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Despite rapid advances in urban transit electrification, the progress of systematic planning and manage-
ment of the electric bus (EB) fleet is falling behind. In this research, the fundamental issues affecting the
nascent EB system are first reviewed, including charging station deployment, battery sizing, bus schedul-
ing, and life-cycle analysis. At present, EB systems are planned and operated in a sequential manner, with
bus scheduling occurring after the bus fleet and infrastructure have been deployed, resulting in low
resource utilization or waste. We propose a mixed-integer programming model to consolidate charging
station deployment and bus fleet management with the lowest possible life-cycle costs (LCCs), consisting
of ownership, operation, maintenance, and emissions expenses, thereby narrowing the gap between opti-
mal planning and operations. A tailored branch-and-price approach is further introduced to reduce the
computational effort required for finding optimal solutions. Analytical results of a real-world case show
that, compared with the current bus operational strategies and charging station layout, the LCC of one bus
line can be decreased significantly by 30.4%. The proposed research not only performs life-cycle analysis
but also provides transport authorities and operators with reliable charger deployment and bus sched-
ules for single- and multi-line services, both of which are critical requirements for decision support in
future transit systems with high electrification penetration, helping to accelerate the transition to sus-
tainable mobility.

� 2022 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction to have at least a 20% market share of pure electric vehicles by
The growing share of transportation in the world’s energy con-
sumption heavily affects climate, energy security, and the environ-
ment, contributing 29% of total greenhouse gas (GHG) emissions,
as approximately 95% of transport energy is still provided by oil-
derived fuels [1–3]. According to the US Federal Transit Adminis-
tration report, the city bus is one of the most energy-efficient
modes of urban transit, even if it is powered by diesel [4]. More-
over, if the bus fleet can be powered by electricity from renewable
sources, the emission reduction would be further reduced by 80%
[5,6]. Only in this way can we move toward a carbon–neutral
transportation system [7].

Global efforts are being made to support infrastructure
construction and stimulate electric vehicle purchases [8,9]. The
Ministry of Transport of the People’s Republic of China promises
2030 [10]. Furthermore, with the continued implementation of
the policy, the number of charging piles in China has boomed over
the past five years, reaching 1.681 million in 2020. The vehicle-to-
pile ratio is now 3.13:1 and is expected to continue to increase to
2:1 by 2025 [11]. Similarly, the $2 trillion USD infrastructure and
jobs plan by the White House in the United States will invest
$174 billion USD in building an electrified transportation network
with 500 000 chargers by 2035, while spurring the procurement of
electric cars, buses, and trucks [12]. In European countries, there
has been a substantial growth of 480% in the deployment of charg-
ing infrastructure since 2014. The goal of charging point construc-
tion is 2.8 million by 2035—14 times the current amount.
Moreover, 20 European countries offer bonus payments or premi-
ums to electric vehicle buyers, causing electric bus (EB) registra-
tion to triple in 2019 [13].

EB stock has increased in key markets, according to the Interna-
tional Energy Agency [14]. China continues to dominate the EB
industry, accounting for 99.0% of the worldwide fleet, with more
tion: A
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than 30 Chinese cities planning to have fully electrified public
transportation by the beginning of 2021 [15]. The global EB market
is projected to double in size, reaching 1.2 million units by 2025,
and approximately 40% of new city buses registered in Europe will
be battery electric. Fig. 1 summarizes the market segmentation of
European countries and the progress of global EBs. Doubling the
stock of EBs is the main goal for developing the global bus fleet
by 2025. Germany is in a leading position in Europe and has
planned for longer-term purchases of around 4800 electrically
powered buses before 2030, which is seven times the figure for
2020 [16]. Under these ambitious development plans, policymak-
ers and transportation planners are starting to realize that system-
atic models should be available at such an urgent but preliminary
stage to answer the following questions: ① how can the procure-
ment be efficiently planned; and ② how can existing schedules be
arranged and adjusted while considering the characteristics of the
EB fleet [17,18]?

The motivation of this study is to promote the realization of the
near-future bus electrification target. The rest of this paper is orga-
nized as follows. Section 2 reviews the state of the art of life-cycle
analysis, charging station deployment, and bus fleet management.
Section 3 provides a life-cycle cost (LCC) analysis framework and
introduces a mathematical optimization model in which a tailored
column generation algorithm is introduced for bus schedules. Sub-
sequently, two case studies based on real-world electrification net-
works are presented in Section 4. Section 5 summarizes the work
and provides a conclusion.
2. The state of the art

2.1. Life-cycle cost

The LCC of an infrastructure or system is one of the most critical
factors during the planning and operating stages. The LCC is
defined as the sum of the costs throughout the entire life cycle. It
covers the expenses from production to elimination, consisting of
infrastructure ownership, operation and maintenance, renewal
and reform, and scrap and recycling. It asks decision-makers to
consider the whole process and plan accordingly, with considera-
tion of both the lowest cost and the long-term benefits.
Fig. 1. Global electric bus market size. (a) Market size development of EBs fr
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As a decision support tool, LCC analysis is extensively
applied to urban transit systems. It can be used to inform oper-
ators of the optimal procurement plan and bus schedules.
Mitropoulos et al. [19] proposed an LCC method to support
bus procurement by comparing various vehicle fuels and tech-
nologies, including internal combustion, hybrid, and electric
vehicles. The LCC integrated external emission costs, time
losses, and ownership costs. They reported that electric vehicles
had the lowest LCC with the lowest external costs. Ke et al. [20]
proposed an optimization method to calculate the system cost
of converting the transportation system into a fully electric fleet
in the early stage.

Regarding environmental aspects, LCC analysis serves as an
important tool to evaluate the vehicle utilization impact on GHG
emissions [21]. The total amount of GHG emissions is calculated
based on four aspects, including: ① well-to-tank (WTT) emis-
sions, which represents the electricity delivery from the source
to the bus energy storage system; ② tank-to-wheel (TTW) emis-
sions, which comprises energy conversion and distribution inside
the bus, where the TTW stage is emission-free for a battery EB
recharged from the grid; ③ glider emissions, which includes bus
production, maintenance, and recycling processes; and ④ power-
train emissions, which consists of motor, battery, and electronics
production. Ribau et al. [22] focused on optimizing LCC in power-
train design considering investment cost, efficiency, and life-cycle
impact. They reported that EBs exhibit 67% fewer CO2 equivalent
(CO2eq) emissions and 58% less fuel consumption compared with
conventional buses. Chan et al. [23] conducted an LCC analysis
on fuel alternatives to evaluate their impact on GHG emissions.
They concluded that operational emissions account for the most
significant portion of life-cycle emissions, however, the results
were highly dependent on the modeling and operational
approach.

Under the demand for transportation electrification, LCC analy-
ses of charging infrastructures attract attention. A study compared
the LCC for the same conductive and inductive bus charging sys-
tems to support charging station selection [24]. The researchers
reported that an overall lower cost is provided by inductive charg-
ing based on the current price of the battery unit, but that consid-
erable uncertainty would remain when it came to maintenance
[25].
om 2018 to 2025; (b) 2020 European countries’ market size breakdown.
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2.2. Charging station deployment

Electric transit systems require comprehensive infrastructure
planning, since bus routes have to be equipped with sufficient
charging points to support daily operation [26]. Based on the char-
acteristics of charging EBs, two technologies are considered and
emphasized: en-route charging and depot charging [27]. Depot
charging, often known as overnight charging, is one of the most
prevalent charging options for EBs. A lengthy and continuous
charging period during nighttime is required under this technique.
In this strategy, the capacity of the battery determines the travel
range of the bus. Due to the technical limitations of lithium batter-
ies, it is currently impossible for EBs to reach the driving range of
diesel vehicles, which increases the necessary size of the EB fleet.
The depot charging problem is designed to optimize bus charging
schedules and minimize charging loads [28]. Compared with depot
charging, en-route fast chargers offer convenience and improve
charging accessibility during bus operation. The en-route fast-
charging system in common use in Europe is achieved through
automatic roof connections, with typical charging times of 4–
6 min for a full charge and 15 s for a partial charge. The system
can be easily integrated into existing bus routes by installing
chargers at intermediate or terminal stations. Timely energy
replenishment makes EBs less dependent on battery capacity
[29]. A smaller battery package results in lighter bus weight, higher
passenger capacity, and lower investment costs for battery owner-
ship, albeit with massive infrastructure ownership costs and high
electric power demand charges [30]. Recent studies have focused
on the comparative and economic analysis of these two charging
strategies. Mohamed et al. [31] simulated the charging methods
in a bus network and concluded that en-route charging is more fea-
sible for full transit EB operation compared with depot charging.
However, it might suffer from high and intermittent power
demands. Liu et al. [32] compared the financial performance of
depot charging versus en-route charging. Their findings showed
that, given current pricing for en-route fast-charging stations and
batteries, installing en-route fast-charging stations for EBs is
always advantageous. He et al. [33] analyzed the onboard battery
size and systematic cost of these two charging strategies. They
claimed that overnight depot-charging EB systems require much
larger onboard batteries than on-the-road fast-charging EB sys-
tems. Their simulation results further show that the total cost of
an en-route fast-charging system is 50.7% less than that of an over-
night depot charging system.

En-route charging can be realized through conductive (plug-in)
and inductive (wireless) energy transfer. Inductive charging pro-
vides a lighter onboard battery that gets charged from magnetic
fields, which requires an underground coil system and an onboard
one [34]. The charging power can reach 200 kW. However, the effi-
ciency is relatively low due to the air gap between the coil system
[35]. The maturity of the conductive charging technology enables a
maximum of 600 kW charging power through either overhead or
ground/underground infrastructures, which can be easily installed
with little impact on the existing road networks. Supported by
Asea Brown Boveri (ABB) [36], a power technology group, the bus
can be recharged at en-route charging stations with a 15 s energy
boost while passengers are boarding and alighting. Based on the
fast-charging concept, the applications assume that en-route
charging has no significant impact on existing timetables [37]. In
this transitional phase, conductive fast-changing technology is
widely used in European countries such as France, Germany, Italy,
the United Kingdom, and Sweden, while only a few projects
with inductive charging are presently being implemented in
Scandinavian countries [38,39].

Due to the relatively high cost of en-route chargers, arranging
the location and quantity of charging piles has become a challenge
3

in the procurement and planning process. Optimal planning poli-
cies must take availability, effectiveness, and efficiency into con-
sideration as much as possible. Availability of charging station
deployment could be achieved by setting the constraint that
energy consumption should not exceed battery capacity [40]. The
consumption between two stations is usually estimated based on
a worst-case scenario, using a larger unit consumption or a specific
value based on historical data [41]. Some studies further examine
the particular components of energy consumption in depth and
create estimates [42]. The optimal deployment of en-route charg-
ing stations fundamentally results from the efficient replenish-
ment of real-time energy consumption. Thus, to ensure
effectiveness, especially to extend the battery lifespan, the battery
state of charge (SOC) must be kept within an optimal range [43]
and be balanced with the charging station deployment plan [44].
When the SOC approaches the minimum level, a charging activity
is required [45]. Objectives are set to minimize the number of
charging stations, maximize the charging demand coverage, and
reduce delays stemming from bus charging [46].

Although several studies have investigated charging station
deployment for EBs, the majority of studies have adopted fixed
bus routes and schedules as inputs [47]. Thus, homogeneous fleets
are usually considered [48], and the fleet size is either empirical
[49] or assumed [50]. This creates a large gap between optimiza-
tion results at the planning level and optimal practical operation
goals.

2.3. Bus fleet management

Two sub-problems are associated with bus fleet management:
battery sizing and bus scheduling, defined at the operational level
[51].

2.3.1. Battery sizing
The battery sizing problem assigns a bus with a specific battery

capacity to an electrified line, fundamentally based on bus energy
consumption [52]. In a battery EB transit system, the charging sta-
tions and onboard battery have the highest bearing on the owner-
ship cost. The cost of the onboard battery accounts for at least 20%
of the total expenses, depending on the size of the battery [53]. If a
homogeneous bus fleet with the same battery capacity is consid-
ered to serve the transit network, it would inevitably lead to an
unnecessarily large investment cost. Thus, it is recommended that
the battery capacity of the bus be determined individually for each
bus line according to the energy storage requirements, thereby
reducing unnecessary purchases and LCC in the long run.

To determine the battery capacity, an adequate description of
energy consumption is crucial. The state of the art has been
focused on estimating and modeling the energy consumption of
buses under real-world traffic conditions or based on different sce-
nario settings [54–56]. Studies have reported that factors such as
bus weight, the topography of the transit network, and energy effi-
ciency can influence line-specific energy consumption and result in
different charging demands. The charging demands that can be
satisfied at charging stations depend on the dwelling time, the
availability of charging infrastructures, and the battery SOC [57].

2.3.2. Bus scheduling
The bus scheduling problem extends from the traditional vehi-

cle routing problem (VRP) to the handling of deadheading trip con-
nections, in which a trip refers to bus service in a timetable and is
characterized by the arrival and departure time at the origin, the
destination, and some intermediate stops [58]. Unlike in the VRP,
the station sequence of each trip is fixed, while additional
energy-compatible constraints are incorporated to guarantee the
service (readers interested in VRP issues can refer to Refs. [59,60]).
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The problem-solving methodologies differ according to differ-
ent charging strategies, as the required charging time varies. In
the field of en-route charging, van Kooten Niekerk et al. [61] pro-
posed a mathematical optimization model to tackle single-depot
homogeneous fleet-scheduling problems while considering both
linear and nonlinear charging times. A column generation algo-
rithm was proposed to solve the problem. The simulation method
is also widely used for bus scheduling, based on operational data to
acquire an adequate number of EBs and ensure that the bus is
punctual [62]. For depot charging, the deadhead trip between ter-
minals and depots and the relatively high charging time should be
carefully considered. Rogge et al. [63] proposed a mixed-integer
linear-programming method with heuristic and metaheuristic
solving algorithms. They reported that a lightweight bus offers a
more energy-efficient mode of transportation, although the dead-
heading mileage increases due to the frequency of charging. A
heterogeneous fleet can offer 5% extra energy savings. Thus, we
can conclude that the connection between battery sizing and bus
scheduling becomes significant when mixed fleets and energy con-
sumption are considered during scheduling.
2.4. Joint optimization of charging station deployment and bus fleet
management

Due to the inconsistency of planning and operation, the charg-
ing station layout and EB fleet provided during the planning stage
perform sub-optimally in real-time operation, resulting in insuffi-
cient infrastructures or excess resources [64]. Efforts have been
made to jointly optimize charging station deployment and bus
fleet management to some extent. A summary of different research
focuses is listed in Table 1 [32,47,49–52,63,65,66]. We divided
these studies by charging method into depot charging and en-
route charging. Since the operation of EBs under the depot charg-
ing strategy relies on the battery size, the issue of how to make
the bus schedule as reasonable as possible based on the battery
capacity has become the mainstream of research in this field. Three
studies have listed optimized bus scheduling together with depot
charging scheduling [63,65,66]. Rogge et al. [63] were the first to
consider mixed-fleet scheduling in depot charging optimization.
They generated scheduling plans based on the given bus type, with
different charging frequencies. Li et al. [65] further investigated
this topic by considering charging scheduling and passenger
demand uncertainty. An [66] focused on charging station coverage
to support daily operation with a minimized bus fleet. Although
Rogge et al. [63] attempted to consider a heterogeneous fleet, while
the other two studies focused on a homogeneous fleet, the compo-
sition of the fleet was given in advance. Thus, only rational use of
available resources could be achieved, although the better
choice is to fully consider the future operation plan at the time
Table 1
Research focuses based on different charging strategies.

Charging method Coupled with bus
schedule

Coupled with
battery sizing

Battery SOC
management

Depot charging Yes – –
Yes – Yes
Yes – –

En-route charging – Yes Yes
– Yes –
– – Yes
– – Yes
– Yes Yes
– Yes Yes
– Yes Yes
Yes Yes Yes

4

of acquisition to realize a perfect fit and avoid wasting resources.
The en-route charging method provides a convenient way to
replenish the battery in time for daily operation. Most studies have
combined this method with battery sizing to balance the cost of
building a charging station with battery ownership [32,47,51,52].
These studies considered battery management compared with
depot charging, with a focus on the battery discharge cycle and
delaying battery aging. However, they overlooked the scheduling
of EBs. For transit networks, battery sizing leads to fleet hetero-
geneity. Thus, the succession between trips could be significantly
affected due to the various energy storage requirements, which
was not considered in these studies. The possible conflict between
demand and supply would create additional challenges for
scheduling heterogeneous fleets.

In summary, current research has evaluated the operational
performance of EBs in different aspects. However, the majority of
these studies are limited to one aspect, such as ownership costs
or charging charges, and fail to provide a more comprehensive
framework. Further consideration of life-cycle emissions would
be of great benefit, both in terms of evaluating the potential of e-
mobility systems for carbon neutrality and in finding insights to
specify the path for further improvement. Moreover, previous
studies on en-route charging have mainly focused on the strategic
level when locating bus chargers instead of incorporating the oper-
ational level by considering bus scheduling. This focus poses diffi-
culties when operating EBs within large-scale networks, in areas
such as the connection between trips with different requirements
for energy storage. We believe that these gaps offer underexplored
opportunities for a systematic evaluation framework and a com-
plex consolidated model. The joint optimization of battery sizing,
charging station deployment, and bus scheduling, each bearing dif-
ferent functions and requirements, could indeed considerably
improve operational efficiency and fill the research gap. In this
context, a consolidated optimization model is proposed in this
work to study en-route charging station deployment, battery siz-
ing, and bus scheduling.

In this work, we make the following contributions to this field
of research:

(1) An LCC analysis framework is proposed to evaluate the per-
formance of the infrastructure and bus fleet in terms of both eco-
nomic and environmental aspects.

(2) An optimization model is introduced to consolidate charger
deployment, battery sizing, and bus scheduling, thereby breaking
down the planning and operational boundaries, especially for en-
route charging.

(3) A tailored branch-and-price approach is adopted to generate
the optimal solution with low time and computational burdens.

(4) Two application scenarios are designed, including optimiz-
ing an existing single-line bus operation and planning for future
multiple lines.
Ownership
cost

Maintenance
cost

Charging
cost

Life-cycle
emission

Ref.

Yes – – – [63]
Yes Yes – – [65]
Yes – Yes – [66]

Yes – Yes – [32]
Yes – – – [47]
Yes Yes Yes – [49]
Yes Yes Yes – [50]
– – – – [51]
– – – – [52]
– – – – [47]
Yes Yes Yes Yes This paper
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These contributions are made here for the first time, to the best
of our knowledge. The literature contains no studies that develop a
mathematical model for integrating these three sub-problems.
Moreover, few studies propose a systematic evaluation criterion
to assess an electrified public transit system from production to
retirement.
3. Framework and mathematical model

3.1. LCC analysis framework

The suggested LCC analysis framework aims to assess the per-
formance of the EB transit system from both economic and envi-
ronmental aspects. Fig. 2 provides the evaluation framework that
outputs the bus fleet composition, the deployment of charging sta-
tions, and the bus schedule. The objective function is set as the
annual equivalent LCC (with interest rate); it includes the infras-
tructure ownership fee, external cost of emissions, operational cost
of charging, maintenance cost of battery changes, and other repair-
ing work. The inputs consist of the bus lines (red lines) and related
service trips based on the predefined timetable (grey and blue
blocks in Step 3), the dwell time at each stop, and a set of available
battery capacities (e.g., 50, 100, and 150 kW�h). Under this evalua-
tion criteria, the Step 1 is to size the battery for each line to ensure
that the battery of a bus is sufficient to serve the line. As shown in
Fig. 2, in this step, line 16 is assigned the appropriate battery type
from a set of available buses based on its energy storage require-
ment under the current charger deployment plan. The Step 2 is
to set up charging stations by setting constraints. These constraints
are for managing the battery SOC range, in order to ensure that,
when the battery is approaching the minimum allowed SOC, a
charger is installed at the next stop. For the bus scheduling part,
Fig. 2. Overview of the life-cy

5

the available route choices after finishing each service trip are
provided, based on the time constraints and bus type compatibility
constraints that determine the availability of connections between
two trips. Thus, when the bus arrives at the destination, the current
trip of line 16 (8:00–8:40) is completed, and the block is marked in
grey. The bus scheduling process then starts, where alternatives
are chosen based on a certain criterion such as the deadhead
distance.

To better formulate and evaluate the integrated model of char-
ger deployment, battery sizing, and bus scheduling, the following
assumptions are made:

(1) The buses in this study are assumed to be battery EBs, with
different bus types defined by different battery capacities, which is
in line with the operational reality of most bus operating
companies.

(2) The charging activity is assumed to start when the bus
arrives at the station, once a charger is provided. The charging time
is equal to the bus dwell time at each stop minus the charger con-
necting and disconnecting times. Since the charging station
deployment is an issue in terms of the planning level, individual
driving behavior is not taken into consideration.

(3) We assume that, at most, one fast charger is provided for a
station due to the limited space of the bus bay. When a charging
station is shared by multiple lines, the bus arrival time at the sta-
tion may overlap. We assume that the later buses are able to wait
for the first bus to finish recharging before they can be recharged.
Since most en-route charging times are around 1 min [67], the
delay caused by waiting will not be long and can be compensated
for during the traveling time [68].

(4) The battery cycle life will be used to determine whether a
battery should be replaced. When a battery reaches a specified
number of cycles, the capacity is assumed to have degraded to
70% of the initial value. Typically, this battery will be considered
cle optimization model.
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as no longer applicable for an EB. However, the considerable
remaining capacity can be applied to stationary applications, such
as apartment energy supply and renewable energy storage. There-
fore, we assume that the residual value of the battery pack will be
400 SEK�(kW�h)�1 [53], where 1 SEK � 0.09 USD.

3.2. Consolidated optimization model

The features of the model, including its objective functions and
constraints, will be detailed in the following two sub-sections. A
schematic diagram representing the relationship amongbattery siz-
ing, charging station deployment, and bus scheduling sub-problems
is illustrated in Fig. 3. Each sub-problem determines one of the key
components of the objective function. For example, the battery siz-
ing sub-problemdealswith the optimal battery size,while the num-
ber of chargers and the size of the bus fleet are decided by the
charging station deployment and bus scheduling sub-problems,
respectively. Unlike sequential optimization problems, the inte-
grated model positions the variables that restrict each other
between the sub-problems. For example, the battery sizing problem
determines how the vehicle’s SOC affects the choice of charging
points. It also limits whether two trips can be connected when solv-
ing the bus scheduling sub-problem. Conversely, the location and
the number of en-route charging piles also affect the size of the bat-
tery needed to serve the bus line. The solution approach for bus
scheduling sub-problems will be illustrated in Section 3.3. Table 2
[1,30,51,53,69–71] provides a summarized description of the sets,
parameters, and variables discussed in this section.

3.2.1. Objective function
In this section, we describe the formulation of the objective

function, which calculates the annual equivalent LCC of an electric
transit system from production to elimination.

minCEAC ¼ COWN þ CEM þ COM ð1Þ
The objective function defined in Eq. (1) aims at minimizing the

sum of the infrastructure ownership cost COWN, the external cost of
emissions CEM, and the annual operational and maintenance cost
COM.

COWN ¼
X

p2P

X
v2Vp
ðCp

BUCþCp
BAC � Cp

BASÞ � #v þ
X

i�S
CCHS � xi

� �
� c
1� 1þ cð Þ�n ð2Þ

CEM ¼
X

v�V
avWTT þ avPT þ avGL
� � � n � n�DISv � c

1� 1þ cð Þ�n ð3Þ
Fig. 3. Schematic diagram of the consolidated optim
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COM ¼
X
p2P

X
v2Vp

Cp
BUM � #v þ u � n � bv �DISv þ CvBAR �xv

� �
þ
X
i2S

CCSM � xi
 !

� c
1� 1þ cð Þ�n ð4Þ
xv ¼ d n � DISv �bv
1�SOCmin
145:71

� ��1=0:6844
�qv � SOCmax � SOCminð Þ

e 8v 2 V ð5Þ

Eq. (2) calculates the annual equivalent infrastructure owner-
ship cost. It consists of two parts: the capital cost for buses and that
for charging stations. The first part of Eq. (2) is equal to the cost of
battery and bus purchases minus the residual value of the batter-
ies. The decision variable #v indicates whether bus v is in use,
which is the key object for optimizing bus schedules, as shown
in Eq. (15). The second part sums the cost of installing chargers
at bus stops. Eq. (3) calculates the annual equivalent life-cycle
emissions from WTT, glider, and powertrain based on the yearly
travel distance DISv , which is calculated in Eq. (20). After that, a
monetary scalar n is designed to convert the emissions into the
external cost, based on the work in Ref. [1]. The annual operation
and maintenance costs in Eq. (4) include four components: bus
maintenance expenses, fleet charging costs, battery replacement
costs, and station maintenance costs. The frequency of battery
change for bus v within the entire life cycle is calculated in Eq.
(5), where the theoretical cycle life before battery replacement is

defined as 1�SOCmin
145:71

� ��1=0:6844
, based on the fatigue model introduced

in Ref. [48]. Assuming that the bus schedule remains the same
every year, the entire energy consumption can be estimated as
n � DISv � bv . Knowing the boundary conditions of the recharge
SOCmax and discharge SOCmin, the frequency of battery replacement
can then be estimated. It is notable that, for each vehicle, the
energy consumption rate bv (for each v 2 Vp, wehave bv ¼ Bp)
and the battery capacity qv ðfor eachv 2 Vp; wehave qv ¼ QpÞ are
known, whereas the only variable in Eq. (5) is DISv , similar to that
in Eq. (3). It should also be noted that, when the bus is not in use,
#v ¼ DISv ¼ 0.
3.2.2. Constraints
In this section, we illustrate the formulation for battery sizing

(e.g., Eqs. (6)–(8) and (14)), charger deployment (e.g., Eqs. (9)–
(13)), and bus scheduling (e.g., Eqs. (15)–(20)). The solution
approach for the bus scheduling sub-problems is formulated as
Eqs. (21)–(27). Following the convention of daily operations, we
assume that the bus will be fully charged before it departs from
ization model. [P1]–[P4] mean four problems.



Table 2
Sets, variables, and parameters definition of the model.

Definition Description Value

G Set of trips {g; h} Index 0 represents the bus depot
Gr Set of trips running on line r –
L, L0 Set of trips {l}, L0# L –
P Set of bus types {p} –
R Set of lines {r} –
S Set of stations {i} –
V Set of buses {v} –
Vp Set of buses of type p –
In g;pð Þ Inbound node set of trip g, In g;pð Þ#G –
Out g; pð Þ Outbound node set of trip g, Out g; pð Þ#G –
apGL 100-year global warming impact delivered by glider 35 gCO2eq�km�1 [69]

apPT 100-year global warming impact delivered by powertrain 170 kgCO2eq�(kW�h)�1 [70]

apWTT
100-year global warming impact delivered by WTT 20 gCO2eq�km�1 [70]

Bp The energy consumption rate of bus type p –
bv The energy consumption rate of bus v –
Cp
BAC

Ownership cost of an onboard battery of bus type p 5400 SEK�(kW�h)�1 [53]

Cp
BAR

Battery replacement fee for bus type p 3000 SEK�(kW�h)�1 [53]

Cp
BAS

Salvage value of battery of bus type p 400 SEK�(kW�h)�1 [53]

Cp
BUC

Ownership cost of bus type p 4 000 000–6 000 000 SEK [53]

Cp
BUM

Maintenance fee of bus type p 3% of ownership cost [53]

CCHS Ownership cost of charging station 1 500 000 SEK [53]
CCSM Charging station maintenance fee 4.6% of ownership cost [53]
dri;iþ1 Distance between stations i and iþ 1 of line r –

Hv
gl Indicating whether trip g is covered by trip l and can be served by bus v; if true, Hv

gl = 1, otherwise, Hv
gl = 0 –

Np;v Bus inventory, Np;v = 1 when bus v is type p, Np;v = 0 otherwise –
n Estimated lifetime (years) 12 [51]
Qp Battery capacity of bus type p, Qp < Qpþ1 –
qv Battery capacity of the bus v –
SOCmax Maximum battery SOC allowed 0.95
SOCmin Minimum battery SOC allowed 0.45
Tr
i Bus dwell time at station i of line r minus average charger connecting and disconnecting times –

u Charging cost 1.0 SEK�(kW�h)�1
b Battery applicability level 0.7 [71]
c Discount rate 2.083% [69]
e Power of charging stations 450 kW [30]
h maximum energy consumption rate 2 kW�h�km�1 (worst-case scenario)
n External cost of emissions in SEK�(tCO2eq)�1 490 SEK�(tCO2eq) �1 [1]
CEAC Life-cycle equivalent annual cost –
COWN Infrastructure ownership cost –
CEM External cost of emissions –
COM Annual bus operational and maintenance cost –
Cp
BM

Type p bus maintenance cost –

DISv Annual travel distance of bus v –
ur

i Energy storage requirement for serving station i on line r ur
1 = 0

eri Amount of energy left when the bus arrives at station i –
SOCr

i Battery SOC at the station –
xv Times of battery replacement of bus v –
pg Dual variable in column generation algorithm –
rv Reduced cost of bus v –
kvl Binary variable: whether bus v serves trip l –
xi Binary variable: whether i is a charging station {0, 1}
yrp Binary variable: whether bus type p is assigned to line r {0, 1}
#v Binary variable: whether vehicle v is in use {0, 1}
zvgh Binary variable: whether bus v serves trips g and h sequentially {0, 1}
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the depot and will set SOC to SOCmax at the beginning of the day.
We will also set different charging stations for different directions.

ur
iþ1 ¼ ur

i þ h � dr
i;iþ1 � e �

Tr
i

60
�xi 8i 2 S;8r 2 R ð6Þ

X
p2Pb � Qp�yrp �

maxur
i

SOCmax � SOCmin
8i 2 S;8r 2 R ð7Þ

X
p2Py

r
p ¼ 1 8r 2 R ð8Þ

eriþ1 ¼ eri �
X

p2PBp�dr
i;iþ1�yrp þ e �

Tr
i

60
�xi 8i 2 S;8r 2 R ð9Þ
7

eri þ e �
Tr
i

60
�xi �

X
p2PBp�dr

i;iþ1�yrp � SOCmin �
X

p2PQp � yrp
8i 2 S;8r 2 R ð10Þ

eri � SOCmax �
X

p2PQp�yrp 8i 2 S;8r 2 R ð11Þ

SOCr
i ¼

eriP
p2PQp�yrp

8i 2 S;8r 2 R ð12Þ

xi 2 0;1f g 8i 2 S ð13Þ

yrp 2 0;1f g 8p 2 P;8r 2 R ð14Þ
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Eq. (6) calculates the estimated energy storage requirement for
a bus to serve station iþ 1 with the maximum energy consump-
tion rate h. The parameter h refers to the maximum energy con-
sumption per unit among all available bus types. We aim to
figure out the highest energy demand based on a specific charging
station layout. It is notable that the station with the largest energy
demand may not be the terminal but be an intermediate station
instead, since the en-route charging station is available. When a
charger is provided, this requirement decreases by e � Tr

i . When
two buses arrive at the same stop at almost the same time, we
assume that the later bus will wait for the earlier bus to leave
and charge. Thus, in the case study, we add a buffer time to the
dwell time in order to cope with the charging waiting situation.
After a certain type has been assigned to the route, the bus type
related energy consumption rate will be updated by

P
p2PBp�yrp.

The introduction of en-route charging should not interrupt the pre-
defined schedule. Thus, the charging time at each charging station
is assumed to be equal to the passenger boarding time based on
real-world operational data [36]. Eq. (7) determines the battery
sizing from an inventory P. The battery applicability level b indi-
cates the percentage of battery capacity after degradation, such
as 70%. Before being replaced, the degraded battery capacity b�Qp

should be applicable for the bus route. Thus, we ensure that the
lowest battery capacity b � Qp is sufficient for running the route
with the highest energy demand maxur

i . Eq. (8) further ensures
that one bus type should be assigned to each line. Eq. (9) calculates
the energy left when a bus arrives at station iþ 1, with an updated
energy consumption rate Bp and charging station layout xi. To keep
the battery’s SOC in the optimal range, we set Eq. (10) to constrain
the remaining energy such that, when a bus leaves station i, the
remaining energy is larger than the summation of the traveling
consumption between two adjacent stops and the lowest allowed
energy level. Eq. (11) defines the upper bound of the battery
energy, which should not exceed the maximum allowed SOC times
the battery capacity. Eq. (12) calculates the battery SOC when the
bus arrives at station i of line r. It should be noted that this nonlin-
ear expression of SOCr

i will only be used as evaluation criteria in
the case studies and will not be included in the optimization.
Two decision variables for the charging station layout and battery
sizing for the route are defined in Eqs. (13) and (14), respectively.
Eq. (13) introduces the binary decision variable xi, which repre-
sents whether station i is a charging station. Eq. (14) defines the
binary decision variable yrp, which indicates the battery sizing for
line r.

We know that a battery with larger capacity costs more than a
battery with smaller capacity. However, a larger capacity can sup-
port a longer trip and be more flexible during scheduling, with less
distance anxiety. To further manage the heterogeneous bus fleet,
we formulate an integer network flow sub-model [P1] based on a
node-arc framework, which decides the bus fleet size

P
v2V#v

and further decides the values of COWN and COM in Eqs. (2) and
(4), respectively.

In this sub-model, the set of nodes G consists of ① the bus trip
node, represented by index g and h; and ② the bus depot node,
represented by the index 0. It should be noted that we compress
a bus trip with a specific departure and arrival time and space into
one node. Arc set A represents the possible serving sequences of
the buses. It includes arcs from the depot to each trip g, arcs from
trip g to another available trip h, and arcs from trip h back to the
depot. When two nodes are connected, the arc is generated. Never-
theless, a time-compatible constraint is set for connection avail-
ability, which means that there should be enough time for buses
to finish the first trip and then drive to the next trip’s origin. Based
on the time constraint, we further define a set Inðg; pÞ#G contain-
ing the available inbound nodes that can be served by bus type p
8

before starting trip g. If the battery capacity of bus type p satisfies
the condition Qp � Qg and Qp � Qh, then trip h is added to the set
Inðg; pÞ. Similarly, we define the set Outðg; pÞ#G as the available
outbound node set of trip g, which can be served by bus type p
after completing trip g. In the bus inventory Vp, the vehicles of type
p are recorded. Given the network description, we consider a
sequence of trips that begins at the depot and ends at the depot
to correspond to a bus schedule. Therefore, minimizing the total
number of buses is the same as reducing the total flow out of the
depot, node 0. To facilitate the use of algorithms to solve this prob-
lem, we describe the following sub-model as [P1].

Bus scheduling sub-model [P1]:

min
X
v2V

#v ¼min
X
v2V

X
h2G

zv0h ð15Þ

subject to:X
v2Vp

X
h2Gr

zv0h ¼ yrp 8p 2 P;8r 2 R ð16Þ
X

h2Inðg;pÞ
zvhg ¼

X
h2Outðg;pÞ

zvgh 8v 2 Vp;8p 2 P;8g 2 G ð17Þ

X
p2P

X
v2Vp

X
h2Outðg;pÞ

zvgh ¼ 1 8g 2 G ð18Þ

zvgh 2 0;1f g 8v 2 V ;8g 2 G;8h 2 G ð19Þ
The objective function described in Eq. (15) does not exist inde-

pendently but is the specific description of
P

v2V#v in Eq. (2) repre-
senting that minimizing the bus fleet is equivalent to minimizing
the number of buses departing from the depot.

Eq. (16) depicts the relation between variables yrp and zvgh. It
ensures that, when bus type p is assigned to line r, there should
be one bus v of this bus type to serve the trips running on line r.
Eq. (17) ensures the conservation of bus flow. For depot 0, it means
that a bus departing from the depot should be back at the end of
the day. For trip node g, it means that connections between nodes
should be generated based on the inbound and outbound node
sets. According to Eq. (18), there must be exactly-one bus serving
every trip node. Eq. (19) defines a binary decision variable zvgh.

When the variable is equal to 1, the bus v serves trips g and h
sequentially; otherwise, the variable is set to 0. It is notable that
zvgh records the daily service route of bus v . If we assume that this
service route remains the same during the year, based on the dis-
tance of each trip and the deadhead trips, DISv can be determined
as shown in Eq. (20).

DISv ¼ days �
X
g2G

X
h2 G

0f g;h–g
zvgh � disg þ deadheadgh

� � 8v 2 V

ð20Þ
where disg denotes the travel distance of trip g, and deadheadgh rep-
resents the deadhead distance between sequential trips g and h. We
assume that the route for buses will not change within the whole
year. The parameter days is introduced to record the days in one
year.

3.3. Solution approach

As a branch of the VRPs, two types of solution methods can be
identified: heuristic methods for a quick search and exact methods
for a global optimal solution [72]. The column generation tech-
nique is part of these exact methods [73]. When this problem is
an integer program, the branch-and-price algorithm is introduced,
which combines column generation and branch-and-bound proce-
dures and is devised to generate provably high-quality solutions
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for large-scale problems [74]. This algorithm was recently intro-
duced to solve the scheduling problem for EBs [74–76]. In the
branch-and-price algorithm, the master problem [P1] is first trans-
formed into a partitioning problem with binary variables [P2] and
then further reduced to a linear limited master problem consider-
ing a subset of columns [P3]. The task of the pricing sub-problem
[P4] is to find additional potential columns (i.e., bus schedules) that
satisfy a set of requirements. In this work, the pricing problem
innovatively includes customized bus type constraints. Finally,
branch-and-bound methods are proposed to ensure that the
relaxed solution is an integer. The algorithm helps decrease the
size of the decision variables and facilitates the solution process.
In this section, a tailored branch-and-price algorithm is introduced
for the EB scheduling sub-problem.

3.3.1. Set partition model
We first convert [P1] into a set partition model [P2], where trips

are covered by feasible schedules.
Set partition model [P2]:

min
X
v2V

#v ¼min
X
v2V

X
l2L

kvl ð21Þ

subject to:X
v2V

X
l2L

Hv
glk

v
l
¼ 1 8g 2 G ð22Þ

kvl 2 0;1f g 8v 2 V ;8l 2 L ð23Þ
We denote by L the set of feasible schedules for buses within

one day. For buses of the same type, the schedule is the same.
The objective function is shown in Eq. (21), which ensures that
minimizing the bus fleet size is equivalentto minimizing the num-
ber of schedules covered by each bus. Eq. (22) ensures that each
trip g is covered in the optimal schedule plan. It should be noted
that Hv

gl is a predefined parameter that represents whether trip g

is a part of schedule l and can be served by bus v : This parameter
significantly reduces the solution space. For each schedule l 2 L, a
binary variable kvl is defined in Eq. (23) to denote whether bus v
serves schedule l.

3.3.2. Restricted master problem (RMP)
The RMP with the subset of potential schedules L0 2 L is formu-

lated in the model [P3]. Initially, we derive L0 by the label correct-
ing method presented in Section 3.3.3.

RMP [P3]:

min
X
v2V

#v ¼min
X
v2V

X
l2L0

kvl ð24Þ

subject to:X
v2V

X
l2L0

HV
glk

V
l ¼ 1 8g 2 G ð25Þ

kvl � 08v 2 V ; 8l 2 L0 ð26Þ
The dual variables of model [P3] are defined as follows:
pg: the dual variables for constraint Eq. (25), 8g 2 G
At each iteration of column generation, the dual variable of

model [P3], X � pg jg 2 G
� �

, comprises the input parameters of
pricing sub-problem [P4] to generate a new column with the low-
est reduced cost (i.e., the objective of model [P4]).

3.3.3. Pricing problem
The column generation method manages to find the optimal

solution to the master problem [P2] by repeatedly solving the
RMS [P3] with a subset of potential schedules, L0 2 L, and a relaxed
9

decision variable, kvl � 0: In order to find this schedule l 2 L=fL0g
efficiently, a pricing problem is proposed. The target is to find a trip
chain, which should also be negative for the minimization prob-
lem, with arc costs equal to �pg .

The pricing problem is shown to generate a feasible schedule
associated with a negative reduced cost.

Pricing model [P4]:

minrv ¼ �
X
g2G

pg

X
h2G

zvgh ð27Þ

subject to:
Eqs. (16)–(19).
The pricing problem is an extension of the shortest path prob-

lem. This problem can be solved efficiently with a dynamic pro-
gramming approach. The inbound and outbound sets defined in
Section 2.2.2 further accelerate the solving time by processing
the time and space constraints in advance, where the trips in the
two sets are sorted by the departure time. To solve the pricing
problem, we adopt the label correcting algorithm proposed by
Feillet et al. [77]. The label indicates the partial trip chain from
the depot to a current trip node g 2 G: The label is defined as
label g; c; Sð Þ, where g is the last trip node visited in the partial trip
chain represented by label; c is the reduced cost of the partial trip
chain represented by label; and S represents the set of trips cov-
ered along the chain.

The unreachable trips are also collected in set S; that is, trips are
not covered in the chain represented by label without violating
time or capacity constraints.

The pseudocode of the label correcting algorithm is summa-
rized as Algorithm 1.

Algorithm 1. Pricing procedure for bus scheduling.

Initialize label 0;0;£ð Þ;
LABELS 0½ �:add ðlabelÞ:
for all g 2 G do
LABELS g½ �  £

end for
W = {0}
while W –£ do
g ¼W:extractUnreachableNodesðÞ
for all label g; c; Sð Þ 2 LABELS g½ � do
if label is not processed do
for all h 2 outðg; pÞ do

if h R S then
label0 h; c � ph; S [ fhgð Þ
label0:updateUnreachableNodesðÞ
if LABELS h½ �:insertðlabel0Þ then
W  W [ fhg

end if
end if
label00 ¼ ðh; c; SÞ

label00:updateUnreachableNodesðÞ
if LABELS h½ �:insertðlabel00Þ then
W  W [ fhg

end if
end for
end if

end for
end while
return LABELS 0½ �

When the optimal objective of [P4] is negative, the bus schedule
with the minimum reduced cost will be added to [P3] as a new
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entering column, and the route determined by zvgh will enter subset
L0 2 L. The column generation procedure terminates when the min-
imal reduced cost is non-negative, indicating that no feasible trip
chains can be added to L0 in model [P3] to improve the current
solution.
3.3.4. Branch scheme
The branching procedure splits the solution space to restrict the

search and tighten the bound [78]. This ensures that the added
constraints are compatible with the master problem. The rule for
vehicle scheduling depends on the property that a node should
be visited at most once [79].

The branching rules introduced by Ryan and Foster [80] have
been proven to be one of the most efficient schemes and are thus
adopted in this paper. When k is a partial solution to the RMP,

the flow along the route can be defined as f kij :¼
P

l2L:i;j2lkl and fol-

lows f kij � 0 and f kij � 1. For each solution k; there exist at least
two nodes g and h, such that 0 <

P
l:Hgl¼Hhl

kl < 1. In the master

problem, k is required to be either 0 or 1. Thus, for any arc g;hð Þ;
two branches can be generated:
	 In the first branch, the upper limit on flow on arc g;hð Þ is fixed to
0; that is, Hgl ¼ Hhl ¼ 0.
	 In the second branch, the lower limit on flow on arc g;hð Þ is fixed
to 1; that is, Hgl ¼ Hhl ¼ 1.
This Ryan–Foster branching scheme can be easily managed in

the column generation procedure with the following constraints:P
l2L:i;j2lkl ¼ df kije and

P
l2L:i;j2lkl ¼ bf kijc.
4. Case study

The proposed model and algorithm provide a straightforward
method for assigning buses to lines, deploying bus chargers, and
minimizing the bus fleet size with optimal schedules for real-
world problems. To compare it with the current operational perfor-
mance, one scenario is designed, while another scenario generates
the optimal plan for a future multi-line bus service consisting of
one existing line and one planned line.

All instances in this section are implemented in the General
Algebraic Modeling System (GAMS) 25.1.3 and were solved with
CPLEX 12.0 on a Dell laptop with a 1.9 GHz Intel Core i7 CPU and
8 GB running on Windows 10.
Fig. 4. Operational strategies of the existing setting and o
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4.1. Existing electrified bus line optimization

This scenario is designed for optimizing the existing electrified
bus line in Gothenburg, which is the first venture of Volvo Buses for
the purpose of developing, demonstrating, and evaluating next-
generation sustainable public transport [81]. The current opera-
tional strategy is shown in Fig. 4(a). It depicts an existing electrified
line 55 in its entirety, with a distance of about 7.6 km. This line is
equipped with two terminal charging stations. Although the two
directions have differently located terminal stops, deadheading
can be carried out after the battery is fully recharged. The bus
schedules provided by the bus operator contain 73 outgoing and
73 returning trips, which are currently served by ten pure EBs with
200 kW�h battery capacity. The operational data is provided
by Vasttrafik. The proposed optimal solution is illustrated in
Fig. 4(b). In contrast to the current plan, the charger deployment
is considered separately for each direction in this scenario,
with two chargers being provided for outgoing trips (blue circle)
and two for returning trips (purple circle). The increase in the num-
ber of chargers is caused by the compensation of downsizing in
battery capacity. Among the selected charging stations, two are
located in terminals to provide adequate energy for trip connec-
tions, whereas the others are used for maintaining the battery
SOC within an optimal range. The bus fleet size in the proposed
plan is decreased from 10 to 7, and the battery capacity is
decreased from 200 to 30 kW�h. In keeping with current operating
conditions (Volvo 7900), we use lithium-ion batteries as traction
batteries with a maximum charge power of 450 kW. Since it is
unnecessary to consider the compatibility of bus types in single-
line bus scheduling, the only limitation on trip connections is the
time constraint. Therefore, trips with earlier departure times and
less deadheading mileage are preferred in order to dispatch buses
more efficiently, which is reflected in the definition of inbound and
outbound trip sets.

A comparison between the current plan and the proposed plan
is made using the LCC evaluation framework. Fig. 5(a) describes the
breakdown of annual equivalent LCC, which reveals the improve-
ment delivered by the proposed plan. In the battery sizing module,
a suitable battery capacity (30 kW�h) is allocated for the short line
(7.6 km). The detailed calculation is illustrated in Eq. (7), where we
divided the energy storage requirement calculated by Eq. (6) by a
specific depth of discharge (e.g., 0.6) and compared it with the
degraded battery capacity. We find that the 30 kW�h of battery
capacity is sufficient to support single trip operation under the
ptimized plan. (a) Current plan; (b) optimized plan.



Fig. 5. Performance of the current and proposed plans. (a) Breakdown of the annually equivalent LCC; (b) breakdown of the annual emissions; (c) SOC curves for outgoing
trips; (d) SOC curves for returning trips.
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optimal charging station configuration. Moreover, the bus fleet
optimization module enables a reduction of the fleet size, which
reduces the bus investment expenses. More specifically, the annual
equivalent LCC decreases by 1.96 million SEK, achieving a 30.4%
reduction in comparison with the current plan. The individual
measures—namely, the ownership cost, emission, and operational
maintenance—are reduced by 1.80, 0.13, and 0.03 million SEK,
respectively, with the external cost of emissions falling to around
half that in the current plan. It can be seen that the ownership cost
dominates the cost reduction, although the number of charging
stations has doubled. Thus, effective bus scheduling is the most
crucial factor in reducing LCC.

Fig. 5(b) compares the optimized breakdown of the annual
equivalent life-cycle emissions with the real-world operating
plan. The results indicate that the annual emissions reduction in
the glider, powertrain, and WTT stages is 16.28, 28.51, and 9.04
tCO2eq, respectively, with the highest mitigation level occurring
in the powertrain, which achieves an 86% reduction through the
use of a lower capacity battery. It is notable that Sweden’s
carbon-intensive electricity mix is the lowest in the world due
to its inclusion of renewable and nuclear energy, with an inten-
sity of 20 gCO2eq�(kW�h)�1. Thus, WTT delivers much lower emis-
sions than in the average country. For example, in the United
Kingdom, WTT emissions account for over 50% of the total life-
cycle emissions, with an intensity of 300 gCO2eq�(kW�h)�1 [69].
If UK energy intensity is used as an input, WTT will surpass the
powertrain and become the second-largest component of emis-
sions. Compared with the impact of the fleet size, the battery
11
capacity has a more significant mitigation effect on emissions.
The SOC curve in both plans and the two directions is illustrated
in Figs. 5(c) and (d), respectively. The green line shows the SOC
curve under the current plan, while the blue and pink lines rep-
resent the swing of the SOC in the proposed plan for different
directions. If the SOC drops first and then rises on the same
abscissa, it means that a charging station is set at this point. In
the proposed plan, for the outgoing trips, when a bus travels
around 5 km, it reaches a charging station, and the battery SOC
increases to 0.87. In order to serve the next trip with enough
energy storage, another charger is located in the terminal station,
and the battery SOC increases to 0.95 after the bus arrives at the
destination. For returning trips, a bus travels 4.6 km before arriv-
ing at the first charging station. Accordingly, the battery SOC
increases to 0.89 when the bus leaves this stop. Similarly, the sec-
ond charger is provided at the destination. In contrast, in the cur-
rent plan, due to the large battery capacity, the entire trip
consumes around 10% of the energy storage. Therefore, due to
the small battery capacity used, the number of charging stations
is doubled even in the proposed plan, and the SOC fluctuation is
higher than in the existing plan. It should be noted that the fluc-
tuation of the SOC depends on the distance traveled and the
energy consumption rate [82]. However, in order to clearly indi-
cate battery SOC at each stop and to evaluate the charging plan
intuitively, we assume that a change in SOC only occurs when
the bus arrives at the charging station. The SOC between two
stops is represented by a horizontal line, which is consistent with
the result of Eq. (12).
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In the current plan, utilizing a bus with a large battery capacity
also has some advantages, such as extending the battery cycle life.
To compare the cycle life of different plans, the SOC curves on the
outgoing and return trips are summarized in Figs. 5(c) and (d). For
both directions, the SOC in the current plan remains in the interval
from 0.95 to 0.85, whereas the SOC in the proposed plan fluctuates
from 0.95 to 0.61 in the outgoing trips and from 0.95 to 0.65 in the
returning trips. We take the lowest values of the SOC as SOCmin for
each plan, which are 0.85 and 0.61, respectively. When SOCmin is
0.85, as in the current plan, the battery cycle life can reach
49 000 times. When the value decreases to 0.61, the cycle life
decreases to around 6720 times. As a result, the battery change fre-
quency increases in the proposed plan, and the yearly operational
fee will increase accordingly. In general, combining the above
points, lightweight batteries and a smaller bus fleet perform better
both economically and environmentally. At the same time, battery
replacement and maintenance can compensate the cycle life
reduction caused by the giant SOC swing.

The case study was solved with CPLEX 12.0. It took 43 s to
generate the optimal solution.

4.2. Future multi-line planning

This scenario focuses on near-future electrified bus line plan-
ning, with one existing line (the same as in Section 4.1) and one
planned line currently being run by diesel buses but being tested
for electrification [83]. It should be noted that the proposed model
does not limit the problem scale. The two bus lines were chosen
because they are entirely in line with Gothenburg’s current electri-
fication plan and the inter-lining situation can be represented in
Table 3
Electrified lines’ major characteristics.

Bus line Length (km) Travel time (min)

Existing line 7.6 26
Planned line 16.6 46

Fig. 6. Possible trip
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this scenario. Table 3 summarizes the major characteristics of the
two lines, including the length, travel time, serving time, number
of trips, and number of stops, where the number of stops is dou-
bled, since we separate outgoing and returning directions. For
more information regarding the value of other modeling parame-
ters, please refer to the Appendix A.

The possible trip connections and their corresponding dead-
heading mileages are shown in Fig. 6. Buses usually run back and
forth on the same line, as shown in the first column of the first
row and the second row. However, in daily operation, buses are
allowed to serve different lines sequentially in order to conduct a
flexible schedule and reduce the size of the fleet, as shown in the
third row. Similarly, due to the uncoordinated planning of the
timetable in two directions, the frequency of departures in one
direction is often higher than that in the other direction. As a
result, buses are allowed to serve the same direction sequentially
with a long deadheading trip, which is illustrated in the second col-
umn. When a bus is assigned to serve two lines, we eliminate the
single-direction service choice since the deadheading mileage is
too large, which is not conducive to generating an efficient
schedule.

Fig. 7 shows the optimal charger deployment for this network,
with the existing line in solid black and the planned line in dashed
brown. The battery sizing module assigns buses with a 30 kW�h
battery capacity to both lines. In contrast, the charger deployment
module selects eight stops as charging stations from the available
station set, which contains 64 bus stops (32 in the outgoing direc-
tion and 32 in the returning direction). Half of the selected charg-
ing stations are shared by two lines (solid circles in Fig. 7), while
the others are close to the destination (hollow circles in Fig. 7) to
Serving time Stops Trips

06:00–19:00 26 146
00:10–00:40 (+1) 50 312

connections.



Fig. 7. Optimal charger deployment for a multi-line bus service.
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ensure that enough energy is stored to serve the next trip. When
comparing Fig. 4(b) and Fig. 7, it can be seen that, even for the
same electrified line, the selection of charging stations is different
under the conditions of the single-line and network-scale opti-
mization. More specifically, only one of the four charging stations
coexists in the two plans. It is worth noting that the other three
charging stations that differ from those in the single-line optimiza-
tion plan are located on the stations shared by the two lines. The
advantage is that, since the two lines’ arrival times do not overlap,
these charging stations can be more efficient and fully utilized.

The optimal bus scheduling is shown in Fig. 8, with a fleet of 26
buses. The number of trips served, operational time, and deadhead-
ing mileage for each bus are shown in each subfigure, respectively.
In the optimization, the same bus type is allocated to two lines,
which enables a reduction of the bus fleet since buses are allowed
to serve trips from both lines. To avoid long deadheading mileage,
Fig. 8. Optimal schedule for each bus. (a) Trip serving a
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it is preferable to run a bus back and forth on the same line. In this
first subfigure, the number of trips served by each vehicle is col-
lected in ascending order, and the order remains when displaying
the performance in terms of operational time and deadhead mile-
age. Analyzing the data in the first and third subfigures, it can be
seen that the strategy of sharing lines is advantageous because of
the increased trip coverage of a bus when a tolerable bus deadhead
mileage is allowed. The highest coverage for one bus is 25 trips.
When extracting the first column (bus 1) of these two subfigures,
it can be seen that the bus with the smallest number of trips has
the longest deadheading distance. Due to the uncoordinated time-
table, the trips served by each bus will fluctuate. The figure shows
that the fluctuation is between 10 and 25, and the average is 13
trips per bus. The bus operational time shown in the second subfig-
ure refers to the time duration between a bus departing from the
depot and returning to the depot; this is not the exact bus running
mount; (b) serving time; (c) deadheading distance.



Table 4
Annual equivalent LCC breakdown of the planned line.

LCC components Value

Infrastructure ownership cost (
106 SEK) 9.96
Maintenance and operation (
106 SEK) 5.89
Life-cycle emission (
106 SEK) 0.09
Glider (tCO2eq) 113.92
Powertrain (tCO2eq) 13.93
WTT (tCO2eq) 63.29
Annual equivalent LCC (
106 SEK) 15.94
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time, as the waiting time for trip connection is also included. The
average operational time is around 15 hour per bus, while the
longest is 24 h for the planned line. The last few columns in subfig-
ures 1 and 2 indicate that the broadest trip coverage requires the
longest bus running time. In the third subfigure, there are 14 buses
with zero deadhead mileage, which means that they are dedicat-
edly assigned to serve the planned line back and forth. However,
the origins and destinations are located differently in the two
directions of the existing line. Thus, all buses serving the existing
lines by going back and forth still have deadheading mileages of
around 1 km. As a result, the majority of buses have a certain dead-
head mileage. The average deadhead length is around 12 km, while
the longest is 50 km when a bus travels between two lines or
serves a single direction for one line. It should be noted that, as
we are scheduling the plan for the new line based on the existing
timetable, the timetable and bus schedules could not cooperate
effectively when multi-line service is not allowed. Thus, the two
directions’ uncoordinated departure times require the bus to run
an entire deadhead trip to continuously serve two trips in the same
direction in order to reduce the fleet size. This notable drawback
offers an opportunity for the joint optimization of timetables and
bus schedules.

The SOC curves for each line in each direction are illustrated in
Fig. 9. The maximum SOC fluctuation is around 0.35, which enables
6720 cycles during the battery lifetime. In both directions of the
existing line, the bus recharges twice, while the bus recharges four
times in the planned line. Moreover, this configuration ensures
that, after the bus reaches the terminal, the remaining SOC is still
above 92% for the existing line and equal to 100% for the planned
line. Unlike the charging station layout in the previous section,
the charging station in the existing line is not the terminal station
but one stop before it. The reason is that the distance between the
two stations is small, and both lines share the selected station.
However, if the last two stations are far apart, the terminal station
is usually set as a charging station to ensure the subsequent jour-
ney. Thus, the proposed plan not only ensures sufficient energy
storage but is more affordable as well.
Fig. 9. SOC curves for the exi
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To further evaluate the performance, the breakdown of the
annual equivalent LCC is summarized in Table 4. As in the conclu-
sion in the previous section, the investment in the ownership of
infrastructures accounts for the largest share, at 62.5%. This is fol-
lowed by the cost of operation and maintenance—namely, the bat-
tery changes and energy consumption—which accounts for 36.9%.
Green electricity production in Sweden makes the external cost
of emissions much lower than the other costs, at only 0.56% of
the total LCC. The emissions delivered by the glider, powertrain,
and WTT elements are less than 200 tCO2eq�a�1. It is notable that
the emissions of the WTT, powertrain, and glider in the network-
scale EB system have a consistent pattern compared with those
in the previous section; more specifically, the glider accounts for
the largest share, followed by the WTT and finally the powertrain.
Each component of the LCC is around three times higher than that
in the proposed plan for the single-line service due to the larger
bus fleet and increased number of charging stations. However,
we have not taken into account the future of green manufacturing
or the widespread use of clean energy, both of which would be pro-
jected to reduce the glider and WTT emissions to a relatively low
level if fully included. Supposing that deadheading between the
two lines were not allowed, then the bus fleet would increase by
a minimum of three. Moreover, the cost saved by charger sharing
could also relieve the capital burden.
sting and planned lines.



Table 5
Performance comparison of different algorithms.

Algorithm CPU run (s)

Proposed 106
Mixed-integer program (MIP) 1950
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To evaluate the performance of the proposed algorithm, we test
two different methods for the same case using GAMS. If the algo-
rithm does not include column generation, the model introduced
in Section 2.2 will be solved directly by the mixed-integer program
solver; otherwise, [P2]–[P4] will be solved sequentially under the
proposed framework. Table 5 shows that the calculation time
required is 20 times longer when solving the model with a
mixed-integer program (MIP) solver. Thus, the result proves the
efficiency of the proposed solving algorithm in practical
applications.
5. Conclusions

In this work, a novel optimization approach is proposed to con-
solidate the charging station deployment, battery sizing, and bus
scheduling problem. An LCC analysis framework is introduced to
evaluate the performance of electrification infrastructure invest-
ment decisions. To make the problem tractable with a low compu-
tational burden, a tailored branch-and-price algorithm is
suggested.

In the optimized results, two case studies are evaluated, includ-
ing existing line optimization and further multi-line service plan-
ning. The results show that the integration of the planning and
operational layers dramatically reduces the LCC by 30.4% and, in
particular, the cost of infrastructure ownership by 33.87%. Reduc-
ing the bus fleet size is the most critical step in reducing the LCC
and mitigating life-cycle emissions. By comparing actual opera-
tions and optimization results for a single line and multiple lines,
it is discovered that the share of ownership in the optimized
results decreased from 82.7% to 78.6% for one line, and then to
62.5% for multiple lines, implying that large-scale road networks
will tend to rely more on efficient daily operation strategies. This
is why bus scheduling is introduced as an essential sub-problem
in the model. Although downsizing the battery capacity and reduc-
ing the number of charging stations are mutually exclusive goals,
even if the number of chargers doubles, the adoption of smaller
capacity batteries can significantly relieve the economic burden
in the evaluation framework. The aim of battery downsizing is to
provide reliable services for the line, which also reflects the bene-
fits of combining battery sizing and charging station optimization.
Furthermore, we find that, with an expansion of the road network,
the powertrain, WTT, and glider emissions consistently grow about
three times as much as those for a single line, making the introduc-
tion of green manufacturing and clean energy increasingly impor-
tant. The results confirm that this model not only minimizes the
LCC but also guarantees a reliable public transit service. We also
summarize essential issues that need to be improved urgently
from economic and environmental perspectives.

It should be noted that the proposedmethod offers a wide range
of applications due to its joint consideration of the strategic and
operational layers. It is suitable for existing plan evaluation and
adjustment and for the feasibility analysis of future planning as
well. For these applications, a reasonable balance of charging
infrastructure deployment, bus fleet investment, and operational
bus scheduling can be determined. The importance of influencing
factors in different cases can also be observed. Therefore, whether
it is for optimization or planning, a transportation company can
directly utilize the generated plan or customize it as necessary.
Moreover, this optimization method can be extended and adapted
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to bus networks with different infrastructures, such as wireless
chargers and dynamic charging lanes, by customizing some of
the parameters and input data to assist with the implementation
of future charging technologies. The application and extension of
the proposed method will enable a detailed assessment of public
transport transformation from diesel to EBs. It is believed that
proper planning could further accelerate the penetration of bus
electrification.

Further research should include, first and foremost, an exten-
sion of the developed model to a large-scale network in order to
better represent reality, including aspects such as multi-line
shared charging stations. Irregular operational disturbances should
also be addressed, such as fluctuations in passenger demand, in
order to avoid unstable bus dwell times and delayed trip arrivals.
Thus, the delay caused by such disturbances should be added as
a penalty function. Finally, the influence of the electrochemical
characteristics of the battery on its cycle life under different charg-
ing station configurations must be further considered. We envision
our model as being employed in a more practical framework.
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