
Efficient simulation of Gottesman-Kitaev-Preskill states with Gaussian
circuits

Downloaded from: https://research.chalmers.se, 2024-04-10 23:12 UTC

Citation for the original published paper (version of record):
Calcluth, C., Ferraro, A., Ferrini, G. (2022). Efficient simulation of Gottesman-Kitaev-Preskill states
with Gaussian circuits. Quantum, 6: 867-. http://dx.doi.org/10.22331/Q-2022-12-01-867

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



Efficient simulation of Gottesman-Kitaev-Preskill states with
Gaussian circuits
Cameron Calcluth1, Alessandro Ferraro2,3, and Giulia Ferrini1

1Department of Microtechnology and Nanoscience (MC2), Chalmers University of Technology, SE-412 96 Göteborg, Sweden
2Centre for Theoretical Atomic, Molecular and Optical Physics, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom
3Dipartimento di Fisica “Aldo Pontremoli,” Università degli Studi di Milano, I-20133 Milano, Italy

We study the classical simulatability of
Gottesman-Kitaev-Preskill (GKP) states
in combination with arbitrary displace-
ments, a large set of symplectic opera-
tions and homodyne measurements. For
these types of circuits, neither continuous-
variable theorems based on the non-
negativity of quasi-probability distribu-
tions nor discrete-variable theorems such
as the Gottesman-Knill theorem can be
employed to assess the simulatability. We
first develop a method to evaluate the
probability density function corresponding
to measuring a single GKP state in the po-
sition basis following arbitrary squeezing
and a large set of rotations. This method
involves evaluating a transformed Jacobi
theta function using techniques from an-
alytic number theory. We then use this
result to identify two large classes of mul-
timode circuits which are classically effi-
ciently simulatable and are not contained
by the GKP encoded Clifford group. Our
results extend the set of circuits previously
known to be classically efficiently simulat-
able.

1 Introduction
Identifying quantum computing architectures
that are capable of yielding quantum advantage,
in contrast to classically efficiently simulatable
ones, is of paramount importance, both at the
fundamental level, and to design useful quantum
machines capable of surpassing classical capabil-
ity for computing tasks [1].

Quantum computing architectures based on
bosonic fields, to which quadrature operators
Cameron Calcluth: calcluth@gmail.com

with a continuous-variable spectrum can be asso-
ciated, are attracting growing interest as they al-
low for implementing resource-efficient quantum
error correction with the use of bosonic codes [2–
11]. It has recently been shown that concate-
nating bosonic codes with qubit-types of codes
increases the threshold of tolerable error proba-
bility in quantum error-correction, with respect
to the use of only qubit error correction [12–14].

One of the most promising bosonic codes is the
Gottesman-Kitaev-Preskill (GKP) code [2, 5, 8,
10, 11], which allows for correcting arbitrary er-
rors. GKP codewords also have a highly negative
Wigner function [2, 15, 16], which is a known
necessary and quantifiable resource for univer-
sal quantum computation with continuous vari-
ables [17, 18]. Furthermore, GKP codewords
corresponding to the 0-logical state have been
shown to be universal in the resource-theoretic
sense [19, 20] — i.e., they promote a Gaussian set
of operations, states and measurements, to fault-
tolerant universal quantum computation [21].

In contrast to these results, there are certain
circuits involving GKP states which are efficiently
simulatable. For instance, it is known that en-
coded stabilizer GKP states in combination with
special Gaussian circuits, made of discrete dis-
placements and encoded qubit and qudit Clifford
operations, measured with homodyne detection,
are classically efficiently simulatable [22]. Hence,
the separation between circuits involving GKP
states which can be simulated on a classical com-
puter and those which cannot remains unclear.

In this work, we tackle the unexplored ques-
tion: are GKP states in combination with arbi-
trary displacements, Gaussian gates and homo-
dyne measurement universal, or classically effi-
ciently simulatable? For these types of circuits,
neither continuous-variable theorems based on
the non-negativity of quasi-probability distribu-
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tions nor discrete-variable theorems such as the
Gottesman-Knill theorem can be employed to as-
sess the simulatability.

Here, we prove that a large class of such Gaus-
sian circuits is classically efficiently simulatable.
The operations that we consider are a large sub-
set of the Gaussian operations, which are not
contained within the continuous-variable Clifford
group and are therefore not simulatable by the
previous methods used in Ref. [22]. To highlight
the distinction from these previous methods, we
consider the case of single-mode and multimode
measurements separately.

The circuits in Ref. [22] are simulatable when
the operations consist of multimode Gaussian op-
erations whereby the parameters of the symplec-
tic operations are selected from a zero-measure
set and the parameters of the displacements are
selected from the set of rational numbers. In this
work, when restricting to the measurement of a
single mode, we demonstrate simulatability for
multimode operations whereby the parameters of
symplectic operations are chosen from a set that
is dense in the reals. Furthermore, for single-
mode measurements, simulation can be achieved
in time which increases linearly with respect to
the number of modes. Meanwhile, we extend the
class of simulatable displacements from rational
to all possible continuous displacements.

Furthermore, for multimode measurement af-
ter multimode Gaussian operations, we demon-
strate that another large set of symplectic opera-
tions and all real displacements are simulatable.
None of these sets is contained within the set of
operations given in Ref. [22] and therefore this
work further increases the known set of simulat-
able operations acting on 0-logical GKP states.

The simulation methods given in this paper are
distinct from both stabilizer methods [23–31] and
phase space methods [17, 18, 32, 33]. Our method
is based on deriving an expression for the proba-
bility density function (PDF) with respect to po-
sition for any Gaussian operation acting on any
initial states.

When choosing 0-logical GKP states as input
and restricting the parameters of the symplectic
operations to a set which is dense in the reals, this
PDF can be evaluated efficiently. The evaluation
of the total PDF relies on the ability to evaluate
the PDF of individual rotated and squeezed 0-
logical GKP states, which we demonstrate is pos-

sible for certain rotation parameters. This calcu-
lation is performed by analyzing the rotated wave
function and simplifying it using techniques from
analytic number theory. In particular, we sim-
plify a Jacobi theta function into an expression
involving the quadratic Gauss sum which has a
solution for specific parameters.

In Section 2 we present the general circuit class
which we investigate throughout this work; we
describe Gaussian operations and outline how to
track the evolution of measurement operators in
the Heisenberg picture. In Section 3 we present
our first key result, i.e., an analytic expression
for the PDF of a GKP state with respect to po-
sition, which has undergone an arbitrary Gaus-
sian operation. Furthermore, we show that for
angles of rotation selected from a set dense in
the reals, the PDF can be reduced to a Dirac
comb using theorems from analytic number the-
ory. We use this result in Section 4 to show our
second major contribution, namely that a large
set of multimode Gaussian operations followed by
a single-mode measurement are efficiently clas-
sically simulatable. Our final main finding pre-
sented in Section 5 demonstrates that we can
extend these results to multimode measurements
on the condition that the multimode operations
are chosen from a further restricted set of Gaus-
sian operations. In Section 6 we summarize the
sets of operations which are simulatable in both
the single-mode measurement case and the multi-
mode measurement case and compare them with
discrete-variable simulation techniques. In Sec-
tion 7 we provide an analytic expression for the
rotated and squeezed realistic GKP state. We
also provide a brief overview of the challenges of
extending our results to the simulation of circuits
involving realistic GKP states. Finally, our con-
cluding remarks are presented in Section 8.

2 Gaussian operations and basic for-
malism

In this Section we lay down the basic formalism
required to tackle the circuits that we consider,
namely we define the input GKP states, review
the evolution under Gaussian operations, as well
as recall the symplectic formalism.
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2.1 The circuits considered

We consider bosonic systems consisting of an ar-
bitrary number n of bosonic modes, each charac-
terized by canonical position q̂k and momentum
p̂k operators, with [q̂k, p̂l] = iδk,l. In particular,
we focus on the class of circuits schematized in
Fig. 1.

The input states are 0-logical square GKP
states1 which have a wave function in position
representation given by [2]

ψ0,L(x) = 〈q = x|0GKP〉 =
∑
m

δ(2m
√
π − x);

(1)

all in all, the input state can hence be compactly
indicated by the tensor product over all the n in-
put modes initialized in the 0-logical GKP state,
|0GKP〉 = ⊗nj=1 |0GKP〉j . The density matrix of
the initial state is given by

ρ̂0 = |0GKP〉 〈0GKP|. (2)

|0GKP〉

HW(n)[Sp(2n,R)]

q̂1

...
...

... q̂k

...
|0GKP〉

Figure 1: Schematics of the general circuit class that is
considered. The input states are 0-logical GKP states.
The states are acted on by generic Gaussian operations.
Homodyne detection of k modes follows, corresponding
to the measurement of the quadratures q̂1, . . . q̂k.

The evolutions that we consider are a subset
of all Gaussian operations on n modes. We will
define the class considered in Sections 4 and 5.
Measurement occurs through homodyne detec-
tion, say corresponding to the measurement of the
position quadratures q̂ of a single mode (Section
4) or all modes (Section 5). In the following, we
review the evolution of the quadrature operators

1The GKP kets, as defined in Eq. (1), do not formally
represent proper quantum states as they are not normal-
izable, and as such do not belong to the Hilbert space
associated with a bosonic mode. However, in the remain-
der of this paper, we will nonetheless adopt the colloquial
expression GKP states, for the sake of brevity.

under Gaussian evolutions which we will later use
to determine the PDF of Gaussian circuits with
input GKP states.

2.2 Tracking evolutions under Gaussian oper-
ations
Analogously to the Clifford group in discrete-
variable quantum computation, Gaussian
operations preserve the continuous-variable
Pauli (or Heisenberg-Weyl) group HW(n),
which is the group generated by the set
{eicj p̂j , e−idj q̂j : j ∈ Zn cj , dj ∈ R} [24].
They can be constructed by selecting and apply-
ing any number of the following generators in
any order [24, 34, 35]:

{eicj q̂j , eiθj(q̂
2
j+p̂2

j )/2, e−i ln sj(q̂j p̂j+p̂j q̂j)/2, e−iq̂j p̂k}
(3)

for cj , sj ∈ R, θj ∈ [0, 2π) ∈ R and
j, k ∈ {1, . . . , n}.

Our approach to tackle the computation of the
PDF of GKP states after Gaussian operations
starts with computing the Heisenberg evolution
of the position operators q̂j and their conjugate
momentum operators p̂j under the action of a uni-
tary operator Û . The generator gates in Eq. (3)
have the effect of transforming the quadrature op-
erators q̂j and p̂j linearly. Displacements eicj q̂j
have a non-trivial effect only on the momentum
of the j-th mode, given by

p̂j → p̂j + cj . (4)

Similarly rotations R̂(θj) = eiθj(q̂
2
j+p̂2

j )/2 have the
effect

q̂j → q̂j cos θj − p̂j sin θj ,
p̂j → q̂j sin θj + p̂j cos θj . (5)

The Fourier transform can be defined
as the rotation with angle π/2, i.e.
F̂ = R̂(π/2) = eiπ(q̂2

j+p̂2
j )/4, which has the

effect

q̂j → −p̂j , p̂j → q̂j . (6)

The Fourier transform acting on encoded GKP
qubits corresponds to the Hadamard gate.
Squeezing operations Ŝ(sj) = e−i ln sj(q̂j p̂j+p̂j q̂j)/2

have the effect

q̂j → sj q̂j , p̂j → p̂j/sj . (7)
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Finally, the SUM gate ĈX = e−iq̂j p̂k , where j is
the control mode and k is the target mode, has
the effect

q̂j → q̂j , p̂j → p̂j − p̂k
q̂k → q̂j + q̂k, p̂k → p̂k. (8)

As can be seen by these Heisenberg evolutions,
we can track the evolution of the measurement
operator associated with the modes of interest us-
ing a linear equation of the form

Q̂j = Û †q̂jÛ =
∑
i

a
(j)
i q̂i + b

(j)
i p̂i + cj , (9)

i.e., we need to track 2n+1 real variables for each
mode we would like to measure. To measure n
modes we need to track (2n+ 1)n real variables.
Similarly to Ref. [24], for any finite precision, this
can be done efficiently as long as the number of
gates is polynomial in the number of modes.

2.3 Decomposition of Gaussian operations
We will now analyze the effect of any quadratic
Hamiltonian on the measurement mode q̂j . We
first introduce the vector of operators [36, 37]

r̂ =
(
q̂1, . . . , q̂n, p̂1, . . . , p̂n

)T
(10)

and the group of symplectic matrices

Sp(2n,R) = {M ∈M2n×2n(R) : MTΩM = Ω},
(11)

where

Ω =
(

0 −1n
1n 0

)
. (12)

Any unitary operator generated by a quadratic
Hamiltonian Ĥ = r̂TH r̂/2 can be associated to a
symplectic matrix M as

ÛM = e
i
2 r̂TH r̂, where M = e−ΩH . (13)

This operation acting on the operators
r̂j → Û †M r̂jÛM can be expressed in terms of
a mapping of the vector of operators

r̂→M r̂. (14)

Any linear displacement can be achieved using an
operator

D̂r̄ = e−ir̂
TΩr̄ (15)

parameterized by a vector of 2n real numbers r̄
corresponding to the magnitude of displacement
in position and momentum. Its effect D̂†r̄r̂D̂r̄ on
the vector of operators can be expressed as

r̂→ r̂ + r̄. (16)

Utilizing this formalism, unitary operations
corresponding to any quadratic Hamiltonian can
always be decomposed as a Gaussian operation of
the form

Û = Û(r̄,M) = D̂r̄ÛM (17)

which acts on the quadratures r̂ as

Û †r̂Û = M r̂ + r̄. (18)

We will denote Û(r̄,M) = Û for simplicity, and
will use Û throughout the rest of this work. The
matrix M can be written in block form as

M =
(
A B
C D

)
. (19)

The effect of Û on the Heisenberg measurement
modes can be evaluated as linear equations as in
Eq. (9).

Therefore, we see that any quantum computa-
tion composed of Gaussian operations in any or-
der followed by measurements in q̂j can be decom-
posed in terms of a symplectic operation, followed
by linear displacements in position with parame-
ters

ri = ci ∀ i ∈ {n+ 1, . . . , 2n} (20)

and the block matrices

Ai,j = a
(j)
i Bi,j = b

(j)
i . (21)

Note that the values ri for i ≤ n can be any real
value since they correspond to displacements in
momentum, which commutes with the position
measurement operator.

In the following sections, we will show how to
simulate a restricted set of Gaussian operations
acting on 0-logical GKP states, followed by mea-
surements in q̂j .

3 PDF of a Gaussian-transformed
GKP state
The PDF with respect to position of a 0-logical
GKP state following a general single-mode Gaus-
sian operation consists of a Gaussian operator
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applied to an infinite sum of Dirac delta peaks.
The Gaussian operator will introduce non-trivial
coefficients at each of these peaks. It is known
that for a restricted set of Gaussian operations
— e.g., those which can be described in terms
of GKP-encoded single-qubit Clifford operations
— it is possible to analytically evaluate the wave
function, and therefore also the PDF of a trans-
formed GKP state [2]. However, to the best of
our knowledge, no general result is known for ar-
bitrary Gaussian operations.

In this section, we provide the evaluation of the
PDF of a 0-logical GKP state that has under-
gone a generic Gaussian transformation — which
generally cannot be described in terms of GKP-
encoded qubit Clifford operations — in the po-
sition basis. We note that we can decompose
any single-mode symplectic operation using the
Iwasawa decomposition [38] in terms of a shear
operation followed by a squeezing operation and
then a rotation. Furthermore, when measuring
in the position basis, we can discard the initial
shear operation, as it has no effect on the position
quadrature. Therefore, the effect of all single-
mode Gaussian operations acting on the position
quadrature can be expressed in terms of a dis-
placement, squeezing and a rotation. Since the
displacement has the effect of a displacement of
the position variable in the PDF, we can, without
loss of generality, ignore the effect of displacement
in the following calculation.

The wave function of the rotated and squeezed
0-logical GKP state can be expressed in terms of
these single-mode operations as

ψθ,s(x) = 〈q = x| Ŝ(s)R̂(θ) |0GKP〉 . (22)

Furthermore, we can isolate the squeezing param-
eter s, which has the effect of rescaling the wave
function of a rotated 0-logical GKP state,

ψθ,s(x) = ψθ(x/s). (23)

The full calculations detailed in Appendix A.1
show that the PDF of a rotated 0-logical GKP
state measured in the position basis can be writ-
ten compactly as being proportional to

|ψθ(x)|2 ∝ 1
sin θ

∣∣ϑ(ζ = −x csc θ/
√
π; τ = 2 cot θ)

∣∣2,
(24)

where the Jacobi theta function ϑ(ζ; τ) is defined

as

ϑ(ζ; τ) ≡
∑
m∈Z

eπim
2τe2πimζ . (25)

We consider two cases for the rotation angle θ,
for which the PDF can be evaluated analytically.
For case 1 we consider rotation angles θ for which
cot θ = u/v where u ∈ Z, v ∈ Zodd. For case 2 we
consider rotations angles where θ mod π = 0.
These cases correspond to selecting θ ∈ Θ where
the set Θ is defined as

Θ = {θ ∈ R : cot θ = u/v ∈ Q(2)} ∪ {0, π} (26)

and Q(2) is formally defined as the localization of
the integers Z at the prime ideal 2Z [39].

First, we summarize the calculations of case
1, where the rotation angles can be expressed as
cot θ = u/v. By expanding the theta function in
terms of u, v, it is possible to express it in terms
of a Dirac comb and a quadratic Gauss sum. The
Gauss sum is given by

G(ζ, τ = 2u/v) =
∑
m∈Zv

e2πim2u/ve2πimζ , (27)

and the theta function can be written in terms of
the Gauss sum as

ϑ(ζ; τ = 2u/v) =G(ζ, τ)
∑
n′

δ(ζ − n′/v). (28)

The delta function evaluates to 0 except at values
of ζ equal to n′/v so the theta function can be
simplified to

ϑ(ζ; τ = 2u/v) =G(ζ = n′/v, τ)
∑
n′

δ(ζ − n′/v).

(29)

Using results from analytic number theory we
identify that for the case of θ we consider, the
Gauss sum evaluates to a constant. This implies
that the norm of the theta function is propor-
tional to a Dirac comb. Hence, the PDF for this
case can be evaluated to

|ψθ(x)|2 =
∑
m

δ(x−m
√
π sin θ/v), (30)

where we have ignored the normalization con-
stant as in Ref. [2]. Formally, this PDF is not
normalizable, however, we can still interpret it
as a probability density function in that it in-
forms us that the measured position value x will
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be given by any integer m multiple of
√
π sin θ/v

with equal probability.
In the second case, we identify that a rota-

tion of θ = 0 gives the identity, and a rotation by
θ = π is equivalent to applying the Fourier trans-
form twice, which is also the identity. Therefore,
we can immediately write the PDF as

|ψθ(x)|2 =
∑
m

δ(x− 2m
√
π). (31)

We can unify both of these cases in a single
PDF,

|ψθ(x)|2 =
∑
m

δ(x−m
√
π∆), (32)

with separation between peaks ∆ as calculated in
Appendix A.2, yielding

∆ =
{

sin θ/v if cot θ = u/v : u ∈ Z, v ∈ Zodd,

2 if θ = kπ for k ∈ Z
(33)

where gcd(u, v) = 1. The PDF of the rotated and
squeezed mode can therefore be expressed as

|ψθ,s(x)|2 =
∑
m

δ(x−m
√
πs∆), (34)

where we again ignore the normalization con-
stant.

4 Simulatability of Gaussian circuits
with single-mode measurement

|0GKP〉
HW(n)× RSp(2n,R)

q̂1

...
|0GKP〉

Figure 2: Schematics of the circuit considered in Sec-
tion 4. The circuit is initialized in 0-logical GKP states.
The operations considered are in HW(n)× RSp(2n,R),
which is a restricted set of Gaussian operations. Homo-
dyne detection follows, corresponding e.g. to the mea-
surement of the quadrature q̂1.

For a restricted class of the circuits shown in
Fig. 1, where the restriction arises from the two
cases of allowed angles in Eq. (26), it is possi-
ble to simulate the outcome of the measurement.
Specifically, we can consider a restricted class of

multimode Gaussian operations A acting on 0-
logical GKP states followed by measurement of a
single mode in the position quadrature, see Fig. 2.

We wish to establish whether the PDF of the
corresponding measurement outcomes

PDF(x1) = Tr(ρ̂ |x1〉 〈x1|)

= Tr
(
ρ̂0Û

† |x1〉 〈x1| Û
)
, (35)

where x1 are the eigenvalues of the position op-
erator on the first mode q̂1 |x1〉 = x1 |x1〉 and
ρ̂ = Û ρ̂0Û

†, can be calculated efficiently classi-
cally. This refers to the notion of strong simu-
latability, whereby the PDF of the outcomes is
calculated in a time which scales at most polyno-
mially both with the number of modes and the
number of digits of precision [40–42].

We begin by detailing the set of Gaussian op-
erations A that are simulatable by our technique.
We will then show that the PDF of the multimode
operations in A can be decomposed into the eval-
uation of an integral involving functions which
correspond to the single-mode PDF of a rotated
and squeezed 0-logical GKP state, derived in Sec-
tion 3. The restricted set of multimode Gaussian
operations we consider ensures that each single-
mode PDF satisfies the constraints defined in the
previous section.

The restricted class of operations that we con-
sider, defined as

A = HW(n)× RSp(2n,R), (36)

is the direct product2 of the Heisenberg-Weyl
group of all real displacements in phase space and
the set of symplectic matrices M ∈ RSp(2n,R).
The set RSp(2n,R) consists of all elements
M ∈ Sp(2n,R) such that one of the following
cases is satisfied

A1,i = 0 or B1,i = 0 or A1,i/B1,i = ui/vi (37)

with ui ∈ Z and vi ∈ Zodd for each i ∈ {1, . . . , n},
where A,B are the block matrices of the symplec-
tic matrix M as defined in Eq. (19).

2Note that in the definition of the Gaussian operations,
the semi-direct product of the Heisenberg-Weyl group and
the symplectic operations provides a complete description
of all possible Gaussian operations since both the set of
Heisenberg-Weyl operations and the set of symplectic op-
erations are groups [24]. However, in the restricted class
of circuits we must use the direct product × since the re-
stricted set of symplectic operations is not a group. This is
equivalent to saying that the operations are selected from
any combination of the two sets.
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In other words, the class A contains operations
of the form of Û in Eq. (17) where (r̄,M) is se-
lected from the set of all possible phase space
displacements r̄ ∈ HW(n) and symplectic opera-
tions parameterized by the symplectic matrix M
are such that the matrix satisfies the constraints
in Eq. (37). We would like to demonstrate that
when the operations Û are selected from the class
A, acting on 0-logical GKP states, followed by
single-mode homodyne measurement of q̂, the cir-
cuit is simulatable.

To calculate the PDF of the single-mode mea-
surement circuit which is shown in Fig. 2, we first
track the evolution of the position quadrature in
the Heisenberg picture, as in Eq. (9), which in-
volves a summation over the n modes of terms of
the form

aiq̂i + bip̂i = si (q̂i cos θi − p̂i sin θi) = siẑ
θi
i (38)

where we have introduced the re-scaled pa-
rameters si and θi such that ai = si cos θi and
bi = −si sin θi, and where we have defined the ro-
tated quadrature ẑi. This is equivalent to per-
forming a squeezing Ŝ(si) operation, followed by
a rotation R̂(θi), where si ∈ R and θi ∈ [0, 2π).
The coefficients ai, bi, si, θi depend on the mode
tracked but we will omit the mode index in this
section because we are only tracking a single
mode, which we chose to be the first mode with-
out loss of generality.

By evolving the measurement operator, rather
than the states, we can express the PDF in
Eq. (35) as

PDF(x1) = Tr
(
ρ̂0
∣∣∣Q̂1 = x1

〉〈
Q̂1 = x1

∣∣∣), (39)

where the Heisenberg measurement operator can
be calculated according to Eq. (9) and ρ̂0 is given
in terms of Eq. (2). Using Eq. (38) we can then
write each term of the sum as the Heisenberg op-
erator for a transformed mode,

Q̂1 =
∑
i

siẑ
θi
i + c, (40)

which allows us to calculate the PDF of the mea-
surement of Q̂1. We can express the projection
operator as a Dirac delta function, which allows
us to write the PDF as

PDF(x1) = 〈0GKP| δ
(
Q̂1 − x1

)
|0GKP〉

= 〈0GKP| δ
(∑

i

siẑ
θi
i + c− x1

)
|0GKP〉 .

(41)

This can be evaluated by inserting the identity
over all the transformed modes,

1 =
∫

dz
n∏
j

∣∣∣ẑθjj = zj
〉〈
ẑ
θj
j = zj

∣∣∣ , (42)

where z is the n-vector of the integration variables
zj . This provides a PDF in terms of the wave
functions of the individual transformed modes,

PDF(Q̂1 = x1)

=
∫

dzδ
(

n∑
i=1

sizi + c− x1

)
n∏
j

∣∣∣ψθj (zj)∣∣∣2, (43)

where we have identified the PDF of individual
transformed modes as∣∣∣ψθj (zj)∣∣∣2 =

∣∣∣〈ẑθjj = zj
∣∣∣0GKP

〉∣∣∣2. (44)

Inserting the PDF of the individual modes
given by Eq. (34) we find that the PDF of the
measurement can be written compactly in terms
of the parameters si and ∆i derived from the orig-
inal symplectic matrix,

PDF(x1)

=
∑

m1,...,mn∈Z
δ

(
n∑
i=1

simi

√
π∆i + c− x1

)
. (45)

Note that this is possible when the symplectic
matrix satisfies Eq. (37), in virtue of Section 3.
Further calculation details are provided in Ap-
pendix B.1. The simulation of sampling from this
circuit can be performed by generating n random
integers mi and returning

x1 =
n∑
i=1

simi

√
π∆i + c. (46)

The Gaussian operations selected from the
class A can be parameterized in terms of the
symplectic matrix elements A1,i and B1,i. From
these variables, we can calculate each ∆i using
arithmetic operations and the greatest common
divisor following Eq. (33) and Eq. (37). The
squeezing parameters si can be evaluated with
trigonometry from Eq. (38). Furthermore, each
of the variables ∆i, si can be calculated indepen-
dently. Therefore, the total number of these inde-
pendent calculations scales linearly with the num-
ber of modes n. Hence, we conclude that the PDF
of the circuit can be calculated in linear time with
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respect to the number of modes. Therefore, the
strong simulation of the class of circuits shown
in Fig. (3) can be performed in linear time and
hence exists within complexity class P.

For an example of a multimode circuit, involv-
ing the SUM and Fourier transform gates, which
is simulatable by our technique, refer to Appendix
B.2. A circuit diagram with an explicit construc-
tion of a general circuit is given in Appendix B.3.

These results are analogous to an input-GKP
version of the results of Ref. [24], which show
simulatability for Gaussian circuits and Gaussian
measurements for position eigenstates. However,
we stress that the proof techniques used for the
derivation of our results are different and that the
input GKP states are non-Gaussian and highly
Wigner negative [2, 15, 16], in contrast to the
Gaussian input states of Ref. [24].

Practical tools for simulating Gaussian cir-
cuits with input GKP states were developed in
Ref. [43], based on representing states as lin-
ear combinations of Gaussian states. Note how-
ever that their method is not computationally
efficient for the circuits considered here, unlike
ours. Tracking the evolution of the field quadra-
tures is also used in the context of noise prop-
agation under the twirling approximation to de-
termine the fault-tolerance threshold for surface-
GKP codes [13, 14, 44].

Finally, note that the 0-logical GKP state is
possible to simulate using our technique due to
the fact that its wave function can be written as
a Dirac comb which does not have any position-
dependent coefficients. We could also use other
non-magic GKP states as input. For example,
the state |1GKP〉 and the encoded XL basis state
|+GKP〉 both satisfy the property that the peaks
do not have position-dependent coefficients. Note
that the encoded XL basis state |−GKP〉 has an
alternating sign for each peak, however, it can
be generated using a momentum displacement
applied to |+GKP〉 and therefore is simulatable.
If we instead consider the magic T-logical GKP
state,

|TGKP〉 = |0GKP〉+ eiπ/4 |1GKP〉 , (47)

simulation by our technique fails due to the com-
plex term in the infinite summation over Dirac
delta peaks. Simulation of this state would be
surprising because it is considered resourceful
in both continuous-variable and discrete-variable

quantum computing. T-logical GKP states in
combination with encoded Clifford operations are
indeed hard to sample [22, 45].

5 Simulatability of Gaussian circuits
with multimode measurement

|0GKP〉

HW(n)×DSp(2n,R)

q̂1

...
...

|0GKP〉 q̂n

Figure 3: Schematics of the multimode measurement
circuits considered. As in Fig. 2, the input states are 0-
logical GKP stabilizer states. The operations considered
belong to a further reduced set of Gaussian operations.
Homodyne detection of multiple modes follows, corre-
sponding e.g. to the measurement of the quadratures
q̂1, . . . , q̂n.

If we make an additional restriction to the set
of symplectic matrices that we wish to simulate,
we can generalize the results of the previous sec-
tion to multimode measurement. We will denote
this set of matrices DSp(2n,R). The set includes
matrices of the form Eq. (19) which can be de-
composed to(

Ã 0
C̃ (ÃT )−1

)(
diag(cos ~θ) diag(sin ~θ)
−diag(sin ~θ) diag(cos ~θ)

)
(48)

where Ã, C̃ are n×n matrices such that Ã is non-
singular and both Ã and C̃T Ã are symmetric3.
The allowed angles θ = (θ1, . . . , θn)T are selected

3A 2n-dimensional symplectic matrix can always be
decomposed as [38]

S =
(
A B
C D

)
=
(

1 0
C̃Ã−1 1

)(
Ã 0
0 Ã−1

)(
X Y

−Y X

)
=
(
Ã 0
C̃ Ã−1

)(
X Y

−Y X

)
=
(

ÃX ÃY

C̃X − Ã−1Y C̃Y + Ã−1X

)
.

We make a restriction by choosing X = diag(cos ~θ) and
Y = diag(sin ~θ). We also note the connection to a simi-
lar decomposition given in Ref. [46, 47] which could also
be used to define a more restricted class of simulatable
operations.
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from the set θj ∈ Θ as defined in Eq. (26). Equiv-
alently, we could restrict the symplectic matrices
in Eq. (19) such that the block components satisfy
A = Ãdiag(cos ~θ) and B = Ãdiag(sin ~θ) for some
symmetric Ã.

When including the Heisenberg-Weyl opera-
tions we denote the full set of simulatable op-
erations as

B = HW(n)×DSp(2n,R). (49)

We will now demonstrate that when the opera-
tions Û are selected from the class B, acting on
0-logical GKP states, followed by multimode ho-
modyne measurement of q̂, the circuit is simulat-
able. The class B contains operations of the form
Û in Eq. (17) where (r̄,M) is selected from the set
of possible phase space displacements r̄ ∈ HW(n)
and symplectic operations given in Eq. (48). In
Section 6 we will show that the class B is con-
tained in the class A defined in Eq. (36).

The PDF of a general state ρ̂ measured in the
position basis in all modes is given by

PDF(x) = Tr(ρ̂ |q̂ = x〉 〈q̂ = x|), (50)

where

|q̂ = x〉 =
∏
i

|q̂i = xi〉 (51)

and x = (x1, . . . , xn). Similarly to the single-
mode case, rather than evolving the state we can
evolve the position measurement operators. By
analyzing the decomposed matrix in Eq. (48) we
can identify two independent operations which
transform the measurement quadratures in a con-
venient way. The action of the second matrix in
Eq. (48) can be expressed as a series of single-
mode rotations

R̂(~θ) = R̂1(θ1) . . . R̂n(θn) (52)

which rotate each mode independently according
to

R̂†(~θ)q̂jR̂(~θ) = q̂j cos θj − p̂j sin θj = ẑ
θj
j . (53)

We then inspect the unitary operation corre-
sponding to the first matrix with Ã in block (1, 1)
which is given by ÛÃ and has the effect

Û †
Ã
q̂jÛÃ =

∑
i

a
(j)
i q̂i, (54)

where a(j)
i is the element in the (j, i) position of

the matrix Ã.
Eqs. (53) and (54) allow us to express the

Heisenberg measurement operators as

R̂†(~θ)Û †
Ã
q̂jÛÃR̂(~θ) =

∑
i

a
(j)
i ẑθii . (55)

We can also include arbitrary displacements in
position by including a displacement operation
e−ip̂·c before measurement, which results in the
total Heisenberg measurement operator

Q̂j = R̂†(~θ)Û †
Ã
eip̂·cq̂je

−ip̂·cÛÃR̂(~θ). (56)

This can be expressed in terms of the individual
rotated modes as

Q̂j =
∑
i

a
(j)
i ẑθii + cj , (57)

where, as said, a(j)
i is the element in the (j, i)

position of the matrix Ã and ~θ are the rotation
values of the rotation matrix R(~θ).

Writing the PDF in terms of the Heisenberg-
evolved measurement operators and using the
cyclic property of the trace we find

PDF(x) =
〈
0GKP

∣∣∣Q̂ = x
〉〈

Q̂ = x
∣∣∣0GKP

〉
,

(58)

where we use the same notation as Eq. (51) to de-
note the simultaneous eigenkets of the operators
Q̂j over xj , for all j ∈ {1, . . . , n}. Expressing the
projection operators as Dirac delta functions, we
have

PDF(x) = 〈0GKP|
∏
j

δ(Q̂j − xj) |0GKP〉 . (59)

We can then substitute the expression for
the Heisenberg evolved measurement operators,
Eq. (57), to find

PDF(x)

= 〈0GKP|
∏
j

δ(
∑
i

a
(j)
i ẑθii + cj − xj) |0GKP〉 .

(60)

Inserting the identity Eq. (42) and evaluating the
integral over the resulting delta functions results
in the final PDF

PDF(x)

=
∑

m1,...,mn∈Z

n∏
j=1

δ(
n∑
i=1

a
(j)
i mi

√
π∆i + cj − xj).

(61)
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The full calculation details of the PDF are given
in Appendix C.1. If the symplectic operation is
given in terms of the decomposition of Eq. (48)
then it is possible to calculate all n of the parame-
ters ∆i in linear time by the same considerations
as reported in Section 4. The PDF involves a
n × n matrix of coefficients a(j)

i and so evaluat-
ing the PDF involves a total of n2 coefficients of
this form. We have therefore demonstrated an
efficient method for evaluating the PDF for any
circuit of the type given in Fig. 3.

In summary, due to the form of the matrix
decomposition in Eq. (48), we can simulate any
circuit with modes initialized as 0-logical GKP
states acted upon by parallel single-mode rota-
tions parameterized by θj ∈ Θ, followed by any
symplectic operation parametrized by a symplec-
tic matrix which when written in block form, as
in Eq. (19), has block component B = 0. The
restriction to generate a symplectic matrix such
that the block component B = 0 is equivalent to
ensuring that the operation does not transform
q̂j → p̂k or vice versa, for any j, k. The SUM
gate satisfies these criteria. Therefore, we can
construct arbitrary examples of circuits that are
restricted to the form in Eq. (48) by first choosing
single-mode rotations parameterized by θj ∈ Θ,
followed by any combination of squeezing opera-
tions and SUM gates. An example simulation of a
Gaussian operation acting on GKP states is given
in Appendix C.2. A circuit diagram of a general
circuit chosen from the set of allowed operations
B is given in Appendix C.3.

Similar to the result given in Ref. [24], it is
clear that certain feed-forward operations can be
efficiently simulated too, when they can be sub-
stituted with Gaussian two-mode operations fol-
lowed by deferred measurements. In particular,
Pauli operators implemented after classical feed-
forward can still be simulated efficiently.

It may also be possible to provide an alterna-
tive proof of the simulatability of these circuits
by adapting the formalism developed in Ref. [30]
to input GKP states.

6 Summary of simulatable operations

We have defined two new restricted classes of
Gaussian operations, given in Eq. (36) and (49),
in terms of sets of restricted classes of symplectic
operations, RSp(2n,R) and DSp(2n,R). Opera-

tions selected from the restricted class A, applied
to 0-logical GKP states, followed by measurement
of a single mode are simulatable. Operations se-
lected from the restricted class B, applied to 0-
logical GKP states, followed by measurement of
multiple modes are simulatable.

In Ref. [22] it is proven that using the
Gottesman-Knill theorem, one can simulate any
continuous-variable quantum computation ini-
tialized to 0-logical GKP eigenstates, acted upon
by encoded Clifford group operations Cd for GKP-
encoded qudits in arbitrary dimension d, and
measured with homodyne measurement.

HW(n)[Sp(2n,R)]

A B Cd

Figure 4: The classes of circuits we consider are dis-
played as a Venn diagram. We know that all A,B, Cd

are contained within the set of Gaussian operations
HW(n)[Sp(2n,R)]. We also know that the logical en-
coded Clifford group does not completely contain, nor is
completely contained by A or B. Finally, we know that
B is contained by A. Note that the size of each of these
regions in the diagram is arbitrary. It is however meant
to represent the fact that the parameters of the symplec-
tic and displacement operations are selected respectively
from a zero-measure set and the set of rational numbers,
for Cd, and from a dense set and all reals for A.

The relationships between the classes A,B, Cd
demonstrate the power of the new simulation
techniques outlined in this paper. First, we know
that all A and B and Cd are contained within the
full set of Gaussian operations

A,B, Cd ⊂ HW(n)[Sp(2n,R)]. (62)

We also note that

B ⊂ A and (63)
A,B 6⊂ Cd. (64)

The relationship of Eq. (63) can be understood
by considering that any symplectic matrix in
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DSp(2n,R), which satisfies the constraints of
Eq. (48), must also satisfy the constraints of
RSp(2n,R), given in Eq. (37). This is because
the constraints of DSp(2n,R) given for the first
row of the symplectic matrix are equivalent to all
of the constraints of RSp(2n,R). Furthermore,
the relationship of Eq. (64) can be seen immedi-
ately by considering that, for example, arbitrary
displacements, which are contained in A and B,
are not contained within Cd.

These relationships are presented as a Venn di-
agram in Fig. 4. Eq. (64) shows that there exists
a large class of circuits which previously were not
known to be simulatable which are simulatable
by the methods detailed in this paper.

We will now compare the results of this work
with those of Ref. [22]. It is always possible to de-
fine Gaussian operations in the form of Eq. (17)
in terms of the real parameters of the symplec-
tic matrix and displacements. The methods de-
scribed in Ref. [22] allow us to simulate only those
parameters selected from a zero-measure set for
the symplectic matrices and all rational displace-
ments. In contrast, the methods described in this
work demonstrate that all circuits selected from
A followed by single-mode measurement are sim-
ulatable. The parameters of A constitute a set
which is dense on the reals and thus significantly
expands the class of simulatable Gaussian opera-
tions. The proof of this fact is given in Appendix
D. Note, however, that the density of the param-
eters defining the operators should be considered
a mathematical property characterizing the class
of simulatable operations. The density does not
imply that it is possible to simulate the PDF of
operations outside of the set, i.e. it does not mean
that operations in the closure of the set are nec-
essarily simulatable.

Furthermore, in Appendix E we show that

Cd 6⊂ A and Cd 6⊂ B (65)

which informs us that neither A nor B completely
contain the Clifford group operations which are
simulatable by previous methods.

The classes described in this section are those
that we have shown to be simulatable in our work
and are not necessarily fundamental. It is pos-
sible that there exists a new class of simulatable
continuous-variable operations acting on 0-logical
GKP states, e.g. D, which contains all ofA,B, Cd,
which remains undiscovered.

7 Realistic GKP states
Here we briefly sketch how to extend the analysis
that we have performed to the case of realistic
GKP states. In principle, our simulation method
could be extended to such case. We show that
an analytical expression for the PDF of a rotated
and squeezed single-mode GKP state, analogous
to Eq. (34), can also be derived for the case of
realistic GKP states. However, due to the more
complex form of this PDF, which displays Gaus-
sian peaks rather than a Dirac comb, we cannot
directly apply the same derivation as before to
evaluate the PDF after multiple modes have un-
dergone symplectic operations.

The rotated and squeezed wave function of a
realistic GKP state is given by

ψθ,s(x) = 〈q = x| Ŝ(s)R̂(θ)
∣∣∣0∆

GKP

〉
(66)

which can — as in the case of infinitely squeezed
GKP states, see Eq. (23) — be expressed in terms
of the wave function ψ∆

θ (x) of the rotated GKP
state, i.e.

ψ∆
θ,s(x) = ψ∆

θ (x/s). (67)

In Appendix F we demonstrate that it is possible
to write this expression analytically in the form

ψ∆
θ (x) = ex

2γϑ(ζ = xη, τ) (68)

which is defined in terms of the constants

η =− csc θ/
(√

π(s+ ∆4s− i∆2s cot θ)
)
,

τ =2i(∆2 − i cot θ)/(1 + ∆4 − i∆2 cot θ),

γ = i(i∆2 + (1 + ∆4) cot θ)
2s2(1 + ∆4 − i∆2 cot θ) (69)

and results in a single-mode rotated realistic
GKP state having a PDF of the form

|ψ∆
θ (x)|2 ∝ ex2(γ+γ∗)|ϑ(ζ = xη, τ)|2. (70)

The PDF of a circuit with input realistic GKP
states followed by Gaussian operations and ho-
modyne measurements is given by

PDF(x) =
〈
0∆

GKP

∣∣∣∏
j

δ(Q̂j − xj)
∣∣∣0∆

GKP

〉
. (71)

Solving this expression analytically would require
solving integrals over a product of Jacobi theta
functions, which hinders us from using the same
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techniques used for the ideal case. We are
unaware of a method to evaluate this expression.
We provide a more detailed overview of the
challenges of evaluating the PDF for realistic
GKP states, for both single-mode and multimode
measurement, in Appendix F.

8 Conclusion

In this work, we have shown that large classes
of Gaussian operations, in combination with in-
put 0-logical GKP states and homodyne mea-
surements, are classically efficiently simulatable.
The proof structure used to prove our result is
based on decompositions of the symplectic ma-
trix and directly calculating the corresponding
PDF, hence introducing very different methods
compared to the ones used to prove the simulata-
bility of a restricted class of Gaussian circuits in
Ref. [22]. As a matter of fact, compared to Cd,
for single-mode measurements we define a larger
class A of simulatable operations which includes
symplectic operations with parameters which are
dense in the reals and all continuous displace-
ments. Meanwhile, for multimode measurements,
we define a new set B, not contained by Cd which
is also simulatable.

Identifying circuits which are simulatable is,
beyond fundamentally relevant, also useful for the
development of quantum computers, providing a
possibility for benchmarking and verification. In-
deed a quantum computer can be initially pro-
grammed to solve problems which are simulat-
able with classical computers, as a test to identify
whether the computation result is accurate [48].

Our proof of efficient simulatability only holds
for the case of infinitely squeezed 0-logical GKP
states, and we have sketched the difficulties en-
countered when trying to extend this result to
the case of realistic, i.e. finitely squeezed, GKP
states [2]. Establishing conclusively whether re-
alistic GKP states are also simulatable following
Gaussian operations is hence left for future work.
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A Evaluating the PDF of a rotated and squeezed GKP state

A.1 Transforming a single mode

We begin by analyzing a simplified version of the circuit in Fig. 2 where we have one mode and Û is
the unitary operator corresponding to a single-mode symplectic operation. This would correspond to
a circuit of the form given in Fig. 5. We will then generalize to include displacement in phase space
(i.e. displacement in q̂ or p̂).

The general form of the transformed quadrature under symplectic operations for an individual mode
is given by

Û †q̂Û = aq̂ + bp̂. (72)

If we are given or can calculate the real coefficients a, b ∈ R in Eq. (72), then it is possible to reconstruct
a single-mode operation Û which could generate such a transformation. By using only a certain set
of operations we can calculate a decomposition of Û which will help us to calculate the PDF after
measurement of the position quadrature by applying that operation to the GKP state and calculating
its wave function and hence also its PDF.

We will begin by first deriving an appropriate decomposition, inspired by Ref. [38] (but ignoring the
shear gate which acts solely on the p̂ quadrature), which can be applied to the symplectic operation
for all values of a, b ∈ R.

Within the symplectic formalism, the rotation operator R̂(θ) = eiθ(q̂
2+p̂2)/2 has the effect of trans-
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|0GKP〉 Sp(2,R) q̂

Figure 5: The measurement of a single mode following an arbitrary symplectic operation acting on the |0GKP〉 state
can be tracked by considering the evolution of the position quadrature in the Heisenberg representation.

forming the mode quadratures as (
q̂′

p̂′

)
=
(

cos θ − sin θ
sin θ cos θ

)(
q̂
p̂

)
, (73)

while the squeezing operator Ŝ(s) = e−i
ln s
2 (q̂p̂+p̂q̂) has the effect of(
q̂′

p̂′

)
=
(
s 0
0 1/s

)(
q̂
p̂

)
, (74)

meaning that the operation Ŝ(s)R̂(θ) has the effect(
q̂′

p̂′

)
=
(
s 0
0 1/s

)(
cos θ − sin θ
sin θ cos θ

)(
q̂
p̂

)
=
(
s 0
0 1/s

)(
q̂ cos θ − p̂ sin θ
q̂ sin θ + p̂ cos θ

)
=
(
q̂s cos θ − p̂s sin θ
1
s (q̂ sin θ + p̂ cos θ)

)
.

(75)

This means that we can obtain the evolved quadrature Q̂ by acting on q̂ with a rotation and squeezing
operation

Q̂ = R̂†(θ)Ŝ†(s)q̂Ŝ(s)R̂(θ) = q̂s cos θ − p̂s sin θ. (76)

This allows us to parameterize the operator Û = Ŝ(s)R̂(θ) where

a = s cos θ;
b = −s sin θ. (77)

Then, we can calculate the wave function of the transformed mode as

ψθ,s(x) = 〈q = x| Ŝ(s)R̂(θ) |0GKP〉
= 〈q = x/s| R̂(θ) |0GKP〉

= 〈q = x/s| R̂(θ)
∑
m

∣∣q = 2m
√
π
〉
. (78)

We can interpret calculating each summand as a wave mechanics problem with Hamiltonian
Ĥ = 1

2(q̂2 + p̂2) parameterized with θ. This becomes

〈q = x/s| R̂(θ)
∣∣q = x′

〉
= 〈q = x/s| e−iĤθ

∣∣q = x′
〉

= K(x/s, x′; θ) (79)

which is the propagator for the simple harmonic oscillator [49] and can be evaluated to

K(x, x′; θ) = 1√
2πi sin θ

exp
(

i

2 sin θ
(
(x2 + x′2) cos θ − 2xx′

))
. (80)

By completing the square, we can rewrite the propagator in the form

K(x, x′; θ) = 1√
2πi sin θ

exp
(
i cot θ

2
(
x2 + x′2 − 2xx′ sec θ

))
= 1√

2πi sin θ
exp

(
i cot θ

2
(
(x− x′ sec θ)2 + (1− sec2 θ)x′2

))
= 1√

2πi sin θ
exp

(
i cot θ

2
(
(x− x′ sec θ)2 − tan2 θx′2

))
= 1√

2πi sin θ
exp

(
i

2
(
(x− x′ sec θ)2 cot θ − tan θx′2

))
(81)
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which gives the expression for the wave function

ψθ,s(x) = 1√
2πi sin θ

∑
m

exp
(
i

2
(
(x/s− 2m

√
π sec θ)2 cot θ − 4πm2 tan θ

))
= 1√

2πi sin θ
∑
m

exp
(
i

2
(
x2 cot θ/s2 − 4xm

√
π csc θ/s+ 4m2π(csc θ sec θ − tan θ)

))
= 1√

2πi sin θ
∑
m

exp
(
i

2
(
x2 cot θ/s2 − 4xm

√
π csc θ/s+ 4m2π cot θ

))
= 1√

2πi sin θ
eix

2 cot θ/(2s2)∑
m

eπim
22 cot θe−2πimx csc θ/(s

√
π)

= 1√
2πi sin θ

eix
2 cot θ/(2s2)ϑ(ζ = −x csc θ/(s

√
π); τ = 2 cot θ) (82)

where we have used the definition of the theta function,i.e.

ϑ(ζ; τ) =
∑
m∈Z

eπim
2τe2πimζ . (83)

This gives a succinct analytic expression for the PDF of measuring the q̂ quadrature of a GKP state
under any arbitrary single-mode symplectic operation,

|ψ(x)|2 = 1
4π sin θ

∣∣ϑ(ζ = −x csc θ/(s
√
π); τ = 2 cot θ)

∣∣2. (84)

In order to incorporate phase space displacements we note that any Gaussian operation involving a
symplectic operation

ÛMD̂r (85)

can be reordered while preserving the structure of the symplectic operation [37], i.e.

ÛMD̂r = D̂M−1rÛM . (86)

Therefore, any Gaussian operation acting on a single mode, for which we will measure the q̂ quadrature,
can be decomposed as

Û = D̂r̄Ŝ(s)R̂(θ). (87)

The PDF of measuring the q̂ quadrature of a single-mode GKP state under any Gaussian operation
can therefore be written as

|ψ(x)|2 = 1
4π sin θ

∣∣ϑ(ζ = −(x− c) csc θ/(s
√
π); τ = 2 cot θ)

∣∣2, (88)

where r̄1 = c is the magnitude of displacement in position.
The PDF involving the theta function in Eq. (88) can be evaluated for certain values of the angle θ,

or equivalently certain values of τ . The angle θ cannot take values of the form kπ for integer k ∈ Z,
but as we shall see later, these rotations are trivial to evaluate using a different method.

We now consider different cases where we can evaluate the PDF.
(Case 1: cot θ = u/v s.t. u ∈ Z, v ∈ Zodd ) The theta function can be reduced to a sum over Gauss

sums whenever cot θ = u/v is a fraction, i.e. a rational number. We also assume that the fraction u/v
is written in its simplest form, i.e. gcd(u, v) = 1. If it is not then it should be reduced as such by first
calculating gcd(u, v), which can be calculated in polynomial time with respect to the size of u, v [50].
Then, exp(πiτ) = exp(2πiu/v) becomes a root of unity and so the summation repeats in cycles [51].
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This can be utilized by expanding the summation over n into an infinite summation over n′ and a
summation over m ∈ Zv = {0, 1, . . . , v − 1}

ϑ(ζ; τ = 2u/v) =
∑
n∈Z

eπin
2τe2πinζ

=
∑
n∈Z

e2πin2u/ve2πinζ

=
∑
n′

∑
m∈Zv

e2πi(n′v+m)2u/ve2πi(vn′+m)ζ

=
∑
n′

∑
m∈Zv

e2πi(v2n′2+2mvn′+m2)u/ve2πi(vn′+m)ζ

=
∑
n′

∑
m∈Zv

e2πi(vn′2u+2mn′u+m2u/v)e2πi(vn′+m)ζ

=
∑
n′

∑
m∈Zv

e2πim2u/ve2πivn′ζe2πimζ

=
∑
m∈Zv

e2πim2u/ve2πimζ∑
n′

e2πivn′ζ

=
∑
m∈Zv

e2πim2u/ve2πimζ∑
n′

δ(ζ − n′/v)

=G(ζ, τ)
∑
n′

δ(ζ − n′/v), (89)

where we have identified the Gauss sum [52–54]

G(ζ = x sec θ/(2s
√
π), τ = 2u/v) =

∑
m∈Zv

exp
(
2πim2u/v

)
exp(2πimζ). (90)

By using the fact that the delta function evaluates to 0 for all values of ζ not equal to n′/v for some
n′ ∈ Z, we can rewrite the theta function as

ϑ(ζ; τ = 2u/v) =
∑
n′

G(ζ = n′/v, τ)δ(ζ − n′/v), (91)

where the Gauss sum needs only to be identified for certain values of ζ, rather than the entire real
axis. For these values of ζ, the Gauss sum is given by

G(ζ = n′/v, τ = 2u/v) =
∑
m∈Zv

exp
(
2πim2u/v

)
exp

(
2πimn′/v

)
. (92)

Since we have confined to the case that gcd(u, v) = 1 and v ∈ Zodd then we immediately have the
result that

|G(ζ = n′/v, τ = 2u/v)| =
√
v

∣∣∣∣(uv
)∣∣∣∣ > 0 for gcd(u, v) = 1, v ∈ Zodd and n′, u ∈ Z (93)

is a fixed constant dependent only on u, v [53], where
(
u
v

)
denotes the Jacobi symbol, a generalization

of the Legendre symbol.
Then, we can substitute this into Eq. (91)

|ϑ(ζ; τ = 2u/v)| =
∑
n′

δ(ζ − n′/v)|G(ζ = n′/v, τ)|

∝
∑
n′

δ(ζ − n′/v). (94)
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We can reinsert the theta function into the probability in Eq. (88) to get

|ψθ,s(x)|2 ∝|ϑ(ζ; τ = 2 cot θ)|2

∝
∑
m

δ(−x csc θ/(s
√
π)−m/v)

∝
∑
m

δ(x− sm
√
π sin θ/v). (95)

(Case 2: θ = 0, π) When θ = 0, π the probability function appears to break down because 1/ sin θ
is undefined. However, we can clearly identify that θ = 0 is simply the identity. For θ = π, this is
equivalent to applying the Fourier transform twice, which on the |0GKP〉 state has the effect of the
identity. In both cases we obtain

|ψθ,s(x)|2 =|〈q = x|S(s)R(θ = π) |0GKP〉|2

=|〈q = x|S(s) |0GKP〉|2

=|〈q = x/s|0GKP〉|2

∝
∑
m

δ(x− 2m
√
πs). (96)

A.2 Evaluation of the separation between the peaks
We can now encompass both cases above, and write a general PDF for all rotation angles θ ∈ Θ that
we define in Eq. (26), in terms of the separation between peaks. Note that the squeezing parameter
corresponds to a rescaling of the wave function in position space, and we can trivially write the squeezed
and rotated GKP PDF in terms of the rotated PDF, i.e.

|ψθ,s(x)|2 ∝|ψθ(x/s)|2. (97)

Ignoring the normalization constant, as in [2], we can write a formula for the PDF of a general
rotated mode

|ψθ(x)|2 =
∑
m

δ(x−m
√
π∆) (98)

with

∆ =
{

sin(θ)/v (case 1) if cot θ = u/v : u ∈ Z, v ∈ Zodd and gcd(u, v) = 1,
2 (case 2) if θ = kπ for k ∈ Z.

(99)

Note that in the special case when θ = π/2 we have cot(π/2) = 0, so we identify u = 0 and v = 1,
as the simplest form of the fraction u/v, to arrive at ∆ = 1/s. This coincides with what we would
expect when performing a Fourier transform (equivalent to a π/2 rotation) on the input state in the
logical basis F |0GKP〉 = |+GKP〉 =

∑
m |q = m

√
π〉 followed by a measurement.

B Simulation of measurement of a single mode for Gaussian operations in A
B.1 Calculating the PDF
For the class of circuits that we consider in Section 4, namely those belonging to the class A defined
in the main text, the PDF is given by

PDF(x1) = Tr(ρ̂ |q̂1 = x1〉 〈q̂1 = x1|), (100)

where ρ̂ is the state of all of the modes after the multimode operation Û (i.e. ρ̂ = Û ρ̂0Û
†, where ρ̂0

is the density matrix of n modes prepared in the 0-logical GKP state |0GKP〉), and |q̂1 = x1〉 is the
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position eigenket for the first mode. Using the cyclic property of the trace, and then evaluating it as
a trace over all the other modes in the position basis, we find that the PDF can be written as

PDF(x1) = Tr
(
Û ρ̂0Û

† |q̂1 = x1〉 〈q̂1 = x1|
)

= Tr
(
〈q̂1 = x1| Û ρ̂0Û

† |q̂1 = x1〉
)

=
∫

dx2· · ·
∫

dxn 〈q̂1 = x1| . . . 〈q̂n = xn| Û ρ̂0Û
† |q̂1 = x1〉 . . . |q̂n = xn〉 . (101)

The PDF can then be evaluated by inserting the identity over all rotated quadratures ẑθii which is
given by

1 =
n∏
j=1

∫
dzj

∣∣∣ẑθjj = zj
〉〈
ẑ
θj
j = zj

∣∣∣ =
∫

dz
n∏
j=1

∣∣∣ẑθjj = zj
〉〈
ẑ
θj
j = zj

∣∣∣ , (102)

and by writing the projection operators as a Dirac delta function [36],∣∣∣Q̂j = xj
〉〈
Q̂j = xj

∣∣∣ = δ
(
Q̂j − xj

)
. (103)

Using the expression for the Heisenberg evolved operator Eq. (40) allows us to evaluate the PDF as

PDF(Q̂1 = x1)

=
∫

dz 〈0GKP| . . .
〈

0GKP

∣∣∣Q̂1 = x1
〉〈
Q̂1 = x1

∣∣∣ n∏
j=1

∣∣∣ẑθjj = zj
〉〈
ẑ
θj
j = zj

∣∣∣0GKP

〉
. . . |0GKP〉

=
∫

dz 〈0GKP| . . . 〈0GKP| δ(Q̂1 − x1)
n∏
j=1

∣∣∣ẑθjj = zj
〉〈
ẑ
θj
j = zj

∣∣∣0GKP

〉
. . . |0GKP〉

=
∫

dz 〈0GKP| . . . 〈0GKP| δ
(

n∑
i=1

siẑ
θi
i + c− x1

)
n∏
j=1

∣∣∣ẑθjj = zj
〉〈
ẑ
θj
j = zj

∣∣∣0GKP

〉
. . . |0GKP〉

=
∫

dz 〈0GKP| . . . 〈0GKP| δ
(

n∑
i=1

sizi + c− x1

)
n∏
j=1

∣∣∣ẑθjj = zj
〉〈
ẑ
θj
j = zj

∣∣∣0GKP

〉
. . . |0GKP〉

=
∫

dzδ
(

n∑
i=1

sizi + c− x1

)
n∏
j=1

∣∣∣〈0GKP

∣∣∣ẑθjj = zj
〉∣∣∣2. (104)

Then inserting the PDF of the single-mode rotated 0-logical GKP state given in Eq. (98), we can
express the PDF of the single-mode measurement on a multimode circuit as

PDF(Q̂1 = x1) =
∫

dzδ
(

n∑
i=1

sizi + c− x1

)
n∏
j=1

∑
mj∈Z

δ(zj −mj

√
π∆j)

=
∫

dzδ
(

n∑
i=1

sizi + c− x1

) ∑
m1∈Z

δ(z1 −m1
√
π∆1) · · ·

∑
mn∈Z

δ(zn −mn

√
π∆n)

=
∑

m1,...,mn∈Z
δ

(
n∑
i=1

simi

√
π∆i + c− x1

)
(105)

where we have the ∆j specified by Eq. (99) for each mode, i.e.

∆j =
{

sin(θj)/vj (case 1) if cot θj = uj/vj : u ∈ Z, vj ∈ Zodd and gcd(uj , vj) = 1,
2 (case 2) if θj = kπ for k ∈ Z.
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B.2 Simple Example
In this section, we provide a simple example to illustrate how our decomposition methods works. We
would like to simulate the following operations

Û = e−iq̂2p̂1F̂2 (106)

acting on GKP input states, i.e.

Û |0GKP〉 |0GKP〉 . (107)

For simplicity in this example case, these operations are chosen to be Clifford operations in terms of
the encoded qubit. By considering the logical operations only, we know that the result of this circuit
should be

e−iq̂2p̂1F̂2 |0GKP〉 |0GKP〉 = e−iq̂2p̂1 |0GKP〉 |+GKP〉 = 1√
2

(|0GKP〉 |0GKP〉+ |1GKP〉 |1GKP〉) , (108)

so that measurement of the quadrature q̂ on a single mode (e.g. the first mode) will give a PDF

PDF(x1) =
∑
m

δ(x1 −m
√
π). (109)

Using our technique we can track the operations on the quadrature

q̂1 → Q̂1 = Û †q̂1Û = q̂1 − p̂2. (110)

Next, analyzing each quadrature we see that

s1 cos θ1q̂1 − s1 sin θ1p̂1 = q̂1

s2 cos θ2q̂2 − s2 sin θ2p̂2 = −p̂2 (111)

for which we can identify

θ1 = 0 s1 = 1,
θ2 = π/2 s2 = 1. (112)

From these values, we can calculate the ∆j from Eq. (106) as

∆1 = 2 ∆2 = 1. (113)

This results in the following PDF:

PDF(Q̂1 = x1) =
n∏
j=1

∑
mj

δ

(
n∑
i=1

mi

√
π∆i + c− x1

)

=
∑
m1

∑
m2

δ
(
m1
√
π∆1 +m2

√
π∆2 − x1

)
=
∑
m1

∑
m2

δ
(
2m1
√
π +m2

√
π − x1

)
. (114)

In this example, a further simplification can be made by reparameterizing the variables
m2 → m2 − 2m1 such that

PDF(Q̂1 = x1) =
∑
m1

δ
(
m1
√
π − x1

)
, (115)

which informs us that the variable x1 will be measured as some randomly selected integer multiple of√
π. This agrees with the qubit-based simulation at the beginning of this subsection since we measure,

with equal probability, an outcome which would correspond to a |0GKP〉 or |1GKP〉 state.
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B.3 Simulatable operations in single-mode measurement circuits

The class A of operations, for which single-mode measurements are possible to simulate, can be in-
terpreted in two ways. In both of these interpretations we focus on the allowed symplectic matrices
because we can simulate all displacements in phase space and insert them freely without changing the
structure of the symplectic matrix [37], see Eq. (86).

The first interpretation can be seen directly from the calculation of the PDF in the Heisenberg
picture in Eq. (104). Namely, we can understand the measurement mode as undergoing entangling
SUM operations which transform it to q̂1 → q̂1 + · · · + q̂n. This Heisenberg-evolved measurement
operator is then evaluated on the rotated and squeezed GKP state. We can therefore picture the class
of simulatable circuits as those whereby the input GKP states undergo rotations by angles θj ∈ Θ
and squeezing operations followed by SUM gates from each mode onto the measured mode, and by an
arbitrary symplectic operation on the remaining n− 1 modes. This is depicted in Fig. 6.

|0GKP〉 R̂(θ1) Ŝ(s1) q̂1

|0GKP〉 R̂(θ2) Ŝ(s2) •

Sp(2n− 2,R)

...
...

... R̂(θj) Ŝ(sj) •
...

...

|0GKP〉 R̂(θn) Ŝ(sn) •

Figure 6: The class of simulatable operations A for single-mode measurement as understood from Eq. (104). These
are circuits initiated with 0-logical GKP states, acted upon by single-mode rotation operations with angles θj ∈
Θ followed by arbitrary single-mode squeezing operations and SUM operations. Following this, the first mode is
measured and any additional Gaussian operation may be applied to the remainder modes. Intermediate phase space
displacements may be included at any point in the circuit.

The second interpretation relies on the decomposition of the restricted set of allowed matrices given
in Eq. (37), and on the circuit interpretation of this class that will be provided in Appendix C.3. Indeed
a symplectic matrix in class A must have elements of A1,i = 0 or B1,i = 0 or A1,i/B1,i = ui/vi where
ui ∈ Z and vi ∈ Zodd. We can ensure that this is satisfied by using a symplectic matrix selected from
the class B of simulatable operations for multimode measurement, followed by an arbitrary symplectic
matrix applied to all but the measured mode. This can be seen by analyzing the symplectic matrix
given in Eq. (48), i.e.,(

1 0
C̃Ã−T 1

)(
Ã 0
0 Ã−T

)(
diag(cos ~θ) diag(sin ~θ)
−diag(sin ~θ) diag(cos ~θ)

)
=
(
Ã 0
C̃ (Ã−T )

)(
diag(cos ~θ) diag(sin ~θ)
−diag(sin ~θ) diag(cos ~θ)

)
(116)

which gives the block matrices A = Ãdiag(cos ~θ) and B = Ãdiag(sin ~θ). Inspecting the elements of the
first row, we have

A1,i = Ã1,i cos θi and B1,i = Ã1,i sin θi. (117)

For a given column i of the block matrices, if any of Ã1,i or cos θi or sin θi is zero then the i-th condition
on the elements of the first row of the symplectic matrix is satisfied trivially because it ensures that
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A1,i = 0 or B1,i = 0. Otherwise, we have

A1,i/B1,i = cos θi/ sin θi = cot θi, (118)

which will trivially satisfy the constraint if θi is selected from Θ in Eq. (26). A further arbitrary
symplectic matrix Sp(2(n− 1),R) can be applied to all but the measured mode. When applied to the
symplectic matrix given in Eq. (116), it will have the effect of the identity on the measurement mode,
while transforming the coefficients of the remaining modes.

The first matrix on the left hand side of Eq. (116) corresponds to the lens subgroup [38] of symplectic
matrices, T . The second matrix on the left-hand side of Eq. (116) corresponds to the intersection of
the general linear group GL(n,R) and the subset of Hermitian positive definite symplectic matrices
Π(n) in Sp(2n,R), yielding GL(n,R) ∩ Π(n) [38]. As we show in Appendix C.3, additional squeezing
operations can be added, preserving the structure of the group GL(n,R) ∩ Π(n). We also provide a
more detailed analysis of these sets of operations in Appendix C.3. We can therefore represent the set
of allowed circuits as those depicted in Fig. 7.

|0GKP〉 R̂(θ1) Ŝ(s1)

GL(n,R) ∩Π(n) T

q̂1

|0GKP〉 R̂(θ2) Ŝ(s2)

Sp(2n− 2,R)

...
...

... R̂(θj) Ŝ(sj)
...

...

|0GKP〉 R̂(θn) Ŝ(sn)

Figure 7: The class of simulatable operations A for single-mode measurement as understood from Eq. (116). The
circuit has 0-logical GKP states as input followed by single-mode rotations with rotation angles θj ∈ Θ. This is
followed by arbitrary single-mode squeezing and then operations selected from GL(n,R) ∩ Π(n) and T respectively.
The single mode is measured and arbitrary symplectic operations may be performed on the remaining modes. Arbitrary
displacements may be inserted at any intermediate step of the circuit.

C Simulation of multimode measurements for Gaussian operations in B

C.1 Calculating the PDF

To calculate the PDF of measuring quadratures q̂1, . . . , q̂n for the class of operations B considered in
Section 4, we will again utilize the Heisenberg picture formalism to track the measurement operators
and then find an expression for the PDF in terms of rotated single-mode GKP states.

The PDF of the measurement in the multimode case can be evaluated analogously to in the single-
mode case by inserting the identity over all rotated quadratures ẑθii ,

1 =
n∏
j=1

∫
dzj

∣∣∣ẑθjj = zj
〉〈
ẑ
θj
j = zj

∣∣∣ =
∫

dz
n∏
j=1

∣∣∣ẑθjj = zj
〉〈
ẑ
θj
j = zj

∣∣∣ . (119)

The PDF can then be evaluated in terms of the Heisenberg evolved measurement operators Eq. (57)
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as

PDF(x)

= 〈0GKP| . . . 〈0GKP|
∏
j=1

∣∣∣Q̂j = xj
〉〈
Q̂j = xj

∣∣∣0GKP

〉
. . . |0GKP〉

= 〈0GKP| . . . 〈0GKP|
∏
j=1

δ(Q̂j − xj) |0GKP〉 . . . |0GKP〉

=
∫

dz 〈0GKP| . . . 〈0GKP|
∏
j=1

δ(Q̂j − xj)
∏
i

(∣∣∣ẑθjj = zj
〉〈
ẑ
θj
j = zj

∣∣∣) |0GKP〉 . . . |0GKP〉

=
∫

dz 〈0GKP| . . . 〈0GKP|
∏
j=1

δ

(∑
i

a
(j)
i r̂θii + cj − xj

)∏
i

(∣∣∣ẑθjj = zj
〉〈
ẑ
θj
j = zj

∣∣∣) |0GKP〉 . . . |0GKP〉

=
∫

dz 〈0GKP| . . . 〈0GKP|
∏
j=1

δ

(∑
i

a
(j)
i zi + cj − xj

)∏
i

(∣∣∣ẑθjj = zj
〉〈
ẑ
θj
j = zj

∣∣∣) |0GKP〉 . . . |0GKP〉

=
∫

dz
∏
j=1

(
δ

(∑
i

a
(j)
i zi + cj − xj

))∏
i

∣∣∣〈0GKP

∣∣∣ẑθii = zi
〉∣∣∣2. (120)

We can then use ∣∣∣〈0GKP

∣∣∣ẑθii = zi
〉∣∣∣2 = |ψθ(zi)|2 ∝

∑
m∈Z

δ(zi −m
√
π∆i) (121)

to get

PDF(x) =
∫

dz
n∏
j=1

(
δ

(
n∑
i=1

a
(j)
i zi + cj − xj

))
n∏
k=1

∑
mk∈Z

δ(zk −mk

√
π∆k)

=
∫

dz
(
δ

(
n∑
i=1

a
(1)
i zi + c1 − x1

)
. . . δ

(
n∑
i=1

a
(n)
i zi + cn − xn

))
n∏
k=1

∑
mk∈Z

δ(zk −mk

√
π∆k)

=
∑

m1,...,mn∈Z

(
δ(

n∑
i=1

a
(1)
i mi

√
π∆i + c1 − x1)

)
. . .

(
δ(

n∑
i=1

a
(n)
i mi

√
π∆i + cn − xn)

)

=
∑

m1,...,mn∈Z

n∏
j=1

δ(
n∑
i=1

a
(j)
i mi

√
π∆i + cj − xj). (122)

We again have the ∆j specified by Eq. (99) for each mode, i.e.

∆j =
{

sin(θj)/vj (case 1) if cot θj = uj/vj : u ∈ Z, vj ∈ Zodd and gcd(uj , vj) = 1,
2 (case 2) if θj = kπ for k ∈ Z.

(123)

C.2 Simple Example
In this section, we expand the simple example of the previous appendix to illustrate how our simulation
technique works for multimode measurement. We would again like to simulate the following operations

Û = e−iq̂1p̂2F̂1 (124)

acting on GKP input states. Note that the operation in Eq. (124) belongs to classes A and B simul-
taneously.

Using our technique we can again track the Heisenberg evolution of the measurement operators,
however, this time we will track both quadratures:

q̂1 →Q̂1 = Û †q̂1Û = −p̂1 (125)
q̂2 →Q̂2 = Û †q̂2Û = −p̂1 + q̂2. (126)
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The symplectic matrix of this operation can be represented as a rotation of the first quadrature,
followed by a mode mixing operation. The rotation is parametarized by ~θ = (π/2, 0) for which we can
build the matrix (

diag(cos ~θ) diag(sin ~θ)
−diag(sin ~θ) diag(cos ~θ)

)
(127)

with diag(cos ~θ) = diag(0, 1) and diag(sin ~θ) = diag(1, 0). The mode mixing operation is the CX
operation which is in the block diagonal form(

A 0
0 (AT )−1

)
(128)

with

A =
(

1 0
1 1

)
. (129)

Therefore, we can evaluate the PDF, which is given by Eq. (122) as

PDF(x) =
∑

m1,...,mn∈Z

n∏
j=1

δ(
n∑
i=1

a
(j)
i mi

√
π∆i + cj − xj) (130)

where we evaluate the parameters ∆i according to Eq. (123) as

∆1 = sin(π/2)/1 = 1
∆2 =2. (131)

Therefore, the PDF can be written explicitly as

PDF(x) =
∑

m1,...,mn∈Z

n∏
j=1

δ(
n∑
i=1

a
(j)
i mi

√
π∆i + cj − xj)

=
∑

m1,m2∈Z
δ(

n∑
i=1

a
(1)
i mi

√
π∆i + c1 − x1)δ(

n∑
i=1

a
(2)
i mi

√
π∆i + c2 − x2)

=
∑

m1,m2∈Z
δ(a(1)

1 m1
√
π∆1 + a

(1)
2 m2

√
π∆2 + c1 − x1)δ(a(2)

1 m1
√
π∆1 + a

(2)
2 m2

√
π∆2 + c2 − x2)

=
∑

m1,m2∈Z
δ(m1

√
π − x1)δ(m1

√
π + 2m2

√
π − x2). (132)

C.3 Simulatable operations in multimode measurement circuits
In this subsection, we express the allowed operations in circuit class B in terms of circuit diagrams.
Similarly to Appendix B.3 we can analyze the decomposition of the allowed symplectic matrix. Note
that we can freely insert displacements in phase space anywhere in the circuit, as these preserve the
structure of the symplectic matrix, as in Eq. (86) [37].

The class B is composed of symplectic operations which can be decomposed as(
1 0

C̃Ã−T 1

)(
Ã 0
0 Ã−T

)(
diag(cos ~θ) diag(sin ~θ)
−diag(sin ~θ) diag(cos ~θ)

)
. (133)

where the angles θi ∈ Θ, as defined in Eq. (26).
The first matrix (

1 0
C̃Ã−T 1

)
(134)
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corresponds to the lens subgroup [38] of symplectic matrices, T . These are transformations which take

q̂→ q̂ (135)
p̂→ p̂ + C̃(ÃT )−1q̂. (136)

The matrices of the form (
Ã 0
0 (ÃT )−1

)
(137)

correspond to the intersection of the general linear group GL(n,R) and the subset of Hermitian pos-
itive definite symplectic matrices Π(n) in Sp(2n,R), yielding GL(n,R) ∩ Π(n) [38]. This describes
transformations of the form

q̂→ Ãq̂ (138)
p̂→ Ã−1p̂ (139)

where Ã is symmetric. We are unaware of a method to decompose this set of operations into single
and two-mode operations. However, we can immediately notice that combining two operations of this
form in sequence will result in a new matrix which also conforms to this structure. Formally this can
be expressed as (

Ã 0
0 (ÃT )−1

)(
Ã′ 0
0 (Ã′T )−1

)
∈ GL(n,R) ∩Π(n)

∀
(
Ã 0
0 (ÃT )−1

)
and

(
Ã′ 0
0 (Ã′T )−1

)
∈ GL(n,R) ∩Π(n) (140)

which can be confirmed by analyzing the product of two arbitrary matrices where Ã, Ã′ are non-singular
n× n matrices:(

Ã 0
0 (ÃT )−1

)(
Ã′ 0
0 (Ã′T )−1

)
=
(
ÃÃ′ 0

0 (ÃT )−1(Ã′T )−1

)
=
(
ÃÃ′ 0

0 (ÃÃ′)−T

)
. (141)

The set of single-mode squeezing operations can be expressed as(
diag(~s) 0

0 diag(~s+)

)
=
(
diag(~s) 0

0 diag(~s)−1

)
(142)

where ~s is a vector of non-zero values of squeezing and ~s+ is the element-wise inverse of ~s. We can
therefore combine single-mode squeezing operations with any operation selected from GL(n,R)∩Π(n)
while maintaining that the corresponding symplectic matrix belongs to the same set.

We can therefore consider that the simulatable circuits in class B are those for which there exists a
circuit of the form shown in Fig. 8. Comparing this figure with Fig. 7 makes clear the interpretation of
the class of circuits corresponding to the larger set A as the same operations in B, followed by arbitrary
symplectic operations on the last n− 1 modes.

D Density of the set of simulatable operations in class A
In this Appendix, we will demonstrate that the circuit class A contains symplectic matrices which have
parameters which are dense in the reals. Using the decomposition in Section 2 we have shown that we
can construct a symplectic matrix M with a free choice parameters A1,i = ai ∈ R and B1,i = bi ∈ R,
for i ∈ {1, . . . , n}. However, in order to simulate the measurement of the output mode we must make
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|0GKP〉 R̂(θ1) Ŝ(s1)

GL(n,R) ∩Π(n) T

q̂1

...
...

...

... R̂(θj) Ŝ(sj) q̂j

...
...

...

|0GKP〉 R̂(θn) Ŝ(sn) q̂n

Figure 8: The circuit diagram of arbitrary circuits selected from the simulatable class B. The first action of the
circuit on the modes is a rotation of each mode with angles θi ∈ Θ as defined in Eq. (26), which corresponds to the
third matrix in Eq. (133). This is followed by arbitrary squeezing of each mode, and can be trivially included as a
result of Eq. (140). The next operation is selected from GL(n,R)∩Π(n) which corresponds to the second matrix in
Eq. (133). The final operation is selected from T and corresponds to the third matrix in Eq. (133). Finally, the modes
are measured in the position basis with homodyne detection. We note that arbitrary phase space displacements can
be inserted into the circuit due to the fact that they preserve the structure of the symplectic matrix, in accordance
with Eq. (86).

a further restriction on these variables. We know that for a symplectic matrix to exist in RSp(2n,R)
it must have either one of A1,i = 0 or B1,i = 0 or A1,i/B1,i ∈ Q(2).

By introducing a new set

Qodd = {u/v : u ∈ Zodd, v ∈ Zodd} (143)

which is contained byQ(2) but also contains fewer elements thatQ(2), we can create arbitrary symplectic
matrices which will always be contained within RSp(2n,R). If we select the matrix elements ai, bi ∈
Qodd we can guarantee that the matrix will be contained in RSp(2n,R), since the division of one
element in Qodd by another element in Qodd, will always give an element in Q(2). Next, we can show
that the set from which we choose the matrix elements Qodd is dense on the reals.

Formally we can prove this following the technique of Ref. [55] to prove the density of the rational
numbers on the reals. The density of a set χ on the reals formally means that for any x, y ∈ R where
x < y then there exists α ∈ χ such that x < α < y.

First we recall the demonstration that the rationals are dense on the reals, following the proof given
by Ref. [55]. This means that for any x < y with x, y ∈ R we must have some q ∈ Q such that
x < q < y.

By the Archimedian property [55], for any x, y with x < y there exists some integer β ∈ N such that
0 < 1/β < (y − x). There must also exist some integer α such that α > βx. Let α be the smallest
integer such that α > βx, which implies α− 1 ≤ βx. This leads us to the relation

βx < α < β + 1. (144)

We know that 1 < β(y − x) and therefore

βx < α < βx+ β(y − x) = βy =⇒ x < α/β < y. (145)

This means that for any x < y such that x, y ∈ R we can define α ∈ Z and β ∈ N, where N =
{1, 2, 3, . . . } are the natural numbers, not including 0.

Now we will follow the same proof technique to show that the set Qodd is dense
on the reals. Again, by the Archimedian property, there exists some β ∈ N s.t.
0 < 3/(2β + 1) < (y − x). There must also exist some integer α such that
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(2α+ 1) > (2β + 1)x. Let α be the smallest integer such that (2α+ 1) > (2β + 1)x, which implies
2α− 1 ≤ (2β + 1)x =⇒ 2α ≤ (2β + 1)x+ 1 =⇒ 2α < (2β + 1)x+ 2. This leads us to the relation

(2β + 1)x < 2α+ 1 < (2β + 1)x+ 3. (146)

We know that 3 < (2β + 1)(y − x) and therefore

(2β + 1)x < 2α+ 1 < (2β + 1)x+ (2β + 1)(y − x) = (2β + 1)y. (147)

This means that for any x < y such that x, y ∈ R we can define α ∈ Z and β ∈ N such that

x <
2α+ 1
2β + 1 < y (148)

i.e. there exists a number r ∈ Qodd such that x < r < y.
Therefore, for any two symplectic matrices which have the effect on the output mode as

M : q̂1 → a1q̂1 + b1p̂1 + · · ·+ anq̂n + bnp̂n (149)

and

M ′ : q̂1 → a′1q̂1 + b′1p̂1 + · · ·+ a′nq̂n + b′np̂n (150)

where ai, bi, a′i, b′i ∈ R, it is always possible to select parameters āi, b̄i ∈ Qodd such that

ai < āi < a′i or a′i < āi < ai, and bi < b̄i < b′i or b′i < b̄i < bi ∀i ∈ Zn, (151)

whereby

M̄ : q̂1 → ā1q̂1 + b̄1p̂1 + · · ·+ ānq̂n + b̄np̂n (152)

is simulatable by our technique.

E The Clifford group is not contained in the set of simulatable operations
We show using a simple example that the Clifford group is not contained within RSp(2n,R). We will
use the Fourier transform F̂ which transforms the quadratures according to Eq. (6). We will also use
the phase gate P̂1 = eiq̂

2
1/2 [2] which transforms the quadratures as

q̂1 → q̂1

p̂1 → q̂1 + p̂1. (153)

We can define a single qubit Clifford operation in the GKP encoding as Û = F̂1P̂
2
1 F̂1 and consider its

effect on the Heisenberg measurement operators as

Q̂1 = Û q̂1Û
† =F̂1P̂1P̂1F̂1q̂1F̂

†
1 P̂
†
1 P̂
†
1 F̂
†
1 (154)

=F̂1P̂1P̂1(−p̂1)P̂ †1 P̂
†
1 F̂
†
1 (155)

=F̂1(−(2q̂1 + p̂1))F̂ †1 (156)
=− (−2p̂1 + q̂1) (157)
=2p̂1 − q̂1. (158)

The top blocks of the 2× 2 symplectic matrix M corresponding to the operation Û can be written
as (

−1 2
)
. (159)
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We know that a symplectic matrix M exists in RSp(2n,R) if and only if

M1,i = 0 or M1,n+i = 0 or M1,i/M1,n+i ∈ Q(2)∀i ∈ {1, . . . , n} (160)

which we can check for the symplectic matrix M . For a 2 × 2 symplectic matrix, this amounts to a
single condition, i.e. that

M1,1 = 0 or M1,2 = 0 or M1,1/M1,2 ∈ Q(2). (161)

However, we know that Q(2) is defined as the rationals such that the denominator is odd in its
simplest form. The fraction −1/2 is already in its simplest form and has even denominator. Therefore
−1/2 /∈ Q(2), which means it is not possible to simulate the circuit using our method. We have provided
an example of a Clifford circuit which does not exist within the set RSp(2n,R) and hence it also cannot
be contained within DSp(2n,R).

Note, however, that the simulatability of Clifford operations was proven in Ref. [22].

F Route to extending simulatability to realistic GKP states

The circuit classes we have shown to be simulatable use ideal GKP states. Formally, these are not
normalizable and therefore are also not physical states. Tackling the extension of our results on the
simulatability of Gaussian circuits to the case of realistic GKP states is challenging. In this Appendix,
we will sketch the calculations required to extend our result to include realistic GKP states. We first
demonstrate that it is possible to express a rotated and squeezed GKP state in an analytic form using
the Jacobi theta function, given in Eq. (25). We then point to the difficulty of extending our results to
the case of realistic GKP states, by providing the unsolved equation of the PDF of a circuit involving
multiple realistic GKP states, and showing that it cannot be easily solved in a closed form.

F.1 PDF of a rotated and squeezed realistic GKP state

We can evaluate the PDF of a rotated and squeezed realistic GKP state using similar techniques to
the case of the ideal GKP states. We know that it is possible to write the wave function of the realistic
GKP states in the form [56, 57]

ψ∆
GKP(x) = e−x

2∆2/2ϑ(ζ = x/2
√
π, τ = i∆2/2) (162)

where ϑ is the Jacobi theta function given in Eq. (25) and ∆ is the squeezing parameter of the peaks
and envelope of the GKP state.

Applying rotation and squeezing to this wave function gives

ψ∆
θ,s(x) = 〈q = x| Ŝ(s)R̂(θ)

∣∣∣0∆
GKP

〉
=
∫

dx′ 〈q = x| Ŝ(s)R̂(θ)
∣∣q = x′

〉 〈
q = x′

∣∣∣0∆
GKP

〉
=
∫

dx′ 〈q = x/s| R̂(θ)
∣∣q = x′

〉 〈
q = x′

∣∣∣0∆
GKP

〉
. (163)

We can use the propagator, which is also used in the case of infinite squeezing, Eq. (80),

K(x, x′; θ) = 〈q = x| R̂(θ)
∣∣q = x′

〉
= 1√

2πi sin θ
exp

(
i

2
(
(x− x′ sec θ)2 cot θ − tan θx′2

))
(164)
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to write

ψ∆
θ,s(x) =

∫
dx′ 〈q = x| Ŝ(s)R̂(θ)

∣∣q = x′
〉 〈
q = x′

∣∣∣0∆
GKP

〉
=
∫

dx′ 1√
2πi sin θ

e
i
2((x/s−x′ sec θ)2 cot θ−tan θx′2) 〈q = x′

∣∣∣0∆
GKP

〉
=
∫

dx′ 1√
2πi sin θ

e
i
2((x/s−x′ sec θ)2 cot θ−tan θx′2)e−x′2∆2/2ϑ(ζ = x′

2
√
π
, τ = i∆2

2 )

=
∫

dx′ 1√
2πi sin θ

e
i
2((x/s−x′ sec θ)2 cot θ−tan θx′2)e−x′2∆2/2∑

n

e−πn
2∆2/2e2πinx′/2

√
π

∝ e
ix2(i∆2+(1+∆4) cot θ)
2s2(1+∆4−i∆2 cot θ) ϑ(ζ = − x csc θ√

πs(1 + ∆4 − i∆2 cot θ) , τ = 2i(∆2 − i cot θ)
1 + ∆4 − i∆2 cot θ )

= ex
2γ∆,s,θϑ(ζ = xη∆,s,θ, τ = τ∆,θ) (165)

which is defined in terms of the constants

η∆,s,θ =− csc θ/
(√

π(s+ ∆4s− i∆2s cot θ)
)
, (166)

τ∆,θ =2i(∆2 − i cot θ)/(1 + ∆4 − i∆2 cot θ), (167)

γ∆,s,θ = i(i∆2 + (1 + ∆4) cot θ)
2s2(1 + ∆4 − i∆2 cot θ) . (168)

For convenience, we drop the indices in the notation of these constants. From the wave function, we
can determine that the PDF is

|ψ∆
θ,s(x)|2 ∝ ex2(γ+γ∗)|ϑ(ζ = xη, τ)|2, (169)

where we have left out the normalization constant for brevity. Expanding these variables in series and
assuming ∆4 → 0, we have

η(3) =− csc θ√
πs

(1 + i cot θ∆2), (170)

τ (3) =2 cot θ + 2i csc2 θ∆2, (171)

γ(3) = i cot θ
2s2 − csc2 θ∆2

2s2 , (172)

which somewhat simplifies the PDF to

|ψ∆
θ,s(x)|2 ≈ e−x2 csc2 θ∆2/s2 |ϑ(ζ = −xcsc θ√

πs
(1 + i cot θ∆2), τ = 2 cot θ + 2i csc2 θ∆2)|2. (173)

However, even with this approximation, it remains challenging to evaluate the PDF of the circuit even
in the case of single-mode measurement.

Note that in the limit ∆ = 0 we can identify that these parameters will reach

η
(3)
∆→0 =− csc θ√

πs
, (174)

τ
(3)
∆→0 =2 cot θ, (175)

γ
(3)
∆→0 = i cot θ

2s2 , (176)

which returns the infinite-squeezing GKP state PDF given in Eq. (84),

|ψ∆→0
θ,s (x)|2 ∝ |ϑ(ζ = −xcsc θ√

πs
, τ = 2 cot θ)|2. (177)

Accepted in Quantum 2022-11-03, click title to verify. Published under CC-BY 4.0. 30



F.2 Single-mode measurement
We showcase the complexity of evaluating the PDF of a single-mode measurement result by providing
an example of a calculation involving two modes. The PDF is given by

PDF(Q̂1 = x1) =
∫

dz1dz2δ (s1z1 + s2z2 + c− x1)
∣∣∣〈0GKP

∣∣∣ẑθ11 = z1
〉∣∣∣2∣∣∣〈0GKP

∣∣∣ẑθ22 = z2
〉∣∣∣2

=
∫

dz1dz2δ ((s1z1 + c− x1)/s2 + z2)
∣∣∣〈0GKP

∣∣∣ẑθ11 = z1
〉∣∣∣2∣∣∣〈0GKP

∣∣∣ẑθ22 = z2
〉∣∣∣2

=
∫

dz1
∣∣∣〈0GKP

∣∣∣ẑθ11 = z1
〉∣∣∣2∣∣∣〈0GKP

∣∣∣ẑθ22 = (x1 − s1z1 − c)/s2
〉∣∣∣2. (178)

Note that in the case of infinite squeezing, the PDF of the rotated and squeezed GKP state is a Dirac
comb, i.e. Eq. (34), which is a summation over delta functions. When inserted into the multimode
PDF, the latter yields a product of summations of delta functions in terms of z1, . . . , zn, which results
in a function that can be integrated over these variables, leading to Eq. (45). However, in the case
of finite-squeezing, the rotated and squeezed single-mode PDF cannot be expressed in terms of delta
functions, which limits the possibility of analytically solving this expression. Using the fact that the
PDF of the rotated and squeezed GKP state is given by Eq. (169), we have

PDF(Q̂1 = x1) =
∫

dz1e
z2
1(γ+γ∗)|ϑ(ζ = z1η, τ)|2e((x1−s1z1−c)/s2)2(γ+γ∗)|ϑ(ζ = (x1 − s1z1 − c)/s2η, τ)|2.

(179)

We are not aware of any theorem which rules out the possibility to evaluate such a function in general.
However, we are also unable to provide a general analytic solution of this integral.
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