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Abstract—This paper considers the problem of estimating
the position and orientation of a user equipped with a three-
dimensional (3D) array receiving downlink far-field THz signals
from multiple base stations with known positions and orienta-
tions. We derive the Cramér–Rao Bound for the localization
problem and define the coverage of the considered system. We
compare the error lower bound distributions of the conventional
planar array and the 3D array configurations at different user
equipment (UE) positions and orientations. Our numerical results
obtained for array configurations with an equal number of
elements show very limited coverage of the planar-array config-
uration, especially across the UE orientation range. Conversely,
a 3D array configuration offers an overall higher coverage with
minor performance loss in certain UE positions and orientations.

Index Terms—3D array, localization, THz communication,
constrained CRB, coverage.

I. INTRODUCTION

With the increasing demands for higher data traffic in
wireless communication, Terahertz (THz) frequency band
(0.1-10THz) is envisioned as a key enabler for future sixth
generation (6G) wireless communication systems and be-
yond [1], [2]. In addition to the benefits to communica-
tion, larger array size (high angular resolution) and larger
bandwidth (high delay resolution) in high-frequency systems
also enable high-accuracy localization, which has been exten-
sively explored within multiple-input-multiple-output (MIMO)
communication systems [3], [4]. It is foreseeable that the
potential distance-/angle-aware applications, such as virtual
reality (VR)/augmented reality (AR) [5], vehicular safety [6],
global navigation satellite system (GNSS) [7], etc, will be
further exploited in the future communication systems [1], [8].

In geometry-based localization, the position and orienta-
tion information is usually estimated from the geometrical
measurements such as time-of-arrival (TOA), time-difference-
of-arrival (TDOA), angle-of-departure (AOD), angle-of-arrival
(AOA), etc [8]. However, techniques based on the time/range
related measurements like TOA and TDOA require tight syn-
chronization. To avoid this, the angle-based localization meth-
ods were pursued [9], which require the receiver/transmitter
to be equipped with antenna arrays. Over the years, a plethora
of localization techniques based on 1D uniform arrays [10],
[11] and 2D uniform arrays [12], [13] have been proposed.
Localization methods using arbitrary array configurations have
also been proposed, e.g., [14]. Moreover, a few works demon-

strate the application of nonuniform array design for purposes
such as short-range localization [15], joint design with signal
detection [16], cost reduction [13], etc.

Although promising localization results are shown in these
works and some localization-aware mobile network deploy-
ment solutions are proposed [17], the coverage issue is rarely
discussed, limiting the availability of providing localization
services. To improve the coverage and enhance the connec-
tivity, 3D arrays could be one of the promising techniques.
In [18], a localization error bound analysis of 2D and 3D
V-shaped arrays is reported. Despite the obvious potential of
3D arrays in localization applications, this concept has not yet
been widely studied in radio localization due to an impractical
physical size. However, we expect this issue can be solved
in the THz band with a much smaller signal wavelength1.
Besides, since the existing works on 3D array localization are
limited to the specific array configurations such as V-shaped
arrays in [18], a more general model for 3D array localization
is expected.

In this paper, we consider a downlink, far-field THz band
MIMO scenario where the angles and delay measurements
from multiple base stations (BSs) are used to estimate the
position and orientation of a UE. In THz communication, a
commonly used array configuration is the array-of-subarrays
(AoSA) structure, which can mitigate the high-frequency
hardware constraints and support low-complexity beamform-
ing [19], [20]. In this work, we consider arranging the sub-
arrays (SAs) of a UE in the 3D space with arbitrary known
positions and orientations, whereas each SA is arranged in a
2D space (i.e., a planar SA). Our investigation reveals that
deploying such 3D array configurations for THz localization
can improve coverage relative to the conventional 2D (or
planar) structures. The main contributions of this paper are
as follows:

• We derive the position error bound (PEB) and orientation
error bound (OEB) for the underlying localization prob-
lem in the form of the constrained Cramér-Rao bound
(CCRB).

• We provide a comparative performance analysis of a 2D
and a 3D array using the PEB and OEB distribution
across different UE positions and orientations.

1For example, a 10×10 half-wavelength spaced array of a 140GHz system
can be fitted into a 1 cm2 area, while the same footprint can only support a
2× 2 array at the frequency of 28GHz.



x
y

z

o... ...

pathm,n

Base stations

User equipment

Sub‐array

Global coordinate system

UE’s Local coordinate system

pathm,n

pathm,n

Angle of arrival Angle of departure

BS
SA in 
the UE

pathm,n

pathm,n

Angle of arrival

Angle of departure

BS

SA in 
the UE

SA/BS’s Local coordinate system

Fig. 1. Illustration of a localization scenario in a communication system with
multiple BSs and 1 UE with multiple SAs. The left part shows the geometry
of the azimuth and elevation components of AOD and AOA measurements.

• We define the localization coverage using the cumulative
distribution function (CDF) of the PEB and OEB, and
give a quantitative evaluation of the coverage for 2D and
3D array configurations.

II. PROBLEM STATEMENT

A. System Model

We consider a far-field downlink scenario with M BSs and
1 UE as shown in Fig. 1. The positions and orientations of
the BSs are known in a global coordinate system. Each BS is
equipped with a planar array to provide AOD measurements.
The UE consists of N SAs arranged in a 3D space with fixed
relative positions and orientation, and each SA provides AOA
measurements with respect to each BS if the line-of-sight
(LOS) channel exists.

We use {pB,m ∈ R3×1}Mm=1 to denote the BS positions in
the global coordinate system, and the rotation matrix {RB,m ∈
R3×3}Mm=1 to represent the BS orientations. The position and
orientation of UE that are to be estimated are denoted as
pU ∈ R3×1 and RU ∈ R3×3, respectively. Moreover, we use
{dn ∈ R3×1}Nn=1 and {Rn ∈ R3×3}Nn=1 to denote the known
relative positions and orientations of the N SAs in UE’s local
coordinate system, respectively. All the rotation matrix lies in
the orthogonal group SO(3) [9] that satisfy the constraints{

RTR = I,

det(R) = 1.
(1)

The rotation matrix represents the rotation relationship
between a global and a local coordinate system. For example,
given a vector a in the global coordinate system, we can
obtain its coordinates in UE’s local coordinate system as
ã = RT

Ua. By using rotation matrices, we can also express
the positions and orientations of SAs in the global coordinate
system. The position of the center of the n-th SA is given by
pn = pU +RUdn. For orientation, the coordinates of a in the
local coordinate system of the n-th subarray is ãn = RT

nR
T
Ua.

B. Signal Model

In THz band, the non-line-of-sight (NLOS) paths become
increasingly sparse and lossy [8], so we consider the LOS path

only. Consider the far-field OFDM MIMO channel model [20],
the received signal at the k-th subcarrier and the g-th trans-
mission in the path from BS m to SA n in the UE is

y
(g)
(m,n)[k] =

√
PwT

UH(k,η(m,n))wBx
(g)[k]︸ ︷︷ ︸

µ(g)[k]

+wT
Un

(g)[k],

(2)
where P is the average transmission power, wU ∈ CNU×1 is
the combiner vector at the SA of the UE, H(k,η(m,n)) ∈
CNU×NB is the channel matrix [8], wB ∈ CNB×1 is the
precoder vector at the BS, x(g)[k] ∈ C is the signal symbol
vector before the precoder, and n(g)[k] ∼ CN (0, σ2

nINU
).

Finally, η(m,n) denotes the channel parameters from BS m

to SA n, i.e., η(m,n) = [θ
(az)
m,n, θ

(el)
m,n, ϕ

(az)
m,n, ϕ

(el)
m,n, τm,n]

T. The
AOD pair consists of an azimuth angle θ

(az)
m,n an elevation angle

θ
(el)
m,n, while the AOA pair consists of an azimuth angle ϕ

(az)
m,n

and an elevation angle ϕ
(el)
m,n, as visualized in Fig. 1. The

parameters are defined as

θ(az)
m,n = arctan 2

(
uT
2R

T
B,m(pU +RUdn − pB,m),

uT
1R

T
B,m(pU +RUdn − pB,m)

)
, (3)

θ(el)
m,n = arcsin

(
uT
3R

T
B,m(pU +RUdn − pB,m)

∥pU +RUdn − pB,m∥2

)
, (4)

ϕ(az)
m,n = arctan 2

(
−uT

2R
T
nR

T
U(pU +RUdn − pB,m),

− uT
1R

T
nR

T
U(pU +RUdn − pB,m)

)
, (5)

ϕ(el)
m,n = arcsin

(
−uT

3R
T
nR

T
U(pU +RUdn − pB,m)

∥pU +RUdn − pB,m∥2

)
, (6)

τm,n =
∥pU +RUdn − pB,m∥2

c
+ ρ, (7)

where u1 = [1, 0, 0]T, u2 = [0, 1, 0]T, u3 = [0, 0, 1]T, ρ
models the total clock bias between the BS and UE, and c is
the speed of light. We assume that all the BSs are synchronized
with each other and the SAs of the UE share the same clock
signal. Hence, ρ is fixed for all paths.

In this work, each BS/SA is connected to an inde-
pendent radio-frequency chain (RFC) with a random pre-
coder/combiner (phase-shifters have a constant amplitude with
phases uniformly distributed from 0 to 2π) adopted for each
transmission. In addition, orthogonal subcarriers are assigned
to different BS-SA pairs to avoid the interference between
different channels. When the SAs in the UE receive a signal,
we first estimate channel geometry parameters such as AOA,
AOD, delay and complex gain, and then perform localization
based on theses estimations.

C. The Localization Problem

Considering a system with M BSs and 1 UE with N SAs,
we have at most M ×N paths, each with an associated AOD,
AOA, and delay. However, depending on the position and
orientation of the corresponding BS and SA, some paths may
not be visible because of the limited radiation pattern of the
antenna. For example, if we assume all the antennas have a



semi-sphere radiation pattern, the visibility of the paths can
be modeled by defining a set of index pairs as

Q := {(m,n)|⟨RT
nR

T
U(pB,m − pn), ẽn⟩ > 0,

⟨RT
B(pn − pB,m), ẽB,m⟩ > 0}, (8)

where ⟨·, ·⟩ denotes the inner product, ẽn and ẽB,m are respec-
tively the normal vector of the SA n and the normal vector of
the array of the BS m in their local coordinate systems, and
the set Q contains the indexes of all the available paths. To
facilitate subsequent discussions, we assume the cardinality of
the set Q is D and assign new labels to the elements in the set
Q from 1 to D as Q = {(m1, n1), (m2, n2), . . . , (mD, nD)}.
The objective of the localization problem is to estimate the
position pU and orientation RU of the UE from the available
paths {θ(az)

m,n, θ
(el)
m,n, ϕ

(az)
m,n, ϕ

(el)
m,n, τm,n}(m,n)∈Q.

For each available path from BS m to SA n of the
UE, we get AOD measurements on the BS side and AOA
measurements on the UE side, as well as channel delay, from
a channel estimator. We further stack all the available path
parameters as

η = [ηT
(m1,n1)

, . . . ,ηT
(mD,nD)]

T. (9)

Then the available measurement vector is η̂ ∼ N (η,Σ),
where Σ is a block diagonal matrix, as the measurement
vectors from different BSs are independent. The localization
problem is then to determine pU and RU, based on η̂.

III. ERROR BOUND AND PERFORMANCE METRICS

We first derive the performance bound of the localization
problem, from which the coverage metrics will be defined and
analyzed. The Cramér-Rao bound (CRB) is a useful tool as
it gives a lower bound on the mean squared error (MSE). A
brief introduction to CRB is given in the following subsection.
More details can be found in, e.g., [21], [22].

A. Background on (Constrained) Cramér–Rao Bound

Consider the problem of estimating a deterministic unknown
vector x ∈ RN from an observation z given a statistical model
p(z|x). The amount of information the observation carries
about the unknown is measured by the Fisher information
matrix (FIM), which is given by

I(x) = Ez{∇x log p(z|x)∇T
x log p(z|x)}. (10)

The FIM relates to the estimation error covariance of any
unbiased estimator x̂(z) as

E{(x− x̂)(x− x̂)T} ⪰ I−1(x). (11)

Then a lower bound (which is known as CRB) on the estima-
tion MSE is given by

E{∥x− x̂∥2} ≥ tr
(
I−1(x)

)
. (12)

When the unknown vector x constrained to lie on a manifold
h(x) = 0 defined by 0 ≤ K < N non-redundant constraints,
the error covariance is lower bounded by the CCRB as [9],
[23]

E{(x− x̂)(x− x̂)T} ⪰ I−1
const(x), (13)

where
I−1

const(x) = M
(
MTI(x)M

)−1
MT, (14)

with Iconst(x) being the constrained FIM, and M ∈
RN×(N−K) satisfying{

MTM = IN−K ,
∂h(x)
∂x ·M = 0K×(N−K),

(15)

and is obtained by collecting the orthonormal basis vectors of
the null-space of the gradient matrix ∂h(x)/∂x ∈ RK×N .

B. Localization Performance Error Bound

The FIM of the vector η(m,n) can be obtained as [21]

I(η(m,n)) = (16)

2

σ2

G∑
g=1

K∑
k=1

Re

{(
∂µ(g)[k]

∂η(m,n)

)H(
∂µ(g)[k]

∂η(m,n)

)}
.

Consequently, the FIM of all the channel parameters can be
obtained as

I(η) = blkdiag
{
I(η(m1,n1)), . . . ,I(η(mD,nD))

}
, (17)

where blkdiag{·} means forming a block diagonal matrix.
Now, considering the state vector r = [pT

U, ρ, vec(RU)
T]T,

we can see that η is a function of r. These relationships are
represented by the expressions in (3)–(7). Thus, the FIM with
r as the estimation subject can be obtained as [9]

I(r) = TTI(η)T, (18)

where [T]i,j = ∂ηi/∂rj are derived in Appendix A.
Considering the constraints on RU in (1) and according to

(14), we have

I−1
const(r) = M(MTI(r)M)−1MT. (19)

According to (15), a satisfied M can be

M =


I4×4 04×1 04×1 04×1

03×4 −c3 03×1 c2
03×4 03×1 −c3 −c1
03×4 c1 c2 03×1

 , (20)

where [c1, c2, c3] = RU. Therefore, we have the PEB and the
OEB given by

PEB =

√
tr([I−1

const(r)]1:3,1:3), (21)

OEB =

√
tr([I−1

const(r)]5:13,5:13). (22)

C. Localization Coverage

The coverage is a metric to evaluate the overall performance
of a localization or communication system [24], [25]. In this
paper, We define the localization coverage as the probability
that the PEB/OEB is lower than a threshold ξp/ξo when the
UE is at random positions pU ∈ Ωp with random orientations
RU ∈ ΩR (Ωp/ΩR are the space that UE position/orientation
can be chosen). More specifically, the position coverage
Cp(ξp) and orientation coverage Co(ξo) can be defined as



Cp(ξp) =

∫
Ωp

∫
Ωo

H(ξp − PEB(pU,RU))dpUdRU∫
Ωp

∫
Ωo

dpUdRU
,

Co(ξo) =

∫
Ωp

∫
Ωo

H(ξp − OEB(pU,RU))dpUdRU∫
Ωp

∫
Ωo

dpUdRU
,

(23)

where dpU = dpUxdpUydpUz , dRU = dαdβdγ 2, ξp and
ξo are given thresholds for the position coverage and the
orientation coverage respectively, and H(·) is the Heaviside
step function (i.e., H(t) = 1, t ≥ 0 and zero elsewhere).

Before presenting our simulation results, we can gain insight
by analyzing the models. First, from the models in (3)–(7), we
can see that the UE orientation is related to the AODs (θ

(az)
m,n,

θ
(az)
m,n) due to the term RUdn only. Again dn is the position

of sub-array n in the UE’s local coordinate system, whose
scale is in the same order of magnitude as the scale of the
size of the UE, much smaller than the distance between the
UE and the BS. This means that rotating the UE (changing
the orientation RU) does not cause much difference in term
pU+RUdn−pB,m, and thus not much difference in AODs. So,
AODs carry limited information about the UE’s orientation. On
the contrary, AOAs carry most of the information regarding the
UE rotation. Therefore, it can be inferred that a lower OEB
would appear in the cases with better AOA estimations.

IV. SIMULATIONS

A. Simulation Scenario

We consider the BS equipped with an 8 × 8 uniform
planar array with half-wavelength spacing between elements.
From the UE side, we evaluate two different types of array
configurations (2D and 3D). Each configuration has 6 SAs,
and each SA has 4×4 antenna elements with half-wavelength
spacing. For the 3D array, each SA is attached at the center of a
surface of a 0.1×0.1×0.1m3 cube. On the other hand, the 2D
array has all the SAs placed on the same plane. Fig. 2 shows
the two array layouts where the cube is tiled into a plane. Other
parameters are set as follows, average transmission power
P = 0dBm, carrier frequency fc = 140GHz, bandwidth
W = 1000MHz, number of transmissions G = 50, number
of subcarriers K = 10, noise PSD N0 = −173.855 dBm/Hz
and noise figure Nf = 10dBm.

To give an intuitive characterization of the orientation, we
use Euler angles [α, β, γ]T to represent a rotation matrix R.
The rotation order is important when mapping between the
Euler angles and the rotation matrix. In this paper, we use the
following rotation sequence:

R = Rz(γ)Ry(β)Rx(α), (24)

where Rx(α) denotes a rotation of α degree around the X-
axis, and likewise for Ry(β) and Rz(γ). The expressions of
these rotation matrices can be found in, e.g., [9].

2Since RU has only three degrees of freedom [9], we denote them as
{α, β, γ}, which are the same as the Euler angles that will be introduced in
subsection IV-A.
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Fig. 3. The PEB and OEB of the planar array and the cuboidal array across
different positions. The orientation of the UE is fixed as α = 0◦, β =
−90◦, γ = 45◦ (facing upwards) and the height is fixed at 0m. The locations
of the BSs are marked with red dots.

Throughout the simulations, we set the normal direction of
an array as the positive direction of x-axis in its local coordi-
nate system as shown in Fig. 1. We consider a scenario with
M = 2 BSs located at [−10.5,−10.5, 5]T and [10.5, 10.5, 5]T

sending downlink signals in the form of (2) to the UE. The
orientation of these two BSs in Euler angles are (0◦, 90◦, 45◦)
and (0◦, 90◦,−135◦) (facing downwards), respectively.

B. Results and Discussion

1) PEB/OEB evaluation vs. different UE positions: We first
test the distribution of the PEB and OEB across different UE
positions with a fixed orientation. The UE orientation is set
as (0◦,−90◦, 45◦) (facing upwards) and the height is fixed at
0m. The PEB/OEB is calculated in a 20 × 20m2 area with
a 1m step size as shown in Fig. 3. We can observe that, in
general, the PEB becomes larger as the UE moves away from
both BSs. For this specific setup, the planar array appears to
have a slightly lower PEB. This is because only a subset of the
SAs of the 3D array can receive LOS signals from a BS. In
contrast, all the SAs of the planar array enjoy LOS connections
with the BSs. For the OEB, we observe that the plannar array
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Fig. 4. The PEB and OEB of the planar array and the cuboidal array across
different orientations. The position of the UE is fixed at [0, 0, 0]T.

outperforms the cuboidal array when positioned between the
BSs, while the 3D array has a better coverage. This can be
explained by the fact that the OEB is largely determined by
the AOA measurements. A 3D spatial arrangement can offer
an advantage in AOA estimation [18] by maintaining LOS
channel across the test area. A final observation from Fig. 3 is
the higher PEB and OEB of the cuboidal array (relative to the
surrounding area) in positions that fall below the (diagonal)
line connecting the two BSs. In these positions, each BS can
only see two of the UE SAs since the UE has a 45-degree
rotation on the horizontal plane. In other positions, there are
always three SAs that can be seen by each BS.

2) PEB/OEB evaluation vs. different UE orientations: In
the second test, we examine the distribution of the PEB and
OEB across different UE orientations for a fixed UE position at
[0, 0, 0]T. We rotate the UE across β, γ in the range [0◦, 360◦]
with the step size 5◦, and fix α = 0◦. Fig. 4 shows the
corresponding results. From this figure, it is easy to conclude
that, on average, the 3D array substantially outperform the
2D array in terms of localization coverage. In fact, there
are only very small regions where to two configurations are
comparable (e.g., around β = 270◦). When β is around 90◦,
the planar array does not have LOS to either BS; hence, both
localization and communication are not possible (as indicated
by the white area). When the UE can only establish the
LOS connection with one of the two BSs, the localization
is impossible without synchronization or multipath, and only
communication function remains (as shown in the red area).
On the other hand, the cuboidal array’s performance is fairly
consistent across all the test angles.

3) Coverage evaluation: Finally, we test the localiza-
tion coverage of the 2D and 3D array configurations de-
fined in (23). The UE’s position and orientation are uni-
form distributed; namely, x, y ∼ U(−10, 10), z ∼ U(0, 5),
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Fig. 5. Empirical CCDF of the PEB (top) and OEB (bottom) of the planar
array and the cuboidal array under different number of BSs.

and α, β, γ ∼ U(0, 360). To give a compact view of the
PEB/OEB’s threshold with the coverage in different order of
magnitude {90%, 99%, 99.9%, ...} (i.e., the outage in different
order of magnitude {10%, 1%, 0.1%, ...}), we demonstrate
1 − Cp and 1 − Co over different threshold ξp and ξo,
which is empirical complementary cumulative distribution
function (CCDF). We test the CCDF for the cases there
are M = {2, 3, 4} BSs in the system. For 3 BSs case,
we add one BS at location [−10.5, 10.5, 5]T with orientation
(0◦, 90◦,−45◦); For 4 BSs case, we add one more BS at
location [10.5,−10.5, 5]T with orientation (0◦, 90◦, 135◦). We
use 10000 simulation trials to compute the PEB and OEB and
plot the CCDF curve, as shown in Fig. 5. We observe that
the planar array suffers an outage in 10% of the cases. As
explained earlier, this is due to the lack of LOS with all the
BSs. We can also see that, as an example, for the 4 BSs case
and coverage of 90%, we have a PEB within about 0.1 m
using the cuboidal array, while the planar array gives a PEB
within more than 10 m. This reveals that the cuboidal (3D)
array is able to achieve better coverage than the planar (2D)
array. Generally, under the same threshold, the more BS we
deploy, the lower the outage and thus the higher the coverage
we can obtain for both 2D and 3D arrays.

V. CONCLUSION

In this paper, we studied the far-field localization problem
of a UE equipped with a 3D array in a THz-band downlink
system with multiple BSs. We derived the PEB and OEB
based on the Constrained Cramér–Rao bound, and defined the
localization coverage to evaluate the performance of of 2D
and 3D array configurations. Based on extensive simulations
across different UE positions and orientations, we found that
the cuboidal array can achieve better coverage, while the
planar array has a lower error bound in certain positions and
orientations. This work is instructive for the BS placement



optimization and array design of the THz localization systems,
which can be potential future research directions.

ACKNOWLEDGMENT

This work was supported, in part, by the European Com-
mission through the H2020 project Hexa-X (Grant Agreement
no. 101015956).

APPENDIX A
THE EXPRESSION OF TRANSFORMATION MATRIX
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