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Abstract
Purpose – The purpose of this paper is to optimize the design of charging station deployed at the terminal station for electric transit, with explicit
consideration of heterogenous charging modes.
Design/methodology/approach – The authors proposed a bi-level model to optimize the decision-making at both tactical and operational levels
simultaneously. Specifically, at the operational level (i.e. lower level), the service schedule and recharging plan of electric buses are optimized under
specific design of charging station. The objective of lower-level model is to minimize total daily operational cost. This model is solved by a tailored
column generation-based heuristic algorithm. At the tactical level (i.e. upper level), the design of charging station is optimized based upon the
results obtained at the lower level. A tabu search algorithm is proposed subsequently to solve the upper-level model.
Findings – This study conducted numerical cases to validate the applicability of the proposed model. Some managerial insights stemmed from
numerical case studies are revealed and discussed, which can help transit agencies design charging station scientifically.
Originality/value – The joint consideration of heterogeneous charging modes in charging station would further lower the operational cost of
electric transit and speed up the market penetration of battery electric buses.

Keywords Battery electric bus, Charging station design, Vehicle scheduling, Bi-level model, Heterogeneous charging modes
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1. Introduction

Electric transit is considered as the key to the world’s clean
transport future due to its high energy efficiency, zero emissions
(Lajunen, 2014; Jin et al., 2015; Xu et al., 2021; Qu et al., 2020;
Zhang et al., 2020; Zhang et al., 2021) and shareability (Gao
et al., 2021; Bie et al., 2020; Meng and Qu, 2013; Wang et al.,
2018). Compared with diesel buses, battery electric buses
(BEBs) are able to improve energy efficiency by 50% and
reduce greenhouse gas emissions by 98.36% (Mahmoud et al.,
2016). During the past decade, the public transit is electrified
step by step. For example, in the USA, the share of BEBs in the
bus market increased rapidly from 2% in 2007 to nearly 20% in
2015 (Neff and Dickens, 2016); in Europe, the percentage of
BEBs on the sales volumes of city buses is up to 10% by 2019,
and this number rises up to around 20% in 2020.
Undoubtedly, transit electrification is becoming an
unstoppable trend.
Compared with diesel buses, the driving characteristics and

refueling manner of BEBs are distinct. Specifically, BEBs
generally have a much shorter operational range than buses

powered by other energy sources, resulting in users’ “range
anxiety” (Lebeau et al., 2016;Masmoudi et al., 2018; Qin et al.,
2016; Li et al., 2019). To ensure normal operations, the
consumed electricity must be replenished by either battery
swapping or battery recharging (Li, 2013; Huang and Zhou,
2015; Wang et al., 2017; Tang et al., 2019; Liu and Ceder,
2020; Rinaldi et al., 2020). Unfortunately, instead of mitigating
this disadvantage, lack of sufficient charging facilities further
aggravates it (An, 2020). However, if sufficient charging
facilities are deployed, it may cause severe budget burden for
transit system. Meanwhile, charging modes also affect the
charging efficiency as well as the infrastructure installation cost.
Specifically, compared with normal charging, the fleet size can
be reduced significantly through improved charging efficiency
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by adaptation of fast charging mode, but it also causes higher
infrastructure installation cost. Therefore, how to design the
charging station, trading off charging availability, charging
efficiency and limited budget become an important issue in
transit electrification. To this end, we aim at studying the
optimal design of charging station deployed at the terminal
station for electric transit in this paper. To be specific, we
propose a bi-level model, where the lower-level model
optimizes the scheduling of BEBs given the design of charging
station, including the number of charging facilities of different
charging modes (i.e. fast charging and normal charging); the
upper-level model optimizes the design of charging station with
explicit consideration of multiple charging modes. In the bi-
level approach, the lower-level problem, i.e. optimal scheduling
of BEBs, is the key and difficult part of the work. Therefore, we
next present the relevant studies in the realm of vehicle
scheduling.
Bus scheduling problem consists of assigning buses to serve a

series of timetabled trips with the objective of minimizing fleet
size and/or operational costs. It is an extension of the well-
known vehicle scheduling problem (VSP), which has been
extensively studied in the literature (Markovi�c et al., 2015;
Schöbel, 2017). Generally speaking, VSP can be categorized
into two groups: the single-depot VSP (SDVSP) (Paixão and
Branco, 1987; Freling et al., 2001; Kang et al., 2019) and the
multiple-depot VSP (MDVSP) (Dell’Amico et al., 1993;
Kliewer et al., 2006). Over the years, many varieties and
extensions of VSP have been proposed to incorporate the real-
world constraints and conditions, including VSP with multiple
vehicle types (Ceder, 2011), VSP with route constraints (VSP-
RC) (Bunte and Kliewer, 2009), the alternative fuel VSP (AF-
VSP) (Li, 2013; Adler, 2014) and electric VSP (E-VSP) (Wen
et al., 2016). Among these varieties, VSP-RC, AF-VSP and E-
VSP are strongly motivated by electric vehicles. To accounting
for the specifics of electric vehicles, route duration or route
distance is constrained in VSP-RC (Haghani and Banihashemi,
2002). If vehicles are allowed to be refueled at given recharging
stations to prolong the total distance, that is AF-VSP.
However, traditional AF-VSP only considers full charging and
the charging time is set as fixed. Specifically, the vehicle’s fuel
level is set to be full after visiting any recharging stations. For
example, Li (2013) incorporated vehicle waiting time at
charging stations into the model, and the charging time was
simplified as fixed by considering battery swapping. Later, E-
VSP was proposed, where partial charging was allowed and the
charging time was usually assumed to be a linear function of the
charged amount. Unfortunately, whereas much efforts have
been made to deal with BEB scheduling, very little attention
has been dedicated to explicitly modeling the design of
charging station for electric transit, with full consideration of
multiple charging modes. It will cause unforeseen operational
cost when promoting transit electrification.
In light of the above literature, this paper would employ the

latest study in electric vehicle scheduling to study the optimal
design of charging station, and the bi-level solution approach is
adopted to fix this problem. Numerical case studies were
conducted to validate the applicability of the proposed model.
It reveals that it is a cost-efficient choice to deploy sufficient
charging facilities at the terminal station as the unit cost of
charging facilities per day ismuch lower than that of BEBs.

Our key contributions from a theoretical and practical point
of view can be summarized as follows:
� We are, to our best knowledge, the first to formulate and

solve charging station design problem with explicit
consideration of multiple charging modes and their
corresponding effect on battery capacity fading.

� A number of managerial insights stemmed from the
numerical case study are outlined, which can serve as a
solid theoretical foundation for more cost-efficient
charging station design.

The rest of this paper is organized as follows. Section 2 presents
the problem formulation, i.e. a bi-level model. Section 3
elaborates the proposed solution approach for solving the
problem. The numerical cases are conducted in Section 4.
Conclusions are summarized in Section 5.

2. Mixed charging station design problem

2.1 Problem description
In this section, a single-terminal transit network is considered
to define the optimization problem of charging station design,
as depicted in Figure 1. BEBs depart from the terminal station
to operate a sequence of scheduled round-trips, denoted as set
V. For simplicity, we refer to the round-trip as trip for short
from now. Charging facilities in mode q [ Q = {q1, q2} are
deployed at terminal station with limited number Cq, where q1
indicates normal charging mode and q2 indicates fast charging
mode. For each trip i([ V), the departure time si, travel time ei
and the consumption of battery level relative to battery
capacity, mi are predefined and deterministic. The objective of
this problem is to minimize the total cost of transit agency,
including bus acquisition cost, charging fee, maintenance cost
of BEB fleet and the cost incurred by the deployment of
charging facilities. Therefore, the operators shall make
decisions at both tactical and operational levels. To be specific,
at the tactical level, the number of charging facilities in each
type deployed at the terminal station should be optimized and
the vector of decision variables at this level is denoted by C ¼D
{Cqjq [ Q}. At the operational level, the operators shall make
decisions on: how to assign BEBs to serve a series of trips
satisfying the minimal battery level constraint and how to
optimize recharging schedule considering limited charging
facilities (i.e. given specific charging station design). The

Figure 1 Single-terminal transit network
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corresponding decision variables at this level (i.e. service
sequence and charging strategy) are denoted by vector X.
Notations used in this paper are summarized in Appendix.

2.2 Lower-level problem: optimal scheduling of battery
electric bus fleet
The objective of the lower-level model is to minimize total
operational cost, including bus acquisition cost, charging fee and
maintenance cost within one day, where the maintenance cost is
mainly incurred by battery degradation. It is worth to note that the
total charging fee is constant in our model, as it is related to the
predefined trip service, which is fixed and independent of BEB
schedule. Therefore, the objective function is simplified as the sum
of bus acquisition cost andmaintenance cost. The vector of decision
variables at the operational level,X, can be defined asX= {d ij, m itq,
f itqji [V, t [T, q [Q},where:
d ij [ {0, 1}: set to one if BEB serves trips i and j consecutively,

where trip i begins earlier than trip j; and to zero otherwise, i [V
| O, j [ V | D, i = j. Here O denotes a virtual trip that every
bus must serve before its first real trip, and D denotes another
virtual trip that each BEB serves after completing the last real
trip of a day and being fully charged. The two notations are
defined for the convenience of modeling work. The virtual
trips’ travel times and electricity consumption are all set to zero:

m itq [ {0, 1}: set to one if BEB begins to charge with charging
mode q at time step t after finishing trip i and before serving the
next trip, and to zero otherwise, i [V, t [T, q [Q.

f itq [ {0, 1}: set to one if BEB is under charging with
charging mode q at time step t after finishing trip i and before
serving the next trip, and to zero otherwise, i [V, t [T, q [Q.
In this model, wemake the following assumptions:

� Assumption 1: The time is discretized with the unit time
as 10 min. The time for full charge in mode q1 (i.e. normal
charging) and mode q2 (i.e. fast charging) are 2 h (i.e. 12
time steps) and 10 min (i.e. 1 time step), respectively.

� Assumption 2: BEBs are fully charged when departing
from the original depot, and are charged back to full when
returning to destination depot.

� Assumption 3: After finishing one trip, BEB can either be
charged for one time and charged to full or serve the next
trip consecutively without any charging activity.

The lower-level model [P1] can be formulated as:

min
X

J P1½ � Cq jq 2 Q
� � ¼ ~v �X

i2V
d Oi 1

X
i2V

X
t2T

X
q2Q

m itqdq SOCi ;1ð Þ

(1a)

Subject to:
X

i2V[O
d ij ¼ 1; 8j 2 V (1b)

X
j2V[D

d ij �
X

j2V[O
d ji ¼ 0; 8i 2 V (1c)

X
t2T

X
q2Q

m itq � 1; 8i 2 V (1d)

1�X
t2T

X
q2Q

m itq

� �
M1

X
t2T

X
q2Q

m itq � t � si 1 ei; 8i 2 V

(1e)

X
i2V

f itq � Cq; 8t 2 T ; q 2 Q (1f)

� 1� m itq1

� �
M1F SOCi; q1ð Þ

� Xt1F SOCi ;q1ð Þ�1

t0 ¼t
f it0 q1 � 1� m itq1

� �
M1F SOCi; q1ð Þ;

8t 2 T ; i 2 V (1g)

� 1� m itq2

� �
M1F SOCi; q2ð Þ

� f itq2 � 1� m itq2

� �
M1F SOCi; q2ð Þ; 8t 2 T ; i 2 V

(1h)

1�mi � 1� d Oið ÞM � SOCi � 1�mi 1 1� d Oið ÞM; 8i 2 V

(1i)

SOCi � lb; 8i 2 V (1j)

SOCj � SOCi �mj 1 1� d ijð ÞM1M
X
t2T

X
q2Q

m itq; 8i; j 2 V

(1k)

SOCj � SOCi �mj � 1� d ijð ÞM�M
X
t2T

X
q2Q

m itq; 8i; j 2 V

(1l)

SOCj � 1�mj 1 1� d ijð ÞM1 1�X
t2T

X
q2Q

m itq

� �
M; 8i; j 2 V

(1m)

SOCj � 1�mj � 1� d ijð ÞM � 1�X
t2T

X
q2Q

m itq

� �
M; 8i; j 2 V

(1n)

dq SOCi; 1ð Þ ¼ 2� j SOCi; 1ð Þ � 1� SOCið Þ
x

W g qð Þ; 8i 2 V ; q 2 Q

(1o)

sj � si 1 ei � 1� d ijð ÞM �M
X
t2T

X
q2Q

m itq; 8i; j 2 V

(1p)

sj �
X
t2T

m itq1 � t1F SOCi; q1ð Þ � 1� d ijð ÞM

� 1�X
t2T

m itq1

� �
M; 8i; j 2 V (1q)

sj �
X
t2T

m itq2 � t1F SOCi; q2ð Þ � 1� d ijð ÞM
� 1�X

t2T
m itq2

� �
M; 8i; j 2 V (1r)

Heterogeneous charging modes

Le Zhang, Ziling Zeng and Kun Gao

Journal of Intelligent and Connected Vehicles

Volume 5 · Number 1 · 2022 · 8–16

10



X
t2T

X
q2Q

m itq � 11M 1� d iDð Þ; 8i 2 V (1s)

X
t2T

X
q2Q

m itq � 1�M 1� d iDð Þ; 8i 2 V (1t)

In the above model, the objective function (1a) is to minimize
the total operational cost over the operation hours of one day,
including bus acquisition cost and maintenance cost, where ~v
denotes the unit acquisition cost of BEB per day, and dq
indicates the cost incurred by battery degradation with the state
of charge (SOC) from SOCi (i.e. the SOC of BEB after just
finishing trip i) to 100% under charging mode q. Constraints
(1b) guarantee that each trip is served exactly once.
Constraints (1c) represent covering and flow conservation.
Constraints (1d) state that after trip i, BEB may start charging
in a certain time step with a certain charging mode. Constraints
(1e) ensure that the starting time of charging activity after trip
i should be no earlier than the end time of trip i, where M is a
sufficiently large number. Constraints (1f) guarantee the
number of charging facilities used in each time step cannot
exceed its capacity. Constraints (1g) ((1h)) state that
F(SOCi, q1) (F(SOCi, q2)) time steps are occupied if normal
(fast) charging operation is applied. Here F(SOCi, q) indicates
the number of time steps required to charge battery from SOCi

to full under charging mode q; F(SOCi, q2) is always equal to 1
for all SOCi [ (0, 1) due to assumption 1. Constraints (1i)
indicate that BEB is fully charged when it departs from the
original depot O, where mi means the consumption of battery
level relative to battery capacity of trip i. Constraints (1j)
guarantee that SOC should be no smaller than a predefined
lower bound lb to reduce range anxiety. Constraints (1k-n)
record the dynamic SOC of BEBs if d ij = 1. Constraints (1o)
define the function dq, where W indicates the battery
acquisition cost; x is the end-of-life related parameter. The
term j (SOCi, 1) denotes the corresponding battery capacity
fading rate, borrowed from Lam and Bauer (2012); g(q) refers
to charging-mode related coefficient, where the coefficient of
fast charging mode is larger than that of normal charging mode,
i.e. g(q1) < g(q2). Constraints (1p-r) state the stating time of
trip j should be no earlier than the ending time of trip i if d ij = 1
and

X
t2T

X
q2Qm itq ¼ 0; and the stating time of trip j should

be no earlier than the ending time of charging operation applied
after trip i if d ij = 1 and

X
t2T

X
q2Qm itq ¼ 1. Constraints (1s)

and (1t) indicate that buses are charged back to full when
returning to destination depot.
We next present the exact mathematical form of function

j (SOCi, 1):

j SoCi ;1ð Þ ¼ g1SoCi;dev � eg2SoCi;avg 1 g � eg4SoCi;dev

(2a)

where

SoCi;avg ¼ 11SoCi

2
; (2b)

SoCi;dev ¼ 1� SoCi

2
(2c)

Here the coefficients g1, g2, g3 and g4 are constant model
parameters.
In this paper, we consider nonlinear charging profile, where

SOC increases nonlinearly with respect to the charging time, as
presented in Figure 2. Specifically, the battery would undergo
two phases, namely, CC phase and CV phase. In the first phase
(i.e. CC phase), the charging current is held constant and
hence the SOC increases linearly with time until the battery’s
terminal voltage reaches the threshold. After that, the terminal
voltage keeps constant (i.e. CV phase), thus resulting in the
current decreasing exponentially and the growth rate of SOC
decreasing with respect to the charging time. The pattern of
SOC with respect to the charging time under normal charging
mode can be approximated by piecewise linear function:

SOC t; q1ð Þ ¼ 0:8t t 2 0;1½ Þ
0:81 0:2 t � 1ð Þ t 2 1;2½ �

�
(3)

where t is in the unit of hour. Therefore, the number of time
steps required to charge battery from SOCi to full under normal
chargingmode can be calculated as follows:

F SOCi ; q1ð Þ ¼
30 1� SOCið Þ if SOCi > 0:8

61
15
2

0:8� SOCið Þ if SOCi � 0:8

8<
:

(4)

Here function [a] returns the smallest integer that is no smaller
than a.

2.3 Upper-level problem: optimal design of charging
station
The upper-level model can be formulated as follows:

min
C

J P2½ � ¼ X
q2Q

AqCq 1 J P1½ � X;Cð Þ (5a)

Subject to:

Figure 2 Illustration of nonlinear charging profile
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X ¼ g Cð Þ (5b)

where Aq indicates the unit installation cost of charging facility
in mode q amortized to one day, measured in $/day; g(·)
denotes the optimal lower-level solution for X under a given
design of charging station C, which is found by solving model
[P1]. J[P1] (X, C) indicates the daily operational cost under
tactical decision C and operational decision X, which is
consistent with the objective function of model [P1].

3. Solution approach

3.1 Column generation-based heuristic algorithm for
solving lower-level model
To solve model [P1], we next reformulate it as an equivalent set
partitioning model, which can be solved by column generation
(CG). To this end, we introduce trip chain firstly. A trip chain
of BEB includes the service sequence, i.e. a series of trips sorted
in an ascending order in terms of their departure time, and the
charging strategy between any two consecutive trips. A trip
chain is feasible, if i) all the covered trips can be served on time;
and ii) battery level is sufficient to support all the covered trips
given that BEB can be charged at terminal station if both time
and charging facilities permit. Given the definition of trip chain,
the equivalent set partitioningmodel is presented as follows:

min
l r

J P3½ � ¼
X
r2R

crl r (6a)

Subject to: X
r2R

Ar
il r ¼ 1; 8i 2 V (6b)

X
r2R

Ur
tql r � Cq; 8t 2 T ; q 2 Q (6c)

l r 2 0;1f g; 8r 2 R (6d)

In the above formulation, we denoteR as the set of all feasible trip
chains within one day, and cr denotes the cost of trip chain
r [R, including the unit bus acquisition cost andmaintenance cost
along the trip chain. For each feasible trip chain r [ R, we define a
binary variable l r, which equals to one if and only if trip chain r is
selected; and to zero otherwise. Objective function (6a)minimizes
the total cost over the operation hours of one day. Constraints
(6b) ensure that each trip i [ V is served exactly once in the
solution, whereAr

i is set to one if trip i is covered in trip chain r and
to zero otherwise. Constraints (6c) guarantee that the charging
facilities used in each time step are within the limited capacity Cq;
andUr

tq is set to one if BEB is under charging with charging mode
q at time step t in trip chain r and to zero otherwise. Constraints
(6d) define the domain of decision variable l r, r [R.
We next describe the CG procedure to solve the linear

relaxation of set partitioning model, defined as model [P4], i.e.
the binary constraint of l r is relaxed and replaced by constraints:

l r � 0; 8r 2 R (7)

We now describe CG procedure to solve model [P4]. The
description is kept for short in the interest of brevity because the
algorithm is only a standard practice of the CG algorithm. For

more details on the theory of CG, please refer to Merle et al.
(1999). Briefly, model [P4] is solved by repeatedly solving (i) a
restricted master problem with a subset of trip chains and (ii) a
pricing subproblem to generate new trip chains with negative
reduced costs. The restricted master problem is solved by
commercial solvers directly (e.g. Cplex, Gurobi). The pricing
problem is shortest path problem with resource constraint and
solved by label-correcting algorithm with fully considering
special problem aspects: minimal battery level and battery
recharging. Each state is represented by a label, (k, b), where k
is the last reached node and b represents the corresponding
battery level. The cost of label (k, b) is c k; bð Þ, representing the
accumulative cost from original depot O. Now consider that
both label (k, b) and label (k; b), label (k, b) dominates (k; b) if
(1) c k; bð Þ � c k; b

� �
, and (2) b � b, where at least one of above

inequalities is strict. The label extension and dominance rule
are placed into a framework of the general label-correcting
algorithm to solve the pricing problem.
To generate feasible integer solution, we next propose a

heuristic algorithm based upon the CG procedure to obtain
near-optimal integer solutions. In the proposed heuristic
algorithm, the inner procedure is the CG procedure; the outer
procedure is the selection strategies used to obtain an integer
solution.
Firstly, wemodify constraint (6c) inmodel [P3] as:

X
r2R0

Ur
tql r � Ctq; 8t 2 T ; q 2 Q (8)

Initially, Ctq is constant and equal to Cq. Then the available
number of charging facilities at each time step may decrease as
the outer procedure proceeds in our heuristic algorithm. To be
specific, every time the inner CG procedure stops, we select the
trip chain (i.e. column) with the largest value of the decision
variables l r. Then update Ctq and V for a new iteration of the
above process:
� if BEB is charged in time step t under charging mode q

according to the selected trip chain, update Ctq / Ctq – 1;
� if trip i is served in the selected trip chain, update V/V/i;

The algorithm terminates when all the trips are served.

3.2. A tabu-searchmethod for solving upper-level
model
The first step of the tabu search is to initialize a feasible initial

solution to model [P2], denoted by X0 	 C0
q1 ; C0

q2

n o
. Then

define a move as a change from a feasible solution X to a new
feasible solution, where the change can be one of the following:
(i) Cq1 ! Cq1 � 1 or Cq1 ! Cq1 1 1; and (ii) Cq2 ! Cq2 � 1 or
Cq2 ! Cq2 1 1. At each move, the CG-based heuristic
algorithm presented in Section 3.1 is executed to find the BEB
utilization schedule and recharging plan. The total cost J[P2] is
then calculated. Define the neighborhood of X, N(X), as the set
of feasible solutions that can be obtained by making one move
from X. Further define the tabu list, TL, as the list of inverse
moves of those most recent moves performed. The maximum
length of tabu list is denoted as tabu_size. In each iteration, a
move ismade according to one of the following two rules:
� If no move in N(X) can produce a lower total cost as

compared to the best solution so far, set the current move
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to the one in N(X)\TL that produces the lowest total cost.
Following this rule, a move is made even if it produces a
higher cost than the best solution so far.

� If a move in N(X) \ TL produces a lower total cost than
the best solution so far, set the current move to the lowest-
cost move in N(X).

The tabu list TL is updated after each iteration. It is used to
prevent the algorithm from returning to a solution attained in a
previous iteration. The first rule finds the best neighboring
solution that is generated not from any move in the tabu list.
However, if a move in the tabu list can yield a better solution
than the best one so far, that move is still selected according to
the second rule. The algorithm ends when no better solution is
found aftermax_num_tb consecutive iterations.

4. Numerical cases

To validate our model, in this section we focus on a case study
with the terminal denoted as terminal station A. Departing
from terminal station A, five yet-to-be-electrified lines are
studied. The lengths of the five lines are 11 km, 11.5 km,
12.6 km, 19.3 km and 16.8 km respectively. Their travel
durations (terminal to terminal) are 80min, 90min, 110min,
150minand 130min respectively. The timetables for these five
lines are shown in Table 1. The technical parameters needed
for this paper are obtained from Yutong ZK6850BEVG53, as
specified in Table 2. Specifically, Yutong ZK6850BEVG53 is a
kind of medium BEB, with vehicle length as 8.5 meters. Its

price is 0.65 million RMB, and this cost covers the
maintenance of vehicles over 8 years. The battery capacity is
162 kWh with unit price as 1130 RMB/kWh on average.
Therefore, the price of battery packs is about:

1130� 162� § ¼ 28008:2 $ (9)

where § denotes the exchange rate of RMB to US dollar
($/RMB) and equals 0.153 in this paper.[1] Hence, the price of
battery packs, W, is approximated as 28000 $. The price of
BEBwithout battery is:

650000� j � 28000 ¼ 71450 $ (10)

The service life of bus (without batteries) is set as 12 years
(Lajunen, 2014). Then, the unit acquisition cost of bus
(without battery) per day is:

71450
 12
 365 ¼ 16:31 $ (11)

Similarly, the unit acquisition cost of bus (without battery) per
day, ~v, is approximated as 16.5 $in this paper.
We firstly examine the scenario where only one kind of

charging facilities is allowed to install at the terminal station.
Without of loss of generality, we consider normal charging
mode firstly and optimize the BEB service and charging
schedule under a range of charging station capacity:
Cq1 2 1;21½ �, as presented in Figure 3. Figure 3 shows that the
optimal operational cost (the solid curve with triangle
markers) decreases as Cq1 increases, until it reaches a
threshold of 17. This threshold represents the maximum
number of normal charging facilities needed for BEBs at
terminal station A; i.e. any additional charging facilities
would be redundant, and the optimal total cost would stay the
same.
The asterisk-marked solid curve represents the corresponding

total cost at the upper level. We note that, the optimal total cost
decreases as Cq1 increases, until it reaches to 17. After that, the
optimal total cost increases as Cq1 increases. This is because any
more charging facilities would be redundant and the optimal
operational cost at the lower level would not reduce any more.
Therefore, for the studied transit network, it is optimal to
deploy 17 charging facilities at the terminal station A if the
operators only consider normal charging mode. Further

Table 1 Timetables for selected bus lines, departing from terminal station
A

Line 1 Line 2 Line 3 Line 4 Line 5

07:00:00 06:10:00 07:00:00 06:20:00 06:40:00
07:20:00 Every 20min 07:30:00 Every 30min 07:10:00
07:40:00 09:10:00 08:00:00 18:50:00 07:40:00
Every 20min Every 30min Every 20min Every 10min
10:40:00 15:10:00 14:20:00 18:20:00
Every 30min Every 20min 14:50:00 18:50:00
16:40:00 19:10:00 15:10:00 19:20:00
Every 20min Every 20min 19:50:00
19:20:00 20:10:00

Table 2 Parameter definitions and values

Parameter Notation Value Unit

Lower bound of battery level lb 20 %
Unit acquisition cost of an electric bus (without battery) per day ~v 16.5 $/day
Battery acquisition cost W 2.8e4 $
Unit cost of a normal charging facility per day Aq1 5 $/day
Unit cost of a fast charging facility per day Aq2 30 $/day
Coefficient of battery capacity fading under normal charging mode g (q1) 1 –

Coefficient of battery capacity fading under fast charging mode g (q2) 2 –

Coefficient for battery degradation model g 1 �4.09e-4 –

Coefficient for battery degradation model g 2 �2.167 –

Coefficient for battery degradation model g 3 1.418e-5 –

Coefficient for battery degradation model g 4 6.13 –

End-of-life related threshold x 0.2 –
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investigation reveals that, as the unit cost of charging facilities
per day is relatively low as compared with that of BEBs, it is
cost-efficient to deploy the charging facilities as more as needed
so that the total cost of transit agency can be saved by reducing
fleet size.
We also note that the SoC variation negatively affects battery

aging rate: the larger the SoC variation is, the faster the battery
degrades. Therefore, to prolong battery life, the operators are
encouraged to charge BEBs as frequently as possible, instead of
as late as possible. As a trade-off, when the charging facilities
are relatively sufficient, the electric buses tend to be charged as
frequently as possible, to achieve more cost saving by extending
batteries’ lifespan.
We next examine the effect of the number of fast chargers on

the optimal cost, as presented in Figure 4. Compared to normal
charging, fast charging mode can reduce the fleet size largely
due to its high charging efficiency, even though the installation
cost of fast charging facilities is much higher than that of normal
charging facilities. Therefore, the maximum number of fast
chargers required is only 3 with the minimal operational cost at
the lower-level as $1.05� 103, as shown in Figure 4. The figure
also reveals that the minimal total cost at the upper level
($1.14�103) occurs when the number of fast chargers is 3.

When mixed design of charging station is considered, the model
reveals that the optimal charging station design is to install 2 fast
chargers and 2 normal chargers, where the optimal total cost is
$1.12� 103. Even though the daily saving brought bymixed design
of charging station is minor, i.e. only $20. However, this benefit
cannot be overlookedover 10years ormore.

5. Conclusions

In this paper, we present a new mathematical formulation
aimed at optimizing the design of charging station deployed at
the terminal station for electric transit. To this end, a bi-level
model is built with full consideration of the decision-makings at
both tactical and operational levels. Specifically, the lower-level
model optimizes the scheduling of BEBs given the design of
charging station, including the number of charging facilities
under different charging mode (i.e. fast charging and normal
charging), whereas the upper-level model optimizes the design
of charging station given optimized BEB service sequence and
charging plan at the lower level.
In the future work we plan to explore more realistic scenarios

where the “full-charging” assumption is relaxed, i.e. partial
charging among BEBs is allowed and the charging time
depends on the amount of energy to be replenished following
more realistic non-linear charging profile. Meanwhile, we
would also plan to extend the transit network to the one with
multiple terminals, explore more efficient solution approach
with high quality, instead of using heuristic algorithm; consider
agency budget for the installation of charging infrastructure and
consider users’ psychological inertia (Gao et al., 2020).

Note

1 The result may deviate within a small range due to the
variation of exchange rate.
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Table A1 List of notations

Notation Description

Sets and Indices
V Set of trips
T Set of time steps
R Set of all feasible trip chains
R’ Subset of feasible trip chains
Q Set of charging modes
i, j Trip and node indices
O Index of a virtual trip before each BEB’s first trip of the day
D Index of a virtual trip after each BEB’s last charging activity of the day
T Time step index
R Trip chain index
Q Charging mode index

Decision variables
d ij [{0,1} Equals one if a BEB serves trips i and j in turn and consecutively, and zero otherwise, i [ V|{O}, j [ V| {D}, i= j
litq [ {0,1} Equals one if a BEB’s charging activity following trip i [ V starts at time step t [ T with charging mode q, and zero otherwise
/itq [{0,1} Equals one if a BEB is being charged at time step t [ T between trip i [ V and the next trip it serves with charging mode q, and zero otherwise
Cq Number of charging facilities in mode q deployed at terminal station
kr [ {0, 1} Equals one if trip chain r [ R is selected, and zero otherwise
C Decision variables at the tactical level
X Decision variables at the operational level

Parameters and other variables
si Departure time of trip i
ei Travel time of trip i
Lb Minimum battery level to eliminate range anxiety
mi Battery consumption of trip i
M A sufficiently large number
~v Amortized acquisition and maintenance cost of a BEB per day
q1 Normal charging mode
q2 Fast charging mode
F(SOCi, q) Number of time steps required from SOCi to full with charging mode q
W Battery acquisition cost
Aq Unit cost of a charging facility per day with charging mode q
cr Cost of trip train r
c(q) Coefficient of battery capacity fading under charging mode q
r1,r2,r3,r4 Coefficient for battery degradation model
X End-of-life related threshold
n(SOCi,1) Battery capacity fading rate from SOCi to full
dq (SOCi,1) Cost incurred by battery capacity fading from SOCi to full under charging mode q
c k; bð Þ Cost of label (k, b)
Ar
i Equals one if trip i [ V is covered by trip chain r and zero otherwise

Ur
tq Equals one if a BEB in trip chain r is on a charger with charging mode q at time step t and zero otherwise

N(X) Neighborhood of X
TL Tabu list
R Exchange rate of RMB to US dollar
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