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ABSTRACT: This  work  focuses  on  the  potential  impacts  of  the  autonomous  vehicles  in  a  mixed  traffic  condition
represented in traffic simulator Simulation of Urban MObility (SUMO) with real traffic flow. Specifically, real traffic flow and
speed  data  collected  in  2002  and  2019  in  Gothenburg  were  used  to  simulate  daily  flow  variation  in  SUMO.  In  order  to
predict  the  most  likely  drawbacks  during  the  transition  from  a  traffic  consisting  only  manually  driven  vehicles  to  a  traffic
consisting only fully-autonomous vehicles, this study focuses on mixed traffic with different percentages of autonomous and
manually  driven  vehicles.  To  realize  this  aim,  several  parameters  of  the  car  following  and  lane  change  models  of
autonomous vehicles are investigated in this paper. Along with the fundamental diagram, the number of lane changes and
the number of conflicts are analyzed and studied as measures for improving road safety and efficiency. The study highlights
that  the  autonomous  vehicles’  features  that  improve  safety  and  efficiency  in  100%  autonomous  and  mixed  traffic  are
different,  and the ability  of  autonomous vehicles to switch between mixed and autonomous driving styles,  and vice versa
depending on the scenario, is necessary.
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1    Introduction
It is well-known that car manufacturers and newly launched high-
tech  companies  have  been  working  on  different  aspects  of
autonomous  vehicles  (AVs).  It  is  expected  that  50%  of  the  new
vehicles produced and sold in 2040 will be autonomous, and that
10  years  later  half  of  the  vehicles  present  on  the  road  will  be
autonomous  (Litman,  2020).  Therefore,  it  is  valid  to  ask  what  is
the  potential  impact  of  these  new technologies  in  a  mixed  traffic
with  the  manually  driven  vehicles  (MVs)  and  how  much  the
current  city  infrastructure  and  traffic  management  systems  are
ready for more and more AVs on our roads.

In Threlfall  (2019),  4  macro-categories  (which  includes  25
subcategories)  to  measure  preparedness  for  AVs  made  by  each
country  in  the  world  are  identified:  Policy  and  Legislation,
Technology  and  Innovation,  Infrastructure,  and  Consumer
Acceptance. Based on the evaluations of the sub- and the macro-
categories,  a  ranking  is  compiled,  in  which  Sweden  occupies  the
fifth place.

In  the  light  of  this  gradual  but  continuous  process  of
introduction of  AVs on our  roads,  it  is  important  to  understand
how  two  or  more  driving  styles  (e.g.,  for  autonomous  and
manual)  will  interact  with  each  other  in  the  context  of  mixed
traffic.  Based  on  review  of  recent  works  in  the  field  and  in  this
direction,  which we briefly  summarize  in  the  next  section,  it  was
clear  that  no  study  has  broadly  analyzed  the  potential  impact  of

different  driving  styles  of  AVs  in  mixed  traffic.  This  paper
investigates  the  potential  impact  that  different  driving  styles  of
AVs might have during the transition period from mixed traffic to
100%  AVs  on  city  traffic  using  traffic  simulator  Simulation  of
Urban  MObility  (SUMO).  The  aim  is  to  identify  the  driving
characteristics (i.e., parameters’ values) that allow a safer and more
efficient interaction between AVs and MCs.

Through  the  analysis  of  simulation  results  of  the  impact  of
different  hypothetical  AV’s  driving  styles  during  the  transition
period, this paper makes contributions to intelligent vehicle design
with  identification  of  key  parameters  of  AVs’ driving  styles,  and
suggestion that the AVs’ driving styles should change over time as
the  penetration  rate  increases.  Towards  the  infrastructure,  this
paper  highlights  the  need  to  further  study  if  the  rules  of  lanes
usage should be adapted during the transition to 100% AVs.

The  rest  of  the  paper  is  organized  as  follows.  Section  2
summarizes  recent  related  work.  Methodology  is  described  in
Section 3. Section 4 describes the simulation setting. Whether MV
simulations in SUMO follow a similar trend as the real traffic flow
is briefly assessed in Section 5. Section 6 describes the simulations
with  different  percolation  percentages  of  AVs  (AV  simulations).
Further, the effects of parameters in AV behavior are investigated,
reflected  on  three  main  outputs:  fundamental  diagrams  (Section
6.1),  number  of  lane  changes  (Section  6.2),  and  number  of
conflicts (Section 6.3). Finally, the future work based on the main
observations from this analysis are outlined in Section 7.

2    Related work
Several  aspects  of  traffic  can  be  affected  by  the  introduction  of
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autonomous vehicles, such as safety, efficiency and fuel emissions.
Milakis et  al.  (2017) reviewed and classified the potential  impacts
into a three-fold different stages: first-order (traffic, travel cost, and
travel  choices),  second-order  (vehicle  ownership  and  sharing,
location  choices  and  land  use,  and  transport  infrastructure),  and
third-order  (energy  consumption,  air  pollution,  safety,  social
equity,  economy,  and  public  health).  The  literature  suggests  that
the  introduction  of  AVs  is  expected  to  improve  many  aspects  of
traffic: in Fagnant and Kockelman (2014) and Liu et al. (2021), the
authors  showed  that  AVs  could  reduce  vehicle  emissions  and
increase  fuel  efficiency,  respectively;  in Shladover  et  al.  (2012),  it
was  shown  that  AVs  increase  road  capacity  and  in Virdi  et  al.
(2019) that  AVs increase safety.  In Shladover et  al.  (2012),  it  was
shown  that  100%  cooperative  adaptive  cruise  control  (CACCs)
can double the road capacity compared to 100% MVs scenario. In
order  to  evaluate  the  changes  in  safety  with  the  introduction  of
connected  and  autonomous  vehicles  (CAVs), Virdi  et  al.  (2019)
computed number of potential conflicts at the signalised, priority,
roundabout  and  diverging  diamond  intersection.  It  was  shown
that  the  potential  conflicts  in  all  settings  decline,  and  the
reductions  are  greater  in  roundabouts  and  give-way
environments,  as  compared  to  signalised  intersections.  However,
there  is  no  guarantee  that  these  improvements  will  also  occur  in
mixed  traffic  conditions,  and  further  studies  have  been  done  in
this direction.

Olia  et  al.  (2018) specifically  studied  the  potential  impact  of
mixed  traffic  for  traffic  capacity,  showing  that  cooperative  AVs
can  significantly  increase  highway  capacity  when  their  market
penetration is higher than 30%, while non cooperative AVs, even
at  high  market  penetration,  can  have  only  a  small  impact  on
highway  capacity. Aramrattana  et  al. (2022) conducted  driving
simulation  experiments  to  test  whether  drivers  adapt  their
behavior  when  driving  between  automated  vehicles  (AVs)
compared  with  those  driving  between  manually  driven  vehicles
(MVs) in on-ramp merging scenario. They found that behavioral
adaptation  can  be  observed  in  terms  of  car-following  speed,  car-
following  time  gap,  number  of  lane  change,  and  overall  driving
speed. The adaptations are dependent on the driving scenario and
whether  the  surrounding  traffic  was  AVs  or  MVs. Arvin  et  al.
(2021) looked at the potential impact from the number of conflicts
and  driver  volatility  at  an  intersection.  The  results  of  their  work
indicate  that  there  is  not  a  significant  safety  improvement  at  low
market penetration of adaptive cruise control (ACCs), while with
higher  penetration  rates,  the  number  of  conflicts  and  driving
volatility  decrease  considerably.  Moreover,  a  significant  safety
improvement,  in  terms  of  reduction  in  number  of  conflicts  and
driving  volatility,  is  observed  by  replacing  ACCs  with  CACCs.
Others  have  focused  their  study  in  an  urban  area  controlled  by
static  traffic  light  system  (Vaudrin  et  al.,  2017).  Here,  by
simulations,  it  was  shown  that  traffic  lights  system  has  a  much
greater impact than Avs on waiting time. In Zhao et al. (2018) and
Morando et al. (2018), mixed traffic has been studied on signalised
intersections and roundabouts, focusing on fuel consumption and
total  travel  time  in  the  first  case  and  safety  in  the  second.  The
results  in Zhao  et  al.  (2018) showed  that  vehicle  coordination
yielded  significantly  improved  travel  time  and  fuel  consumption
under 100% of CAVs. In Morando et al. (2018) the authors show
that  AVs  reduce  the  number  of  conflicts  by  20% –65%  with
the  AV  penetration  rates  of  between  50%  and  100%  for  the
signalised  intersection,  and  by  29% –64%  with  the  100%  AV
penetration rate for the roundabout. Further studies of mixed
traffic simulations have been done focusing on the Advanced

Driver Assistance Systems (ADAS), designed to increase road
safety  and  driving  comfort  (e.g., Guériau and Dusparic  (2020)
and Mintsis et al. (2018)). In Zhang and Yang (2021), the authors
focused on the CAV impact on highway operational performance
under a mixed environment. The results of this research revealed
that performing optimal speed control to CAVs will concurrently
benefit MVs by improving highway capacity. In Zhua et al. (2022)
and Wu  and  Qu  (2022),  two  comprehensive  reviews  covering
both CAVs and mixed traffic scenarios are reported. However, no
study  has  broadly  analyzed  the  potential  impact  of  different
driving  styles  of  AVs  in  mixed  traffic.  In  fact,  while  the  driving
styles  of  manual  vehicles  cannot  be  acted  upon  because  they  are
the driver’s own, the driving styles of autonomous vehicles can be
modified to improve safety and traffic efficiency. To this end, it is
necessary  to  understand  what  parameters  can  improve  efficiency
and safety in a mixed traffic context.

3    Methodology
For  this  study,  the  topology  of  the  south-east  part  of  the  city  of
Gothenburg  from  Open  Street  Map  was  reproduced  in  SUMO
(Krajzewicz et al., 2012) environment, together with its daily traffic
flow  data  from  the  Swedish  Transport  Administration
(Trafikverket,  2020).  This  consists  of  a  total  of  more  than  20
km  of  high-speed  road  and  on-  and  off-ramps;  the  different
sections  of  the  roads  have  speed  limit  ranging  from  70 –90
km/h.  The  daily  traffic  in  the  years  2002  and  2019  was
simulated,  taking  into  account  the  changes  in  posted  speed
limits  on  the  roads.  As  for  the  choice  of  the  car  following
model,  the  results  reported  in Bjärkvik et al.  (2017) were taken
into account. In there, the Intelligent driver Model (IDM) (Treiber
et  al.,  2000; Krauß,  1998)  car  following  models  were  compared,
both  calibrated  on  Gothenburg  roads.  It  was  shown  that  SUMO
generates  results  more  similar  to  real  measurements  when  using
the Krauß model instead of the IDM model. Moreover, the IDM
model generates more conflicts than real-world traffic data during
vehicles’ lane changing.

For  these  reasons,  both  autonomous  and  manually  driven
vehicles are simulated using the Krauß model.

In order to represent the behaviour of MCs as close as possible
to the real traffic, the values of the parameters for lane change and
Krauß  car  following  models  calibrated  in Nilsson  (2019) on  the
roads  of  Gothenburg  were  used.  In  addition  to  AVs  and  MCs,
simulated  manually  driven  trucks  (MTs)  were  also  simulated,
using  the  default  SUMO  parameters  along  with  the  default  car
following  model,  i.e.,  Krauß  model.  Once  the  daily  traffic  is
simulated  for  MCs  and  MTs,  the  AVs  were  introduced  with
different penetration rates.  Initially,  we consider the values of  the
AV  parameters  proposed  in Nilsson  (2019),  subsequently  we
analyze, in simulations with real traffic flow, the improvement on
the  speedFactor  value  suggested  for  mixed  and  ideal  traffic  in
Andreotti  et  al.  (2020).  Finally,  other  parameters’ values  are
analyzed  in  this  paper  (i.e.,  the  apparentDecel,  lcStrategic  and
decel  parameters).  In Andreotti  et  al.  (2020),  the  number  of  lane
changes and the number of conflicts were proposed as a measure
of  traffic  efficiency  and  safety  and  the  parameters’ values  have
been  analyzed  in  order  to  reduce  the  number  of  conflicts,  the
number  of  conflicts  involving  hard  braking,  and  the  number  of
lane  changes.  In  this  paper  we  analyze  for  different  percolation
percentages of AVs and different parameters’ values,  the number
of  lane  changes,  the  number  of  conflicts  and  the  fundamental
diagram.
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4    Description of the simulation setting
A daily traffic flow variation in the city of Gothenburg, from 2002
and  2019,  were  simulated  in  SUMO.  A  real  and  simulated  data
from 2002 and 2019 were compared. The two years were chosen
because, it was necessary to find devices positioned in such a way
as  to  give  information  on  the  same  portions  of  the  roads,  either
directly  or  indirectly.  More  precisely,  the  two  flows  (i.e.,  the
number of vehicles that passes a certain cross-section per time unit
(Treiber  and  Kesting,  2013))  that  passes  through  three  detector
devices (red devices in Fig. 1) were compared.
  

1
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1000 m0

Fig. 1    A part of Gothenburg in SUMO. Blue loops inject traffic, and red loops
detect traffic. Traffic detected by the red loop 3 is generated by the blue loop A.
Traffic detected by loop 2 is generated by loops A and C. Traffic detected by loop
1 is generated by loops A, B, and D.
 

In  SUMO,  the  flow  detectors  are  called Induction  Loop
Detectors (SUMO,  2020a).  To  distinguish  the  real  devices  (those
used  by  Trafikverket)  and  those  placed  in  SUMO,  the  real
detectors will  be called detector loops and those in SUMO will  be
called simulated  detector  loops.  In  both  loops,  the  information
collected  are  flow  and  time-mean  speed;  time-mean  speed  is
defined  as  the  arithmetic  average  speed  of  all  vehicles  for  a
specified  period  of  time.  In  addition  to  those  information,  the
simulated  detector  loop also  collects  information  on  space-mean
speed;  space-mean  speed  is  defined  as  average  speed  of  vehicles
traveling a given segment of roadway during a specified period of
time. Please see Knoop et al. (2009) for an in-depth theoretical and
empirical analysis on time-mean speed and space-mean speed.

4.1    Description of the simulation setting: year 2002
In order to generate a daily flow of vehicles that is in accordance to
the data collected by Trafikverket, four simulated loops that inject
flow of traffic  (blue points in Fig.  1)  and three simulated detector
loops that  detect  flow,  time-mean  speed,  and  space-mean  speed
were placed in SUMO. The blue loops will be called injector loops
(or injectors)  and  they  inject  traffic  flows  as  such  that  the  flows
detected by the simulated detector loops are in accordance with the
real  flows.  The simulated  detector  loops have  been  placed  in  the
same points as the real detector loops.

As  regards  the  speeds,  we  can  compare  the  real  time-mean
speeds  with  the  simulated  ones,  but  the  space-mean  speeds  are
detected only by the simulated devices. Therefore we can compare
the resulting simulated fundamental diagrams: once the flows are
fixed,  the  space-mean  speeds  and  the  densities  depend  on
parameters’ values.  Since  the  vehicle  speeds  under  consideration
will not necessarily all be the same, it will not be possible to use the
time-mean speed instead of the space-mean speed in the study of
the  fundamental  diagram, Knoop  et  al.  (2009).  Each simulated
detector loop in SUMO is composed of one sub-loop per lane, and

since all the roads where we have placed the red loops are formed
by 3 lanes, each simulated detector loop is composed of three sub-
loops.  The data  provided by Trafikverket  are  aggregated by hour
and by road section. Therefore, it is not possible to determine how
many vehicles  pass  through each lane from the real  data,  but  we
can instead get it from the simulated ones. However, by using the
real  data,  it  is  possible  to  distinguish  the  type  of  the  passing
vehicles  (i.e.,  cars  and  trucks),  hence  we  have  considered  these
detected  types  in  our  simulations  as  well.  Therefore,  our
simulations  have  a  characteristic  representing  both  mixed  (i.e.,
cars,  trucks)  and  heterogeneous  traffic  (i.e.,  autonomous  and
manually  driven).  The  SUMO  parameters  used  to  define  the
vehicles  are  in  accordance  with  the  parameters  calibrated  in
Nilsson  (2019) for  Gothenburg,  where  a  Metric  Stochastic
Response  Surface  Method  (MSRSM)  optimization  algorithm  to
tune traffic simulation against real world detector data is proposed
and used. In Figs.  2 and 3 the flows and time-mean speed as the
daily  hours  vary,  detected  by  SUMO  loops  and  Trafikverket
devices are compared, respectively.

4.2    Description of the simulation setting: year 2019
According to the dataset from Trafikverket, measurement devices
have been placed in different locations in 2002 compared to 2019.
Therefore,  to  be  able  to  compare  the  data  from  2002  with  those
from 2019,  the daily  traffic  flows were derived indirectly through
other  devices.  For  example,  the  traffic  detected  by  device  3  has
been  simulated  considering  the  flow  of  traffic  passing  through
device  A,  minus  the  outgoing  traffic  from  device  B,  plus  the
incoming traffic  from devices  C and D in Fig.  4.  However,  for  a
direct  verification  of  the  flow  data  we  have  compared  farther
devices  present  in  the  scenery,  see Andreotti  et  al.  (2021) for  the
definition  of  scenery.  For  a  comparison  as  precise  as  possible
between the data from 2002 and 2019, we consider week days for
both years.

4.3    On the comparison between 2002 and 2019 data
Fig.  5 shows the  traffic  flows  of  one  day  in  2002 and one  day  in
2019  passing  through  loops  1,  2,  and  3.  It  was  observed  that  the
number  of  vehicles  passing  through  the  loops  is  significantly
increased in 2019 compared to 2002,  for  example the number of
vehicles  that  passes  through  loop  3  has  increased  by  more  than
10%.  At  the  same  time,  the  population  in  the  V¨astra  Götaland
region  (the  county  where  Gothenburg  belongs  to)  has  increased
from 1.5 million inhabitants to more than 1.7 million inhabitants
from  2002  to  2019 SCB  (2020).  This  suggests  that  the  people
traveling  by  car  has  increased  accordingly  with  the  population
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increased. Furthermore, the increase in flow is evident in all three
loops. Loops 1 and 2 are located in the ring road of Gothenburg,

Vave)

therefore  they detect  both the  outgoing and the  incoming traffic,
as well as the traffic of those who move from one point to another
within the city. Loop 3 is located on an incoming road, thus only
detects  the  incoming  flows  (Fig.  5).  It  was  observed  that  the
highest  increase  in  flow  in  2019  happened  in  the  morning,
7–9 a.m., i.e., the flow was due to people commuting to work
in the city. Although in loops 1 and 3, the speed limits are the
same (90 km/h), the weighted average speed in loop 1 is about
90 km/h, while in loop 3 it is 100 km/h, both in 2002 and 2019
(Fig. 6). The weighted average speed (  is calculated as follows:

Vave =

∑3

i=1
vidi∑3

i=1
di

(1)

where i =  1, 2, and  3  are  the  right,  middle,  and  left  lanes,
respectively; and vi and di are the speed and density on the lane i,
respectively.  Since  the  vehicle  parameters  and  topology  did  not
change in the two years, a likely cause could be the structure of the
two road sections, the placement of the loops, or a higher average
flow in  loop  1  than  in  loop  3.  While  in  loop  2,  where  the  speed
limit  increased  from 70  km/h  in  2002  to  80  km/h  in  2019,  the
weighted average speed also increased from about 80 to 90 km/h.
A more detailed analysis of the average speeds will be investigated
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Fig. 3    Time–mean speed of vehicles as hour changes: 2002 (top) and 2019 (bottom). From left to right: devices 1, 2, and 3. The solid lines represent the speed limits.
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Fig. 4    A part of Gothenburg in SUMO. The red loop detects traffic injected by
blue loops.
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in the next section.

5    On  the  comparison  between  real  data  and
manually driven vehicle simulations
In  order  to  analyze  and  compare  the  relations  between
macroscopic  quantities  of  traffic,  such  as  the  fundamental
diagram, in the real and simulated case, it is necessary to calculate
the  three  quantities:  mean  speed,  density,  and  flow.  It  was
observed  that  the  flow generated  by  the  simulations  and  the  real
one  is  equal.  Therefore,  in  this  section,  mean  speeds  will  be
analyzed to assess whether the MV simulations (manually driven
vehicle  simulations,  i.e.,  manually  driven  car  and  truck
simulations)  follow  the  same  trend  of  real  data.  Then  we  can
derive the density and compare the fundamental diagrams. If the
two  (i.e.,  flow  and  speed),  and  therefore  three  (flow,  speed,  and
density), macroscopic quantities are related by the same relations,
we  can  then  consider  our  MV’ simulations  as  a  good  starting
point for mixed simulations.

In  the  simulations,  vehicle  speeds  depend  on  the  maximum
speed allowed on the road,  on the car  following model  used and
its  parameters’ values. Fig.  3 shows  a  comparison  of  the  time-
mean  speeds  from  the  real  data  with  those  detected  by  the  red

loops  on  the  lanes  as  the  time  changes  through  the  day.  It  was
noted that although no constraints have been given on the speed
of  the  injected  vehicles,  the  speed  detected  by  the  red  loops  in
SUMO  varies  similarly  as  the  real  data  varies.  By  comparing  the
space-mean  speeds  of  the  vehicles  that  pass  through  the  three
loops in 2002 and 2019, one can notice that the average speeds do
not  seem  to  have  changed,  while  the  greatest  differences  were
observed  with  regard  to  the  lane  speeds, Fig.  7.  In  fact,  the
difference  between  the  speeds  in  the  lanes  is  more  noticeable  in
2019 than in 2002. In addition, the fundamental diagrams (Fig. 8
(left)) also show the change of state (i.e.,  a change in the slope of
the  data),  from  a  reasonably  free  flow  to  congested,  in  the
rightmost  lanes  of  2019  for  a  density  of  10  vehicles  per  km.  The
cause of the decrease in speed and density of the rightmost lane in
2019 is attributable to the ratio between the number of trucks and
the  number  of  cars  which  increased  in  2019  (Fig.  9,  the  ratio  is
only shown for loop 3 here, but the ratios for the other loops are
similar). In fact, it is well known that trucks may not be allowed to
use as high speed as cars (because of law/safety reasons) and take
up  more  space.  In  general,  the  lowering  of  the  flow  in  the
fundamental diagrams (over 20 vehicles per km per lane) reflects
the  change  of  state  from  a  reasonably  free  flow  to  congested
(Garber,  2002).  This  aspect  will  be  analyzed  in  detail  in  the  next
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section.
From here on, unless otherwise specified, the parameters’ values

of the MCs used in the simulations are those given in Table 1. The
value  for  acceleration  for  AVs  that  we  used  here  is  reasonable
considering  that  acceptable  longitudinal  accelerations  that  was
reported by Hoberock (1977) for public transport is 1.47 m/s2, an
acceptable acceleration threshold based on an experiment studying
passenger comfort for AVs was reported to be 1.23 m/s2 by de Winkel
et al. (2023), and the 99th percentile of acceleration events in real
urban  driving  data  collected  by de  Winkel  et  al.  (2023) was  2.2
m/s2.

6    Simulations  with  different  percolation
percentages of AVs
The  purpose  of  this  section  is  to  deeply  investigate  macroscopic
quantities  through  a  study  of  microscopic  quantities  to  improve
safety and efficiency in mixed traffic conditions. In this regard, we
analyze the potential impact of different AV percentages that vary
from 0 to 100%, and different driving parameters.

The  parameters  explored  are speedFactor (sF,  the  factor  by
which  the  driver  multiplies  the  road  speed  limit  and  result
represents  the  maximum  speed  used  in  the  simulation),
apparentDecel (AD,  the  value  used  as  the  expected  maximum

deceleration of the lead vehicle), decel (the maximum deceleration
of  the  ego  vehicle), lcStrategic (i.e.,  driver’s  eagerness  to  perform
strategic  lane  changing),  and Driver  state  Device (i.e.,  the
perception errors related to the distance with the lead vehicle and
the  relative  speed).  By  default,  the apparentDecel is  equal  to  the
decel,  which  means  that  each  vehicle  expects  the  lead  vehicle  to
decelerate  like  it  does.  In  a  context  of  mixed  traffic  where  MCs
have  an  average decel equal  to  4  m/s2 and  AVs  equal  to
6 m/s2, this assumption is very strong and deserves to be studied in
detail.  Therefore  the  4  possible  combination  cases  of  AVs  and
MCs  with apparentDecel 4  and/or  6  m/s2 were  analyzed.  The
parameter decel,  which is closely related to the apparentDecel was
also analyzed (Table 1).

lcStrategic is  a  parameter  concerning  the  lane  changes  model
and  as  we  will  see  later,  it  has  a  strong  impact  on  traffic  safety
conditions.  For  this  reason,  a  deeper  exploration  was  conducted.
The  default  value  1,  as  well  as  the  value  proposed  in Nilsson
(2019) (i.e., lcStrategic = 10), and the intermediate values between
the two (i.e., the values 3, 5, and 7) were analyzed. For more details see
Table 2.

Only the traffic data from 2019 is used from here onward: being
composed of higher densities allows us to study in more depth the
critical aspects of the parameters, especially in view of an increase
of road users towards the future.
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Fig. 7    Speed of vehicles as time changes through a day in 2002 (top) and 2019 (bottom). From left to right: loops 1, 2, and 3.
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6.1    Fundamental diagram of traffic flow
For  representing  the  heterogeneous  and  mixed  vehicle  fleet,  the
MCs  was  replaced  with  different  percentages  of  AVs,  while  the
number of trucks was left unchanged. Initially the AV parameters
are  set  as  in Tab.  1,  with  the  exception  of  the speedFactor (sF)
parameter  which  has  been  extensively  studied  in Andreotti  et  al.

(2020) and therefore was set to 1.2.
Comparing the results obtained in 100% MC simulations with

those  obtained  with  different  percentages  of  AVs,  it  is  observed
that  the  critical  point  in  the  fundamental  diagram  (Fig.  11,
bottom)  does  not  seem to  occur,  or  at  least  not  for  the  densities
considered, as the percentage of AV increases. In order to explain
the possible explanation for it, the parameters that characterize the
AV and MC were further studied.

First  of  all,  the minGap (minimum  empty  space  after  the  ego
vehicle) of the AV and MC is not different enough to compromise
the  result.  In  fact,  the  maximum  estimated  number  of  AVs  in  a
stretch  of  1  km  road  segment  is  156  (1 000 m/(minGap+AV’s
mean length))  while  the  maximum  number  of  MC  is  155  (1 000
m/(minGap+MC’s  mean length)).  The  parameter  that  most
influences  the  result  is  the  driver’s  desired  (minimum)  time
headway, tau, of the two vehicle types in the car following model.
In fact, the parameter tau is also used in the implementation of the
Krauß  model  instead  of  the  reaction  time τr.  More  precisely,  the
safe speed, in Krauß model implementation, of  the ego vehicle is
computed using the following equation:

vsafe (t) = vlead (t) +
g (t)− vlead (t) τr
vego + vlead (t)

2decel + τr
(2)

where t is the time step, vlead(t) is the speed of the leading vehicle in
t, g(t) is the gap between ego vehicle and leading vehicle in t, and
τr = tau. Assuming that the ego vehicle (AV or MC) has the same
speed as the lead vehicle at time t, Fig. 10 compares the speeds of
the ego vehicles  at  the time t + ∆t.  We notice that  when the ego
vehicle is an MC, the vehicle brakes at much longer distance to the
lead vehicle compared to when the ego vehicle is an AV, thus an

 

Table 1    SUMO parameters

Parameter MCs value AVs value

length norm(4.9, 0.2); [3.5, 5.5] norm(4.9,0.2); [3.5, 5.5]

accel norm(1.497 6, 0.055 5) 1.500 0

decel norm(4.052 2, 0.997 9) 6.000 0

apparentDecel decel decel

sigma norm(0.795 4, 0.161 5) 0.500 0

tau gamma(33.616 6, 40.623 6) 0.500 0

minGap norm(1.540 1, 0.218 8) 1.501 4

lcStrategic norm(0.012 2, 1.657 5) 10

lcCooperative norm(0.997 8, 0.1) 0.999 9

lcSpeedGain 1 1

lcSpeedGainRight 1 1

lcKeepRight 1 1

lcAssertive 1.3 1

speedFactor norm(1.208 1, 0.142 5) 1

lcOpposite 1 1

lcLookAheadLeft 2 3

lanechange-duration 1.136 2 0

 

Table 2    Simulations  with  different  parameters  of  AVs.  Values  in  bold  are
default values

Parameter speedFactor apparentDecel lcStrategic decel

AVs value 1, 1.2 4, 6 1, 3, 5, 7, 10 4, 6
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AV  traffic  flow  will  enter  in  critical  regime  with  higher  densities
than an MC traffic  flow.  In fact,  the  mean of  gap distance (from
front  bumper  to  rear  bumper)  between  MCs  of  less  than  20  m
corresponds to a density greater than 40 MCs per km per lane (1 000
m/(mean distance + MC’s length)) which correspond to a flow of
3,600 MCs per hour per lane (40 MCs/1 km × 90 km/h), i.e., when
more  than  1  vehicle  is  introduced  per  second  per  lane,  then  the
MCs start to brake. If we consider the AVs, this mean distance is
reduced  to  12  m  between  one  vehicle  and  the  next  one,  which
corresponds to a vehicle every 0.7 seconds per lane ((minGap+MC’
s length)/(90 km/h)). However, the traffic considered is not made
up of MCs or AVs only, in fact it is a mixed traffic in which 13%
(in 2019) of the vehicles are MTs. Doing the same calculation for
MTs, which have reaction times corresponding to 1 s and average
length  of  7.1  m,  we  get  that  the  distance  at  which  MTs  begin  to
brake is 25 m which corresponds to injections of one truck every
1.3 s. In correspondence with these thresholds (from 25 of trucks
to 40 of AVs veh/km/lane) the state of the system changes from a
regime  of  reasonably  stable  to  a  congested  regime,  therefore,
shorter τ leads to higher speeds for higher densities.  However,  in
our simulations this threshold is observed considerably lower than
the  computed ones  (Fig.  6)  and the  cause  is  the  heterogeneity  of
the vehicles. In fact, not all of the vehicles aim to drive at the same
speed, the traffic is mixed (with cars and trucks together), vehicles
change  lane  and  enter  and  exit  the  road  through  on-  and  off-
ramps  and  therefore  interact  more  than  simply  adapting  to  the
speed of the lead vehicle.

Figs.  11– 14 show  fundamental  diagrams  for  different
percolation  percentages  of  AVs  and  different  parameters’ values
(speedFactor,  sF,  and  AVs’ apparentDecel, A  AD),  respectively.
Moreover,  in  Fig.  11  on  the  bottom,  the  fundamental  diagrams
per lane were shown. It  is  observed that for different percentages
of AVs the vehicles are distributed differently on the lanes: for low
percentages  of  AVs  the  rightmost  lane  is  congested  at  low
densities, and therefore the most used lanes are the middle and the
leftmost.  On  the  contrary,  for  high  percentages  of  Avs,  the  most
used lanes are the rightmost and the middle, and for the densities
considered,  the  traffic  does  not  enter  into  congested  conditions.
This  aspect  is  also reflected in the fundamental  diagrams (on the
top of Fig. 11) in which, for high percentages of AVs, the densities
are  on average  lower  than for  lower  percentages  of  AVs,  but  the
flow is higher.

Figs.  12– 14 show  that  greater  interaction  between  AVs  and
MCs  (sF  equals  to  1.2)  increases  traffic  flow,  i.e.,  for  the  same
densities  the  vehicles  drive  faster  on  average.  In  this  sense,  we
could deduce an improvement in the efficiency of the traffic flow,
which  would  confirm  the  results  obtained  in Andreotti  et  al.
(2020) with respect to the value of the sF.

As  for  the  AV’s apparentDecel,  it  does  not  significantly  affect

the  fundamental  diagram,  therefore  we  will  deeply  analyze  this
parameter in the following sections.

In  conclusion,  if  the  reaction  time  of  AV  is  set  to  on  average
lower than the reaction time of MC and the AV is set to use speed
on average equal to that of the MC (i.e., speedFactor of AV is 1.2),
then  we  can  expect  that  the  increase  in  the  percentage  of  AVs
increases the efficiency of road traffic, where efficiency is measured
by the number of lane changes proposed in Andreotti et al. (2020).

6.2    Results about lane changes
In this section we will investigate the number of lane changes for
different  parameters’ values  and  different  percentages  of
autonomous/manually  driven vehicles.  In Andreotti  et  al.  (2020),
the  number  of  lane  changes  has  been  proposed  as  a  measure  of
driver  dissatisfaction  in  a  reasonably  free  flow  condition.  In  fact,
“ being  able  to  change  lanes”  means  having  margin  to  reach  the
desired  speed,  something  that  only  a  state  of  uncongested  traffic
could allow. However, lane changes are showed to be the cause of
stop-and-go waves (Cassidy et al., 2009; Zheng et al., 2011), and in
order  to  overtake,  the  speed is  usually  increased,  which increases
the  risk  of  crashes.  In  fact,  in Aarts  and van Schagen (2006) it  is
shown that a 1% change in speed would lead to a 1.7% change in
injury risks on roads with a 120km/h speed limit and 4% on roads
with a 50 km/h speed limit, while it leads to a 3.3% change in fatal
crashes on roads with a 120 km/h speed limit and 8.2% on roads
with  a  50  km/h  speed  limit.  Safe  and  efficient  traffic  is  therefore
traffic  in  which  it  is  possible  to  overtake  (reasonably  free  flow
conditions)  and  at  the  same  time  such  that  the  number  of
overtaking  is  as  small  as  possible.  This  condition  can  be  reached
with all AVs and in segments of roads that do not require changes
in  driving  maneuver  (there  are  no  on-/off-ramps,  intersections,
traffic  lights,  ...).  It  is  clear  that  these  are  totally  ideal  conditions.
However, our aim is to get as close as possible to traffic conditions
of this type. The authors, in Andreotti et al. (2020), demonstrated
(proposition  3.1)  that  the  number  of  overtakes  increases
quadratically  as  the  number  of  vehicles  involved  varies.  The
demonstration  was  confirmed  by  simulations  on  a  straight  road
consisting  of  three  lanes.  When  traffic  condition  changes  to  an
approaching  unstable  flow  and  unstable  flow  state  occurs,  the
number  of  lane  changes  increases  linearly.  Through  simulations,
this  section  will  show  that  the  same  behavior  also  occurs  in  real
roads  topology.  However,  overtaking  is  not  the  only  reason  for
changing  lanes,  in  fact  in  SUMO,  the  reasons  that  lead  to  a  lane
change can be divided into four categories:  cooperative,  strategic,
keep  right  and  speed  gain.  During  an  overtaking  each  vehicle
makes  two  lane  changes:  the  first  one  due  to  the “ speed  gain”
reason  and  the  second  one  due  to  the ” keep  right”  reason.
However,  in  overtaking,  re-entry  into  the  starting  lane  does  not
always  occur,  e.g.,  sometimes  there  is  no  room. Figs.  15 and 16
show the number of lane changes for different parameters’ values
and  different  percentages  of  autonomous/manually  driven
vehicles,  respectively.  The  analysis  was  made  by  varying  the
number of  vehicles  involved,  i.e.,  the  number of  vehicles  injected
into  the  network  per  hour,  in  accordance  with  the  flow  data
collected  by  Trafikverket  in  the  roads  where  the  detector  loops
have been placed.

By  comparing  the  different  parameter’s  values  for  the
apparentDecel of  AVs  (A AD),  it  is  observed  that  the  number  of
lane  changes  increases  quadratically  as  the  number  of  vehicles
increases,  please  see  Fig.  15  (top)  for  the  comparison  between A
AD = 4 and A AD = 6 in 50%AV mixed traffic  and Fig.  16 (top
and  middle)  for  a  comparison  between  different  percolations  of
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AV (A AD = 4 on the left and A AD = 6 on the right). Moreover,
in the histograms of  Figs.  15 and 16 it  is  shown that  the vehicles
that mostly change lanes are AVs, for all the parameters examined.
This is due to lcStrategic parameter, which for AVs is considerably
higher than the values of MCs (Table 1). The reasons why vehicles
perform the maneuver depend 50% (in simulations with 0% AVs)
to  40% (in  simulations  with  100% AVs)  on  speed  gain  and  25%
(in simulations with 0% AVs) to 40% (in simulations with 100%
AVs)  on  keep  right,  while  strategic  and  cooperative  account  for
about 20% and 2%, respectively.  We highlight  that  the lcStrategic
parameter does not affect the “strategic” reason, but how early the
lane  change  maneuver  is  performed.  For  this  reason,  in
simulations  with  higher  percentages  of  AVs,  which  have  higher
lcStrategic than MVs,  we have an increase  in the number of  lane
changes,  and  in  particular  the  increase  is  because  of  the  reason
“ keep  right” .  It  is  also  noticed  that,  in  simulations  with  equal
percentage  of  AVs,  the  proportion  of  the  reasons  why  vehicles
perform  the  maneuver  are  not  significantly  dependent  of  the
apparentDecel parameters.  Hence,  when  both  populations  (AV
and MC) need to change lanes less, it means that both vehicles are
more satisfied with the  speed of  their  lead vehicles,  whether  they
are autonomous or manual. From Figs. 15 and 16 one can see that

the  number  of  lane  changes  by  MCs  is  greater  when A AD =  4,
while the least number of total lane changes is achieved when both
vehicles  have  apparent  deceleration  parameter  equal  to  6.  These
results allow us to identify the best, in terms of efficiency given by
fewer lane changes, apparentDecel ’s values even when we do not
consider the type of lead vehicle.

The  number  of  lane  changes  for  different  percentages  of  AVs
are compared in Fig. 16. The increase is initially quadratic for all of
the  percentages  analyzed,  and  then  becomes  linear,  exactly  as
observed  in Andreotti  et  al.  (2020).  However,  unlike  on  straight
roads,  by  inserting  a  more  complex  topology,  it  is  observed  that
the breaking point (i.e., when the increase changes from quadratic
to linear) depends on AV’s percentage considered. As one can see
in Fig. 16 (top and middle), the higher the percentage of AVs, the
higher the breaking point.

6.3    Results about conflicts
This  section  discusses  the  number  of  conflicts  occurred  in  the
simulations, for the same parameters and percentages of AV as in
Section 6.2. In order to detect the conflicts between vehicles, SSM
devices  (Safety  Surrogate  Measures)  were  placed  on  1%  of  the
vehicles injected.
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In  SUMO,  conflicts  are  detected  when  one  of  the  following
conditions  occurs:  TTC  (Time  To  Collision)  lower  than  3.0  s,
DRAC  greater  than  3.0  m/s2,  PET  lower  than  2.0  s,  maximum
brake  greater  than  0.0  m/s2,  SGAP  lower  than  0.2  m  and  TGAP
lower than 0.5 s.  For  more details  about  SSM device,  readers  are
referred  to SUMO (2020b).  In Xu et  al.  (2022) some adjustment
on SSM for the mixed traffic flow are suggested. In addition to the
conflicts  identified by SSM, conflicts  as  a  result  of  uncomfortable
braking,  i.e.,  brakes  greater  than  4  and  6  m/s2 for  MCs  and  Avs,
respectively, will also be discussed.

Fig. 17 (top) showed the number of conflicts detected (which is
expected  to  be  1/100  of  the  real  ones)  for  a  mixed  population
consisting of trucks and cars, and the cars are composed of 50% of
AVs,  50%  of  MCs,  for  the  different apparentDecel ’s  values  and
time  of  day.  The  total  number  of  vehicles  during  the  one-day
simulations is shown in the same figure with gray dashed line. It is
interesting  to  note  that  the  greatest  number  of  conflicts  occurs
when the apparentDecel of AVs and MCs are equal, i.e., when one
of the two types of vehicles has apparentDecel different from decel.
While,  the  least  number  of  conflicts  occurs  when  each  vehicle
expects the lead vehicle to behave as itself, i.e., when A AD equals
the AV’s decel and M AD equals the MC’s decel. Fig. 17 (bottom)
shows  the  number  of  conflicts  with  uncomfortable  braking

detected  in  the  4  simulations.  Fewer  uncomfortable  brakings,  as
well  as  fewer  number  of  lane  changes,  are  observed  when
apparentDecel ’s values are equal to the decel ’s values (i.e., when A
AD =  6, M  AD =  4).  Therefore,  these  values  will  be  considered
from here on.

Table 3 and Fig. 18 show the number of conflicts with varying
AV percentages.  It  is  noted  that  for  high  flows  (rush  hours),  the
greatest  number  of  conflicts  are  observed  for  high  AVs’
percentages.  However,  when  flows  are  low,  high  percentages  of
AV  bring  less  conflict.  It  can  be  observed  that  the  number  of
conflicts  grows more when the transition is  from a low flow to a
higher flow compared to the transition from high flow to a lower
flow. For example, from 8 am to 9 am, the flow is greater than the
flow  from  6  am  to  7  am,  however  the  number  of  conflicts  is
greater  in  the  second  case  than  in  the  first  one,  for  all  the
percentages of AV analyzed. We therefore investigate what is  the
cause of an increase in the number of conflicts.

Through  simulations  with  the  different  values  of  the  AV
parameters  introduced  in  this  work, lcStrategic was  identified  as
the  parameter  that  mostly  affects  the  increase  in  conflicts.  From
Fig.  19,  one  can see  that  for  high lcStrategics (equal  to  10  and 7)
the  higher  the  percentage  of  AVs,  the  greater  the  number  of
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conflicts that occur. However, as the value of lcStrategics decreases
the number of conflicts is reduced: with lcStrategics equal to 5, the
combination  in  which  the  least  conflicts  occur  is  50%  of  AVs,
while for lcStrategics equal to 1, the best combination turns out to
be 80% of AVs. From these results, it seems safer to set the AVs’
with decreasing lcStrategic values (which means less eagerness for
performing strategic  lane changing)  as  the  percentage of  AVs on
the roads increases.

Similar results and the same trend were obtained by placing the
Driver  State  Device on  each  vehicle.  Since  not  all  AVs  will  be
identical  and  have  the  same  perceptions  with  respect  to  the
strategy to be adopted, for example as a result of being produced
by  different  manufacturers,  an  experiment  was  conducted  to
investigate how the number of conflicts would change if eagerness
of  AVs  to  conduct  lane  changes  is  changed  by  generating  the
lcStrategic’s values from a normal distribution with mean in 1, 3, 5,
7,  and  10  and  variance  1.  By  comparing  the  results  with  those
obtained  with  variance  0,  a  decrease  in  the  number  of  conflicts
was noticed only for low AV percentages, an example is shown in
Fig.  20.  From  these  observations  one  can  deduce  that  low
lcStrategic values guarantee an overall reduction in the number of
conflicts,  however  constant lcStrategic values  allow  a  better

interaction  between  AVs  and  low  percentages  of  MCs,  while  in
mixed  traffic  with  higher  percentages  of  MCs  it  is  safer  to  have
AVs with non-constant lcStrategic. It is also interesting to note that
for  scenarios  totally  consisting  of  only  AVs  (and  MTs),  the
number  of  conflicts  does  not  vary  regardless  if lcStrategic is
constant or not.

A further parameter that distinguishes the two types of vehicles
is decel,  i.e.,  the  maximum  deceleration  for  comfort  braking.  In
our simulations, the values of MCs’decel are normally distributed
around average of 4, and the value of this parameter in AVs is set
fixed  at  6.  In  reality,  this  parameter  has  effects  not  only  on  the
driving  style,  but  also  on  the  safety  and  interaction  with  the
vehicles  that  follow  it.  In  fact,  a  vehicle  that  performs  a  rapid
braking requires greater attention to the vehicles that follow it: the
braking of a vehicle with decel 6 can be done later than the braking
of  a  vehicle  with decel 4.  We therefore  replaced the decel of  AVs
with the  fixed value  of  4  and compared the  simulations  with the
default parameter simulations (Fig. 21).

One  could  expect  that  a  vehicle  with  lower  deceleration  starts
decelerating earlier, however, in the Krauß model, the decel value
only indicates what the driver of that car would prefer as a normal
deceleration.  Therefore,  it  is  clear that an ego vehicle,  with g(t) <
vlead(t)τr (in Eq. (1)), approaches the lead vehicle with higher speed
if it  has low decel value. This observation explains the increase in
conflicts for AV’s decel equal to 4 shown in Fig. 21.

7    Discussion and future outlook
In  this  paper,  experiments  are  conducted  to  investigate  how  the
driving  styles  of  AVs  might  affect  safety  and  efficiency  in  mixed
traffic  condition  with  increasing  AV  penetration  rate  until  it
reaches full 100% AVs. For this purpose, a scenario of a portion of
the  city  of  Gothenburg  in  2002  and  2019  with  the  daily  traffic
flows from real measurements in 2002 and 2019 are represented in
traffic  simulator  SUMO.  Starting  from  the  parameters’ values
proposed  in  the  literature,  several  parameters  and  values  that
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represent changes in driving styles and the effects of the changes in
driving style during the interactions with MCs were analyzed.

We  have  shown  that,  both  in  the  ideal  case  of  a  straight  road
(Andreotti et al., 2020) and for complex topologies (in this paper),
the number of lane changes increases quadratically as the number
of  vehicles  on  the  road  increases  in  reasonably  stable  traffic
conditions.  Further,  our  experiments  suggest  that  the  number  of
conflicts also increases as the number of vehicles increases.

Although AVs improve the efficiency in terms of the number of
lane changes,  they appear  to  significantly  increase  the number of
conflicts for high flow in our simulations. The latter was observed
mainly  because  a  conflict  was  still  calculated  based  on  the
thresholds  that  were  used  to  compute  a  conflict  for  MCs,  while
AVs’ reaction time was shorter and decel was higher compared to
the respective values for MCs. This points to the need of defining
appropriate definition of conflict in the context of AVs.

Our simulations suggest that reaction time, eagerness to do lane
changes, and deceleration ability of the AVs should be among the
key parameters of the AVs’ driving styles.

In  general,  lower  reaction  times, tau,  allow  higher  vehicle
speeds,  and  the  fundamental  diagram  shows  higher  flows  as  the
percentage of AVs increases. This observation is also confirmed by
the  number  of  lane  changes.  With  the  way  MCs  and  AVs  are
modelled  in  our  simulations,  MCs  and  AVs  occupy  the  lanes  in
different  ways,  with  the  right  lane  has  higher  density  of  AVs.
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While the real  driving styles of AVs could be different compared
to the way AVs are modelled here, the potential impact of mixed
traffic  to  lanes  usage  observed  in  our  simulations  highlight  the
need to further study if the rules of lanes usage should be adapted
during the transition to 100% AVs.

Our  simulations  suggest  that  the  driving  styles  of  AVs  should
change  over  time  as  the  penetration  of  AVs  increases  until  it
reaches  100%.  In  a  mixed  traffic,  it  seems  important  to  keep  the
behaviour of  the vehicles  more homogeneous/similar to keep the
number  of  conflicts  low.  This  means  that  keeping  AVs’ driving
style  more  similar  to  those  of  MCs  in  low  AVs  penetration  rate
i.e.,  by  setting  the  value  of  AVs’ lcStrategic non  constant  with

similar mean and variance with those of MCs. While in the mixed
traffic  with  high  AVs  penetration  rate,  this  means  keeping  AV
behaviour more predictable among AVs, such as setting the value
of  AVs’ lcStrategic as  constant.  Our  experiments  particularly
suggest  that  as  the  penetration  of  AVs  increases,  it  seems  safer
(less conflict) to have AVs with less eagerness to perform strategic
lane  changing.  When the  traffic  is  100% AVs  (i.e.,  no  MCs),  the
choice of AVs’ driving style can perhaps be more flexible as it was
found in the experiments that constant or nonconstant lcStrategic
do  not  affect  the  number  of  conflicts  significantly.  However,
validation is needed to confirm the conclusions derived here.

This study has limitations. Despite efforts to choose parameters
and  values  for  AVs  that  make  sense  (i.e.,  using  knowledge  from
analysis  of  real  human-driver  behaviour  as  well  as  reasonable
expectations  that  are  circulated  among  the  community  and/or
from  the  literature),  they  might  differ  from  real  AVs’ driving
styles.  Further,  the  same  definition  for  conflict  (i.e.,  the  same
thresholds)  is  used  for  both  AVs  and  MCs.  This  is  obviously  an
oversimplification.  A  further  analysis  should  therefore  be  made
considering different thresholds for the two categories of vehicles.

 

Table 3    Number of conflicts in simulations with different percentages of AV.
apparentDecel ’s values equal to the decel ’s values

Time Number of conflicts
Different percentage

0% 20% 50% 80% 100%

0–1 347 0 0 0 1 0

1–2 222 1 0 0 0 0

2–3 213 0 0 1 2 1

3–4 233 0 1 0 0 1

4–5 487 0 0 2 1 1

5–6 2,319 0 1 2 1 0

6–7 7,401 9 5 7 30 58

7–8 8,415 19 43 68 103 137

8–9 7,465 8 4 0 4 16

9–10 4,580 0 4 4 1 0

10–11 4,173 0 5 1 0 0

11–12 4,389 2 0 3 1 0

12–13 4,774 3 3 0 3 0

13–14 4,588 1 0 0 3 0

14–15 4,992 6 0 1 0 1

15–16 5,892 0 4 2 2 0

16–17 5,784 0 4 3 0 0

17–18 5,260 0 0 0 1 0

18–19 4,109 1 2 0 2 0

19–20 2,896 0 0 0 0 0

20–21 2,213 2 3 7 0 1

21–22 1,451 0 1 1 0 0

22–23 881 0 0 0 1 1

23–0 534 0 1 2 1 4

Tot. 83,618 52 81 104 157 221
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Fig. 18    Number  of  conflicts  in  simulations  with  different  percentages  of  AV.
The apparentDecel ’s values equal to the decel ’s values.
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Hence, a possible improvement in the SUMO model, and also in
the implementation of the real maneuvering strategies of the AVs,
is to study a model for lane change strategy that improves safety.
Considering that it  is  difficult  for any vehicle to know whether it
can  expect  that  the  lead  vehicle  will  decelerate  like  AVs  or  like
MCs, the easiest would be for a vehicle to expect the lead vehicle
to  behave  like  it  does.  To  reach  the  ideal  case,  it  is  important  to
make  the  lead  vehicle’s  strategies  recognisable  or  somehow
communicated to the vehicle that follows it.
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