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Abstract

Context: Machine learning (ML) approaches are widely employed in various
software engineering (SE) tasks. Performance, however, is one of the most
critical software quality requirements. Performance prediction is estimating
the execution time of a software system prior to execution. The backbone
of performance estimation is prediction models, in which machine learning
(ML) is a common choice. Two settings are commonly considered for ML-
based performance prediction: workload-dependent and workload-independent
performance, depending on whether or not the specific usage of the system is
fed as input to the ML estimator.

Problem: Developers usually understand the behaviour of performance
with respect to the workload manually. This process consumes time, effort, and
computational resources since the developer repeats the running of the same
tested system ( e.g. benchmark) many times, each with different workload
values. In a workload-independent setting, predicting the scalar value of
execution time based on the structure of the source code is challenging as
it is a function of many factors, including the underlying architecture, the
input parameters, and the application’s interactions with the operating system.
Consequently, works that have attempted to predict absolute execution time
for arbitrary applications from source code generally report poor accuracy.

Goal: The thesis aims to present a modern machine learning-based approach
for predicting the execution time from two angles: (a) workload-independent
performance. (b) workload-dependent performance.

Solution Approaches and Research Methodologies: To achieve the
goal and tackle the problems mentioned earlier, we conducted a systematic
empirical study to fill the gap of workload-dependant performance across five
well-known projects in JMH benchmarking (including RxJava, Log4J2, and the
Eclipse Collections framework) and 126 concrete benchmarks. We generated a
dataset of approximately 1.4 million measurements. As for the poor accuracy
challenges, we aim to increase the quality of data which is the source code in
this context. To that aim, we invest in Data-Centric AI. Thus, we conduct a
systematic literature review and systematic mapping study about the different
approaches of source code representation and the level of information each
representation can hold. Then, based on that, we conduct an experimental
study to increase the quality of source code representation by establishing a
rich hybrid code representation Then marry this representation with a Graph
Neural Network (GNN)- an ML approach to predict the scalar value of the
functional test.

Results: Our results showed that by investing in classical ML approaches,
we could predict the performance value of the benchmarks according to config-
uration workload. Moreover, with our proposed method, the developers can
easily determine the impact of each workload on the performance measurement.
On the other hand, by increasing the data quality through data-centric AI,
we achieve very high and considerable accuracy in predicting the absolute
execution time of software performance only according to the structure of the
source code.
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Chapter 1

Introduction

Machine Learning (ML) approaches have been widely investigated in software
engineering (SE). ML-based approaches deliver intelligent solutions for many
challenging problems in SE, such as defect detection [2]–[4], automated pro-
gram repair [5], and predicting the performance of software system before it
executes [6]. The performance prediction problem is getting more attention
in research due to the different dimensions of the complexity of the perform-
ance problem. Examples of such complexity are variability and uncertainty
in the performance measures and the large space of workload configuration
options in the large-scale workload-dependant systems [7]. These problems are
complex because performance measures are a function of many factors at the
hardware level, for example, computational resources (used memory, CPUs)
and networks, especially in distributed or cloud-based systems. Therefore,
predicting the performance of software systems has attracted the attention of
software engineering researchers. Numerous research studies aim to develop
novel methods for estimating the performance of software systems from a
limited number of measured data [8]. A performance prediction model helps
developers monitor the source code changes’ impact on the performance in
the workload-independent setting. In addition, it helps developers in testing
the different configurations and their correlations with performance in the
workload-dependent setting. This motivates analysing software systems’ per-
formance at the earlier life cycle phases by reasoning on quantitative predictive
results to avoid expensive post-deployment rework.

1.1 Background

Software Performance Engineering (SPE) is the discipline that represents
the entire collection of engineering activities used throughout the software
development cycle and directed to meet performance requirements (such as
throughput, latency, or memory usage) [9].

According to Woodside et al. [10], the elements of the SPE domain are

• System operations (Use Cases) with performance requirements, behaviour
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2 CHAPTER 1. INTRODUCTION

defined by scenarios (e.g., by UML behaviour specifications) and work-
loads (defining the frequency of initiation of different system operations).

• System structure, the software components, resources, hardware and
software.

Besides these core elements of SPE, there are many objectives that drive
performance prediction, as listed in the following examples.

• Grow business revenue by guaranteeing the system can process transac-
tions within the requisite timeframe (see the Example Scenario 2: SE
Product Performance below).

• Eliminate late system deployment, avoidable system rework, and avoid-
able system tuning efforts due to performance issues. Moreover, avoid
additional and unnecessary hardware acquisition costs. In addition, pre-
dicting the performance reduces increased software maintenance costs
due to performance problems in production and software impacted by ad
hoc performance fixes. Predicting the performance helps reduce the addi-
tional operational overhead for handling system issues due to performance
problems and identify potential future bottlenecks by simulation over the
prototype.

These objectives will be justified in the following example scenarios.

Scenario 1: Self-driving vehicles: Imagine a self-driving vehicle where
many sensors collect data from the car’s surrounding environment. This data
is the input of the online algorithms encapsulated in the back-end system. The
online algorithm then decides the car’s behaviour based on the sensor data.
Suppose there is a delay in the data exchange between the sensor, back-end
system, and the online algorithm. In that case, this latency will delay the
vehicle’s reaction, which might lead to a disaster if pedestrians cross the street
and the vehicle keeps driving.

Scenario 2: Product performance in social business intelligence:
In online systems such as social business intelligence (SBI, the process of
combining the corporate data with user-generated content, or UGC, to make
decision-makers aware of important brand-related trends, and improve decision
making through timely feedback [11], see also Paper IV) we eventually want
to deliver an online dashboard for the decision makers about different indicators
related to a studied brand. The result must be updated and presented in an
online manner so the decision maker can take a tactical decision accordingly.
However, if there is a delay in the online dashboard because of the complexity
of processing the collected data, training many ML models and then computing
the KPIs, that will lead to wrong decisions taken by the decision-makers due
to wrong indicators on the dashboard.
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Scenario 3: E-Commerce business: Web applications are ubiquitous
scenarios where performance is essential, and optimizing the performance is
crucial. A slowdown in any E-Commerce system (e.g., online shopping) has a
direct business impact [12].

Scenario 4: Middle-ware libraries: Suppose we are building a program-
ming library (e.g., log4j1), and many systems use this library. In that case,
the slowdown for log4j negatively impacts the entire ecosystem, not only the
library itself.

In this thesis, we are looking at performance engineering from two different
perspectives, while we are working on source code and while we are optimizing
an application for different workloads [13]. Thus, if the developers need to
change the code due to changes in customer requirements or to add a new
service, then it is hard to express the impact of these changes on the execution
time. Hence having a predictive performance model is crucial to predict
the performance of the added code and check the effect of the added code
on the performance metrics. On the other hand, testing the system with
different parameters is important since most modern software systems can be
customized by means of workload options to enable desired functionality or
tweak non-functional aspects, such as performance or energy consumption. The
relationship of workload choices and their influence on performance has been
extensively studied in the literature [14], [15]. However, developers usually
manually test the different values of the workloads and their contribution to
the benchmark’s performance measurement. The problem with manual testing
and adjustment is that it takes significant time, effort, and computational
resources, as executing some benchmarks might take hours. That is why having
a predictive performance model that predicts the execution time based on
workload parameter values will save substantial time and effort.

1.1.1 Types of Performance Considered in This Thesis

Performance testing is an umbrella term used for a wide variety of different
approaches. In this thesis, we are studying different types of performance: (i)
workload-dependant performance, where we assume that the software system is
fixed and we vary the workload, (ii) workload-independent performance, where
we keep the workload fixed and vary the software system (source code), and
(iii) eventually the overall performance of software product.

1.1.1.1 Workload Dependant Performance

The performance that we obtain in this context is based on how the soft-
ware is used. Thus, we invest in micro benchmarking to test how the system
performs under different workloads, i.e., short-running benchmarks aiming
to measure fine-grained performance metrics, such as method-level execution
times, throughput, or heap utilization. Different from application benchmarks,

1https://logging.apache.org/log4j/2.x/



4 CHAPTER 1. INTRODUCTION

system tests, or load tests, the goal of micro benchmarking is not necessarily
to enact the system under realistic, production-like conditions. Instead, mi-
crobenchmarks are often written specifically to test sensitive code elements
for extreme conditions or to compare multiple implementation variants of the
same feature (e.g., different data structures or external libraries).

By now, micro benchmarking frameworks are available for a wide range of
programming languages, including C++, Java, and Go. We specifically explore
the Java Microbenchmark Harness2 (JMH). JMH is part of the OpenJDK
ecosystem and allows users to specify benchmarks through Java annotations in
a syntax clearly inspired by common unit testing frameworks such as JUnit.
Laaber et al. [16] have found in 2020 that 753 significant open-source projects
on GitHub are actively using JMH, showing that the framework is widely
accepted in practice.

1

2 @OutputTimeUnit(TimeUnit.NANOSECONDS)

3 @BenchmarkMode ({ Mode.AverageTime })

4 @Warmup(iterations = 3, time = 1, timeUnit = TimeUnit.SECONDS)

5 @Measurement(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS

)

6 public class SetOps {

7

8 @Param("1024")

9 int size;

10 @Param("512")

11 int occupancy;

12 @Param("2048")

13 int keyBound;

14 @Param ({ "java.util.HashSet",

15 "org.jctools.sets.OpenHashSet" })

16 String type;

17 private Set <Key > set;

18 private Key key;

19

20 @Setup(Level.Trial)

21 public void prepare () throws Exception {

22 // set up test data according to config / params

23 }

24

25 @Benchmark

26 public boolean add() {

27 return set.add(key);

28 }

29

30 @Benchmark

31 public boolean remove () {...}

32

33 @Benchmark

34 public boolean contains () {..}

35

36 @Benchmark

37 public int sum() {...}

38

2https://openjdk.java.net/projects/code-tools/jmh/

https://openjdk.java.net/projects/code-tools/jmh/
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39 }

Listing 1.1: Example of a JMH benchmark (from the JCTools project)

An example of a real-life JMH benchmark class from the JCTools project
is provided in Listing 1.1. The Java class SetOps defines four benchmarks,
implemented in four methods carrying the @Benchmark annotation. In addition,
four user-specified parameters are defined using @Param. The method annotated
with @Setup is executed once at the beginning of the process to set up the
necessary test data. In the remainder of this work, we refer to SetOps as the
benchmark class and SetOps.add, SetOps.remove, and so on as the concrete
benchmarks in this class.

The execution model of JMH is straightforward. For each benchmark, the
framework generates the cartesian product of all combinations of parameter
values and instantiates the benchmark once for each possible combination
of parameters. Each of these benchmark instances will then be executed
n+m times, where n is the number of warmup iterations (executions where
the measurement result is discarded), and m is the number of measurement
iterations. Each iteration consists of the framework executing the benchmark
method as often as possible in a loop until a configured timeout (commonly
1 or 10 seconds) is reached. The framework then records the measurements
produced in the iteration (e.g., how often the method could be invoked or, as is
the case of the example, the average method execution time in nanoseconds).

In the mentioned example, since size, occupancy, and keybound all only
have a single value, only two distinct combinations of parameters need to be
instantiated and executed by JMH. However, in the general (and more common)
case where each parameter has multiple values, the presence of parameters
leads to an explosion of the number of combinations that need to be run (and
hence of the total time required to execute the benchmark suite of the project).
This means that the innocent-looking action of adding a new parameter to a
benchmark class with two values already doubles the time required for executing
all benchmarks in this class – even if this new parameter is potentially not
critical to the measurement result or does not provide many new insights. It is,
therefore, not surprising that the benchmark suites of projects that routinely
use parameters with five or more different values (e.g., eclipse-collections)
are very time-consuming, often taking multiple days to run in their standard
configuration.

Given how crucial it is to choose parameters strategically and parameter
values to keep the execution time of benchmark suites manageable, despite the
importance of parameters, they have not yet been explicitly studied in previous
work on JMH. The goal of our study is to address this research gap.

1.1.1.2 Workload Independent Performance

Here we are looking at the performance independent of any specific usage. End-
users like developers are often overwhelmed with the possibilities of workloads
of a software system [17]. On the other hand, understanding the behaviour of
performance with respect to workloads only will not give enough sign about
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the complexity of the source code, which is one crucial factor of performance
optimization. Thus, in this setting, we mainly focus on the performance impact
of source code changes under a fixed workload. In this thesis, we use Java
functional test cases as a case study of source code to predict the performance.

1.1.1.3 Software Product Performance

Here we are measuring the performance of software products using social
business intelligence (SBI). SBI combines corporate data with user-generated
content (UGC) to make decision-makers aware of important brand-related
trends and to improve decision-making through timely feedback [18]. Although
not our primary focus, this adds a third orthogonal dimension to the thesis
with regard to different measures of software system performance.

1.1.2 ML-Based Techniques

To contextualize the rest of this study, we present some background about
ML-based approaches used in this study, such as representation learning of the
source code and the commonly-used Graph Neural Network (GNN) models.

1.1.2.1 Code Representation

The first step in machine learning is proper data representation. So we have
to represent the source code in a format suitable for the model and the task
of interest. Thus, we introduce three possible forms of how source code can
be represented for a machine learning model. In the literature, the code
representation approaches are mainly classified into three categories: Token-
based, Tree-based, and Graph-based. Every form maps different syntactical
and semantic aspects of the source code to a specific data structure. These
representations can then be embedded in a neural network so that they can
use source code as input.

Source code is originally a text encoding representing a program. This can
be processed and further transformed into different representations forms. In
this section, we describe three well-known representations, each one mapping
certain aspects of the original source code. We use the C snippet depicted in
Listing 1.2 as a running example.

1 void foo() {

2 int x = source ();

3 if( x < MAX ) {

4 int y = 2*x;

5 sink(y);

6 }

7 }

Listing 1.2: Example of C code.
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Token-Based Representation This representation treats code as free text.
Thus, it converts the code into a list of tokens where each word (e.g., ”void”)
is a token, but each special character (e.g., ’(’) is also a token (rather than
considering it as part of a word). An example is given in Listing 1.3.

1 [’void ’, ’foo ’, ’(’, ’)’, ’{’, ’int ’, ’x’,

2 ’=’, ’source ’, ’(’, ’)’, ’;’, ’if’, ’(’, ’x’, ’<’, ’MAX ’, ’)’,

’{’, ’int ’, ’y’, ’=’,

3 ’2*x’, ’;’, ’sink ’, ’(’, ’y’, ’)’, ’;’, ’}’, ’}’]

Listing 1.3: Token Representation for the code in Listing 1.

Then, each token will be encoded into a numerical vector using different
statistical language models, such as word embedding [19] or n-grams [20]. In
principle, word embedding is a learned representation for text where words
that have the same meaning get a similar representation. Technically, word
embeddings are a class of techniques where individual words are represented
as real-valued vectors in a predefined vector space. Each word is mapped
to one vector, and the vector values are learned in a way that resembles
a neural network. Hence the technique is often lumped into the field of
deep learning (DL). N-grams are several words appearing together. They are
useful abstractions for modelling sequential data such as text, where there
are dependencies among the terms in a sequence. However, a corpus of code
can be regarded as a sequence of sequences, and corpus-based models such as
n-grams learn conditional probability distributions from the order of terms in
a corpus. Corpus-based models can be used for many different types of tasks,
such as discriminating data instances or generating new data characteristics of
a domain. Embeddings can be considered a way to represent words and help
the DL model learn the source code’s representation. An embedding can be
trained to represent n-grams or just individual words.

Tree-Based Representation This representation captures the abstract
syntactic structure of the source code. Abstract syntax trees (ASTs) are a kind
of tree representation approach that is widely used by programming languages
and SE tools.

Figure 1.1 shows an example of an AST representation. The nodes of the
AST tree are related to constructs or symbols of the source code. In comparison
to the token-based approach, AST representation is abstract and does not
include all available details, such as punctuation and delimiters. Theoretically,
ASTs can be used to illustrate the lexical information and the syntactic structure
of source code, such as the function name and the flow of the instructions
(for example, in an if or while construct). Recently, some approaches have
combined neural networks and ASTs to constitute tree-based neural networks
(TNNs) [21]. Given a tree, TNNs learn the vector representation by recursively
computing node embeddings in a bottom-up way. Popular TNN models are
the Recursive Neural Network (RvNN)) [22], Tree-based CNN (TBCNN) [23],
and Tree-based Long Short-Term Memory (Tree-LSTM) [24].
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Foo

x IF

int =

x CALL

source

PRED

<

x max

STMT

DECL CALL

int =

y *

2 x

sink ARG

y

Figure 1.1: Abstract syntax tree (AST) for the code snippet in Listing 1.

Graph-Based Representation This approach represents source code as a
graph at many different levels. Levels of representation define the type of the
representation graph. Thus, a control flow graph (CFG, see 1.2 (a)) describes
the sequence in which the instructions of a program will be executed. Thus,
the graph is determined by conditional statements, e.g., if, for, and switch
statements. In CFGs, nodes denote statements and conditions, and directed
edges connect them to indicate the transfer of control.

ENTRY

int x = source()

if (x< MAX)

int y = 2 * x

sink (y)

EXIT

true

false

a) Control flow graph (CFG)

int x = source()

Dx

sink (y)

int y = 2 * xif (x< MAX)

Dx

Dy
Ctrue

Ctrue

b) Program dependence graph (PDG)

Figure 1.2: Graph-based representations for the code snippet in Listing 1.

Alternatively, the representation might be a data flow that is variable-
oriented. Thus, a data flow graph (DFG) is used to follow and track the usage
of the variables through the CFG. A DFG edge represents the subsequent
access or modification of the same variables. The call flow graph (CallFG)
captures the relation between a statement which calls a function and the called
function [25]. Finally, the entire program can be represented as a graph using a
program dependence graph (PDG, see 1.2 (b)), where the nodes can characterize
statements and predicate expressions. In this study, we differentiate between
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the tree and graph-based approaches since each representation is used to retrieve
a different level of information from the source code. Thus, the tree-based
approach, such as using the AST, is used to extract the syntactical information
from the source code, whereas graph-based approaches, such as CFG or DFG,
extract semantic information.

1.1.2.2 Graph Neural Networks

If the source code is to be represented as a graph, then Graph Neural Networks
(GNNs) are the right model to handle this type of representation.

Graphs are complex structures, and verifying if two graphs are identical (also
known as the isomorphism test) is an important and difficult task. It is unknown
if the problem can be solved in polynomial time or if it is computationally
intractable for large graphs. A fast heuristic to verify if two graphs are the same
is the k-Weisfeiler-Leman test [26]. The algorithm produces for each graph a
canonical form. Then, if the canonical forms of two graphs are not equivalent,
the graphs are not considered isomorphic. However, there is the possibility that
two non-isomorphic graphs share a canonical form. Thereby, this test might
not provide conclusive evidence that the two graphs are isomorphic. GNN
network can be as powerful as the k-Weisfeiler-Leman test with k equal to
1, in which the canonical form propagates the information by nodes. With k
greater than 1, the information is propagated among substructures of order
k. Higher order graph convolution layer (k-GNN) is also proposed, wherein
messages are exchanged among nodes, edges and substructure with tree nodes
(triads). Once messages are exchanged among substructures, each node has
a latent representation. In order to predict the property of the graphs (i.e.,
the execution time of a graph representing Java code), node embeddings are
globally aggregated (pooling step) with an invariant ordering function (i.e.
sum, max, mean). In particular, k-GNN is defined as: given is an integer k the
k-element subset [V (G)]k over V (G). Let s = {s1, s2, . . . } be k-set in [V (G)]k,
then the neighborhood of s is defined as:

N(s) = {t ∈ [V (G)]k||s ∪ t| = k − 1} (1.1)

In Equation 1.1, the neighbour of a k-set is defined as the set of k-set such that
the intersection of their cardinality is equal to k − 1. The local neighbourhood
is defined as:

NL(s) = {t ∈ N(s)|(u,w) ∈ E(G) with u ∈ s/t and w ∈ t/s} (1.2)

The local neighbourhood defined in Equation 1.2 is a subset of the neighbour
(Equation. 1.1). Finally, the k-GNN is defined as:

f
(l)
k,L(s) = σ(f

(l−1)
k,L (s) ·W (t)

1 +
∑

u∈NL(s)

f
(t−1)
k,L (u) ·W (t)

2 ) (1.3)

The l-th layer of the k-GNN computes an embedding of s, using the non-linear
activation function σ of the summation over the substructure itself in the
previous layer (i.e., layer l − 1) and the summation over the previous layer
embedding of each local neighbourhood of the substructure s.
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1.1.2.3 Data-Centric AI

ML models have intensively invested in SE research and contributed to solving
many SE problems on the source code level, like code clone detection [27],
vulnerability detection[28], and fixing formatting [29]. In the context of per-
formance prediction, Trials to predict performance based on source code using
very efficient ML models tend to have very poor accuracy [30]. Thus, in the
context of performance prediction, efficient Ml models can not deliver good
accuracy in prediction. That opens the door to investing in the data rather
than in the ML model by tuning the data instead of the model. That is the
idea of data-centric AI. Andrew NG proposes this term in his MLOPs course.
Improving the quality of the data can be done on many levels:

• Proactive dataset selection and curation: This process includes data
forensics and provenance on the dataset, in addition to assessing the data
for pertinence for the task and the ability to curate datasets continuously.

• Data preprocessing and cleaning: It is needed for data cleaning, prepro-
cessing and handling the missing data.

• Data quality evaluation: This process includes the assessment of sample-
level quality and ambiguity, besides data imbalances and consistency
checks.

• Synthetic data improvement: This process contains the synthetic data to
improve dataset, diversity and coverage in addition to increasing sample
size as in annotating more data using active learning.

In this thesis, we manipulate the data-centric AI by synthetically improving
the data, which is, in our case, the source code. More specifically, we improve
the intermediate representation of the source code to compress both syntactical
and semantic information within one intermediate representation. The approach
that combines this representation with an efficient ML model can overcome
the poor performance prediction accuracy based on the source code.

1.2 Research Statement

This thesis aims to investigate ML-based approaches to predicting software
execution times. The ultimate goal of the thesis is to present a modern machine
learning-based approach for predicting the execution time from three angles:
(a) workload-independent performance, where we predict the execution time
based on the source code of the system (b) workload-dependent performance;
where we mainly focus on the system’s workload parameters and their impacts
on the performance prediction (c) software product performance, where we use
many KPIs measurements in the context of SBI.
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1.3 Challenges

So far, the reader already knows that performance is essential in many different
domains, and predicting performance is currently challenging. In this section,
we will describe four challenges that motivate our research based on the gaps
in the literature.

Challenge 1 (C1): Existing approaches to predict execution time
based on source code suffers from poor accuracy.

Predicting the absolute execution time of applications based on code struc-
ture is challenging as it is a function of many factors, including the underlying
hardware architecture, the input parameters, and the application’s interactions
with the operating system. Consequently, studies that attempted to predict
absolute performance counters (e.g., execution time) for arbitrary applications
from source code generally report poor accuracy [31], [32].

Challenges 2 (C2): It is unclear what is a good representation for
the source code to predict its execution time.

In literature, there are many ways to represent the source code to the ML
model, depending on what kind of information we want to pass on to the
model. As described in Section 1.1.2.1, each representation approach delivers a
particular type of information. However, for a complex performance prediction
problem, more information is needed to deliver to the ML model throughout
the source code representation. Thus, the already existing approaches in the
literature are not yet enough to combine all different types of information
(syntactical, semantic, and lexical) derived from the source code.

Challenges 3 (C3): Manually testing different workloads is cum-
bersome.

As discussed in Section 1.1.1.1, developers usually benchmark the applic-
ation based on a workload configuration to detect the system’s performance
behaviour under different workloads. Usually, the developer does this testing
process manually. They set initial values for the workload parameters, then
run the benchmark and observe the performance value. Then they update
the values of workload parameters, rerun the benchmark, and observe how
the performance value changed accordingly. This process consumes a lot of
computational resources since the same benchmarks run many times according
to the number of testing scenarios. Some benchmarks might take a long time
in each run (e.g., half a day), which consumes a lot of time and effort by the
developers. Moreover, most existing approaches in this area rely on software
performance measurements conducted with a single workload (i.e., input fed
to a system). This single workload, however, is often not representative of
a software system’s real-world application scenarios. So far, no research has
investigated how parameterization in benchmarking is used in practice and
how different important parameters are to benchmarking results.
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Challenges 4 (C4): There is no good way to predict a software
system’s execution time before implementing and benchmarking
them using a specific workload.

It is challenging and exhausting to test all scenarios of workload-dependent
performance. The relationship between workload choices and their influence
on performance has been extensively raised as a concern that needs to be
addressed. Thus, one still needs to investigate the mapping between a given
workload and the estimated performance value.

Challenges 5 (C5): There is no clear consensus about measuring
the performance of the software product based on Social Business
Intelligence (SBI). In the context of SBI, the most challenging issue is the lack
of standard key performance indicators (KPIs) to measure product performance.
Moreover, SBI research is often constrained by the lack of publicly-available,
real-world data for experimental activities.

1.4 Research Questions

To address the goal of this thesis, we formulate the following research questions
(RQs) motivated by the four challenges raised in the previous section:

RQ1 What are the proper source code representations for an ML-based ap-
proach? Is it feasible to combine more than one representation?

A solid understanding of each source code representation and correspond-
ing representation learning is needed to represent the source code for a
complex task such as performance prediction (C2). To address this gap,
we conduct a systematic literature review and mapping study to study the
source code representation and how each representation is invested in an
ML-based approach for a particular SE task. Thus this research question
aims to systematically map the landscape of existing work on source code
representation, ML-based approach used for representation learning and
corresponding SE task to identify each representation’s characteristics
and how the trials of combining many representation approaches are
invested in different SE research.

RQ2 How well can a hybrid representation approach that combines tree and
graph-based approaches predict workload-independent execution times?

All research that tried to predict the scalar value of execution time based
on static analysis and traditional source code representation tends to have
poor accuracy (C1). To tackle this challenge, RQ2 aims to propose a
novel method of augmenting the source code representation by combining
both syntactical and semantic information in one rich representation and
then applying a GNN as an ML-based model to learn this representation
and predict the scalar value of corresponding source code.
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RQ3 What is the impact of the workload on execution time, both individually
and in the interaction of multiple workload parameters?

The single workload usually used in most existing approach workload-
dependant performance is often not representative of a software system’s
real-world application scenarios (C3). To fill this gap, we conducted a
systematic empirical study to understand how workload—individually
and combined—affects a software system’s performance. Hence, we
studied the relationship between workload choices and their influence on
performance.

RQ4 How accurately can the execution time of benchmarks for specific workload
parameters be predicted?

The manual testing of the workload parameters (C3), as well as testing
all scenarios of workload-dependent performance (C4), are both exhaust-
ing processes. We propose a predictive performance model based on a
workload-dependent setting to address this challenge. The backbone of
performance estimation is prediction models that map a given workload
to an estimated performance. Learning performance models relies on
a training set of workload-specific performance measurements. That is,
workload-dependent performance can be highly sensitive to workload
variation, and the performance behaviour under different workloads can
change in unforeseeable ways. That is key to understanding whether
performance models are generalizable across different workloads.

RQ5 What is the efficiency of the SBI software product in the context of brand
analysis?

This research question is proposed to address Challenge (C5). Hence, we
design and implement an ML pipeline for measuring the performance of
an SBI software product for brand analysis. The metrics are extracted
from one theoretical study [33]. The ML approach employed within the
SBI is trying to extract the attributes to compute the KPIs in the context
of brand analysis. Since there is no real data in the context of SBI for
brand analysis, we follow an empirical research methodology to collect
the required data from different social media platforms.

1.5 Research Methodology

This section summarizes the research methodology used to answer the research
questions of this thesis. The terminology is based on the framework “ABC
of Software Engineering Research” [34] for knowledge-seeking primary studies
and complement with the “ACM SIGSOFT Empirical Standards” [35] and
established research guidelines for solution-seeking [36] and secondary research
studies [37], [38].
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Figure 1.3: Overall Map of the Types of Performance Studies in This Thesis
and Research Methodology

Table 1.1: Mapping of research methodologies to research questions.

Research Methodology Section RQ
Literature Review & Mapping Study 1.5.1 RQ1
Empirical Study 1.5.2 RQ3 + RQ4+ RQ5
Experimental Study 1.5.3 RQ2

Table 1.1 summarizes the mapping of research methodologies (this section)
to the research questions of this thesis (Section1.4). ForRQ1, a literature review
(SLR) and systematic mapping study (SMS) (i.e., secondary research) were
selected to address the lack of consolidated view on source code representation
approaches and usage of hybrid representation combined with many ML-
based approaches depending on the nature of SE tasks and the complexity of
each task. The SLR and SMS were suitable because many individual studies
existed. Still, the systematic mapping between representations, ML-based
approaches, and the main categories of SE tasks and evidence synthesis, such
as the discussion of the information that each representation can deliver as
well as the pros and cons of each representation, were missing. The results of
these knowledge-seeking research methodologies identify relevant gaps in the
literature and practical problems to be addressed in subsequent solution-seeking
research. Therefore, RQ2 adopt experimental research to propose a novel
method combining many source code representations in one rich representation
that holds both syntactical and semantic information of the source code and
then applies GNN as an ML-based approach to predict the scalar value of
execution time (i.e., primary research). As for RQ3 and RQ4, empirical
research is used to collect performance measures based on workloads and
study the performance behaviour according to workloads scenarios in order to
eventually predict the performance value based on each workload scenario (i.e.,
primary research). Empirical research is also used in order to address RQ5,
where we collect real data from different social media platforms and employ
different ML and data science approaches to measure the performance of SBI
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software products for brand analysis.

1.5.1 Systematic Literature Review and Mapping Study

A systematic mapping study (SMS) is a form of secondary study that aims
at providing an overview of the research area (in our case, source code repres-
entation for an ML-based approach) and allows discovering research gaps and
trends [39]. These form of studies, used to give an overview of a research area
and designed to structure it, involves searching the literature in order to identify
the topics covered in the literature [39]. Another form of secondary studies is
the systematic literature review (SLR) that, in contrast, focuses on gathering
and synthesizing evidence in addition to mapping the topics and synthesis of
evidence from original primary studies in a defined field of research [37], [38].
Although these two forms of studies have some commonalities in the process of
searching and selecting studies, they are different in terms of goals, and thus
the research process is different [39]. A systematic mapping study is primarily
concerned with structuring a research area [39], while a systematic review
considers only evidence and their strengths [37]. In more detail, the differences
are with respect to the type of research questions, analysis conducted on the
literature, quality evaluation, and results [39]. The research questions in
mapping studies are general and broad since they aim to classify topics covered
in the literature and discover research trends [39]. Then again, systematic
reviews provide in-depth analysis to answer more specific questions [38], aiming
to aggregate evidence [37]. Given the classification conducted in systematic
mapping studies, solution proposals are included in the analysis, while this
category would not be included in SLRs [37]. This reflects the importance of
systematic mapping studies in spotting research trends and topics currently in
progress [37].

We use SLR and SMS in order to answer RQ1 and investigate how source
code is represented for different SE tasks. Then we map the representation
with different ML-Based models used in research. As in Figure 1.4 we relied
on ”Google Scholar” as a database to retrieve the research studies for two
reasons: (1) Google Scholar has a highly complete index, and it is unlikely
that searching in other libraries would lead to additional search results, and (2)
since we heavily made use of snowballing, completeness of the initial candidate
set was deemed less crucial (as important missing work would appear during
the snowballing process). The initial candidate list was generated by executing
the following search term on Google Scholar:

”code representation” AND ”deep learning” AND ”Software Engin-
eering”

The chronological range of the retrieved studies based on our interest is from
2014 until 2021. We chose 2014 as a cut-off point because this was the year the
TensorFlow system (one of the mainly used platforms for deep learning) was
initially released. We applied different inclusion and exclusion criteria to select
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the most interesting and related papers (for details, please refer to Paper II,
Section 3.3). As for the snowballing techniques, we used explicitly backwards
and forward snowballing to extend our initial set of candidate papers: for each
selected paper, we further screened the reference list for additional relevant
papers and also used Google Scholar’s “cited by” functionality to discover later
papers that have referenced papers in our initial set. We applied the same
basic strategy to these additional candidate papers (screening based on title
and abstract, followed by an explicit evaluation of inclusion criteria). This
process has been repeated iteratively until no new papers could be found.

We defined nine research questions, including discussing the research trends
and the literature gaps (Paper II Section 9). Thus, we had a general classifica-
tion for the SE tasks according to how the ML-based model was used according
to the input and output of the model (Paper II, Section 5.1). Thus, the ultimate
aim of this study is to mainly understand how the source code is represented
for the ML-based model in addition to the representation learning in order
to know how the information retrieved from the source code representation
contributes to the SE tasks.
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Figure 1.4: Overview of Systematic Literature Review and Mapping Study
Process.
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1.5.2 Empirical Research

① Benchmark Execution ② Data Pre-processing ③ Data Analysis ④ Workload Impact & Inferring

Figure 1.5: Research Process of Benchmarking Field Experiment.

According to the ”ABC of Software Engineering” by Stol and Fitzgerald [34],
empirical research in software engineering has been characterized by a strong
emphasis on quantitative and experimental research. It refers to research
approaches to gathering observations and evidence from the real world. We
used this methodology in order to answer RQ3 and RQ4 in the context of
workload dependant performance and RQ5 in the context of software product
performance.

1.5.2.1 Empirical Research for Workload Dependant Performance

According to Figure 1.5, we follow the research methodology through four main
steps:

1. Benchmark Execution: We select five well-known open source projects
as in Table 1.2 for an exploratory study in order to study the workload-
dependent performance. We have chosen these projects because (i)
they are frequently used in JMH, (ii) they are well maintained, well
known, and important in practice (iii) they cover different ranges of
different types of projects. We manually select five to six benchmark
classes for each of these projects. We choose the benchmark classes
with different characteristics (i.e., the structure of code) and multiple
benchmarks and workload parameters, each with a different range of
values (see the example of JMH 1.1 in Section 1.1.1.1, where the SetOps
class has 4 benchmarks with @Benchmark annotation and four workload
parameters on the class level with @Param annotation each workload
parameter with different type/range of values). Then we build a tool that
repeatedly executes the selected benchmark with randomly generated
parameter values. Table 1.3 shows an example of such parameters where
we have two types of parameters, numerical (i.e., size) or categorical
(i.e., fullyRandom). For both types of metric parameters, we define
minimum and maximum values based on the current configuration of
the projects on GitHub. Then we randomly generate concrete parameter
values through uniform sampling between minimum and maximum. For
categorical parameters, we simply select randomly from all predefined
parameter values. Thus we collected 1.4 million measures. As a process
of data collection, we employ purposive sampling on both project and
benchmark levels. In purposive sampling, subjects are selected explicitly
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based on the preserved usefulness of the study goal rather than drawn
randomly from the population.

Project Stars Contr. Description

eclipse-collections1 15k 74 “Eclipse Collections is a collections
framework for Java with optimized
data structures and a rich, func-
tional and fluent API.”

RxJava2 42k 263 “RxJava – Reactive Extensions for
the JVM – a library for composing
asynchronous and event-based pro-
grams using observable sequences for
the Java VM.”

JCTools3 2.4k 34 “Java Concurrency Tools for the
JVM. This project aims to offer
some concurrent data structures cur-
rently missing from the JDK.”

Log4J24 1k 99 “Apache Log4j 2 is an upgrade to
Log4j that provides significant im-
provements over its predecessor,
Log4j 1.x, and provides many of the
improvements available in Logback
while fixing some inherent problems
in Logback’s architecture.”

jdk-microbenchmarks5 na na “The JMH JDK Microbenchmarks is
a collection of microbenchmarks for
measuring the performance of the
JDK API and JVM features using
the JMH framework.”

1 – https://github.com/eclipse/eclipse-collections
2 – https://github.com/ReactiveX/RxJava
3 – https://github.com/JCTools/JCTools
4 – https://github.com/apache/logging-log4j2
5 – http://hg.openjdk.java.net/code-tools/jmh-jdk-microbenchmarks/

Table 1.2: Summary of selected study subjects and GitHub metadata (stars
and contributors). Data was extracted from GitHub on August 5th, 2020.
Descriptions are quoted verbatim from the project’s websites. Both Log4J2 and
jdk-microbenchmarks are hosted outside of GitHub, explaining the relatively
low number of stars for the former and the absence of data for the latter.

2. Data Pre-processing: The collected data are stored in a textual format,
and the measurement data needs to be preprocessed in a tabular format.
Thus, we prepossess the textual format of data and extract the workload
parameters to be the independent features for the ML-based model.
As each benchmark class has its workload parameters and benchmark
methods, we divided the dataset on a class level. Thus we have a dataset
for each class of benchmarks.

3. Data Analysis: Our goal here is to identify how strongly using different
parameter values impacts the resulting benchmark measurements. We
study the mentioned impact on the individual and collective levels. As
for the individual level, we investigate the correlation between the in-
dividual workload parameter and the measurement just to understand
the behaviours of each benchmark measurement with respect to each
workload. That will help the developer to anticipate how the performance
measurement change according to the changes in the values of the work-

https://github.com/eclipse/eclipse-collections
https://github.com/ReactiveX/RxJava
https://github.com/JCTools/JCTools
https://github.com/apache/logging-log4j2
http://hg.openjdk.java.net/code-tools/jmh-jdk-microbenchmarks/
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Project Class BMs Parameter Range

e
c
li
p
se
-c
o
ll
e
c
ti
o
n
s

LongIntMapTest 5 mapSizeDividedBy16000 [1; 100000]
fullyRandom {true,false}

FunctionalInterfaceTest 13 megamorphicWarmupLevel [0; 10]
IntIntMapTest 4 mapSizeDividedBy64 [1; 100000]

fullyRandom {true,false}
TroveMapPutTest 1 size [250000; 10000000]

isPresized {true,false}
loadFactor [0.4; 0.6]

ChainMapPutTest 3 size [250000; 10000000]
isPresized {true,false}
loadFactor [0.6; 0.9]

Table 1.3: Example from the eclipse-collections of selected study subjects,
benchmark classes, and parameters. BMs are the number of distinct benchmarks
in this class. The range is provided as an interval of minimum and maximum
values for metric parameters. For categorical parameters, all legal values are
listed. All benchmarks in a class use the same parameters.

load parameter. Individual analysis reaches its limits in cases of multiple
metric parameters, which strongly impact the benchmark measurements.
Hence we study the impact of the workload values on the measurements
on the collective level by following the feature selection techniques widely
used in ML-Based models to quantify the contribution of each feature
(workload parameters) in the dependant output (benchmark measurement
value). Preliminary experimentation with our dataset has shown that
using an embedded feature selection approach [40] based on importance
derived from decision trees and Random Forests ensembles indeed per-
forms best on our data. Hence, we use this feature selection approach in
our analysis. More details about the feature selection approaches are in
Paper I, Section 3.3.2.

4. Workload Impact and Inferring: Here in this section, we investigate
the collected data and the analysis conducted in this data in order to
build a predictive performance model for predicting the execution time
of the untested workloads scenarios with high accuracy, without having
actually to run the benchmark for this specific parameter combinations.
Thus, we use an ML model based on Random Forest regression. However,
since each class has its own set of parameters and benchmarks, we will
build one model for each benchmark class. Figure 1.6 shows the pipeline
of the ML model for the SetOps class explained in Example 1.1. We use
the workloads annotated as @Params and the names of the benchmarks
annotated as @benchmarks as the features for the model. Then we
preprocess the categorical features to factorize them. Then all resulting
features are used for training a Random Forest ML model.

1.5.2.2 Empirical Research for Product Performance Prediction

In the following, we present our proposed pipeline. A high-level schematic
overview is given in Figure 1.7. As a first step, we crawl three different types
of data sources to retrieve different types of textual clips, namely tweets from
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Figure 1.6: Data preprocessing pipeline to train the ML model. This pipeline
presents an example for one specific example class (SetOps, from the JCTools
project 1.1

.

Twitter, news, and reviews from Amazon. Then we collect the stock price
data (numerical data) to study the impact of customers’ opinions on the
market’s changes in stock prices. Collected textual clips are then annotated by
extracting both implicit and explicit structured information. Explicit features
refer to the reference time and brand. Time is usually explicitly associated
with textual clips, while brand information can be extracted through a simple
keyword search. Implicit features correspond to sentiment information (which
is fundamental when mining customer opinion) and geolocation when it is not
explicitly provided. As for sentiment information, we used a long-short-term-
memory (LSTM) [41] ML-based approach to analyze the text and extract the
sentiment score. According to Geolocation information, we implement a model
based on Kernel density estimation ML-based approach to associate with each
textual clip location. More details regarding the ML approaches used to extract
implicit information of sentiment and geo-localization are discussed in Section
4 of Paper IV.

The result of the annotation phase is then transformed and loaded into
a data warehouse (see Section 5 in Paper IV) using the Hadoop Data File
Systems(HDFS). The ETL (extraction, transformation, and loading) process
includes data transformation, cleaning, and aggregation, with the ultimate
aim of computing various brand analysis metrics, which can be used for later
analysis. Then we implement Spark SQL jobs for an ultimate online dashboard
that can present metrics regarding the brand of interest and the competitors
and their reputation in the market on a location basis.

1.5.3 Experimental Study Research

According to the ABC of Software Engineering by Stol and Fitzgerald [34],
experimental study research is a research strategy conducted in a natural
setting where the researcher manipulates some variables to observe some effect
(e.g., performance metrics). We use this methodology in order to answer RQ2.
Thus, we followed the guidelines proposed by Juristo et al. [42] to design and
implement the experimental study.

1. Goal Definition: The ultimate goal of using this research methodology
is to predict the execution time of software independent of any specific
workload starting from the source code and based on the structure of the
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Figure 1.7: SBI Pipeline for Brand Analysis

source code. Hence, we design and implement an experimental study to
take source code and represent it based on the representation approaches
we investigate through our SLR 1.5.1. Then we employ an ML-Based
model for predicting the execution time. For this, we use functional tests
as a source code case study.

2. Experimental Design: In our SLR, we analyze the methodologies that
are mainly used by the retrieved studies that used ML-based models for
software engineering tasks. Thus, in Figure 1.8 we create a general pipeline
that is representative of the steps of the aforementioned experimental
studies.

Source code  
retrieval

Data collection

Dataset

Data preparation and preprocessing

Embedding  
& encoding

Source code
representation

Learning and validation phase

Deep learning  
model training

Deep learning  
model testing

Features learning  
and extraction

Figure 1.8: Abstracted General Code Representation and ML Models in Soft-
ware Engineering.

Data collection: we collect our dataset from four well-known and
diverse application domains (open source projects hosted on GitHub):
H2database3, a relational database, RDF4J 4, a project for handling RDF
data, systemDS 5, an Apache project to manage the data science life cycle,
and finally the Apache remote procedure call library Dubbo6. As labelled
ground truth data, we collect 922 real test execution traces from these
projects’ publicly available build systems. All data were extracted from
GitHub-hosted runners, which are virtual machines hosted by GitHub

3https://github.com/h2database/h2database
4https://github.com/eclipse/rdf4j
5https://github.com/apache/systemds
6https://github.com/apache/dubbo
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with the GitHub Actions runner application installed. All shared runners
can be assumed to use the same hardware resources, which are available
at GitHub’s website7 and each job runs in a fresh instance of the virtual
machine. Additionally, all jobs from which the data is extracted use
the same operating system, specifically Ubuntu 18.04. This allows us to
minimize bias introduced by variations in the execution environment or
hardware.

Data representation and preprocessing: The second phase of the
general pipeline of ML-based approaches in software engineering (Fig-
ure 1.8) is related to source code representation and representation
learning. Thus, as in Figure 1.9, we first parse the functional test written
in Java into its AST. We choose AST as this model contains a lot of
nodes – every token of the code is represented as a node, which leads to
many edges between the nodes, and for an ML model, more information
is exchanged through the representation 1.1. In graph-based source code
representation, every statement is represented as a node, meaning a less
rich representation for the source code 1.2. For a complex problem such
as execution time prediction, we need to extract all possible information
from the source code. As in Section 1.1.2.1, AST can deliver syntactical
information, whereas graph-based representations can deliver semantic in-
formation. Thus, we require a hybrid representation, as identified in RQ1,
to build one representation that delivers both types of information to-
gether. Thus we augment the AST by adding edges representing control
and data flow to constitute a flow-augmented AST (FA-AST). More
details about this representation are contained in Paper III, Section 2.3.
Then, as a part of representation learning, we initialize the embeddings
of FA-AST nodes and edges before jointly feeding a vectorized FA-AST
into a GNN.

Figure 1.9: Schematic overview of the main phases of the experiment. Java
unit tests are parsed into ASTs, which get augmented with control and data
flow edges. The resulting graph is then used as input for a GNN.

Learning and validation: The last phase in the pipeline described
in Figure 1.8 uses the ML-based approach for predicting the execution
time. Thus we use a higher-order graph convolution neural network to
predict the execution time. Figure 1.10 shows the architecture of the

7https://docs.github.com/en/actions/using-github-hosted-runners/about-github-hosted-
runners#supported-runners-and-hardware-resources
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Figure 1.10: Architecture of the GNN Model used in our experiment.

used GNN model. A ReLU activation function follows each layer of this
model. Since GNN learns node embedding, we use global max pooling to
compute a graph embedding. Finally, the graph embedding goes into two
Linear layers with a ReLU and a sigmoid activation function to perform
the prediction of the test execution time. To train our model, we use the
mean square error loss.

3. Execution: The experimental operation is to run the algorithm on the
dataset collected in the data collection phase. We combine the collected
data for all projects into one dataset entailing 922 code fragments and
associated execution times. After that, we apply the approach as discussed
in Figure 1.9. For model training, we split the dataset into train and test
sets using 80% and 20%, respectively. Each network is trained for 100
epochs. As optimizers, we use Adam [43]. All experiments have been
executed in a machine equipped with a GeForce 940MX graphics card
and 16GB of RAM.

4. Hypotheses Testing: To evaluate the results of our model, we use a
Pearson correlation metric, a measure of linear correlation between two
sets of data. In addition, as a loss function, we use mean squared error,
which is the average squared difference between the estimated and actual
values.

Thus after designing and implementing the aforementioned methodolo-
gies, we obtained decent results that led to answering the RQs and practical
implications.

1.6 Contribution

In this section, we will summarize the main contributions of the research done
in this thesis.

• We empirically analyze the impact of different parameter values for
a selection of in total 126 benchmarks of five well-known open-source
software projects. We find that 40% of metric parameters in our dataset do
not correlate with the measurement result (i.e., varying these parameters
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does not impact the measurement). If there is a correlation, it is often
strongly predictable, following a power law, linear, or step function curve.

• We further show that Random Forest ensembles can be used to predict
the benchmark output for untested parameter values with an accuracy of
93% or higher for all but one of 26 benchmark classes.

• We systematically study the different source code representations for an
ML-based approach

• We invested in Data Centric-AI by designing and implementing a rich
source code representation for the functional test code based on the
hybrid approach in order to detect information about the structure of
the code as well the control and data flow semantic information. That
helps in increasing the efficiency of the ML model.

• We then combine this representation with the GNN model to predict the
scalar absolute value of performance.

1.7 Results

This section answers the research questions and summarizes solutions to the
challenges raised in Section 1.3.

1.7.1 Investigated Source Code Representation Approaches

In this section, we will present the results of the following research question:
RQ1 What are the proper source code representations for an ML-based

approach? Is it feasible to combine more than one representation?

Answer: All three main groups of code representation introduced
in Section 1.1.2.1 are used in literature, with tree-based and token-
based code representation being the most prevalent. It is also notable
that a substantial number of publications use a hybrid representation
approach, combining multiple different representations.

1.7.1.1 Proper Source Code Representations For an ML-based Ap-
proach

Through our SLR, we analyzed the source code representation approaches that
are utilized for encoding source code into a form that is meaningful and can be
fed into ML models. Three primaries (groups of) techniques have emerged from
our analysis: token-based representation, tree-based representation, and graph-
based representation. Five concrete representation approaches emerged that do
not clearly belong to any of these groups and have hence been categorized as
Other. These are code gadget (the number of lines of code that are semantically
related to each other [44].), binary visualization (the raw representation of
any type of file stored in the file system, which exhibits similar behaviours
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Table 1-1

Tree-based 66

Token-based 54

Graph-based 25

Others 5
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Table 2

Untitled 1

CFG 17

CallFG 3

DFG 10
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Table 2-1

Untitled 1

N-grams 10

Word Embedding 37

79 %

21 %

N-grams Word Embedding

1

Figure 1.11: Summary of Code Representation Approaches.

of the code while being syntactically different [45]), ASCII which used by
Wang et al. [46] to convert each letter of JavaScript code into eight bit binary,
latent semantic indexing(LSI, a method of analyzing a set of documents in
order to discover statistical co-occurrences of words that appear together which
then give insights into the topics of those words and documents [47]), and
bytecode (in this representation, a code fragment is expressed as a stream of
bytecode mnemonic opcodes forming the compiled code [48]). An overview of
the prevalence of the four groups is given in Figure 1.11.

All three groups see frequent use in software engineering. Tree-based and
token-based representation are the most common and are both utilized in over
half of the studies in our dataset (66 or 64% and 54 or 52%, respectively).
Graph-based approaches are less common and only used in 25 (24%) of studies,
but usage is increasing. The remaining techniques are only used in 5 individual
publications.

For tree-based representation, the only specific technique that emerged
from our study is AST. However, token-based and graph-based representations
can be split into further subcategories. For token-based approaches, these
are word embedding and n-grams, with word embedding being the dominant
technique (used in 37 or 79% of the studies using a token-based approach, see
also Figure 1.11).

There are a larger number of choices of graph-based representations, which
are depicted in Figure 1.11. The most common ones are CFG (17 or 45%). Other
options include Program Dependencies Graphs (PDG), DFG, and CallFG.

1.7.1.2 Hybrid Source Code Representation

Some studies have utilized a hybrid approach for code representation to capture
more information on the source code. This is often promising as tree-based
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approaches capture syntactical information, while graph-based approaches are
better at retaining semantics, and token-based approaches preserve lexical
information.

Table 1.4 summarises how often different types of code representation
approaches are used alone or in conjunction. The diagonal elements represent
the frequency of the frameworks that have used a single representation approach,
while the non-diagonal elements represent the frequency of the frameworks that
have used hybrid representations. Seven studies [2], [21], [48]–[52] combined
representations from all three groups. The most common hybrid approach
is a combination of token- and tree-based approaches, used by 25 studies, or
almost a fourth of our dataset, in total (note that 18 approaches combine
only tree- and token-based representation, plus the seven studies that use all
three). Combinations of the tree- and graph-based approaches are also fairly
popular, used by 16 studies in total. The problem with all mentioned combined
representation approaches is that they are not combined in one representation
but separated into multiple representations. These separated representations
constitute multiple inputs for either one ML model or multiple models (each
with one input representation) to address one or more SE tasks. Thus we do not
have one rich representation approach that compresses all different information
from the source code. More details about these results can be found in Section
8.2 in Paper II.

All=7 Token Tree Graph
Token 25 18 4
Tree 32 9
Graph 5

Table 1.4: Frequency of Combinations of (Types of) Representation Approaches.

1.7.2 Hybrid Representation Approach and GNN for
Workload-independent Execution Times Prediction

In this section, we will present the results for the following research question:
RQ2 How well can a hybrid representation approach that combines tree and

graph-based approaches predict workload-independent execution times?

Answer: By designing and implementing one representation that
compresses both syntactical information as well semantic information
along with a proper GNNML-Based model, the test execution time can
be predicted with a very high prediction accuracy (Pearson correlation
of 0.789).

Results shown in Figure 1.12 illustrate that our GNN model trained on
FA-AST is able to predict test execution times with very high accuracy, as can
be seen in the Pearson correlation (between predicted and actual execution
times in the test data set) of 0.789, and a mean squared error (the average
squared difference between the estimated and actual values) of 0.017. These
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results substantially outperform the accuracy values reported in previous
studies that attempted to predict absolute software performance counters [31],
[53]. We argue that the key innovation that enables this high accuracy is
the combination of FA-AST as a powerful code representation model and
GraphConv as a modern GNN.

We conducted more experiments for our approach on the individual projects,
as shown in Paper III, Section 3.2.2.

Figure 1.12: Comparison of our approach and a baseline (applying GGNN
to the same FA-AST graphs). Dot points show real (y-axes) and predicted
(x-axes) execution times produced by our model. The dashed line refers to the
perfect prediction.

1.7.3 Impact of The Workload on Execution Time

In this section, we will present the results that answer the following research
question:

RQ3 What is the impact of the workload on execution time, both individually
and in the interaction of multiple workload parameters?

Answer: By statistically investigating the impact of individual work-
load parameters, we found that almost 40% of the JMH parameters
have no observable impact on the measurement results, as the others
have different types of correlation. On the collective level, we found
out that in most cases, a single parameter dominates the benchmark
result

1.7.3.1 Individual Benchmark Workload Parameters and Their Im-
pact on Measurement Results

As we discussed in Section 1.5.2, there are two types of workload parameters,
categorical and numerical. In this section, we will present a snapshot of the
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statistical analysis results of the impact of the individual workload on the
execution time for both types of parameters. More details related to that are
in Paper I, Sections 4.1 and 4.2.

Categorical parameters often fundamentally change what exactly a bench-
mark tests (e.g., Listing 1.4, where a categorical parameter is used to configure
what specific data structure to benchmark). In the dataset collected for this
study, 11 of 27 (41%) benchmark classes contain at least one categorical para-
meter. One class (ConcurrentAsyncLoggerToFileBenchmark in the Log4J2

project) has only categorical parameters. However, we observe that there
are noticeable differences between projects – most categorical parameters are
found in the JCTools and Eclipse-Collections projects (where almost every
benchmark has one), while they are rarely or never used in the other three
projects.

1 public class QueueOfferPoll {

2 // ...

3 @Param(value = { "SpscArrayQueue", "MpscArrayQueue", "

SpmcArrayQueue", "MpmcArrayQueue" })

4 String qType;

5 // ...

6 }

Listing 1.4: Example categorical parameter (from the JCTools project)

In all cases, choosing different values for categorical parameters leads to a
multi-modal distribution in the resulting benchmark measures. An example is
depicted in Figure 1.13: depending on which data structure is benchmarked, the
resulting distribution changes. Note that in some cases, two or more categorical
parameter values may lead to distributions that are not statistically different
(e.g., SpmcArrayQueue and MpscArrayQueue in Figure 1.13).
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Figure 1.13: A categorical parameter leading to a multi-modal distribution of
measurement values (example benchmark from JCTools, burstSize is a metric
parameter, and qType is categorical)

In the example in Figure 1.13, all distribution modes are linear. However,
we have also observed cases where different categorical parameter values have
led to completely different types of distributions (Paper I, Section 4.1)
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We identified the following six types of correlation from the 164 combinations
of metric parameters and benchmarks distributed across 26 benchmark classes.
Examples of these correlations are explained in the following. More details
about other correlations can be found in Paper I, Section 4.2.

No Correlation In 66 combinations of benchmarks and metric parameters
(40%), we observed that the parameter was uncorrelated with the measured
benchmark value. In other words, these parameters do not appear to impact
the benchmark result at all, and developers can at least consider removing
them entirely.

0 20 40 60 80 100
length

0

5000

10000

15000

20000

25000

M
ea

su
re

m
en

t

SortedArrayVsHashMapBenchmark.cloneMap

Figure 1.14: A metric parameter which does not impact the benchmark result
(example benchmark from Log4J2, length is a metric parameter)

An example from Log4J2 is given in Figure 1.14: varying the integer
parameter length has no observable impact on the resulting measurements.

Linear Correlation Besides power law, the second type of relationship that
we have observed with some regularity is linear correlations (22 combinations,
or 13%). An example from the Log4J2 project is given in Figure 1.15.

In many ways, a linear correlation is easy to handle for developers as a
linear curve can theoretically be estimated from as little as two measurements.
However, in practice, even linear correlations sometimes exhibit irregularities.
For an example, observe the distribution of a different benchmark in the same
class as the example above (Figure 1.16): while the relationship between the
count parameter and the measured value for threadContextMapAlias=Default
is still linear, there is a significant discontinuity around a parameter value of
800.

Logarithmic Correlation Interestingly, logarithmic correlations are consid-
erably rare in our data. We have only observed 2 instances (1%) of this pattern,
both in the SortedArrayVsHashMapBenchmark benchmark class of the Log4J2
project. An example is given in Figure 1.17. Note that this plot shows the
same parameter in Figure 1.15 but in a different concrete benchmark. This
illustrates a technical limitation of JMH – parameters are defined in class-level,
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Figure 1.15: A linear correlation between metric parameter and benchmark
result (example benchmark from Log4J2, count is a metric parameter, and
threadContextMapAlias is categorical)
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Figure 1.16: A linear correlation between metric parameter and benchmark
result, with a discontinuity around count=800 for one categorical parameter
value (example benchmark from Log4J2, count is a metric parameter, and
threadContextMapAlias is categorical)

but the same parameter may be more important to some benchmarks than to
others.

1.7.3.2 Benchmark Workload Parameters and Their Impact on
Measurement Results In a Collective Level

After analyzing the impact of individual parameters in isolation, we now assess
the relative importance of parameters in benchmark classes with multiple para-
meters. In other words, we will study the impact of the workload parameters
on the collective level. Table 1.5 presents the relative importance of parameters
(features in the trained ML model) for each benchmark class. As parameters are
defined at the class level, we report aggregate results for each class. Further note
that the table omits classes with only a single parameter (as the results would be
trivial). We observe that for most benchmark classes, a single parameter domin-
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Figure 1.17: A logarithmic correlation between metric parameter and bench-
mark result (example benchmark from Log4J2, count is a metric parameter)

ates the measurement result (e.g., count for SortedArrayVsHashMapBenchmark
or qType for QueueThroughputBackoffNone). More generally, workload-related
parameters (count, size, mapSizeDividedBy64, etc.) are often dominant. Para-
meters that relate more to the configuration of the system (e.g., threshold,
workers, parallelism, qCapacity, etc.) often only have a minor impact on
the benchmark result. The benchmarks ChannelThroughputBackoffNone,
IntIntMapTest, ParallelPerf, and QueueOfferPoll are interesting because
two parameters in these classes have high importance to the benchmark result,
i.e., multiple parameters where neither clearly dominates the other.

1.7.4 Inferring the Performance of Untested Parameter
Values

In this section we will present the results that answer the following research
question:

RQ4How accurately can the execution time of benchmarks for specific
workload parameters be predicted?

Answer: With sufficient data used in training, the Random Forest
ML model can predict the performance of untested parameter combina-
tions with high accuracy without actually having to run the benchmark
for these specific parameter combinations.

Connecting to the answer to the previous research question 1.7.3.1, most
parameters either do not have an impact on the observed benchmark result at
all, or the correlation between parameter value and measurement follows fairly
predictable curves. Hence, we speculate that, given sufficient training data, it
is possible to infer the performance of untested parameter combinations with
high accuracy without having actually run the benchmark for these specific
parameter combinations. To evaluate the model, we use the R-squared (R2)
metric to measure the overall model performance.

In Table 1.6, the R2 scores for all models of all tested benchmark classes
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Class Parameter Score
e
c
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p
se
-c
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e
c
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s

LongIntMapTest mapSizeDividedBy16000 0.8923
fullyRandom 0.1077

IntIntMapTest mapSizeDividedBy64 0.6841
fullyRandom 0.3159

TroveMapPutTest size 0.7892
isPresized 0.2045
loadFactor 0.0063

ChainMapPutTest size 0.8312
isPresized 0.157
loadFactor 0.0118

R
x
J
a
v
a

ParallelPerf count 0.4711
compute 0.4558
parallelism 0.073

FlowableFlatMapCompletableSyncPerf items 0.8283
maxConcurrency 0.1717

J
C
T
o
o
ls

QueueThroughputBackoffNone qType 0.9835
qCapacity 0.0462

SetOps occupancy 0.5759
size 0.3476
type 0.0766

QueueOfferPoll burstSize 0.5257
qType 0.4741
qCapacity 0.0002

ChannelThroughputBackoffNone capacity 0.6206
type 0.3794

L
o
g
4
J
2

ThreadContextBenchmark count 0.688
threadContextMapAlias 0.3123

ConcurrentAsyncLoggerToFileBenchmark queueFullPolicy 0.8235
asyncLoggerType 0.1766

SortedArrayVsHashMapBenchmark count 0.8517
length 0.1483

jd
k
-m

ic
ro

b
e
n
ch

m
a
rk

s ForkJoinPoolForking size 0.7916
threshold 0.1319
workers 0.0765

ForkJoinPoolThresholdAutoSurplus size 0.9016
threshold 0.0814
workers 0.017

URLEncodeDecode count 0.4924
maxLength 0.487
mySeed 0.0206

Table 1.5: Relative importance of parameters on benchmark class level for all
benchmarks with two or more parameters.

for the eclipse-collections project are depicted. (The ML efficiency for the rest
projects is in Paper I, Section 5.3).

We observe that the trained models perform very well for all of the classes
of the eclipse-collections project with R2 scores ranging between 93% and 97%.

1.7.5 Inferring the Performance of Software Product

In this section, we will present the results that answer the following research
question:

RQ5 What is the efficiency of the SBI software product in the context of
brand analysis?

Answer: With sufficient collected data, proper ML-based models,
and big data analysis approaches, the proposed SBI architecture is
able to compute useful KPIs for brand analysis.
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Project Class R2
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LongIntMapTest 96%

FunctionalInterfaceTest 94%

IntIntMapTest 93%

TroveMapPutTest 97%

ChainMapPutTest 96%

Table 1.6: Accuracy of the trained models for all benchmark classes in the
experiment.

We collected data for technology brands such as Apple, Huawei, and Sam-
sung. The obtained dashboard presents different numerical, geographical and
chart visual results. In the following, We will present an example of every type
of result. Table 1.7 is an example of numerical results obtained by the SBI
software products. Sentiment score is one example of the used KPIs (KPIs
metrics and related groups are all discussed in Paper IV). The mentioned nu-
merical results present the customer opinion for the tackled brand in different
communities (data sources). Figure 1.18, on the other hand, is an example
of the visual results through the dashboard, which is the main output of the
SBI software product. The map in this figure presents the brand’s popularity
in different locations. At the same time, the line chart presents the visual
correlation between the customer polarity and stock price changes for each
brand through a specific timeline.

Brand Community Average Brand Sentiment

Neutral Negative Positive

Apple News 1.45 2.93 2.72
Apple Amazon 0.069 0.39 0.71
Apple Twitter 17.11 11.36 12.06

Huawei News 1.034 1.73 1.75
Huawei Amazon 0.076 0.20 1
Huawei Twitter 13.56 5.3 10.58

Samsung News 1.03 1.83 3.37
Samsung Amazon 0.093 0.35 1.1
Samsung Twitter 10.82 4.52 11.62

Table 1.7: Average Sentiment, by Brand and Community

1.8 Discussion

This section will investigate how each RQ’s answer contributes to solving the
challenges. In other words, what are the implications of these results according
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Figure 1.18: Example Brand Dashboard Containing Geographical Brand
Strength and a Long-Term Comparison of Brand Sentiment and Stock Prices

to the challenges introduced above? In addition, we will present the threats to
validity through the following methods.

1.8.1 Implications

RQ1 (addressing C2) discusses the different source code representations
for ML models. That will eventually help the developers to understand the
information conveyed by each representation. Then the developer can decide
which representation is used for their SE tasks depending on the complexity of
the task. In other words, we map between each representation, ML model, and
the corresponding SE task. However, for complex SE tasks such as execution
time prediction based on source code, the developer now has a perspective of
hybrid representation approaches where different information is combined with
a rich representation for ML models for more efficient prediction.

RQ2 (addressing (C1)), demonstrates that the prediction of execution
times of functional tests is another context where performance prediction is
possible. Test execution times are crucial in agile software development and
continuous integration. While individual test cases might have short execution
times, software products often have thousands of test cases, which makes the
total execution time in the build process high. Our solution approach aims to
speed up the testing process by optimizing the code or prioritizing test cases.
Thus, the developers are provided with predictions of the execution times of
their test cases and consequently giving them an early indication of the time
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required to run the cases in the build process. We believe that this would
support decisions regarding code optimization and test case selection in the
early stages of the software life cycle.

In RQ3 (addressing (C3)), we study the impact of workload parameters
on the performance both on the individual and collective level. The impact
of studying this behaviour is that the developers know to expect changes in
the measurements when they change the workload value since they know the
correlation type. That reduces the effort and time of running the benchmarks
many times to explore these changes. Moreover, for the workloads that have no
impact at all (Figure 1.14), for developers, identifying parameters of this type
is valuable, as these parameters can – in principle – be removed without loss of
coverage in the benchmark suite. The results, on the collective level, imply that
the developer should invest in one workload parameter since, for each class,
we have one dominant parameter and contribute more to the measurement
value. These results are beneficial since it is avoided to run the benchmark and
consumes computational resources for less important tests.

RQ4 addresses (C4), supports what-if analysis, and allows developers
to reason about the performance of their system in specific situations (e.g.,
when defining low-level throughput or response time guarantees). Thus, the
developers can investigate the measurement value for untested parameters
without executing the respective benchmarks.

1.8.2 Threats to Validity

Despite following a well-defined methodology, our study is always subject to
limitations and threats to validity. This section will discuss the main points in
three types of threats to validity, construct, and internal and external threats.
We use the classification proposed by Ampatzoglou et al. [54] to contextualize
these threats.

1.8.2.1 Construct Threats

In our SLR, we chose to construct our dataset based on an initial search on
Google Scholar followed by extensive snowballing rather than a more con-
ventional search strategy using major digital libraries, such as Scopus, IEEE
Xplore, ScienceDirect, or the ACM Digital Library. We argue that relying
on snowballing leads to a more complete and comprehensive dataset than
traditional search, which suffers from limitations due to inconsistent naming
and terminology. However, one challenge is that it is hard to replicate our study
similarly since Google Scholar personalizes search results. To mitigate this
threat, we provide a replication package that includes all studied manuscripts
as well as our resulting coding sheet.

1.8.2.2 Internal Threats

A key design choice in our experimental study was the usage of existing, real-
world data from GitHub’s build system rather than collecting performance
data ourselves (e.g., on a dedicated experiment machine). This has obvious
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advantages with regard to the realism of our approach but raises the threat
that our training and test data may be subject to confounding factors outside
of our knowledge. In particular, prior research has shown that even identic-
ally configured cloud virtual machines can vary significantly in performance.
However, the high accuracy achieved by our prediction models indicates that
this is not a major concern with the data we used. That said, we expect that
approach would perform even better on the performance data that has been
measured more rigorously.

1.8.2.3 External Threats

Our empirical study in workload-dependent performance investigated only a
specific version of each benchmark project. While we argue that the chosen
benchmark versions represent the problem we want to tackle, this evidence
cannot be generalized to other versions, particularly since each version’s perform-
ance value may change even with the same set of parameter values. Similarly,
we are not able to generalize to other open-source projects. We have employed
purposive sampling when identifying relevant study subjects and benchmarks.
This is common in exploratory research but inherently does not allow us to
draw conclusions about the population in general. Similarly, our study does
not generalize to other benchmark frameworks or programming languages. To
summarize, our results should not be interpreted as a comprehensive survey of
benchmark parameters in JMH or micro benchmarking overall.

1.9 Conclusion

This thesis addressed the performance prediction problem in two main settings:
workload-dependent and workload-independent. To reach this goal, many
research methodologies have been used. We fix the workload setting and try
to predict the execution time based on the source code structure to meet
the workload-independent scenario. To that aim, we first did an SLR to
investigate different source code representation ML models for different SE
tasks. Semantic, syntactical, and lexical information are the different levels
of information depending on the source code representation approach. Then
we built on that study to design a useful source code representation that
combines semantic and syntactical information in one representation, followed
by using a GNN ML mode to predict the scalar value of the performance.
Then, in the workload-dependent setting, we focused on studying the impact of
workload parameters on performance both individually and collectively. That
will eventually give the developer a clear strategy for testing to avoid investing
more time, effort, and computational resources in unnecessary tests, especially
if the tests are taken via the cloud instances where each implementation is
charged.
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1.9.1 Future Work

Online Learning vs offline learning This thesis followed the offline learning
mode to train the ML model. In this setting, we assumed that the data was
already available. In other words, enough performance measurement data was
collected for training. On that basis, the predictive model will predict the
complexity of the written code (execution time) once the code is written.

In the future, we will work on an online learning mode where the data is
unavailable from the beginning. In this setting, the predictive mode interacts
with the IDE and the developer and predicts the complexity of each chunk of
the source code once it is written. So the developer in this setting does not
wait until finishing the code to infer the complexity but even before.

Active Learning and Reinforcement Learning Based on our conducted
SLR, one of the main gaps in the literature is the lack of data (Paper II, Section
9). Millions of source code files are available on public hosts like GitHub,
but very few are labelled according to a specific SE task, which limits ML’s
usefulness for SE research. However, collecting the data is costly in our case
since we have to execute many sample programs to collect measurements as
training data. Therefore, Active Learning [55] will be used in the future to
actively look for the most valuable and informative labels for our data to infer
a reliable model.

Additionally, and towards investing in online learning, Reinforcement Learn-
ing will be used by designing a predictive model as an agent to analyse the
code while writing in the IDE environment. Moreover, these ideas will also
be extended to multi-agent reinforcement learning agents where each agent
interacts with the IDE environment to collect specific information, conduct
analysis, and infer to obtain accurate predictions in an online setting.
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