model
for the API concentration achieved an 𝑅2 value of 0.98 and a relative
prediction error of 6% for tablets with a 2% difference in the level of
the API concentration. The results showed that THz-FDS is less precise
than NIR and Raman spectroscopy for the quantification of API concen-
tration, but it brings the advantage of being less affected by particle size
variations, which could prevent systematic bias errors. To optimize the
determination of API content, the THz measurements should preferably
be conducted in a controlled low humidity environment. The OPLS
model for the tablet density achieved an 𝑅2 value of 0.97 and an
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excellent relative prediction error of 0.7%. This highlights the potential
of terahertz spectroscopy for characterizing the physical properties of
tablets, which is a challenge for other non-destructive techniques. In
summary, THz-FDS in combination with multivariate analysis showed
to be a promising process analytical tool that complements NIR and
Raman techniques for the characterization of the physical properties
of tablets and API concentration with the advantage of low scattering
effects.
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