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Decision Modeling in Markovian Multi-Agent Systems*

Carl-Johan Heiker1 and Paolo Falcone1,†

Abstract— In this paper, we model a decision-making pro-
cess involving a set of interacting agents. We use Markovian
opinion dynamics, where each agent switches between decisions
according to a continuous time Markov chain. Existing opinion
dynamics models are extended by introducing attractive and
repulsive forces that act within and between groups of agents,
respectively. Such an extension enables the resemblance of
behaviours emerging in networks where agents make decisions
that depend both on their own preferences and the decisions of
specific groups of surrounding agents. The considered modeling
problem and the contributions in this paper are inspired by the
interaction among road users (RUs) at traffic junctions, where
each RU has to decide whether to go or to yield.

I. INTRODUCTION

For autonomous vehicles to be safe, their motion must be
planned based on the surrounding human road users’ (pedes-
trians, cyclists, drivers) future actions, which are normally
unavailable. For this reason, collisions with RUs can only be
avoided in probabilities. For example, the model predictive
planner in [1] negotiates a crosswalk with an approaching
pedestrian, based on static probabilities that the pedestrian
chooses to cross or stay on the sidewalk. In this paper, our
objective is to develop a model which describes the evolution
of such probabilities based on the complete traffic scene
around the vehicle. Such a model could complement the
prediction model used by the planner, in order to plan a
path while accounting for the evolution of the surrounding
traffic scene. In this paper, we explore the field of opinion
dynamics to derive that model.

Opinion dynamics is a multi-agent modeling framework
introduced to explain how opinion spreads in a population.
The overview in [2] of both classical and modern opinion
dynamics describes two main modeling approaches. First,
DeGrootian models [3] treat the opinion of each agent as a
linear combination of its neighbors’ opinions. These models
have been extended to describe other social phenomena,
for example in [4] where agents reluctant to change are
considered. Second, in bounded confidence models such as
[5], agents only influence each other if their difference in
opinions is below some tolerance.

While classic opinion dynamics often assumes that agents
select opinions deterministically, processes with agents that
decide their opinion state stochastically require different
modeling methods. One such method is to represent agents as
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Markov chains, using either their discrete-time representation
(DTMC) as in [6], or their continuous-time form (CTMC)
as in [7]. Additionally, approximation methods are proposed
in both [7] and [8] to address the scalability issues of
Markovian networks. Using the CTMC agent representation,
it is possible to describe how agents interact through state
transition rate modulation. Based on a nonlinear approach
in [9], a linear model was introduced in [10] and [11] to
describe opinion configurations as states in a network of
Markovian agents. This model was fitted with centralized
tuning parameters for influence strength, inter-agent trust and
opinion uncertainty in [12], and can in some cases be reduced
into a lower order marginalized model. The model has been
applied on a political problem in [13], and in [14] to describe
the decision process of choosing parameters in a collective
energy minimization problem for communicating trains.

The model proposed in this paper builds upon an extension
of the framework in [10]-[12]. While the model in [10]-[12]
assumes that agents are only attracted to others’ decision
states with an influence strength proportional to how many
other agents are in that decision state, we introduce an
additional repulsive action through rate modulation. A form
of repulsion in opinion dynamics was explored in [15], but
we suggest the addition of a repulsive force specifically
adapted to the framework in [10]-[12]. Furthermore, we
propose to divide the set of interacting agents into attractive
and repulsive groups, as was explored in different ways
in [16], [17] and [18]. Our partition stems from the two
interaction types that we consider, where the first describes
the attractive forces between agents in each group, while the
second expresses the repulsive forces between agents from
different groups.

The paper starts by describing Markovian agent networks
in Section II, before introducing the agent interaction in
Section III. We illustrate our model in a traffic intersection
example in Section IV, while the conclusions in Section V
close the manuscript.

II. MARKOVIAN AGENT NETWORKS

In order to clearly illustrate the modeling framework
adopted in this paper, we consider the traffic example
sketched in Fig. 1, which shows an unsignaled T-junction.
Two groups of cyclists are approaching from the west and
from the north, respectively, while one group of three drivers
comes from the east. While approaching the junction, each
RU must decide whether to yield or to go through the
junction in order to avoid accidents, based on the exhibited
behavior of all surrounding RUs. For example, any of the
surrounding RUs may at any time accelerate unexpectedly.
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Fig. 1. Unsignaled T-junction with cyclists (1-2 and 6-7) and drivers (3-4).

An observing RU that initially exhibited the desire to go
may react to this by braking, which is in turn interpreted as
yield by the other RUs. In a network with many RUs, these
switchings occur frequently, such that the decision of each
RU can be modeled as an interconnected continuous time
Markov process. Thus, we view this intersection scenario as
a stochastic decision process between agents, and state the
following problem:

Problem 1: A set of RUs approach the intersection at
t0, at which time their initial decisions are known with
some probability. As the RUs react to each other’s exhibited
stochastic decisions during t > t0, predict the evolution of
the RUs’ most likely decisions at t > t0.

To solve Problem 1, we start by modeling the decision
process of a single agent (RU).

A. Single agent behavior

An agent r can switch between states in the decision state
set

S = {si|i = 1, 2, . . . ,M}, (1)

at any point in continuous time, and the state probability
vector over S is defined as

Πr(t) =
[
πr
1(t) πr

2(t) . . . πr
M (t)

]T
. (2)

In Fig. 1, each agent will switch between the states s1 =
Yield and s2 = Go. We model the decision changes of r
as state transitions in a CTMC over S, with πr

i (t) being
the probability that r is in state si at time t. The CTMC
describing r is fully defined for a state set S, a state transition
rate matrix Qr ∈ RM×M and an initial state probability
distribution Πr(0) [19]. By definition, Qr has positive off-
diagonals, and diagonal elements Qr

i,i equal to the negated
sum of the off-diagonals on row i. If the chain is in si, the
time until a transition to sj is exponentially distributed with
the associated rate parameter Qr

i,j , so that the probability of
two or more transitions occurring at exactly the same time
is zero. The time derivative of the state probabilities in a
CTMC is

Π̇r(t) = (Qr)T Πr(t), (3)

and the state probability trajectories are given by

Πr(t) = e(Q
r)T tΠr(0). (4)

As in [10] and related works [11]-[13], our agent CTMCs
are ergodic, and therefore irreducible with positive recurrent
states. This means in essence that at any time t, each CTMC

s1 s2

Qa
1,2

Qa
2,1

Fig. 2. Markov chain for a single agent a with states S = {s1, s2}. By
convention, self-loops are not drawn.

has a nonzero probability to transition to any of its states,
and details can be found in [19]. This in turn ensures the
existence of a unique stationary state probability vector Π̄r,
independent of Πr(0), in which all elements are positive. To
find it, we may set the dynamics of (3) to zero and solve the
constrained linear problem

(Qr)T Π̄r = 0, (5a)
M∑
j=1

π̄r
j = 1. (5b)

Fig. 2 shows a two-state CTMC for an agent a. The
transition rates in Qa determine the time until convergence
to a stationary state in (4), and which of the states s1 and s2
will obtain the highest stationary state probability. Next, we
derive the state transition probabilities of an entire network
of Markovian agents.

B. Network of Markovian agents

As in [10], we start by considering N Markovian agents.
Each agent r is described by an individual CTMC over the
shared state space S = {si|i = 1, 2, . . . ,M}. However, the
transition rates in each Qr are different for each individual
r. We formulate a network state as the tuple

X = 〈s1, . . . , sr, . . . , sN 〉, (6)

describing a permutation of individual agent states. As each
of the N agents can choose among M states, there are
MN network states. When observing transitions in all N
CTMCs at the same time, the probability of simultaneous
state transitions remains zero due to the exponentially dis-
tributed inter-event times of each chain. A transition between
two network states is therefore defined by the transition of
a single agent. The network is thus also a CTMC with
MN states, fully defined by a set of all network state
configurations, rate matrices Q1, . . . , QN and the individual
initial state probabilities. Importantly, the ergodicity of each
agent implies that the network CTMC is ergodic too, as
described in [10]. Like in [11], the time derivative of the
network state probabilities is

Π̇X(t) = QT
0 ΠX(t), (7)

where the MN ×MN matrix Q0 is given as

Q0 =

N∑
r=1

IMr−1 ⊗Qr ⊗ IMN−r . (8)

Thus, the evolution of the MN network state probabilities
ΠX(t) and their stationary state values Π̄X are found by



using Q0 in the same equations as for a single agent, (3)
and (5a) with (5b), respectively.

C. Marginalization principle

The state space of a CTMC network has dimension MN ,
which can be large. To alleviate this, marginalized state
probabilities are derived in [10] and used in the related
works [11] and [12]. The marginalized model is also a
linear model, but instead of describing a CTMC over MN

network states, it expresses the N stacked M × 1 state
probabilities of each agent, reducing the dimension of the
state space to NM . The probability that agent r is in state
sj in the marginalization can be derived by summing over
all network state probabilities regarding states in which r is
in sj . It is of interest to find an analytical expression for the
marginalization, which is trivial with isolated agents, as the
transition probabilities of one agent are independent of those
of other agents. Let us now investigate how to model agents
that change their transition probabilities through interaction.

III. ATTRACTION AND REPULSION

In [10]-[12], agents influence each other through transition
rate modulation. On top of an isolated rate from Qr, the
transition of an agent r gets an additional rate depending on
the fraction of neighbors who are currently in the destination
state, through an attractive force function. Importantly, this
function only assumes that agents observe others’ instant
state changes, rather than their state probabilities. In our
traffic example, this translates to the ability of road users
to perceive and respond to the simple behavioral changes of
others, such as braking or accelerating. Next, we redefine the
attractive force for the use of different agent groups.

A. Attraction within groups

A group A is a subset of n ≤ N agents, that influence
each other according to the edges EA of the graph GA =
(A, EA,ΛA), where ΛA is a weighted, positive and row-
normalized adjacency matrix in which each element deter-
mines the relative interaction strength between two group
members. The attractive force ψAj (r) that an agent r in A
experiences towards state sj depending on the other group
members k1 is expressed as

ψAj (r) = ηrλA
∑
k1∈A

ΛAr,k1
Ik1
j (t). (9)

The indicator function Ik1
j (t) is one if a group member k1

is in sj at time t and zero if not, and the positive scalar
parameter ηr determines the level of decision uncertainty of
agent r. The parameter λA, also a positive scalar, describes
the influence strength between the members of A.

In the intersection example, the cyclists and drivers from
Fig. 1 are divided into groups by vehicle type and origin.
The sets can be seen in Fig. 3, where C1 = {1, 2} contains
the cyclists arriving from the west, D = {3, 4, 5} holds
the drivers approaching from the east while C2 = {6, 7}
describes the cyclists coming from the north. If we for
example observe that cyclists in C1 often follow each other
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Fig. 3. Group C1 contains agents 1 and 2, group D has agents 3 to 5
while agents 6 and 7 form group C2. Solid lines represent attractive forces.

through the intersection while drivers in D do not, we may
set λD < λC1 in the corresponding attractive forces within
these groups.

B. Repulsion between groups

Agents in a group A can also experience a repulsive
form of transition rate influence through a repulsive force
function, from other groups R` in a set of repulsive groups
R. We describe this interaction using the graph GAR`

=
(A∪R`, EAR` ,ΓAR`), where agents from groups A and R`

interact according to the edges in EAR` with relative inter-
action strengths from the positive, weighted, row normalized
adjacency matrix ΓAR` . The repulsive force that pushes
agent r away from state si is a function of the number of
agents in R` whose state is si. This is expressed as a reactive
force

ξAR`
j (r) =

ηrγAR`

|R|
∑

k2∈R`

ΓAR`

r,k2

(
1− Ik2

j (t)
)
, (10)

towards state sj , where the positive scalar parameter γAR`

describes the repulsion strength from agents in R` to agents
in A, and the number of repulsive groups |R| is used for
normalization. By not expressing the repulsive force as a rate
decrease to si, we avoid accidentally introducing negative
transition rates to a state. Through (10), we can for example
express that drivers avoid entering the intersection at the
same time as cyclists to reduce the risk of collision. This
case is visualized in Fig. 4, where dashed lines represent
that there are repulsive forces between D and C1,2, but not
between C1 and C2. As in the attractive force function, the
parameters of the repulsive force function can be set high or
low to best describe an observed behavior.

C. Attraction and repulsion in the network model

The forces (9) and (10) can be evaluated for every network
transition by considering the source and destination states.
We can then construct two additional transition rate matrices
A0 and R0 describing attractive and repulsive forces be-
tween network states, respectively. Specifically, if a transition
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Fig. 4. Agents in group D are repulsed by agents from groups C1 and C2,
and vice versa.



between network states Xi and Xj is caused by agent
r transitioning to state sa, then A0(i, j) = ψAa (r) while
R0(i, j) =

∑
R`∈R ξ

AR`
a (r). The network CTMC in (7) can

then be reformulated as

Π̇X(t) =
(
Q0 +A0 +R0

)T
ΠX(t). (11)

Because A0 and R0 are both Metzler matrices that merely
add rates to the same transitions introduced by Q0, (11)
describes an ergodic CTMC. To translate network state
probabilities produced by this system to the marginalized
state probabilities according to the summation described in
Section II-C, a matrix SX:m can be constructed such that

Πm(t) = SX:mΠX(t). (12)

D. Marginalization of the network intent model

The marginalized model describes the time derivative of
the probability that each agent r is in state sj at time t
when exposed to attractive and repulsive forces ψAj (r) and
ξAR`
j (r) as

π̇r
j =

M∑
i=1

Qr
i,jπ

r
i + λAηr

[ ∑
k1∈A

ΛAr,k1
πk1
j − π

r
j

]
+

− ηr

|R|
∑
R`∈R

γAR`

[ ∑
k2∈R`

ΓAR`

r,k2
πk2
j + (M − 1)πr

j

]
+
ηr

|R|
∑
R`∈R

γAR` ,

(13)

where π(t) is exchanged for π to save space. A sketch of
the derivation is provided next, while a longer version can
be found in [20]. To derive (13), we use exactly the same
method as [10]. Initially, the infinitesimal CTMC definition
with the small time interval δt is used with the expected
value of indicator functions to form

E[Irj (t+ δt)|X(t)]− E[Irj (t)]

δt
=

E
[
− Irj (t)QO + (1− Irj (t))QI

]
.

(14)

For agent r, QO and QI are the total outgoing and incoming
transition rates for state j. Specifically, QO and QI each
consists of three terms: individual rates, attractive forces
ψA(r) and repulsive forces ξAR`(r). For each rate type, we
develop the right hand side of (14), and let δt approach zero
to obtain their contribution to π̇r

j (t) using E[I(t)] = π(t).
First, we set QO =

∑
i6=j Q

r
j,i and QI =

∑
i 6=j Q

r
i,jI

r
i (t)

for the isolated rates. We use the fact that Irj (t)Iri (t) = 0
and

∑
i 6=j Q

r
j,i = −Qr

j,j to express the RHS of (14) as∑M
i=1Q

r
i,jπ

r
i , which is the first term of (13).

Second, we set QO =
∑

i 6=j ψ
A
i (r) and QI = ψAj (r). By

realising that
∑M

i=1 ψ
A
i (r) = ηrλA, we develop the RHS of

(14) into ηrλA
(∑

k1∈A ΛAr,k1
πk1
j −πr

j

)
, which is the second

term in (13).
Lastly, we set QO =

∑
R`∈R

∑
i6=j ξ

AR`
i (r) and QI =∑

R`∈R ξ
AR`
j (r). It can be shown that

∑M
i=1 ξ

AR`
i (r) =

ηrγAR`(M − 1)/|R|, which allows us to express the right
hand side of (14) exactly as the two last terms in (13).

The entire marginalized model can be written in vector
form as

Π̇m(t) = (Qm +Am +Rm)Πm(t) + Em, (15)

where Qm, Am and Rm are NM × NM matrices used to
collect the internal rates and the terms from the attractive
and repulsive forces in (13) for each agent r and state sj .
Em has dimension NM ×1 and collects the constant terms.
Importantly, (13) is an analytical expression that is equivalent
to summing over all elements of ΠX(t) in (11) that concern
network states in which r is in sj . Thus, if this is solved
from the initial state Πm(0) = SX:mΠX(0), the trajectories
in (12) are obtained. Compared to the network model, the
marginalized model has a much lower state space dimen-
sion, but can not distinguish between individual network
configurations. Although this generally constitutes a trade-
off between low computational complexity and resolution,
the marginalized model is preferable for applications that
only concerns state probabilities of individual agents.

In [11], the existence of a unique stationary state marginal-
ized probability vector Π̄m follows from the fact that the
network CTMC is ergodic and has unique stationary net-
work solution. Because our extended network model (11)
maintains the ergodicity property, the marginalization (15)
also has a unique stationary state solution, found by solving

(Qm +Am +Rm)Π̄m + Em = 0, (16a)
M∑
j=1

π̄r
j = 1, ∀r. (16b)

IV. RESULTS

In this section, we use the traffic intersection problem to
illustrate the effects that the rate influence functions (9) and
(10) have on the road users’ decision probabilities. This is
done by comparing the stationary probabilities of the isolated
RUs against the probabilities of the same RUs in the network
representation of the traffic scene.

A. Problem setup

In Fig. 5, the road users in the intersection problem are
shown. For each RU r, the transition rate matrix Qr is
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Fig. 5. Intersection scene with cyclists as groups C1 and C2 and drivers
as group D.



defined such that r has a preferred state in the common
state space S = {s1, s2}, where we recall that s1 = Yield
and s2 = Go. In addition, drivers are very uncertain while
cyclists are more confident. This behavior is achieved by
setting ηr = 100 for r = 3, 4, 5, ηr = 10 for r = 1, 6, and
ηr = 1 for r = 2, 7. Moreover, both drivers and cyclists
prefer going instead of yielding, with the exception of 4,
who is a very careful driver.

Furthermore, Fig. 5 shows how attractive and repulsive
forces affect each RU in the traffic scene. Attraction occurs
within all groups, while the drivers in group D experience
a mutual repulsion from groups C1 and C2. Moreover, the
attraction strength λ is relatively high within cyclist groups
C1 and C2, and low in the driver group D. In addition, the
drivers in D experience a much higher repulsion strength
from groups C1 and C2 than vice versa. Finally, the parame-
ters λ and γ are chosen such that the transients of the isolated
and the non-isolated models show a similar convergence rate,
thus resulting in an easy comparison. Uncertainty parameter
values and preferred states are collected in Table I, while the
attractive and repulsive influence strength parameters can be
found in Table II.

B. Isolated road users

In summary, we describe two confident groups, C1 and
C2, that interact with the antagonistic, uncertain group D.
When examining how D acts depending on the attractive
and repulsive forces, we consider the case of isolated RUs
as a baseline. The state probabilities will follow the rate
distributions in the individual rate matrices, which are biased
toward the preferred states in Table I. The evolution of the
marginalized decision probabilities can be found by solving
(15) with Am, Rm and Em identically set to zero, although
we use (16a) subject to (16b) to find their stationary values
directly. In Fig. 6, we compare the grey, arbitrarily selected
initial state probabilities πr

i (0) to their stationary state values
π̄r
i for a clear visual comparison. Notably, the highest state

probability of each RU corresponds to its preferred state
given in Table I.

C. Attractive and repulsive forces

We now add the force functions and compare the prob-
abilities in Fig. 6 to two cases. First, we add the attractive

TABLE I
ROAD USER PARAMETERS

Road user
1 2 3 4 5 6 7

Pref. state s2 s2 s2 s1 s2 s2 s2
ηr 10 1 100 100 100 10 1

TABLE II
GROUP PARAMETERS

Group
C1 D C2

λ 0.5 0.05 0.5
γ γC1D = 0.003 γDC1,2 = 0.3 γC2D = 0.003

Fig. 6. Stationary state decision probabilities to Yield (red, left column)
and Go (green, right column) of RUs 1-7 in the isolated case.

force to the marginalized model, so that Rm and Em are set
to zero in (15). Second, we include both forces, evaluating
(15) in full. As before, we derive and compare the stationary
states of (15), obtained through (16a) and (16b) in both cases.

Fig. 7a describes the state probabilities in the first case.
Although each cyclist in C1 and C2 is already more likely
to choose Go in isolation, the probability of this decision
increases even further for both cyclist 1 and 6. Moreover,
driver 4 in D may now select Go or Yield with equal
probability, due to attractive influence. The behavior of C1
and C2 is explained by the fact that cyclists 1 and 6 are
uncertain in relation to their group members, implying that
one RU exerts a stronger attractive force on the other. In
comparison, all drivers in D are equally uncertain, and the
behavior of driver 4 is instead an effect of peer pressure.
The total attractive force is greater towards Go than towards
Yield, and driver 4 is thus slightly encouraged to go, from
observing the other drivers.

In the case of both attractive and repulsive forces, the
decision state probabilities of the RUs are shown in Fig. 7b.
It can be seen that cyclists 1, 2, 6 and 7 still prefer Go, as
their state probability distributions are unchanged compared
to the attractive force case in Fig. 7a. However, drivers 3, 4
and 5 now clearly prefer Yield. This polarization is due to

(a) Personal preferences with attractive force.

(b) Personal preferences with attractive and repulsive forces.

Fig. 7. Stationary state probabilities to Yield (red, left column) and Go
(green, right column) in two cases.



the almost uni-directional repulsive forces from C1 and C2
to D, but also to the high average confidence of C1 and C2
and the high uncertainty of D. The drivers in D respect the
decisions of C1 and C2, and choose to yield. Thus, our model
can be used to predict the most likely decisions of the road
users in Problem 1 in Section II. For any initial probability
distribution, the same model can also describe the evolution
of the decision probabilities to their stationary values.

Generally, our model predicts how uncertain agents may
change their decisions in the presence of other agents.
However, we would like to filter out unrealistic decisions that
are too extreme compared to a decision made in isolation.
Assume that the network model rate matrices A0 and R0

produce equally probable stationary states. As individual
preferences are defined in Q0, transition rates to network
states that include unrealistic decisions can be lowered,
implying that the corresponding diagonal elements in Q0 +
A0 +R0 are reduced. Diagonal elements reflect the propen-
sity to leave each state [19], so the likelihood of leaving
unrealistic network states can be increased due to personal
preferences. This affects the stationary network probabilities,
implying that unrealistic decisions can be visible also in its
marginalization.

V. CONCLUSIONS

We have used Markovian opinion dynamics as a frame-
work for modeling decision processes between stochastic
agents, inspired by a traffic intersection problem in which
road users collectively determine who should yield and who
should go. Agents are divided into groups, and emerging
behaviors such as peer pressure and polarization regarding
decisions are modeled using attractive and repulsive forces.
We present a marginalization of our model, in the style of
[10] and [11], to reduce the state space dimension. With
our formulation, collective decision processes with two types
of interactions can be modeled using Markovian opinion
dynamics.

In the intersection problem, our model expresses a high
probability that cyclists will go through the intersection along
with other, confident cyclists. Uncertain drivers are however
predicted to yield, in order to avoid collisions. In vehicle path
planning problems, the stationary solution of our method
could be used to predict road user behavior based on a
complete traffic scene, whereas the transient solution may
be used to express how such a prediction evolves over time.

Future work includes conducting a thorough comparison
between our method and existing models for behavior pre-
diction in traffic scenes, and investigating how traffic data
can be used to estimate influence parameters. Specifically, a
topic of our ongoing research is predicting the probabilities
of road user decisions in the InD intersection dataset [21].
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