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Abstract: We propose a digital emulator of the optical Kerr effect, suitable for FPGA im-
plementation. In addition, we study a combined PMD and Kerr emulator implementation with
respect to DSP hardware aspects such as fixed-point performance. © 2022 The Author(s)

1. Introduction
In fiber-optic communication, there are several impairments that affect the BER performance at the receiver.
The linear polarization-mode dispersion (PMD) and the nonlinear optical Kerr effect have a combined detrimental
effect on the transmitted signal [1], but this effect can be complex to study as PMD varies over time. To thoroughly
assess the impact of the combined PMD-Kerr effect on a receiver DSP implementation, one option is to conduct
optical transmission experiments. However, besides requiring expensive equipment, experimental setups can be
challenging to integrate with real-time DSP and often lack precise control of the underlying channel parameters.

The Fiber-on-Chip approach [2] offers an alternate way to perform real-time analysis of a fiber-optic communi-
cation system. Here, a digital system model runs in real-time on an FPGA, making real-time control and analysis
straightforward. This paper extends our previous work in [2,3] and proposes a digital emulator of the optical Kerr
effect that, in combination with the PMD emulator in [3], forms a real-time PMD-Kerr emulator that is suitable
for implementation on an FPGA.

2. Digital Emulation of Optical Kerr Effect
Our digital Kerr effect emulator is based on a numerical solution to the Manakov-PMD equation [4], in which a
fiber is divided into multiple PMD sections. Each section’s Kerr effect is modeled as ûuu = uuuexp( jγ̄ ∥uuu∥2), where
uuu = [ux(t,z),uy(t,z)]⊤ is the Jones vector of the complex baseband signals in the x and y polarizations, t and z are
the propagation time and distance, respectively, and γ̄ = 8

9 γL represents the Kerr parameter γ multiplied by the
section length L and the averaging coefficient 8

9 . This model can be further written as{
ûxi = uxi cos(φ)−uxq sin(φ)
ûxq = uxi sin(φ)+uxq cos(φ) ,

{
ûyi = uyi cos(φ)−uyq sin(φ)
ûyq = uyi sin(φ)+uyq cos(φ) , φ = γ̄(u2

xi +u2
xq +u2

yi +u2
yq), (1)

where ux = uxi + juxq and uy = uyi + juyq are the inputs and □̂ denotes the outputs.
Fig. 1 shows a block diagram of the digital Kerr effect emulator, which is pipelined to balance the timing paths

and increase the clock speed. A look-up table (LUT), which comprises all sine values, is indexed by the input
angle φ with a range of [0,π/2]. The Limit block converts the angle to the range [0,π/2].

3. Emulator Structure
The combined PMD-Kerr emulator developed in this paper uses a transmitter from the CHOICE environment [5,6]
and PMD emulator components developed in [3]. Fig. 2 illustrates the system structure, inside which emulation
of the combined impacts of PMD and the Kerr effect is realized. The pseudo-random data sequence used for
transmission over two polarizations is modulated to QPSK before being upsampled to two samples per symbol
and convolved with a 51-tap root-raised-cosine (RRC) filter with a roll-off factor of 0.1.
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Fig. 1: Block diagram of the Kerr effect emulator. Registers are represented by z−1. The boxed rotation block is shown only
for the x polarization, and the rotation block for the y polarization is a duplication of the shown one. The inputs to the rotation
block are also delayed by three z−1 which are not shown.
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Fig. 2: Block diagram of the proposed PMD-Kerr emulation system.
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Fig. 3: Performance of TD MATLAB
vs FD MATLAB (x-pol).
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Fig. 4: Performance of digital emulator
vs TD MATLAB reference (x-pol).

Type K = 1 K = 10

Kerr LUT 2,283 (0.53%) 21,285 (4.91%)
DSP 26 (0.72%) 260 (7.22%)

Total LUT 8,415 (1.94%) 27,910 (6.44%)
DSP 170 (4.72%) 944 (26.22%)

Table 1: Resource utilization on Xil-
inx VC709. The Kerr entry includes all
Kerr modules in the system. The values
are given as number of used blocks (ra-
tio of used blocks to available blocks).

The digital PMD model consists of multiple concatenated sections [3] and the Kerr emulator is inserted in
each section after the PMD emulator. Each PMD section contains one Rotation and one Delay component. The
former rotates the x and y polarization with an angle of θk in section k, while the latter utilizes an n-tap Lagrange
fractional-delay filter (similar to [7]) to apply a differential group delay (DGD) of τ between the two polarizations.
Here, τ is a fraction of the symbol period (T ). The rotation angle θk can be time varying and different for each
section, while the DGD τ and the Kerr parameter γ̄ are kept the same in all sections for simplicity.

4. Analysis of Performance and Resource Utilization
We first perform floating-point MATLAB simulations to compare the time-domain (TD) PMD-Kerr model, which
uses an n-tap Lagrange filter to realize DGD, with a reference frequency-domain (FD) PMD-Kerr model, which
uses a DGD based on FFT/IFFT. The system assumptions are γ̄ = 1120

9 rad/W (assuming γ = 1.4 rad/W/km and
L = 100 km) and an overall transmitted power of 0 dBm. The θk, k = 1,2, ...,K + 1 is randomly generated with
a uniform distribution on [−π,π] and is kept unchanged during the simulations. Fig. 3 shows the results for a
16,384-sample simulation, where n is varied from 5 to 15, while τ ∈ {0.06T,0.24T} and K ∈ {1,5,10}. The error
is calculated as |(x0

i − x1
i )+ j(x0

q − x1
q)| or |(y0

i − y1
i )+ j(y0

q − y1
q)|, in which 0 and 1 denote the two models.

To further evaluate our proposed emulator, we use logic simulations to compare the fixed-point implementation
against a TD MATLAB implementation, with γ̄ = 1120

9 rad/W, an overall transmitted power of 0 dBm, τ = 0.06T ,
K = 10 and a 5-tap Lagrange filter. The wordlengths a, b, c, d and e are individually varied from 8 to 16: a
corresponds to the data sample xi, xq, yi and yq, b to the Kerr parameter γ̄ , c to the rotation angle θk and the Kerr
angle φ , d to the FIR taps of the Lagrange filter, and e to the RRC taps. All parameters are represented in signed
fixed-point format. To average the rounding error caused by the different values of θk, for each symbol in the
simulation, i.e., two samples, a new set of θk, k = 1,2, ...,K+1 is randomly generated with a uniform distribution
on [−π,π]. Fig. 4 shows the results for a simulation with 16,384 samples.

To analyze the resource utilization, we synthesized the system in Fig. 2 to a Xilinx VC709 development board
with a 100 MHz clock. We choose 12-bit wordlengths for all signals and use section counts K between 1 and 10.
As can be expected, the usage of LUT and DSP resources grows linearly with an increasing K. As Table 1 shows
for K = 10, the DSP slices are the bottleneck and this 10-section system utilizes 26% of the available DSPs, which
leaves enough room for implementing an equalizer on the same FPGA.
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