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Abstract: ~ We propose a digital emulator of the optical Kerr effect, suitable for FPGA im-
plementation. In addition, we study a combined PMD and Kerr emulator implementation with
respect to DSP hardware aspects such as fixed-point performance. © 2022 The Author(s)

1. Introduction

In fiber-optic communication, there are several impairments that affect the BER performance at the receiver.
The linear polarization-mode dispersion (PMD) and the nonlinear optical Kerr effect have a combined detrimental
effect on the transmitted signal [1], but this effect can be complex to study as PMD varies over time. To thoroughly
assess the impact of the combined PMD-Kerr effect on a receiver DSP implementation, one option is to conduct
optical transmission experiments. However, besides requiring expensive equipment, experimental setups can be
challenging to integrate with real-time DSP and often lack precise control of the underlying channel parameters.

The Fiber-on-Chip approach [2] offers an alternate way to perform real-time analysis of a fiber-optic communi-
cation system. Here, a digital system model runs in real-time on an FPGA, making real-time control and analysis
straightforward. This paper extends our previous work in [2,3] and proposes a digital emulator of the optical Kerr
effect that, in combination with the PMD emulator in [3], forms a real-time PMD-Kerr emulator that is suitable
for implementation on an FPGA.

2. Digital Emulation of Optical Kerr Effect

Our digital Kerr effect emulator is based on a numerical solution to the Manakov-PMD equation [4], in which a
fiber is divided into multiple PMD sections. Each section’s Kerr effect is modeled as & = uexp(ji7||u/|?), where
u = [uy(t,z),uy(t,z)] " is the Jones vector of the complex baseband signals in the x and y polarizations,  and z are
the propagation time and distance, respectively, and ¥ = %yL represents the Kerr parameter y multiplied by the
section length L and the averaging coefficient %. This model can be further written as

lixi = Uy; COS(Q) — Uy sin(¢) fyi = Uy; COS(Q) — Uy sin(¢) PP s
{ sy = tSin(9) + gy cos(9) { fyg = ysin(0) +ugeos(p) * O =TT Fibititg), (D)

where u, = u,; + juy, and uy, = uy; + juy, are the inputs and [ denotes the outputs.

Fig. 1 shows a block diagram of the digital Kerr effect emulator, which is pipelined to balance the timing paths
and increase the clock speed. A look-up table (LUT), which comprises all sine values, is indexed by the input
angle ¢ with a range of [0, r/2]. The Limit block converts the angle to the range [0, 7/2].

3. Emulator Structure

The combined PMD-Kerr emulator developed in this paper uses a transmitter from the CHOICE environment [5,6]
and PMD emulator components developed in [3]. Fig. 2 illustrates the system structure, inside which emulation
of the combined impacts of PMD and the Kerr effect is realized. The pseudo-random data sequence used for
transmission over two polarizations is modulated to QPSK before being upsampled to two samples per symbol
and convolved with a 51-tap root-raised-cosine (RRC) filter with a roll-off factor of 0.1.

xi [a-1:0]
= cosd =17 cosd
(o102 Gimit E,Sine
yi[a-1:0] [0, m/2] [ LUT sind - sing
[a-1:0]

Yqla-1:0

Fig. 1: Block diagram of the Kerr effect emulator. Registers are represented by z~!. The boxed rotation block is shown only
for the x polarization, and the rotation block for the y polarization is a duplication of the shown one. The inputs to the rotation
block are also delayed by three z~! which are not shown.
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Fig. 2: Block diagram of the proposed PMD-Kerr emulation system.
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The digital PMD model consists of multiple concatenated sections [3] and the Kerr emulator is inserted in
each section after the PMD emulator. Each PMD section contains one Rotation and one Delay component. The
former rotates the x and y polarization with an angle of 6 in section k, while the latter utilizes an n-tap Lagrange
fractional-delay filter (similar to [7]) to apply a differential group delay (DGD) of 7 between the two polarizations.
Here, 7 is a fraction of the symbol period (7). The rotation angle 6 can be time varying and different for each
section, while the DGD 7 and the Kerr parameter ¥ are kept the same in all sections for simplicity.

4. Analysis of Performance and Resource Utilization

We first perform floating-point MATLAB simulations to compare the time-domain (TD) PMD-Kerr model, which
uses an n-tap Lagrange filter to realize DGD, with a reference frequency-domain (FD) PMD-Kerr model, which
uses a DGD based on FFT/IFFT. The system assumptions are ¥ = % rad/W (assuming y = 1.4 rad/W /km and
L =100 km) and an overall transmitted power of 0dBm. The 6, k = 1,2,...,K + 1 is randomly generated with
a uniform distribution on [—x, 7] and is kept unchanged during the simulations. Fig. 3 shows the results for a
16,384-sample simulation, where n is varied from 5 to 15, while 7 € {0.067,0.24T } and K € {1,5,10}. The error

is calculated as |(x) —x} )+ j(x —x})| or (49 —y}) + j(¥) —y})|, in which 0 and 1 denote the two models.

To further evaluate our proposed emulator, we use logic simulations to compare the fixed-point implementation
against a TD MATLAB implementation, with ¥ = % rad/W, an overall transmitted power of 0 dBm, 7 = 0.06T,
K =10 and a 5-tap Lagrange filter. The wordlengths a, b, ¢, d and e are individually varied from 8 to 16: a
corresponds to the data sample x;, x4, y; and y,, b to the Kerr parameter ¥, ¢ to the rotation angle 6 and the Kerr
angle ¢, d to the FIR taps of the Lagrange filter, and e to the RRC taps. All parameters are represented in signed
fixed-point format. To average the rounding error caused by the different values of 6, for each symbol in the
simulation, i.e., two samples, a new set of 6, k =1,2,..., K+ 1 is randomly generated with a uniform distribution
on [—, «]. Fig. 4 shows the results for a simulation with 16,384 samples.

To analyze the resource utilization, we synthesized the system in Fig. 2 to a Xilinx VC709 development board
with a 100 MHz clock. We choose 12-bit wordlengths for all signals and use section counts K between 1 and 10.
As can be expected, the usage of LUT and DSP resources grows linearly with an increasing K. As Table 1 shows
for K = 10, the DSP slices are the bottleneck and this 10-section system utilizes 26% of the available DSPs, which

leaves enough room for implementing an equalizer on the same FPGA.
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