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We quantify the posterior predictive distributions (PPDs) of elastic neutron-deuteron (nd) scatter-
ing cross sections using nucleon-nucleon (NN) interactions from chiral effective field theory (χEFT)
up to and including next-to-next-to-next-to-leading order (N3LO). These PPDs quantify the spread
in nd predictions due to the variability of the low-energy constants (LECs) inferred from NN scat-
tering data. We use the wave-packet continuum discretization method to solve the Alt-Grassberger-
Sandhas form of the Faddeev equations for elastic scattering. We draw 100 samples from the PPDs
of nd cross sections up to 67 MeV in scattering energy, i.e., in the energy region where the effects
of three-nucleon forces are expected to be small. We find that the uncertainty about NN LECs
inferred from NN scattering data, when assuming uncorrelated errors, does not translate to signif-
icant uncertainty in the low-energy nd continuum. Based on our estimates, the uncertainty of nd
predictions are dominated by the χEFT truncation error, at least below N3LO. At this order, the
90% credible interval of the PPD and the truncation error are comparable, although both are very
small on an absolute scale.

I. INTRODUCTION

Chiral effective field theory (χEFT) [1–3] promises
a systematically improvable description of the nuclear
interaction grounded in the symmetries of low-energy
quantum chromodynamics. Two-nucleon (NN) and
three-nucleon (NNN) interactions from χEFT are used
extensively in modern ab initio predictions of atomic nu-
clei and nuclear matter, see, e.g., Refs. [4–6] for recent
overviews. To make quantitative predictions of the prop-
erties of nuclear systems, the numerical values of the
low-energy constants (LECs) that govern the strengths
of the pion-nucleon (πN) and nucleon-contact couplings
must first be inferred from low-energy data. For this,
the Bayesian approach to statistics [7] provides a natural
framework since it yields a (posterior) probability density
function (PDF) that quantifies our uncertainty about the
values of the LECs. Propagating this uncertainty when
making theoretical predictions amounts to averaging the
distribution of predictive samples over the LEC posterior
PDF. The result of this is called a posterior predictive
distribution (PPD). This type of distribution sits at the
center of the scientific process whereby we try to predict
future data based on previous data and theory.

There are existing efforts to quantify Bayesian PPDs
for various nuclear observables, e.g., NN scattering cross
sections [8] and scattering lengths [9], few-nucleon [10]
and many-nucleon [11–13] energies, radii, and decays, as
well as nuclear mass models [14, 15]. These probability
distributions quantify our degree-of-belief, and facilitate
a meaningful comparison with experimental data. For
example, the PPD finds use in model checking [7], such
as posterior predictive checks. There one simulates data,
using a fitted model, and compares to observed data.
The simulated data corresponds to draws from the PPD
and it should look roughly like the observed data if the
model did indeed contain all relevant physics and there
has been a sufficient amount of calibration data.

In this work, we sample the PPDs of selected neutron-

deuteron (nd) scattering cross sections arising from the
variability of the LEC posterior when conditioned on NN
scattering data. We use χEFT descriptions of the NN
interaction at all orders up to next-to-next-to-next-to-
leading order (N3LO) in Weinberg power counting. To
the best of our knowledge there exists only frequentist
statistical analyses encompassing a subset of nucleon-
deuteron (Nd) scattering cross sections and scattering
lengths [16–18], for which various estimates for dispersion
have been quantified. Our analysis is rooted in Bayesian
methodology and therefore provides probability densities
for the predicted observables of interest. As such, the re-
sults of this work facilitates a quantitative measure of
the predictive power in the low-energy NNN continuum
using χEFT interactions carefully calibrated using NN
scattering data. This work is part of an ongoing effort to-
wards a full Bayesian analysis of χEFT conditioned also
on experimental data in the Nd continuum [19].

To sample the PPDs of elastic nd-scattering cross
sections, we repeatedly solve the Alt-Grassberger-
Sandhas [20] (AGS) form of the Faddeev equations us-
ing the wave-packet continuum discretization (WPCD)
method [19, 21]. This method is parallelizable with re-
spect to the scattering energy, denoted with ELab, in the
laboratory frame of reference. Therefore, it is particu-
larly suitable for sampling PPDs across a range of ELab

values. Still, the collection of samples from the PPDs is
limited by the number of times we can solve the AGS
equation. For this reason, we currently neglect NNN
forces (3NFs) and focus our analysis on cross sections and
polarization observables with ELab ≤ 67 MeV, for which
NN -only models typically perform well [16, 22–24]. The
low-energy vector analyzing power, Ay, is a possible ex-
ception to this statement and we therefore place a special
focus on the analysis of this polarization observable.

In addition to the inherent uncertainty of inferred LEC
values, there are also other sources of theoretical uncer-
tainty. The model discrepancy due to the omission of
higher chiral orders is an obvious one. Neglecting this un-
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certainty can lead to biased and over-confident inferences
and predictions [25]. Fortunately, χEFT is designed to
be an order-by-order improvable description of the nu-
clear interaction, and as such the theory itself provides
valuable information about the magnitude of the trun-
cation error [26]. Indeed, there exists several efforts to
quantify the truncation error in effective field theory pre-
dictions of nuclear systems, see, e.g., Refs. [8, 10, 27–31].
Although our focus is to quantify the PPDs of nd scat-
tering observables due to variability in the NN LECs,
we will also contrast our findings with estimates of the
truncation error.

In Sec. II we define the general structure of the PPDs
we sample in this work. In Sec. III we present the es-
sential elements of the WPCD method we use to pro-
duce elastic nd cross sections. In Sec. IV we present the
strategy for sampling the PPDs, with particular focus on
achieving computational speedup, and the results of the
sampling. We also compare the degree-of-belief intervals
of the PPDs with some of the other components of the
total error budget; the χEFT truncation error in partic-
ular. We end with a summary and outlook in Sec. V.

II. SETTING UP THE POSTERIOR
PREDICTIVE DISTRIBUTION

The PPD is a PDF pr(y|D,M, I) for a quantity y as
predicted by a model M . This distribution quantifies the
uncertainty about y given previous data D and any other
assumptions or information I. Here, we focus on the
uncertainty of the numerical values of the LECs, denoted
~α, present in the underlying χEFT NN interaction. As
such, we must marginalize over the LECs by evaluating
the following integral

pr(y|D,M, I) =

∫
Ω

pr(y|~α,D,M, I)pr(~α|D,M, I) d~α

∝
∫

Ω

y(~α)pr(~α|D,M, I) d~α.

(1)

In the second line we introduced a short-hand y(~α) for
a deterministic model prediction given numerical values
for ~α from some parameter domain Ω. We also used that
y is conditionally independent of D. The proportion-
ality indicates that we are only interested in the width
and shape of the PPD, and not the overall normalization
constant.

We will refer to the χEFT description of the NN inter-
action at a chiral order ν as a “model”, and denote this as
Mν . The chiral orders are defined according to Weinberg
power counting with ν = 0, 2, 3, 4, and as is common, we
refer to them to as leading order (LO), next-to-leading
order (NLO), next-to-next-to-leading order (N2LO), and
N3LO, respectively. The values of ~α depend on the chiral
order ν, but to simplify notation we do not index ~α by
ν.

The PPD is a probabilistic generalization of the famil-
iar point-estimate value y? = y(~α?), obtained by evalu-
ating the model Mν at some preferred parameter value
~α?, such as a local parameter-optimum. We will in some
cases resort to evaluating the PPD at the maximum a
posteriori (MAP) value of the LEC posterior

~α? ≡ argmax
~α

pr(~α|D,Mν , I). (2)

Note that the PPD does not necessarily attain its maxi-
mum for ~α?. Indeed, the evaluation of y(~α), through the
AGS equation, is neither linear nor monotonic.

Evaluating the integral in Eq. (1) requires knowledge
about the PDF, pr(~α|D,Mν , I). We utilize the available
LEC posteriors up to and including N3LO published in
Ref. [9]. These posteriors were sampled using Hamilto-
nian Monte Carlo (HMC) while accounting for uncorre-
lated χEFT truncation errors, and were conditioned on
the Granada database [32, 33] of NN scattering cross
sections for scattering energies ELab ≤ 290 MeV. The
leading neutron-neutron (nn) isospin-breaking LEC was
inferred using an empirical value for the nn scattering
length in the 1S0 partial-wave channel. We note that
other methods accounting for correlated χEFT trunca-
tion errors exist, see, e.g., Ref. [34], which may change
the inferred, and rather narrow, distributions of LEC val-
ues we use here.

The HMC algorithm is particularly well-suited for sam-
pling high-dimensional PDFs and yields virtually uncor-
related draws from pr(~α|D,Mν). A detailed analysis [8]
suggests that the HMC chains we employ in this work to
represent the LEC posteriors are sufficiently converged at
all orders, unimodal, and rather concentrated in param-
eter space. As such, we have in-depth knowledge of the
location of the posterior mass, which helps tremendously
when evaluating the integral in Eq. (1).

III. WAVE-PACKET CONTINUUM
DISCRETIZATION

In this section we summarize the WPCD method [21]
for solving the AGS equation in momentum space. Our
results are based on the implementation presented in
Ref. [19]1. The AGS equation for nd scattering, with-
out 3NFs, can be written as

Û = P̂ Ĝ−1
0 + P̂ t̂1Ĝ0Û , (3)

where Û is the transition matrix between asymptotic
scattering states, Ĝ0 ≡ 1

E−ĥ0±iε
is the resolvent of

the free NNN Hamiltonian ĥ0, E is the total energy,

1 The implementation, named “Tic-tac”, is avail-
able under a GNU open-source license (GPLv3) on
https://github.com/seanbsm/Tic-tac

https://github.com/seanbsm/Tic-tac
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t̂1 denotes the scattering T -matrix for the pair-system
(23) as written in standard odd-man-out notation, and

P̂ ≡ 2P̂123 where P̂123 is the permutation matrix act-
ing on partially-antisymmetric NNN states2. The large
dimensionality of the NNN Hilbert space makes it chal-
lenging to apply matrix-inversion type methods to solve
Eq. (3). Instead, one usually resorts to expanding the
AGS equation in a Neumann series that is subsequently
re-summed using a Padé approximant [35] to handle the

divergence originating from the integral-kernel Ĝ0v̂1 with
Weinberg eigenvalues [36] outside the unit circle.

It is well understood how to obtain converged solutions
for U in a standard plane-wave basis, see, e.g., Ref. [37].

In this basis, Û is obtained for a specific value of the on-
shell energy E, and the resolvent Ĝ0 and NN T -matrix
t̂1 depend explicitly on E. This dependency inflicts sev-
eral complications such as moving singularities in the re-
solvent operator, and a requirement for antisymmetriz-
ing NN T -matrices at many energies when evaluating
the AGS integral kernel, which is typically handled using
splines [38].

In this work, we use the WPCD method [21] for solv-
ing the AGS equation. This is one of many bound-
state approaches [39] for describing scattering processes.
In WPCD, we discretize the continuum using a wave-
packet basis. Doing so simplifies the numerical analysis of
the AGS equation. First, one can derive a closed-form ex-
pression of the channel-resolvent, treating the associated
singularities analytically. Second, the P -matrix has no
need for splining. Third, it factorizes the on-shell energy
dependence out of the matrix multiplications associated
with the terms of the Neumann series expansion, provid-
ing significant speedup of the most time-consuming parts
of the numerical solution.

As a downside, the WPCD method entails large matrix
dimensionalities compared with the plane-wave represen-
tation. However, scattering amplitudes can be calculated
at multiple scattering energies with minor extra compu-
tational cost per energy. This makes WPCD particu-
larly suitable for sampling Bayesian PPDs across ranges
of energies. In fact, we find that calculating scattering
amplitudes at multiple scattering energies only doubles
the computational cost compared to computing the am-
plitude at a single energy [19]

We define a wave packet |x〉 as a finite integral of con-
tinuum states |p〉, e.g., plane-wave states, within a mo-
mentum “bin” D ≡ [p, p+ ∆p],

|x〉 ≡ 1√
N

∫
D
f(p′)|p′〉 p′ dp′ , (4)

where f(p) is a weighting function and N is the nor-
malization constant. An A-body wave packet can be

2 There is an erroneous extra term +1 in the definition of P̂ in
Ref. [19].

straightforwardly defined using wave-packet discretiza-
tion for each Jacobi coordinate. A NNN wave packet
is given by |X〉 ≡ |x〉 ⊗ |x̄〉, where |x〉 corresponds to
the pair-system p-momentum and |x̄〉 corresponds to the
spectator q-momentum.

The eigenstates of the NN Hamiltonian ĥ1 in a (plane-
wave) wave-packet basis can be used to approximate
“scattering” NNN wave packets rather well. In this ba-
sis, it is also possible to evaluate the channel-resolvent
Ĝ1 ≡ 1

E−ĥ1±iε
analytically. Furthermore, using that

t̂1Ĝ0 ≡ v̂1Ĝ1 and Ĝ−1
0 = v̂1 (on-shell), we can rewrite

Eq. (3) to obtain

Û = P̂ v̂1 + P̂ v̂1Ĝ1Û , (5)

where Û now depends on E only via Ĝ1. This is the
starting point for solving the AGS equation in the WPCD
method. Here, as in Ref. [19], we use an equal number of
wave packets, NWP, to discretize the p and q continua,
yielding matrices in Eq. (5) that scale in size as O(N4

WP).
We find that the runtime of the code follows this quar-
tic scaling with NWP quite closely. Note, however, that
the calculations at N3LO are ∼ 10% more costly since
the Padé resummation of the Neumann series typically
requires more terms to converge.

IV. EVALUATING POSTERIOR PREDICTIVE
DISTRIBUTIONS

We sample the PPD of a scattering observable by eval-
uating Eq. (1) numerically. This is done by computing
the nd scattering observable of interest for a finite set of
LEC values drawn from the posterior PDF, pr(~α|D,Mν).
In practice, we use the Markov chains obtained in Ref. [9].

For every sample that we draw from the PPD we must
solve the AGS equation. Fortunately, with the WPCD
method we get access to all scattering cross sections at
all angles and energies without any significant computa-
tional overhead. Also, since the permutation operator P̂
does not depend on the LECs, we only have to compute
this once and re-use it throughout the sampling process.
However, we have to setup the Neumann series for every
new sample, and this is the most time-consuming part.

In all calculations done here, we use a spin-angular ba-
sis of NNN partially-antisymmetric partial-waves with
total angular momentum J ≤ 17/2, using both pari-
ties, and using NN total angular momentum J ≤ 3. We
also explicitly account for the charge dependence of the
strong NN interaction in the 1S0 channel. This state
space provides sufficiently converged U -matrix elements
for ELab ≤ 100 MeV when using the chiral potentials
defined in Ref. [8, 9]. Note that our study is limited to
ELab ≤ 67 MeV due to the omission of 3NFs. It has been
shown that, at low scattering energies, the scattering am-
plitudes are likely dominated by NN forces [16, 22–24].

We discuss our general strategy to quantify the PPD
in Sec. IV A, present results for the PPDs of the differ-
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ential nd cross section in Sec. IV B, relate this to esti-
mates of the χEFT truncation errors in Sec. IV C, and
discuss spin-polarization observables, focusing on Ay(n),
in Sec. IV D.

A. Trading wave-packets for computational
speedup

In the limit NWP → ∞, the WPCD results converge
towards the results from an exact calculation, e.g., a con-
tinuous plane-wave solution [37] of Eq. (5). However, the
computational cost increases quartically with NWP, and
larger values for NWP will significantly increase the PPD
sampling cost. Balancing cost and accuracy, we found
it sufficient to draw N = 100 samples from each PPD
that we study, since we are quantifying univariate dis-
tributions. Also, we noticed that the shapes and widths
of the PPDs studied here did not change visibly when
varying NWP, and as such we could limit ourselves to
NWP ≤ 75 and extrapolate to larger values. This will be
discussed in the next section.

At present, using NWP = 75, it takes roughly 12 node-
hours (384 core-hours3) to compute all necessary scat-
tering amplitudes at ∼50 scattering energies below 100
MeV for a single configuration of values for the LECs
at a specific chiral order ν. This translates to roughly
150k core-hours to compute all scattering amplitudes for
100 different LEC values at four chiral orders. The same
calculation with NWP = 150 would be 16 times more ex-
pensive and cost roughly 2.5M core-hours. To monitor
the reduced method accuracy at NWP = 75, we repeat
the PPD sampling, with copies of the same LEC samples,
at every chiral order with NWP = 30 and 50. We also use
a restricted set of 10 posterior samples with NWP = 100.
In addition, we evaluate the PPD at the MAP value ~α?
of the LEC PDF using NWP = 30, 50, 75, 100, and 150.
The NWP = 75, 150 MAP predictions will be used for
extrapolation in the next section.

We had little cost-related reason to restrict calculations
to ELab ≤ 67 MeV. Instead, we computed the on-shell
U -matrices at all wave-packet NN Hamiltonian eigenen-
ergies below ELab = 100 MeV, which was roughly two
thirds of the wave-packet basis size. Between these ener-
gies we perform linear interpolation of the U -matrix ele-
ments to virtually any ELab < 100 MeV. Consequently,
we obtained 100 samples from the PPD of any elastic
scattering cross section at every order up to, and includ-
ing, N3LO. Of course, with the neglect of 3NFs, we con-
sider our predictions above ELab = 67 MeV to be incom-
plete and have therefore been omitted from the present
study. Nonetheless, they allowed us to check on the width
and shape of PPDs all the way to ELab = 100 MeV.

3 Using two Intel Xeon Gold 6130 CPUs per node, amounting to
32 cores per node.
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FIG. 1. Trace plot of the differential cross section PPD at
N2LO, for ELab = 12 MeV and θc.m. = 120 degrees, using
100 samples from the HMC-chain of samples from the LEC
posterior at this order.

Although the HMC-chains of LEC posterior samples
are virtually uncorrelated, this does not imply that en-
suing samples from the nd cross section PPD are equally
uncorrelated. Unfortunately, a chain of 100 samples is
typically too short to quantify, e.g., an integrated auto-
correlation time or reliably determine the autocorrelation
itself. Nevertheless, an inspection of the trace plots of
the PPD samples, as shown in Fig. 1, does not indicate
any hints of strong correlation between samples. In the
event of observing strongly correlated samples, the in-
formation content of the PPD chain, as measured by its
effective sample size, will drop inversely to the integrated
autocorrelation time and we would have to increase the
number of samples accordingly [8]

B. The differential cross section

The convergence of the differential elastic nd cross sec-
tion at ELab = 12 MeV with respect to NWP is shown
in Fig. 2. Clearly, with NWP ≈ 100, the results begin to
stabilize, at least for subleading orders. The somewhat
reduced convergence rate for the LO results might be
caused by the rather coarse wave-packet representation of
the NN potential for low relative momenta [40]. To rem-
edy this one should either re-distribute the discretization
boundaries to improve the coverage of the lower momen-
tum region, or simply increase NWP if possible. Since we
detect a sufficient convergence at subleading orders, we
opt for keeping the discretization mesh the same through-
out all calculations and at all chiral orders.

Next, we study the convergence of the PPD with re-
spect to NWP. In Fig. 3 we show a histogram of 100
samples of the PPD of the nd differential cross section
at ELab = 12 MeV and θc.m. = 120 degrees at N2LO
using NWP = 30, 50, and 75, as well as 10 samples at
NWP = 100 and the location of the MAP prediction us-
ing NWP = 150. The PPDs based on NWP = 30, 50, and
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FIG. 2. The differential nd cross section at ELab = 12 MeV
computed using the MAP values for the LECs at chiral orders
from LO to N3LO. The dotted, dash-dotted, dashed, and solid
lines at each order show the results obtained from the WPCD
methods with NWP = 50, 75, 100, and 150, respectively.
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FIG. 3. The PPDs of the differential nd cross section at
θc.m. = 120 degrees and ELab = 12 MeV using the N2LO
NN interaction. The three different distributions shown are,
from left to right, for NWP = 100, 75, 50, and 30, with
N = 10, 100, 100, and 100 samples, respectively. For compar-
ison, we also indicate with vertical lines the locations of the
cross section for the MAP LEC point obtained in a WPCD
calculation based on NWP = 150, 100, 75, 50, and 30. The
means of the distributions coincide almost with the MAP pre-
dictions.

75 are very similar in terms of shape and width. In fact,
for all observables that we study in this work4, the width
and shape of the PPD remains approximately constant

4 We study the differential cross section, dσ
dΩ

, the neutron vector

as we vary NWP, and the main effect is a shift of the
entire distribution. Therefore, we shift the mean of the
samples obtained with NWP = 75 using the difference
between the MAP predictions obtained with NWP = 75
and NWP = 150. This makes a comparison with experi-
mental data more meaningful.

We did not detect a robust exponential or power-law
convergence pattern with respect to NWP and leave fur-
ther analysis of the NWP-convergence and the WPCD
method uncertainty to future work. As such, there
might be additional corrections to the PPDs when us-
ing NWP > 150 that we do not account for. However,
assuming that the widths and shapes of the PPDs re-
main unchanged, our main conclusions in this work will
not be affected.

After shifting the differential cross section obtained
with NWP = 75 to NWP = 150 we obtain the result
shown in Fig. 4. At all chiral orders and energies we
study, the PPD is rather narrow. At LO, the PPD width
is comparable to the experimental uncertainty, while at
subleading orders the experimental uncertainty is typi-
cally greater than the width of the PPD.

To quantify the width of the PPDs, we compute the
90% highest posterior density interval (HPDI), normal-
ize it to the mean of the PPD, and average over θc.m..
This way, we find that the average HPDI for the differ-
ential cross section at ELab = 12 MeV is, 5.7%, 2.3%,
0.7%, and 0.5% at LO, NLO, N2LO, and N3LO, respec-
tively. The decreasing values reflects the increasingly
narrow LEC posterior densities obtained at higher chi-
ral orders [8, 9]. Moving to higher scattering energies we
find that the PPDs remain very narrow still. Apart from
LO, the average HPDI values are comparable to frequen-
tist estimates of dispersion quantified in Ref. [17], where
a similar increase in uncertainty was noted at higher scat-
tering energies.

Recently it was shown that N2LO potentials with 3NFs
yield an excellent description of differential cross section
data [24]. It was suggested in Ref. [42] that 3NFs are
necessary to reproduce the differential cross section min-
imum in the vicinity of ELab = 65 MeV. Here, however,
we see similar reproduction of data at NLO and N2LO
without 3NFs. Going to N3LO, the reproduction of ex-
perimental data deteriorates. As shown in Ref. [9], the
3H and 3He ground state energies and radii at N3LO are
also markedly worse compared to N2LO. This trend is
a testament to the importance of inferring LECs in the
NN - and NNN -sectors of χEFT simultaneously [43].

We conclude, based on the inference of NN LECs
made in Ref. [9], that the discrepancies between experi-
mental low-energy nd cross section data and theoretical
predictions are not due to the uncertainties stemming
from the LEC variability. Given the very narrow PDFs

analyzing power, Ay(n), and the spherical tensor analyzing pow-
ers iT11, T20, T21, and T22, at angles θc.m. = 60 and 120 degrees
and scattering energies ELab = 10-12, 35-36, and 65-67 MeV.
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FIG. 4. The PPD of the nd differential cross section at ELab =
12, 36, and 65 MeV at all orders up to N3LO in the NN
interaction. The legends display the average 90% credible
intervals (HPDI), see text for details. The experimental data
(markers) are retrieved from the EXFOR database (at ELab =
12 and 36 MeV) and Ref. [41] (at ELab = 64.5 MeV). Diamond
(cyan) and circle (colorless) markers represent nd and pd cross
sections, respectively.

for the LECs, an opposite finding would be a testament
to a tremendous fine tuning of scattering observables in
the NNN continuum relative to the NN continuum.

C. The EFT truncation error

The truncation of the χEFT expansion used to de-
scribe the nuclear interaction leads to a model discrep-
ancy referred to as an EFT truncation error. Following
Ref. [26], we assume that the theoretical prediction at
chiral order ν for some observable y can be written as

y(ν)(~α; ~x) = yref(~x)

ν∑
k=0

ck(~α; ~x)Qν(~x) , (6)

where ~x denotes the kinematic variables ELab and θc.m.

and yref is a reference value for the observable in ques-
tion. This expression renders the expansion coefficients
ck dimensionless quantities, which we also expect to be
of natural size, i.e., ck ∼ O(1). We assume a χEFT ex-
pansion parameter of the form

Q = max

(
q

Λb
,
mπ

Λb

)
, (7)

and set the χEFT breakdown scale to Λb = 600 MeV as
in Ref. [9] from where we also obtain the LEC posteriors.
We set the c.m. momentum, q, according to the kinetic
energy, ELab, of the incoming nucleon. The χEFT trun-
cation error, δyν , is the expected magnitude of the sum
of contributions from terms beyond the order ν. Under
the assumption of having independent and normally dis-
tributed expansion coefficients, ck, it is shown in, e.g.,
Ref. [34], that δyν is also normally distributed and given
by

δyν ∼ N
(

0, y2
ref

Q2(ν+1)

1−Q2
c̄2
)
, (8)

where c̄2 denotes the variance of the expansion coeffi-
cients. Thus, knowing c̄2 enables us to quantify the (vari-
ance of the) χEFT truncation error. For this purpose,
we follow the procedure of, e.g., Ref. [8] and employ the
root-mean-square (RMS) value of order-by-order differ-
ences to estimate c̄2. The order-by-order differences are
computed from the mean values of the PPDs at each or-
der ν, thus averaging over a possible LEC dependence.

We wish to compare the magnitude of the χEFT trun-
cation error with the theoretical error in y stemming from
the uncertainty about the numerical values of the LECs.
Let us take the differential cross section at ELab = 12
MeV as an example and inspect it closer. Limiting our-
selves to this low value of ELab, the effect of 3NFs are
expected to be small [42]. Therefore, we retain the ex-
pansion in Eq. (6) and use Eq. (8) to quantify the χEFT
truncation error. We set yref to the LO prediction. At
this scattering energy, we also have Q = mπ/Λb ≈ 0.23.
An RMS estimate from the expansion coefficients at
θc.m. = 30, 90 and 150 degrees (omitting LO results due
to their role in the definition of yref) gives c̄ = 14.8. This
is a fairly unnatural value which arises from an oscillating
convergence when including higher chiral orders.
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FIG. 5. Comparison of the PPD due to LEC variability and
an estimate of the normally distributed χEFT truncation er-
ror for the differential cross section for NLO (green), N2LO
(blue), and N3LO (red). The χEFT truncation is shown for
two different variances; c̄ = 14.8 (solid line) and c̄ = 1 (dashed
line). To set the absolute scale, we included the experimental
measurement (gray) from Ref. [44]

The PPDs due to the LEC variabilities and the χEFT
truncation errors are compared in Fig. 5. Clearly, the
truncation error (solid lines) is typically much greater
than the error due to the uncertain values of the NN
LECs (histograms) up to an including N2LO. Therefore,
we find it unnecessary to account for a possible LEC vari-
ability in the expansion coefficients in Eq. (6). At N3LO,
the two errors are becoming comparable. However, at
this order, both of the errors are tiny, . 4%, on an ab-
solute scale. In fact, they are both smaller than typical
experimental errors, indicated as the gray area in Fig. 5.
In addition to the RMS estimate of c̄2 we also show the
truncation error (dashed line) based on a naturalness as-
sumption where we set c̄2 = 1. In this limit, the two
errors become comparable for this observable already at
NLO.

At higher energies, we see in Fig, 4 that the predic-
tions at N3LO deviates from the ones at NLO and N2LO.
When analyzing the truncation errors at ELab = 36 MeV,
we obtain c̄ = 65.1, which signals the presence of an un-
naturally large contribution in the χEFT expansion. We
find that omitting the shift between N2LO and N3LO has
a significant impact and yields a more reasonable value
of c̄ = 15.1. Doing the same at ELab = 12 MeV yields
c̄ = 11.3, i.e., a relatively small change from when in-
cluding the shift. The truncation error is expected to
increase with the on-shell energy, and thus it should be-
come greater than the LEC uncertainty for ELab > 12
MeV, but we leave a more detailed study for future work.

D. Spin-polarization observables

There are many different possibilities to form observ-
ables related to spin-polarization in the initial and/or fi-

nal states of the Nd reactants [45]. The fine details of the
angular dependence of these observables can depend sen-
sitively on the spin structure of the NN and NNN inter-
actions. A well-known example is the low-energy vector
analyzing power Ay. This observable depends sensitively
on the 3P partial waves of the NN -interaction [46, 47].
There are indications that it also depends sensitively on
parts of the subleading 3NF [24]. It has turned out to be
very challenging to reproduce the experimental data for
this observable at laboratory scattering energies ELab .
30 MeV [37, 48].

Given the possibly fine-tuned nature of Ay, it is par-
ticularly interesting to quantify the PPD due to the vari-
ability in the NN LECs of χEFT. In Fig. 6, we show
the PPDs for Ay at NLO, N2LO, and N3LO as well as
the average 90% credibility intervals. At ELab = 10 MeV
we do not reproduce the experimental data at any chi-
ral order. We note that the N3LO calculation appears
to improve the description of the data at the polariza-
tion maximum. However, the low-angle description is
markedly worse compared to the result at N2LO. For
ELab ≈ 35 − 67 MeV it appears sufficient to use NN -
only forces at N2LO to describe presently available data.

It is clear that the variability due to the LECs inferred
from NN data does not give rise to any significant uncer-
tainty nor does it explain discrepancies between theory
and data. We refrain from quantifying the χEFT trunca-
tion error for this observable since our calculation omits
3NFs, which may very well play a significant role in ex-
plaining the low-energy Ay values. Nevertheless, a crude
estimate to account for the χEFT truncation error with
missing 3NFs can be obtained by pulling out factors of
Q in Eq. (8), starting at N2LO [50]. We found that this
procedure induced rather large χEFT uncertainties that
covered the experimental data at all orders.

As for the remaining spin-polarization observables,
their NN PPDs exhibit similar patterns and widths as
presented above for the differential cross section and
Ay(n), i.e., the vastly dominating source of uncertainty
is the χEFT truncation error, at least below N3LO.

V. SUMMARY AND OUTLOOK

We sampled the PPDs for the nd differential cross sec-
tion dσ/dΩ at ELab = 12, 36, and 65 MeV scattering en-
ergy, and neutron analyzing power Ay(n) at ELab = 10,
35, and 67 MeV. The underlying samples from the LEC
posterior were obtained from a previous analysis of NN
data [9]. The HMC algorithm used in that analysis yields
virtually uncorrelated samples which we find most likely
persists for the elastic nd observables. The main conclu-
sion from this work is that the uncertainty about NN
LECs, when conditioned on NN scattering data and un-
correlated estimates of the χEFT truncation errors, does
not entail significant uncertainties in the low-energy nd
continuum. Although we only show results for selected
observables, we find them to be representative of all elas-
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sections, respectively.

tic nd scattering observables, at least for ELab . 67 MeV.

When compared with estimates of the χEFT trunca-
tion error, we find that the uncertainty stemming from
the numerical values of the NN LECs are negligible, at
least up to (and including) N2LO in Weinberg power
counting. At N3LO, the width of the PPD and the credi-
ble interval of the truncation error are starting to become
comparable. However, these uncertainties are very small

and, in fact, are comparable to typical experimental er-
rors.

In this work we have not quantified the errors due to
having a finite number of wave-packets in the WPCD
method. Instead, we extrapolated all results to NWP =
150 and relied on the fact that the widths and shapes
of all studied PPDs remain the same when using fewer
wave-packets, i.e., NWP = 50 and 75. Future work should
be dedicated to understanding the scaling of the WPCD
method-error with respect to the discretization of the
continuum.

Throughout our analysis, the PPDs were conditioned
on NN scattering data. For the predicted differential
cross section, we find reasonable agreement with exper-
imental Nd scattering data. The same observation was
made for many polarization observables, not shown ex-
plicitly in this paper. However, less accuracy is observed
in the low-energy Ay analyzing power. A natural next
step would therefore be to simultaneously infer the NN
and NNN LECs from NN plus Nd scattering data. This
would shed more light on the necessity of including 3NFs
to explain this data.

The inference of LECs in χEFT is not restricted to
use only scattering observables. In fact, any low-energy
nuclear data can be utilized (and will be relevant given
that it has a high information content). On the other
hand, the abundant sets of experimentally measured
NN [32, 33], πN [51], and Nd [23] scattering cross sec-
tions provide data where theoretical predictions do not
rely on many-body interactions beyond 3NFs. In ad-
dition, a scattering cross section can be tied to a well-
defined (external) momentum, providing a clear inter-
pretation of the soft scale entering the χEFT expansion
parameter Q and the associated truncation error. This
identification of a soft scale is more ambiguous in bound
states of nuclear many-body systems.

A Bayesian analysis of LECs in χEFT conditioned on
Nd data requires efficient solutions to the AGS equa-
tions. Indeed, traversing larger domains of the multi-
dimensional LEC parameter-spaces would require orders
of magnitude more samples than what we employed in
this work. Fortunately, recent advances in model re-
duction methods [52], utilizing singular value decompo-
sition [53] and eigenvector continuation [54–56] methods,
show great promise in delivering accurate and fast solu-
tions to the Faddeev equations. Some of these methods
appear compatible with our existing implementation for
solving the AGS equations with the WPCD method.
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[46] D. Hüber and J. L. Friar, The Ay puzzle and the nu-
clear force, Phys. Rev. C 58, 674 (1998), arXiv:nucl-
th/9803038.

[47] A. Margaryan, R. P. Springer, and J. Vanasse, nd scatter-
ing and the Ay puzzle to next-to-next-to-next-to-leading
order, Phys. Rev. C 93, 054001 (2016), arXiv:1512.03774
[nucl-th].

[48] G. J. Weisel, W. Tornow, and J. H. Esterline, Neu-
tron–deuteron analyzing power data at En = 21 MeV
and the energy dependence of the three-nucleon analyz-
ing power puzzle, J. Phys. G 42, 085106 (2015).

[49] S. N. Bunker, J. M. Cameron, R. F. Carlson, J. R.
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