
A causal-based approach to explain, predict and prevent failures in robotic
tasks

Downloaded from: https://research.chalmers.se, 2025-07-02 13:49 UTC

Citation for the original published paper (version of record):
Diehl, M., Ramirez-Amaro, K. (2023). A causal-based approach to explain, predict and prevent
failures in robotic tasks. Robotics and Autonomous Systems, 162.
http://dx.doi.org/10.1016/j.robot.2023.104376

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



Robotics and Autonomous Systems 162 (2023) 104376

D

e
e
D
i
e
p
e
n
t

m
t
c

(

h
0
n

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

A causal-based approach to explain, predict and prevent failures in
robotic tasks
Maximilian Diehl ∗, Karinne Ramirez-Amaro
epartment of Electrical Engineering, Chalmers University of Technology, Gothenburg, 41296, Sweden

a r t i c l e i n f o

Article history:
Available online 4 February 2023

Keywords:
Causality in robotics
Failure prediction and prevention
Explainable AI

a b s t r a c t

Robots working in human environments need to adapt to unexpected changes to avoid failures. This
is an open and complex challenge that requires robots to timely predict and identify the causes of
failures in order to prevent them. In this paper, we present a causal-based method that will enable
robots to predict when errors are likely to occur and prevent them from happening by executing a
corrective action. Our proposed method is able to predict immediate failures and also failures that
will occur in the future. The latter type of failure is very challenging, and we call them timely-shifted
action failures (e.g., the current action was successful but will negatively affect the success of future
actions). First, our method detects the cause–effect relationships between task executions and their
consequences by learning a causal Bayesian network (BN). The obtained model is transferred from
simulated data to real scenarios to demonstrate the robustness and generalization of the obtained
models. Based on the causal BN, the robot can predict if and why the executed action will succeed or
not in its current state. Then, we introduce a novel method that finds the closest success state through
a contrastive Breadth-First-Search if the current action was predicted to fail. We evaluate our approach
for the problem of stacking cubes in two cases; (a) single stacks (stacking one cube) and; (b) multiple
stacks (stacking three cubes). In the single-stack case, our method was able to reduce the error rate by
97%. We also show that our approach can scale to capture various actions in one model, allowing us
to measure the impact of an imprecise stack of the first cube on the stacking success of the third cube.
For these complex situations, our model was able to prevent around 95% of the stacking errors. Thus,
demonstrating that our method is able to explain, predict, and prevent execution failures, which even
scales to complex scenarios that require an understanding of how the action history impacts future
actions.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Robots that act in human environments have to handle the ex-
cution of various tasks, which requires them to adapt their plan
xecution flexibly to unexpected changes in the environment [1].
ue to the complexity of these environments, we expect failures
n various forms and for various reasons [2], one example being
xecution failures. The ability to explain their own actions [3],
articularly when failures have occurred [4,5], is, therefore, an
ssential skill of such robots. However, diagnosis capabilities are
ot only crucial for detecting the causes [6] but could also be used
o learn from failures and prevent them from happening [7].

Generating explanations is conceptually based on causality
ethods [8], which are typically implemented through statistical

echniques that learn a mapping between possible causes (pre-
onditions) and the action-outcome (effect) [9,10]. First, we need

∗ Corresponding author.
E-mail addresses: diehlm@chalmers.se (M. Diehl), karinne@chalmers.se

K. Ramirez-Amaro).
ttps://doi.org/10.1016/j.robot.2023.104376
921-8890/© 2023 The Authors. Published by Elsevier B.V. This is an open access a
c-nd/4.0/).
to investigate how robots can utilize prior experience to reason
and consequently generate an explanation about what and why
an action execution went wrong [11]. For example, if a robot fails
to execute the task of stacking a cube on top of another one, it
should be able to explain that the execution failed because the
upper cube was dropped too far to the left of the lower cube.
In our previous work [11], we proposed a causal-based method
to produce explanations when a failure was detected based on a
causal Bayesian network. Upon failures, explanations were gen-
erated by contrastively comparing the variable parametrization
associated with the failed activity with its closest parametrization
that would have led to successful execution. Therefore, the next
challenge is to use the acquired experience to predict failures in
order to prevent them.

The causal relations obtained by the Bayesian networks can
be used to predict how likely a particular parametrization of
causes will produce failures. In this paper, we propose an ex-
tension of [11] which makes use of the prediction capabilities of
the learned BNs to prevent failures from happening. When the
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.robot.2023.104376
https://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2023.104376&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:diehlm@chalmers.se
mailto:karinne@chalmers.se
https://doi.org/10.1016/j.robot.2023.104376
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


M. Diehl and K. Ramirez-Amaro Robotics and Autonomous Systems 162 (2023) 104376

i
s

p
s
e
t
f
f
c

e
p
p
r
t
n
t
(
b
s
t
o
p
c
a

2

i
t
b
w
v

Fig. 1. Depicts our method to allow robots to explain, predict, and prevent failures. First, a causal model is learned from simulations (step 1, 2). Then, this model
s used to predict the success of an action given the current state and finds corrective actions in case the action is expected to fail (step 3), even in case of timely
hifted action failures. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
rediction of a failure has a high probability given the current
tate, our method finds an alternative execution state, which is
xpected to result in a successful action execution. This alterna-
ive state is found through Breadth-First-Search (BFS) in a similar
ashion as in [11], which allows the agent not only to prevent
ailures but, at the same time, to provide explanations for its
orrective actions.
Predicting and preventing errors is particularly difficult if the

ffects of an action are not immediately flawed but become
roblematic in future actions [12]. For example, the error was
roduced on the first action, but the consequence (a stacking er-
or) is only observed after the third action (in the future). We call
hese cases timely shifted action errors. In such cases, the models
eed to consider the history of the previous actions. Fig. 1 depicts
he case of a robot building a tower of four cubes. The second
red) cube is not stacked entirely centered with respect to the
ottom (blue) cube. Even if this particular stack can be considered
uccessful on its own, it negatively impacts the overall stability of
he tower, which might become a problem later after the second
r third stack. This challenging problem is also addressed in this
aper, and we show that our causal-based method scales to these
omplex cases by detecting causal links over the history of several
ctions, effectively predicting and preventing action failures.
To summarize, our contributions are as follows:

• We propose a causal-based method that allows robots to
understand possible causes for errors and predict how likely
an action will succeed.
• We then introduce a novel method that utilizes these pre-

diction capabilities to find corrective actions which will
allow the robot to prevent failures from happening.
• Our algorithm proposes a solution to the complex challenge

of timely shifted action effects. By detecting causal links
over the history of several actions, the robot can effectively
predict and prevent failures, even if the root of a failure lies
in a previous action.

. Related work

In this related work section, we initially review how causality
s currently used in the area of robotics, then discuss different
ypes of explainable models that describe cause–effect relations
efore presenting other methods for failure prevention. Finally,
e review the concept of contrastive explanations, which is a
ital aspect of our failure explanation and prevention method.
2

2.1. Causality in robotics

Even though the importance of causality is increasingly ac-
knowledged, it is still an underexplored topic in the robotics
community [5,13]. One of its important purposes is the ability
to discern task-relevant from irrelevant variables in data. This
feature is taken advantage of, for example, in CREST [14] (Causal
Reasoning for Efficient Structure Transfer), where causal interven-
tions on environment variables are used to discover which vari-
ables affect a Reinforcement Learning (RL) policy. Consequently,
excluding irrelevant variables was found to positively affect the
generalizability and sim-to-real transfer of the policy. Another
application was presented in [15], where a set of task-agnostic
learning rules was defined to learn causal relations in a physical
task. In particular, through repeated interaction with its envi-
ronment, a humanoid iCub robot learned a causal relationship
between the weight of objects and its ability to increase the water
level, while other variables, like color, were found to be irrelevant.
Another paper [16] has the objective of learning causal relations
between actions in household tasks. From human demonstrations
in Virtual Reality, they discovered a causal link between opening
a drawer and retrieving plates. A causal approach to tool affor-
dance learning was presented in [13]. Their goal was to equip a
robot with the ability to work with new tools more effectively
through prior experience with different tools. Also [17] exploits
the ability to learn the causal relevance of variables to discover
dependencies between objects, actions, constraint features, and
the task of grasp selection. Their main objective is to find the
best grasp conditional on constraints and object features. The
presented approaches and our method have in common that the
framework of causality is used to (a) detect causal links between
certain preconditions in the environment and the success of an
action [14–16] and (b) make use of that knowledge to do some-
thing in an optimal fashion (e.g., picking the best tool [13] or
grasp [17]). However, those methods have not explored how this
causal understanding can be used to explain, predict and prevent
failures from happening. Furthermore, none of these works dis-
cussed the problem of timely shifted action errors, which we are
addressing in this paper.

2.2. Learning explainable models of cause–effect relations

The planning community captures cause–effect relationships
in the form of (probabilistic) planning operators [18]. Some works

proposed the concept of task execution models, which combines



M. Diehl and K. Ramirez-Amaro Robotics and Autonomous Systems 162 (2023) 104376

s
c
t
n
a
i
N
s
t
e
d
a
b
t
p
s
g
t
t
c
i
f
e
a

2

s
k
f
T
m
a
u
e
a
t
s
a
t
M
t
d
e
p

2

E
e
m
f
c
f
u
d
a
c

3
u

a

3

i
a
s

o
v
x
c
c
a
a
i
C
g
d
t
m
c

a

ymbolic preconditions and a function approximation for the suc-
ess model [9], based on Gaussian Process models. They evaluate
heir method by learning how to grasp handles. The authors
oted that a simulated environment could be incorporated for
faster and more extensive experience acquisition, as proposed

n [17], which is a technique we employ to learn our Bayesian
etworks. Human virtual demonstrations have been used to con-
truct planning operators to learn cause–effect relationships be-
ween actions and observed state-variable changes [18]. Bauer
t al. learn probabilistic action effects of dropping objects into
ifferent containers [10], with the goal of generalizing the prob-
bility predictions for a variety of objects, like bowls and bread
oxes. They utilize an ontology to find out how closely related
he objects are but do not consider object properties. Our ap-
roach has several advantages over the works mentioned in this
ubsection. While we share the general objective of learning
eneralizable prediction models that map preconditions to ac-
ion effects, our proposed causal approach allows us, as opposed
o [10], to learn which object properties and environment pre-
onditions are relevant for the investigated actions. This feature
s also the basis for our method to explain, predict and prevent
ailures. Furthermore, our method scales to scenarios where the
ffect of a previous action has an impact on subsequent actions,
s opposed to [9].

.3. Failure prevention

In [2], approaches for fault detection and diagnosis in Robotic
ystems are classified into data-driven, model-based, and
nowledge-based. The ability to diagnose and correct robot action
ailures is discussed in [7] for the problem of robot grasping.
hey proposed a method that diagnoses potential causes (un-
et preconditions) for a failure and, through sampling, finds
parametrization that maximizes predicted execution success
nder the known execution model. This method works well when
rrors occur immediately after the action. We, however, propose
model that captures the action history in order to prevent errors
hat either occur in the future or build up cumulatively over
everal actions. In [12] the authors propose a method that would
lso be able to detect the cause of failures, even if it is not related
o the currently executed action. They utilize Hierarchical Hidden
arkov Models (HHMMs) to represent and track failures over

ime, which allows them to generate a list of possible causes with
ifferent likelihoods when a failure is encountered during a plan
xecution. However, they have not utilized this information to
revent failure through corrective actions, as we propose.

.4. Contrastive explanations

An important element of many explainable AI methods like
xplainable AI Planning (XAIP) [19] is the concept of contrastive
xplanations. This concept draws parallels to the way that hu-
ans generate explanations [4]. Typically the focus of work that

alls under the umbrella of XAIP are questions like why the plan
ontains a particular action a1 and not action a2? [19,20] or they
ocus more on the actual communication of plan execution fail-
res [21]. We utilize this concept in a different way and for a
ifferent purpose. We search for contrastive failure causes, which
llow us to explain why failures might occur in the future and find
orrective actions to prevent them from happening.

. Our approach to explaining, predicting and preventing fail-
res

We propose and present a multi-step approach to predicting
nd preventing failures, which consists of four main steps:
3

1. We start by explaining the task of variable identification
(Section 3.1). In this step, an action is represented in terms
of a set of random variables that describe possible precon-
ditions and action effects.

2. Then, we learn a causal model using the identified variables
from step 1 based on BN learning (Section 3.2). BN learning
is typically divided into learning the causal connections
between the variables (structure learning) and learning
conditional probability distributions (parameter learning).

3. In Section 3.3, we elaborate on how we use the obtained
causal model to explain failures after they have occurred.

4. Finally, in Section 3.4, we expand our method to address
the problem of predicting when a failure is likely to occur
and preventing failures.

.1. Variable definitions and assumptions

Our method for explaining, predicting, and preventing failures
s based on detecting causal relations between possible causes
nd effects of an action.1 We describe each action in terms of a
et of random variables X = {X1, X2, . . . , Xn}. The choice of the
number of (n) variables is up to a human experiment designer.
However, there are several aspects that need to be considered: we
conceptually split X into a subset of treatment (cause) variables
C ⊂ X and outcome (effect) variables E ⊂ X. Then, the goal is to
measure the effect of treatment variables on the action outcome.
In other words, C and E differ as we can decide and set values for
variables in C , while outcome variables are not actively set but
measured at the end or throughout the experiment.

We can collect data for learning causal models either from
simulations or from the real world. A data sample d consists
f a particular parametrization of the previously defined set of
ariables X, which we denote as d = {X1 = x1, X2 = x2, . . . , Xn =

n}, where n denotes the number of variables, and x1, . . . , xn the
oncrete variable values of that particular parametrization. We
urrently assume that each collected data sample d is complete,
nd thus contains a value for all variables in X. However, there
re also Bayesian network learning methods that can deal with
ncomplete datasamples [22]. We sample values for the causes
randomly. Randomized controlled trials are referred to as the

old standard for causal inference [3] and allow us to avoid the
anger of unmeasured confounders. Consequently, we can call
he detected relations between the variables X causal and not
erely correlations, which can be spurious. Another advantage of
ausal models is that they can also answer interventional queries.
We describe the success of an action in terms of a set of vari-

bles G ⊂ E. Furthermore, Xgoal = { dgoal1 , dgoal2 , . . . , dgoalh} is a set
that contains all possible variable parametrizations that denote
a successful action execution, where h denotes the number of
possible successful action outcomes. Each goal parametrization
dgoall∀l ∈ {1, 2, . . . , h}, describes one possible variable assign-
ment of G, that are possible successful action outcomes. Then,
an action is successful iff its parametrization of goal variables
dg = {Xg1 = xg1 , Xg2 = xg2 , . . . , Xgm = xgm} of G, dg ∈ Xgoal, where
Xgi ∈ G ∀i = {1, . . . ,m}, m denotes the number of variables
that are relevant for specifying the success of an action and
xg1 , . . . , xgm are the concrete variable values of variables in G.
Thus dg is a sub-sample of the corresponding action parametriza-
tion d. In general, G does not necessarily need to contain all
variables E but depends on the actual goal that one aims to mea-
sure, which we will illustrate in the following two examples: let
us assume we want to measure the effect of two different cancer
treatments T = {treat1, treat2} on a variable which describes

1 Note that our method can be applied to actions such as stacking a cube, or
tasks, such as stacking several cubes.



M. Diehl and K. Ramirez-Amaro Robotics and Autonomous Systems 162 (2023) 104376

i
t
m
F
t
c
b
e
w
a
T
d
i
p

n
o
b
j
t
p

P

T
D
i
a
e
c
r
d
k
d
c
w
o
d

3

a
a
t
d
w
r
a
r
a
d
p
a
a
t
i

G

{

L
M
u

3

c
B
A
t
o
t

M
s
p
A
t
c

f the patient is cancer-free F = {1, 0} after the treatment. In
his case, the only outcome variable H is also the one we use to
easure the treatment success, thus G = E = {H} and m = 1.
urthermore we can only define one possible dgoal = {F = 1},
hus h = 1. However, let us now assume that our treatments
ould have two potential side effects S1 and S2, of which S1 might
e deadly as well and must therefore be avoided. In this second
xample not all outcome variables are part of the variables that
e use to define the action success G = {H, S1} ∈ E = {H, S1, S2}
nd dgoal = {F = 1, S1 = 0}. Therefore, m = 2 and h = 1.
hese two examples showed that the choice of G and dgoal is task
ependent. It is out of the scope of this paper to learn Xgoal and
nstead we assume it is provided. However, the robot has no a-
riori knowledge about which variables in X = X1, X2, . . . , Xn are

in C or E, nor how they are related.

3.2. Our proposed pipeline to learn causal models

A Bayesian Network (BN) is defined as a directed acyclic graph
(DAG) G = (V, A), where V = {X1, X2, . . . , Xn} represents a set of
odes which correspond to the random variables X that describe
ur action, and A is the set of arcs [23] that denotes all relations
etween the variables. This dependency allows to factorize the
oint probability distribution of a BN into local probability distribu-
ions, where each random variable Xi only depends on its direct
arents ΠXi :

(X1, X2, . . . , Xn) =
n∏

i=1

P(Xi|ΠXi ) (1)

o learn a BN from data, we first learn the structure of the
AG and then retrieve the local probability distributions, which
s referred to as parameter learning. Many structure learning
lgorithms cannot handle continuous variables as parents of cat-
gorical variables [23,24]. We, therefore, perform quantile dis-
retization [25] on all continuous random variables in X. The
ange of each variable in X depends on the collected data samples
. Quantile discretization divides each continuous variable X into
intervals which contain an approximately similar number of
ata samples d who fall into these intervals. During this dis-
retization step, we retrieve a list of all variable intervals which
e denote as Xint. In the current pipeline we choose the number
f discretization intervals heuristically. Please refer to [26] for a
iscussion on more automated discretization methods.

.2.1. Structure learning
To learn the causal relations G = (V, A) between the vari-

bles, methods such as the PC2 [27] algorithm can be used. This
lgorithm is a constraint-based algorithm, and it uses statistical
ests to determine conditional independence relations from the
ata [25]. PC is one of many structure learning algorithms [22],
hich could be used with equal eligibility for this step. Please
efer to [22] for an extensive review of other structure learning
lgorithms. Note that learning plausible assumptions about causal
elations from data is still an active field of research [28]. For ex-
mple, in some cases, it is challenging to uniquely determine the
irection of causal relations without additional interventional ex-
eriments, additional domain knowledge, or certain assumptions
bout the data distribution [29]. Therefore, in the following we
ssume that the causal relations of G indeed accurately estimate
he data and the underlying physical processes of the action that
s represented by G.

2 The PC algorithm is named after its two authors Peter Spirtes and Clark
lymour.
4

3.2.2. Parameter learning
The purpose of this step is to fit functions that reflect the local

probability distributions, of the factorization in formula (1). As we
work with discretized variables, the objective is the estimation
of all entries of the conditional probability tables P(Xi|ΠXi ) ∀i =
1, . . . , n}. Popular methods for this step include the Maximum
ikelihood Estimator (MLE) or bayesian methods such as the
aximum-A-Posteriori (MAP) estimation. In the following, we
se MLE to estimate the local probability distributions.

.3. Our proposed method to explain failures

In our previous work [11], we proposed a method to generate
ontrastive failure explanations, which uses the obtained causal
ayesian network to compute success predictions (summarized in
lg. 1). The goal of our earlier method was to explain failures after
hey were committed by the robot. Therefore, one of the inputs
f this procedure is the variable parametrization that resulted in
he action that will produce a failure xfailure, which is defined as
a parametrization d, whose sub-sample dg /∈ Xgoal. Therefore, Alg.
1 finds the closest discretized variable parametrization xsolutionint ,
whose sub-sample dg ∈ Xgoal and its corresponding success
probability prediction psolution.

Algorithm 1 Get closest successful variable parametrization from
causal model

Input: failure variable parametrization xfailure, structural equa-
tions P(Xi|ΠXi ), discretization intervals of all model variables Xint,
success threshold ϵ, goal parametrizations Xgoal

Output: solution variable parametrization xsolutionint , solution
success probability prediction psolution
1: procedure GetClosestSuccInter-

vals(xfailure, P(Xi|ΠXi ), Xint, ϵ,Xgoal)
2: xcurrentint ← GetIntervalFromValues(xfailure, Xint)
3: P ← GenerateTransitionMatrix(Xint)
4: q← [xcurrentint ]
5: v← []

6: while q ̸= ∅ do
7: node← Pop(q)
8: v← Append(v, node)
9: for all transitions t ∈ P(node) do

10: child← Child(P, node, t)
11: if child ̸∈ q, v then
12: psolution = P(dg ∈ Xgoal|ΠG = child)
13: if psolution > ϵ then
14: xsolutionint ← child
15: Return(psolution, xsolutionint )
16: else
17: q← Append(q, child)

After retrieving the current intervals xcurrentint from the con-
tinuous variable parametrization (GetIntervalFromValues: L-2,
Alg. 1), a transition matrix P is generated (GenerateTransition
atrix: L-3, Alg. 1). This transition matrix provides all possible
ingle-interval-change transitions that will be used for the search
rocedure to find the closest successful variable parametrization.
state in the search tree is made up of a complete parametriza-

ion of the parent variables of the goal variables ΠG. Let us
onsider the example of X = {X1, X2} with two intervals x′, x′′
each. Then, all possible valid transitions for node = (X1 =

x′, X2 = x′) would be child1 = (X1 = x′, X2 = x′′) or child2 =
(X1 = x′′, X2 = x′). In lines 6–17 (Alg. 1), the closest variable
parametrization that fulfills the goal criteria of P(dg ∈ Xgoal|ΠG =

child) > ϵ, is searched for based on Breadth-First-Search (BFS). ϵ
is the success threshold and can be set heuristically. Choosing ϵ is



M. Diehl and K. Ramirez-Amaro Robotics and Autonomous Systems 162 (2023) 104376

a
s
r
v
c
i
1
a
1
p

i
i
r
B
b
i
B
i
t
t
x
t

a
G
t
n
o

3

o
c
s
p
p
T
f
p
t
s
c
t
f
t
t
F
c
t

Fig. 2. Exemplifies how contrastive explanations are generated from the BFS search tree.
Source: Figure adapted from [11].
trade-off between action success accuracy and search time. The
earch time increases with the value of ϵ, the number of causally
elevant parent variables, and the number of discretization inter-
als per variable. Therefore, one could start with a high ϵ value
lose to 1.0 and reduce this value in case the processing time
s too long for the given application. The function Pop (L-7, Alg.
) takes and removes the first element from the frontier list q
nd assigns it to the variable node. The function Child (L-10, Alg.
) retrieves the variable parametrization from the children of all
ossible transitions at node.
Our approach to retrieve the closest success parametrization

s motivated by Occam’s razor: the simplest failure explanation
s found through the least number of interval changes that are
equired to transit from unsuccessful to successful execution.
readth-First-Search is guaranteed to find the shortest distance
etween a selected node and any goal node in a directed graph
n terms of the number of transitions, and we, therefore, use
FS to find xsolutionint . In our current approach, every transition
s weighted equally as we try to minimize human input. Then,
he methodology behind our explanation generation is comparing
he current variable intervals that lead to an execution failure
currentint with the closest intervals that would have been expected
o lead to a successful task execution xsolutionint .

This process is visualized in Fig. 2, exemplified on two vari-
bles X and Y , which both have a causal effect on variable Xout.
iven that xout = 1 ∈ Xgoal would denote the successful action
hat is described through this causal model, the resulting expla-
ation would be that the action has failed because X = x1 instead
f X = x2 and Y = y4 instead of Y = y3.

.4. Our proposed method to predict and prevent failures

In [11], we have used Alg. 1 to explain the reasons for a failure
nly after the failure has occurred. However, the causal model
an also be used to predict the success probability of the current
tate prior to the actual execution. In this article, we, therefore,
ropose an extension of our method to prevent failures from hap-
ening when an error has been predicted with a high probability.
his extension is presented in the new Alg. 2. In particular, we
irst retrieve the discretization intervals for the current variable
arametrization in (GetIntervalFromVal: L-2, Alg. 2) and query
he causal model to predict the success probability for the current
tate (L-3, Alg. 2). In case the predicted probability is above a
hosen threshold of ϵ, we continue with the execution based on
he current parameters (L-4, Alg. 2). Please refer to Section 3.3
or a discussion on how to heuristically choose ϵ. If, however,
he probability is below the threshold (L-5, Alg. 2), we retrieve
he closest success parametrization through Alg. 1 (L-7, Alg. 2).
inally, we use the middle values of the corrected intervals as
oncrete parameters to retrieve a corrected variable parametriza-
ion x which is defined as a variable parametrization d,
success

5

whose subsample dg ∈ Xgoal (MiddleValFromIntervals: L-8,
Alg. 2). Note the algorithm only changes the parametrization
for intervals that have been deemed responsible for the fail-
ure (thus variables with interval changes) and keep the current
parametrization for variables that are not problematic. The out-
put parametrization xsuccess can then be used to manipulate the
environment to ensure the action will succeed.

Algorithm 2 Predict and prevent failures
Input: current variable parametrization xcurrent, structural

equations P(Xi|ΠXi ), discretization intervals of all model variables
Xint, success threshold ϵ, goal parametrizations Xgoal

Output: Concrete success variable parametrization xsuccess
1: procedure PreventFail-

ures(xcurrent, P(Xi|ΠXi ), Xint, ϵ,Xgoal)
2: xsolutionint ← GetIntervalFromVal(xcurrent, Xint)
3: psolution = P(dg ∈ Xgoal|ΠG = xsolutionint )
4: xsuccess ← xcurrent
5: if psolution < ϵ then
6: xfailure = xcurrent
7: psolution, xsolutionint ←

GetClosestSuccIntervals(xfailure, P(Xi|ΠXi ),
Xint, ϵ,Xgoal)

8: xsuccess ←
MiddleValFromIntervals(xsolutionint , xcurrent, Xint)

9: return(xsuccess)

4. Experiments

We evaluate our method to predict and prevent execution
failures for the problem of stacking cubes. We conducted two
different experiments:
Experiment 1: First, we evaluate our learned causal model on
a simple action of stacking one cube, see Fig. 3.a. From this
experiment, we assess the correction abilities of the obtained
causal model (see, Section 4.1).
Experiment 2: Then, we assess our proposed method in a complex
task of stacking multiple cubes to build a tower of four cubes.
With this experiment, we investigate the case of performing the
stacking action three times in a row (see Section 4.2).

For both experiments, we design an environment that contains
two types of cubes: CubeDown and CubeUpi, with i being the
stacking order of the upper cubes (e.g., CubeUp1 is the cube
that is stacked first). CubeDown is the bottom cube of a tower
that, in our case, does not need to be rearranged or requires
any movement prior to the stacking actions. All cubes have a
fixed size of 5 cm. To describe the stacking action, we define

four types of variables: xOffi, yOffi, dropOffi, onTopi, where



M. Diehl and K. Ramirez-Amaro Robotics and Autonomous Systems 162 (2023) 104376

c
d
w
c
a
t
p
g
x
d

X

Fig. 3. (a) visualizes the variables that are used to describe the stacking action and (b) defines their meaning.
Source: Figure adapted from [11].
i

i denotes the corresponding cube. Figs. 3.b and 4.b provide a
detailed description of the variables for both experiments.

The data collection for training and evaluating the causal mod-
els is conducted in Unity3d, which employs the Nvidia PhysX
engine for physics simulations. Inside Unity, we set up 400 par-
allel table environments to speed up the simulation process and
data collection. At the beginning of every stacking experiment,
the variable values for xOffi, yOffi, dropOffi are randomly sam-
pled, and the cube positions are initialized accordingly. Note that
the simulations are conducted without the existence of any robot
and only involve cubes dropping from a predefined position. As a
result, the simulations are less conservative than the real world.
However, in [11], we have experimentally determined approx-
imately 70% congruence in terms of stacking success between
simulated stacks and stacks that were performed by a real robot.

4.1. Experiment 1 setup: Stack-1-Cube scenario

In our first experiment, the goal is to stack only one single
cube on top of the bottom cube (see Fig. 3.a). As the initial step,
we deploy a training phase to collect data for learning the causal
Bayesian network. For this purpose, we run 40,000 simulations of
randomized single-stack actions. We define the set of variables
that is used for the first experiment (E1) with i = {1} as XE1 =

{xOff1, yOff1, dropOff1 onTop1}. We sample randomly values
for xOff1, yOff1 ∼ U[−3.0,3.0] (in cm), dropOff1 ∼ U[0.5,10] (in
m). onTop1 = {True, False} is not sampled but automatically
etermined after the stacking process. From this training data,
e learn the graphical representation of the variables and fit the
onditional probability distributions. For each conditional value
ssignment, we then determine the closest variable parametriza-
ion that would lead to a successful execution based on the
rocedure, which is elaborated in Section 3. This allows us to
enerate a ‘lookup’ table for the best possible corrections for each
-y-dropOffset parametrization that we could possibly encounter
uring a single stack action.
The goal set G = {onTop1} for this experiment describes the

stacking success for the cube that is stacked, and consequently,
we denote the action as successful iff onTop1 = True. Thus

goalE1 = {onTop1 = True}. We then evaluate the impact of
having the obtained correction model in terms of cube-stacking
success by comparing two cases (datasets): one without correc-
tions from the model and one including the corrected stacking
positions. Both test datasets use the same sample seed, different
from the train-dataset seed. However, the variable distributions
for training and testing are similar. Our hypothesis for this exper-
iment is that deploying our method to adapt the stacking position
prior to dropping the cube will significantly improve the stacking
success.
6

4.2. Experiment 2 setup: Stack-3-Cubes scenario

Our second experiment (E2) considers the more complex
scenario of stacking three cubes on top of a base cube (see
Fig. 4.a). Unlike experiment 1, we need three upper cube vari-
ables: CubeUp1, CubeUp2 and CubeUp3 instead of a single upper
cube. Now, the goal of the robot is to build a tower of cubes by
stacking CubeUp1 on top of CubeDown, CubeUp2 on top of CubeUp1
and, finally, CubeUp3 on top of CubeUp2. Our new set of variables
s XE2 = {xOffi, yOffi, dropOffi, onTopi}, where i = {1, 2, 3}.
In this case, we expect that the success of each stacking action
becomes increasingly difficult the higher the tower of cubes.

To test this second experiment, we implement some slight
adaptations to the simulation environment. For example, every
3 s, the next cube is dropped until the whole tower is complete.
If a previous stack has failed, the whole experiment is consid-
ered a failure, and no more cubes are stacked on top. Therefore,
the experiment is terminated. Furthermore, the offset between
two cubes is always calculated with respect to the previously
stacked cube (e.g., between CubeUp1 and CubeDown or CubeUp2
and CubeUp1), as exemplified in Fig. 4.b.

Similarly to the first experiment, we begin with a learning
phase. Due to the requirement of the increased samples, we
conducted a total of 800,000 experiments. In addition, unlike
the uniformly distributed samples in experiment 1, we sample
from a Gaussian distribution for this experiment to achieve a
more equally distributed ratio between failures and successful
stacks. Formally, xOffi, yOffi ∼ N[0.0,2.0] (in cm), dropOffi ∼

N[0.1,3.0] (in cm) for i = {1, 2, 3}. Again, onTopi = {True, False}
is not sampled but automatically determined after each stack-
ing action. Also note that samples are limited to the ranges of
xOffi, yOffi = [−3.0, 3.0] and dropOffi = [0.5, 10]. This data
is used to learn two different Bayesian networks: One only con-
siders the first stacking action, thus representing a similar case
as in experiment 1 (i = 1), only trained on normally distributed
data. For this first model, we take a subset of 40,000 samples. The
second model, trained on all 800,000 samples, represents all three
cubes (i = 1, 2, 3) in one graphical representation.

We evaluate this experiment in two ways. First, we
learn a BN only on the first stacking action, which we call
1− Stack− Modelg (g denoting that the data was sampled
from Gaussian distributions), and we want to evaluate how use-
ful this model is for failure prediction and prevention in later
stacks. We do not reuse the model from the first expriment
(1− Stack− Modelu, where u = uniform distribution) since
we expect some differences due to the adapted sampling dis-
tributions (E1: Uniform and E2: Gaussian distributions). Then,
we learn a second model that captures all three stacks in one
model, which we call the 3− Stack− Model . Consequently, we
g



M. Diehl and K. Ramirez-Amaro Robotics and Autonomous Systems 162 (2023) 104376

s
a
T
s
t
1
c
h
a

5

t
t

5

g
t
p
s
o
e

5

s
b
d
i
o
T
i
b
a
t
t
o

Fig. 4. (a) visualizes the variables that are used to describe multiple stacks and (b) their meaning. Note the offset variables are measured always with respect to
the previous cube.
S

d
i
c
t
d

5

(
i
a
b
o
1
p
d
c
d
d
t

created three different test datasets, each consisting of 40,000
samples, following a similar distribution but other seed as in
the training dataset. The first test dataset represents the case of
no corrections (our baseline), followed by applying the smaller
model on each of the cubes (no history case). Finally, we used the
complete 3− Stack− Modelg to correct the data accordingly.

The goal set G = {onTop3} for this experiment indicates the
tacking success of the third cube, and we denote the action
s successful iff onTop3 = True. Thus XgoalE2 = {onTop3 =

rue}. Since the experiment was stopped, if one of the previous
tacks has failed, a successful third stack will imply success in
he other two stacks as well. We hypothesize that, while the
− Stack− Modelg will improve the stacking success of the
omplete tower, the 3− Stack− Modelg will be even more
elpful since it takes the entire history of all single stacking
ctions into account.

. Results and discussion

In this section, we present and discuss the results of the
wo experiments introduced in Section 4. We set the probability
hreshold which distinguishes a failure from success to ϵ = 0.8.

.1. Assessing the obtained causal models

We first analyze the obtained causal models in terms of the
raphical structure of the learned BN. Then, we explain the ob-
ained conditional probabilities that were fitted around the ex-
eriment data. We validate the correctness of the model to make
ure that the predictions are not based on a flawed understanding
f cause–effect relations, which could result in wrong failure
xplanations and obstruct failure prevention.

.1.1. Obtained causal model for Experiment 1
Fig. 5 visualizes the obtained causal relations between the

ubset of variables XE1 = {xOff1, yOff1, dropOff1 onTop1},
y applying the PC structure learning algorithm to the collected
ata. The results exhibit dependencies of all the cube position-
ng variables (dropOff1, xOff1, yOff1) on the stacking outcome
nTop1. The variables from XE1 were discretized according to
able 1. For example, the variable of dropOff1 has three possible
ntervals (z1, z2, and z3). Fig. 6 visualizes the obtained proba-
ilities for the stacking success of CubeUp1 conditional on the
nalyzed variables. Generally, for all three drop-offset intervals,
he causal model showed large stacking success probabilities cen-
ered around smaller x/y-offsets and decreases the larger the x/y-
ffsets become. This decrease in probability is faster for higher
7

Fig. 5. Obtained 1− Stack− Modelu Bayesian network structure for the
tack-1-Cube scenario.

Table 1
Enlists the obtained discretization intervals for the variables XE1 (in cm).
dropOff1 xOff1 yOff1

z1 : [0.5, 3.7] x1 : [−3.0,−1.8] y1 : [−3.0,−1.8]
z2 : (3.7, 6.8] x2 : (−1.8,−0.6] y2 : (−1.8,−0.6]
z3 : (6.8, 10.0] x3 : (−0.6, 0.58] y3 : (−0.6, 0.6]

x4 : (0.58, 1.78] y4 : (0.6, 1.8]
x5 : (1.78, 3.0] y5 : (1.8, 3.0]

drop-offset positions (e.g., compare the two drop-offset intervals
of z1 and z3). For the most extreme x/y-offset intervals, the model
isplays a stacking success of below 0.2 (red areas in Fig. 6), which
s credible considering that the center of gravity of the stacked
ubes in these x/y-offset intervals is close to the limits or outside
he surface of the bottom cube. We conclude that the probability
istributions trained on simulated data are plausible.

.1.2. Learned causal model for Experiment 2
The obtained DAGs for the two evaluation cases

1− Stack− Modelg and 3− Stack− Modelg ), are displayed
n Fig. 7. For both cases, we used the PC structure learning
lgorithm and discretized the used variables according to Ta-
le 2. In the case of the 1− Stack− Modelg (i = 1), we
btained a slightly different dependency structure than in the
− Stack− Modelu that we obtained from experiment 1. In
articular, we notice from Fig. 7 that the drop-offset variable
ropOff1 is now independent of the stacking outcome onTopi
ompared to the obtained model shown in Fig. 5 due to the
ifferent sampling distributions. In the new model, the Gaussian
istribution for dropOff1 samples created more values around
he mean of 1 cm, and smaller drop-offsets are shown not to



M. Diehl and K. Ramirez-Amaro Robotics and Autonomous Systems 162 (2023) 104376

r
t
a
w
w

i
t
F
d
n
t
o

s
c
o

5

t

e
i

Fig. 6. Visualization of the conditional probability table for P(onTop1 = 1|ΠonTop1 ). xOff1 , yOff1 are discretized into 5 intervals and dropOff1 . Values for xOff1 ,
yOff1 are in cm.
Fig. 7. Obtained Bayesian network structure for the 3-Stack-Cube scenario. In (a) the causal model obtained from only the first stacking action is compared with (b)
the complete causal model covering all three stacks.
Table 2
Enlists the obtained discretization intervals for the variables XE2 (in cm).
dropOff1,2,3 x/yOff1,2 x/yOff3

z1 : [0.5, 1.9] x1 : [−3.0,−1.4] y1 : [−3.0,−0.7]
z2 : (1.9, 3.6] x2 : (−1.4,−0.4] y2 : (−0.7, 0.7]
z3 : (3.6, 10] x3 : (−0.4, 0.4] y3 : (0.7, 3.0]

x4 : (0.4, 1.4]
x5 : (1.4, 3.0]

have any measurable impact on the stacking success. Structure
learning methods find causal models that most accurately fit the
underlying data. If one of the variables, such as dropOff1, is not
ecognized to have a causal impact on the outcome of the action,
his variable simply will not play a role in the failure explanations
nd preventions. In the particular case of Experiment 2, failures
ill not be associated with too high drop-offset positions but only
ith the x/y-offsets of the three stacking actions.
A similar graph dependency structure between the variables

s observed in the 3− Stack− Modelg (i = 1, 2, 3), where
he dropOffi variables are independent of the stacking success.
rom Fig. 7.b, it becomes evident that the success of each stack
epends on an increasing number of parent nodes. Interestingly,
ot only the x/y-offset variables but also previous onTopi impact
he stacking success (e.g., consider the arrow from onTop2 to
nTop3). The reason for these causal links is the termination

of the stacking experiments in cases where the previous stack
has already failed. We conclude that the 3− Stack− Modelg
uccessfully captures the dependence of earlier stacks on the out-
ome of later stacking actions, thus encoding the action history in
ne causal model.3

.2. Evaluation of prediction and failure prevention capabilities

Next, we analyze the ability of our obtained causal models
o predict and avoid potential future failures by correcting the

3 Note that we do not visualize the conditional probability table for this
xperiment due to the increased number of variables that the stacking outcome
s conditioned on.
 c

8

Table 3
Percentage of failed stacking actions in Experiment 1 (40,000 data samples). The
displayed results were obtained with (ϵ = 0.8).
Stack-1-Cube Failure percentage Corrected failures

no model 74% 0%
1− Stack− Modelu 1.9% 97%

cubes’ stacking position to the closest variable parametrization
(as explained in Section 3.4) that is predicted to lead to successful
execution. Practically, when the robot predicts a failure, it will
modify its movements to the closest position in which the robot
is likely going to succeed.

5.2.1. Failure prediction and prevention in Experiment 1
The results from the test datasets of experiment 1 are dis-

played in Table 3. Out of 40,000 collected samples of the ground-
truth dataset, almost 30,000 stacking experiments failed (around
74%) without corrective actions. Our model could fix and pre-
vent 97%4 of these failures. Given the obtained failure preven-
tion of 97%, we conclude that our model is highly beneficial for
predicting and avoiding future errors.

5.2.2. Failure prediction and prevention in Experiment 2
The failure prediction and prevention capabilities for experi-

ment 2 are analyzed in Table 4. Without any corrective actions
(Table 4 - no correction), we sampled around 81% stacking fail-
ures. 22% of the failures happened during the first stacking action,
42% during the second, and 36% during the third. Thus the failure
probability increases with the height of the tower. The decreasing
number of errors for the third stacking action can be attributed
to the limited number of data samples, as less than 50% of all
experiments reach the third stack. As the second row of Table 4
shows, applying the 1− Stack− Modelg on all three stacking
actions reduced the number of stacking failures significantly by

4 The failure reduction achieved by the 1− Stack− Modelu can be
omputed from the failure percentages in Table 3 as 1− 1.9% .
74%



M. Diehl and K. Ramirez-Amaro Robotics and Autonomous Systems 162 (2023) 104376

t
f
t
a

5
u

e
c
f
p
3
t
m
1
t
s
o
a
s
i

c

t

Table 4
Percentage of failed stacking tasks in Experiment 2 (40,000 data samples). The
displayed results were obtained with (ϵ = 0.8).
Stack-3-Cubes Fail. perc. Fail in 1 Fail in 2 Fail in 3

no correction 81% 22% 42% 36%
1− Stacks− Modelg 18% 5% 12% 83%
3− Stack− Modelg 4.3% 0% 0.5% 99.5%

Table 5
Two examples for failure prevention. Corresponding real-world experi-
ments are visualized in Figs. 8 and 9.
Input Input

interval
Curr.
succ.
prob.

Closest
solution
interval

Exp.
succ.
prob.

Example 1:

xOff1 = 0.02
yOff1 = 0.0
dropOff1 = 0.01
xOff2 = 0.01
yOff2 = 0.0
dropOff2 = 0.01
xOff3 = 0.0
yOff3 = 0.0
dropOff3 = 0.01

x5
y3
z1
x4
y3
z1
x2
y2
z1

0.05

x3
y3
z1
x4
y3
z1
x2
y2
z1

0.96

Explanation: The first cube was stacked too far to the right.

Example 2:

xOff1 = 0.01
yOff1 = −0.01
dropOff1 = 0.01
xOff2 = 0.01
yOff2 = −0.01
dropOff2 = 0.01
xOff3 = 0.01
yOff3 = −0.01
dropOff3 = 0.01

x4
y2
z1
x4
y2
z1
x3
y1
z1

0.04

x3
y2
z1
x4
y2
z1
x2
y2
z1

0.82

Explanation: The first cube was stacked too far to the right
and the third cube was stacked too far to the right and back.

78%.5 Applying the 3− Stack− Modelg even prevents 95%6 of
he failures. We, therefore, conclude that both models prevent
ailures well. As expected, the 3− Stack− Modelg outperforms
he 1− Stack− Modelg , due to capturing the causal effects over
ll three stacking actions in one single model.

.2.3. Explanation & prevention of timely shifted action errors: Eval-
ation on the physical robot
We demonstrate the ability of the 3− Stack− Modelg to

xplain and prevent timely shifted action errors in two physical
ube stacking tasks (see Table 5). For each example, we per-
ormed six real-world experiments; three for the initial variable
arametrization and three for the correction proposed by the
− Stack− Modelg . The examples showcase scenarios where
he tower did not fall directly when the error had been com-
itted but only became evident at a later stage. In example
(see Table 5, Fig. 8), the first cube has been stacked far to

he right. This did not lead to a failure immediately, but after
tacking the second (1 out of 3 times) or third cube (2 out
f 3 times), the tower fell. Both models (3− Stack− Modelg
nd 1− Stack− Modelu) detected that the culprit was the first
tacking action and not the second or third. Taking each stack
ndividually would have also yielded a correction of the first

5 The failure reduction achieved by the 1− Stack− Modelg can be
omputed from the failure percentages in Table 4 as 1− 18%

81% .
6 The failure reduction achieved by the 3− Stack− Modelg can be

computed from the failure percentages in Table 4 as 1− 4.3% .
81%

9

Table 6
Confusion matrix for success prediction with the
1− Stack− Modelu .

Predicted
as correct

Predicted
as failure

actually correct 15.1% 11.1% 26.2%
actually a failure 0.7% 73.1% 73.8%

15.8% 84.2% 100%

Table 7
Confusion matrix for success prediction of 3− Stack− Modelg
for ϵ = 0.8.

Predicted
as correct

Predicted
as failure

actually correct 0.2% 18.9% 19.1%
actually a failure 0.0% 80.9% 80.9%

0.2% 99.8% 100%

stacking action since the 1− Stack− Modelu
7 predicts a suc-

cess probability of < 0.2 (Fig. 6), despite the tower not failing in
reality. However, in example 2 (see Table 5, Fig. 9), we investi-
gated a case where the 1− Stack− Modelu did not predict any
errors since each stack looks perfectly fine on its own. Only due
to the cumulative effect of several offsets did we get a failure at
the last stack of cube 3 (3 out of 3 cases). Without the history
of the 3− Stack− Modelg , we would not be able to correct
this example. In both examples, the corrected version by the
3− Stack− Modelg succeeded in all three trials.8

6. Discussion of the obtained results

Despite the superiority of the 3− Stack− Modelg when
it comes to failure prevention, the 1− Stack− Models per-
form remarkably well. One indicator for this success can be
found in the confusion matrix (see Table 6). Table 6 shows that
the 1− Stack− Modelu predicts almost all actual failures as
failures (true negatives). At the same time, it predicts around
42%9 of the actually correct cases as failures (false negatives).
Consider the first stacking action of the previously discussed
example 1 in Section 5.2.3. This action was corrected by the
1− Stack− Modelu because it was predicted to have a low
success chance, even though, in reality, it did not fail. However,
also the 3− Stack− Modelg has large true negative and false
negative ratios (see Table 7). Therefore, our models are conser-
vative in the sense that they try to avoid failures at the cost of
misclassifying a large number of successful stacking executions
as a failure. For the discussed application, this is beneficial as
we want to avoid stacking failures, and an additional corrective
action is more acceptable than a failed tower.

6.1. Impact of the success threshold ϵ on failure prevention

To better understand the reason for this large number of
false negatives, we analyzed the role of ϵ. As expected, larger
ϵ-values lead to fewer stacking failures. Table 8 shows that the
3− Stack− Modelg with ϵ = 0.6 has a lower failure preven-
ion success than the 1− Stack− Modelg with ϵ = 0.8. The
3− Stack− Modelg with ϵ = 0.95 is able to prevent almost
all stacking failures from happening. The impact of ϵ can be
concretely demonstrated on the two examples that are discussed

7 In reality, the underlying distribution of variables like xOffi might be
unknown. Therefore we cannot know if the model trained on uniform or
Gaussian data is more appropriate.
8 The robot executions can be seen in https://youtu.be/VT55y15lmt4.
9 calculated as 11.1%

= 42%
26.2%

https://youtu.be/VT55y15lmt4


M. Diehl and K. Ramirez-Amaro Robotics and Autonomous Systems 162 (2023) 104376

l

Fig. 8. Displays the stacking execution of example 1 performed on the real robot. In the first row, the cubeUp1 (green) is stacked too far to the right, which leads
to a failure in the third stack. In the corrected sequence, as proposed by the 3− Stack− Modelg , cubeUp1 (green) is stacked more to the left, which allows the
robot to successfully stack all three cubes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. Displays the stacking execution of example 2 performed on the real robot. In the first row, each cube is stacked a little to the right and down. Each stack on
itself is not found to be problematic by 1− Stack− Modelu , and thus no corrective actions are found. However, with the third cube, the cumulative error is too
arge, and the tower falls. In the corrected sequence, as proposed by the 3− Stack− Modelg , cubeUp1 (orange) is stacked a little more to the left and cubeUp3
(red) is also stacked more centered, which allows the robot to successfully stack all three cubes, despite further offsets the second stacking action. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
in Section 5.2.3. The preventive actions based on the closest
solution intervals in Table 5 are based on ϵ = 0.8. In example
1, xOff will only change to x with ϵ = 0.6, resulting in a
1 4

10
success chance of 0.65. With ϵ = 0.95, our method finds similar
preventive actions as with ϵ = 0.8 for example 1. However, for
example 2, the closest solution interval has an additional change



M. Diehl and K. Ramirez-Amaro Robotics and Autonomous Systems 162 (2023) 104376

o
f
t
f
t
n
o
s
f

6

c
t
t
a
P
s
c
d
d
t
H
n
t

l
s
s
w
3
t
e
s

Table 8
Percentage of failed stacking tasks including failure preventive actions based on
the 3− Stack− Modelg with different choices of ϵ.

Stack-3-Cubes fail.
perc.

Fail
in 1

Fail
in 2

Fail
in 3

3− Stack− Modelg
(ϵ = 0.6) 26.8% 14.9% 8.7% 84.3%

3− Stack− Modelg
(ϵ = 0.8) 4.3% 0% 0.5% 99.5%

3− Stack− Modelg
(ϵ = 0.95) 0.02% 0% 16.7% 83.3%

Table 9
Confusion matrix for success prediction of 3− Stack− Modelg
for ϵ = 0.6.

Predicted
as correct

Predicted
as failure

actually correct 0.8% 18.2% 19.0%
actually a failure 0.3% 80.7% 81.0%

1.1% 98.9% 100%

Table 10
Confusion matrix for success prediction of 3− Stack− Modelg
for ϵ = 0.95.

Predicted
as correct

Predicted
as failure

actually correct 0.1% 18.9% 19.0%
actually a failure 0.0% 80.9% 80.9%

0.1% 99.8% 100%

in the yOff2 variable from y2 to y3, resulting in a success chance
f 0.97. Nevertheless, the number of false negatives is over 18%
or all three ϵ (as seen in Tables 7, 9 and 10). We conclude
hat it is important to choose a large ϵ value to achieve better
ailure prevention probabilities. At the same time, we conclude
hat the choice of ϵ only has a small effect on the number of false
egatives in our models. Instead, we suspect that the number
f discretization intervals and the much larger number of action
amples with negative stacking outcomes are important factors
or the large number of false negatives.

.2. Data efficiency and transferability of the causal models

While the causal structure that is represented through a BN
an often be transferred, the conditional probability distributions
ypically need to be relearned. For example, our results showed
hat the causal structure of the 1-Stack-Model is applicable to
ll the individual stacking actions of the Stack-3-Cubes scenario.
otentially it might be applicable even beyond to other tasks,
uch as stacking cups or plates, as the x/y-offset plays a very
rucial role in the stacking success. The conditional probability
istributions are transferable between tasks that are close, as
emonstrated through the excellent failure prevention capabili-
ies of the 1− Stack− Modelg for the Stack-3-Cubes scenario.
owever, generally, the precise parameters are situational and
eed to be relearned, e.g., applying the cube stacking models for
he action of stacking plates.

One limitation of our approach is the data required for learning
arge causal models. We conducted tests with the two different
tructure learning algorithms of the PC algorithm [27] and grow-
hrink [30] and found that at least 200,000 and 600,000 samples
ere respectively required to learn the causal structure of the
− Stack− Modelg . To understand the data requirements of
he parameter learning step, we investigated how quickly the
stimation converges towards the final parameters after 800,000

amples (see Fig. 10). Our findings show that for a subset of

11
Fig. 10. Mean difference per parameter, comparing the parameter estimation
based on an increasing number of samples with the parameter estimation based
on all 800,000 samples. For each investigated number of samples, we have
randomly chosen five different subsets of samples (out of the complete dataset
of 800,000 samples) and calculated the mean of the per parameter difference
between the parameter estimation given the subset and the complete dataset.

400,000 the mean per parameter difference between the subset
and the full data set of 800,000 samples is less than 0.02. Such a
difference will hardly matter as our algorithm proposes corrective
actions based on the ϵ threshold. If the actual success chance
is slightly lower than predicted (e.g., 0.79 instead of 0.81), our
algorithm would, in the worst case, choose a different corrective
action than it would if provided with the actual success chance.
However, with a reasonably large ϵ, such as ϵ = 0.8, that would
likely not lead to any action failures as the success chance is still
quite large. If the actual success chance is slightly higher than
predicted, our model might propose a different corrective action,
which, however, is even more conservative and thus more likely
to succeed. To conclude, our causal model will perform equally
well even with less number of samples. However, for the time
being, we assume that the collected number of samples is enough
to obtain good estimates of the causal structure and parameters,
and we leave it for future work to find more automated strategies
for deciding how much data is enough.

7. Conclusion

In this paper, we propose a causal-based method that allows
robots to understand possible causes for execution errors and
predict how likely an action will succeed. We then introduce a
novel method that utilizes these prediction capabilities to find
corrective actions which will allow the robot to prevent fail-
ures from happening. Our algorithm proposes a solution to the
complex challenge of timely shifted action effects. By detecting
causal links over the history of several actions, the robot can
effectively predict and prevent failures, even if the root of a failure
lies in a previous action. We have shown the success of our ap-
proach for the problem of stacking cubes in two cases; (a) single
stacks (stacking one cube) and; (b) multiple stacks (stacking three
cubes). In the single-stack case, our method was able to reduce
the error rate by 97%. We also show that our approach can scale
to capture various actions in one model, allowing us to measure
timely shifted action effects, such as the impact of an imprecise
stack of the first cube on the stacking success of the third cube.
For these complex situations, our model was able to prevent
around 95% of the failures.

Despite being able to capture action histories in one model,
one challenge of obtaining such large models is data efficiency.
The more parents a BN node has, the more samples are required



M. Diehl and K. Ramirez-Amaro Robotics and Autonomous Systems 162 (2023) 104376

t
t
i
a
t

D

c
t

D

A

C
3

R

o learn its graphical structure and the conditional probabili-
ies. In the future, we will investigate intelligent ways of pre-
nitializing the model, e.g., by utilizing the single-action models
s prior for structure and probabilities, with the goal of reducing
he number of new samples.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ata availability

Data will be made available on request.

cknowledgments

The research reported in this paper has been supported by
halmers AI Research Centre (CHAIR) through grant 32631004,
2631021-22.

eferences

[1] A. Kuestenmacher, N. Akhtar, P. Plöger, G. Lakemeyer, Towards robust task
execution for domestic service robots, Proceedings of the International
Conference on Automated Planning and Scheduling 24 (1) (2014) 528–531,
http://dx.doi.org/10.1609/icaps.v24i1.13653.

[2] E. Khalastchi, M. Kalech, On fault detection and diagnosis in robotic
systems, ACM Comput. Surv. 51 (1) (2018) http://dx.doi.org/10.1145/
3146389.

[3] J. Pearl, D. Mackenzie, The Book of Why: The New Science of Cause and
Effect, first ed., Basic Books, Inc. USA, 2018.

[4] T. Miller, Explanation in artificial intelligence: Insights from the social
sciences, Artificial Intelligence 267 (2019) 1–38.

[5] T. Hellström, The relevance of causation in robotics: A review, catego-
rization, and analysis, Paladyn, J. Behav. Robot. 12 (1) (2021) 238–255,
http://dx.doi.org/10.1515/pjbr-2021-0017.

[6] A. Mitrevski, A.F. Abdelrahman, A. Narasimamurthy, P.G. Plöger, On the
diagnosability of actions performed by contemporary robotic systems, in:
31th International Workshop on Principles of Diagnosis, DX, 2020, URL
http://dx-2020.org/papers/DX-2020_paper_6.pdf.

[7] A. Mitrevski, P.G. Plöger, G. Lakemeyer, Robot action diagnosis and expe-
rience correction by falsifying parameterised execution models, in: 2021
IEEE International Conference on Robotics and Automation, ICRA, 2021, pp.
11025–11031, http://dx.doi.org/10.1109/ICRA48506.2021.9561710.

[8] D. Lewis, Causal explanation, in: D. Lewis (Ed.), Philosophical Papers Vol.
II, Oxford University Press, 1986, pp. 214–240.

[9] A. Mitrevski, P.G. Plöger, G. Lakemeyer, Representation and experience-
based learning of explainable models for robot action execution, in: 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS,
2020, pp. 5641–5647, http://dx.doi.org/10.1109/IROS45743.2020.9341470.

[10] A.S. Bauer, P. Schmaus, F. Stulp, D. Leidner, Probabilistic effect prediction
through semantic augmentation and physical simulation, in: 2020 IEEE
International Conference on Robotics and Automation, ICRA, 2020, pp.
9278–9284, http://dx.doi.org/10.1109/ICRA40945.2020.9197477.

[11] M. Diehl, K. Ramirez-Amaro, Why did I fail? A causal-based method to
find explanations for robot failures, IEEE Robot. Autom. Lett. 7 (4) (2022)
8925–8932, http://dx.doi.org/10.1109/LRA.2022.3188889.

[12] D. Altan, S. Sariel, Probabilistic failure isolation for cognitive robots, in:
27th International FLAIRS (Florida Artificial Intelligence Research Society)
Conference, 2014.

[13] J. Brawer, M. Qin, B. Scassellati, A causal approach to tool affordance learn-
ing, in: 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems, IROS, 2020, pp. 8394–8399, http://dx.doi.org/10.1109/IROS45743.
2020.9341262.

[14] T.E. Lee, J.A. Zhao, A.S. Sawhney, S. Girdhar, O. Kroemer, Causal reasoning
in simulation for structure and transfer learning of robot manipulation
policies, in: 2021 IEEE International Conference on Robotics and Automa-
tion, ICRA, 2021, pp. 4776–4782, http://dx.doi.org/10.1109/ICRA48506.
2021.9561439.

[15] A.A. Bhat, V. Mohan, G. Sandini, P.G. Morasso, Humanoid infers Archimedes’
principle: understanding physical relations and object affordances through
cumulative learning experiences, J. R. Soc. Interface 13 (2016).
12
[16] C. Uhde, N. Berberich, K. Ramirez-Amaro, G. Cheng, The robot as scientist:
Using mental simulation to test causal hypotheses extracted from human
activities in virtual reality, in: 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems, IROS, 2020, pp. 8081–8086, http://dx.doi.
org/10.1109/IROS45743.2020.9341505.

[17] D. Song, K. Huebner, V. Kyrki, D. Kragic, Learning task constraints for
robot grasping using graphical models, in: 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2010, pp. 1579–1585, http:
//dx.doi.org/10.1109/IROS.2010.5649406.

[18] M. Diehl, C. Paxton, K. Ramirez-Amaro, Automated generation of robotic
planning domains from observations, in: 2021 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, IROS, 2021, pp. 6732–6738,
http://dx.doi.org/10.1109/IROS51168.2021.9636781.

[19] T. Chakraborti, S. Sreedharan, S. Kambhampati, The emerging landscape of
explainable automated planning & decision making, in: Proceedings of the
Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI
’20, 2021, pp. 4803–4811.

[20] B. Seegebarth, F. Müller, B. Schattenberg, S. Biundo, Making hybrid plans
more clear to human users — a formal approach for generating sound
explanations, Proceedings of the International Conference on Automated
Planning and Scheduling (1) (2012) 225–233, http://dx.doi.org/10.1609/
icaps.v22i1.13503.

[21] D. Das, S. Banerjee, S. Chernova, Explainable AI for robot failures: Generat-
ing explanations that improve user assistance in fault recovery, in: HRI ’21:
ACM/IEEE International Conference on Human-Robot Interaction, Boulder,
CO, USA, March 8-11, 2021, ACM, 2021, pp. 351–360, http://dx.doi.org/10.
1145/3434073.3444657.

[22] M.J. Vowels, N.C. Camgoz, R. Bowden, D’Ya Like DAGs? A survey on
structure learning and causal discovery, ACM Comput. Surv. (2022).

[23] M. Scutari, Learning Bayesian networks with the bnlearn R package, J. Stat.
Softw. 35 (3) (2010) 1–22, http://dx.doi.org/10.18637/jss.v035.i03.

[24] Y.-C. Chen, T.A. Wheeler, M.J. Kochenderfer, Learning discrete Bayesian
networks from continuous data, J. Artif. Int. Res. 59 (1) (2017) 103–132.

[25] R. Nagarajan, M. Scutari, Bayesian Networks in R with Applications in
Systems Biology, Springer, New York, 2013, http://dx.doi.org/10.1007/978-
1-4614-6446-4, ISBN 978-1-4614-6445-7, 978-1-4614-6446-4.

[26] J.L. Lustgarten, S. Visweswaran, V. Gopalakrishnan, G.F. Cooper, Application
of an efficient Bayesian discretization method to biomedical data, BMC
Bioinformatics 12 (1) (2011) 1–15.

[27] D. Colombo, M.H. Maathuis, Order-independent constraint-based causal
structure learning, J. Mach. Learn. Res. 15 (1) (2014) 3741–3782.

[28] A. Sharma, V. Syrgkanis, C. Zhang, E. Kiciman, DoWhy: Addressing
challenges in expressing and validating causal assumptions, in: ICMAL
Workshop: The Neglected Assumptions in Causal Inference, 2021.

[29] J. Peters, D. Janzing, B. Schlkopf, Elements of Causal Inference: Foundations
and Learning Algorithms, The MIT Press, 2017.

[30] D. Margaritis, Learning Bayesian Network Model Structure From Data
(Ph.D. dissertation), Carnegie Mellon University Pittsburgh PA School of
Comput. Sci., 2003.

M. Sc. Maximilian Diehl is a Ph.D. student with the
Division of Systems and Control (SYSCON), Department
of Electrical Engineering (E2) at the Chalmers Univer-
sity of Technology since January 2020. Previously, he
received his Master and Bachelor degree in Electrical
Engineering and Computer Science at the Technical
University of Munich (TUM), Germany in 2019 and
2018 respectively. His research interests include Arti-
ficial Intelligence and Robotics, in particular Causality,
Planning and explainable Decision Making for robots.

Dr. Karinne Ramirez-Amaro is an Associate Professor
at the Department of Electrical Engineering at the
Chalmers University of Technology since 2022. In 2019,
she became an Assistant Professor at Chalmers in the
research group of Mechatronics. Previously, she was
a post-doctoral researcher at the Chair for Cognitive
Systems at the Technical University of Munich (TUM).
She completed her Ph.D. (summa cum laude) at the De-
partment of Electrical and Computer Engineering at the
TUM, Germany in 2015. She received the Laura Bassi
award granted by TUM and the Bavarian government

in 2015, also in that year she received the price of excellent Doctoral degree
for female engineering students, granted by the state of Bavaria, Germany. In
2011, she received the Google Anita Borg scholarship. Her research interests
include Semantic Representations, Interpretable methods, and Human Activity
Recognition and Understanding.

http://dx.doi.org/10.1609/icaps.v24i1.13653
http://dx.doi.org/10.1145/3146389
http://dx.doi.org/10.1145/3146389
http://dx.doi.org/10.1145/3146389
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb3
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb3
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb3
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb4
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb4
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb4
http://dx.doi.org/10.1515/pjbr-2021-0017
http://dx-2020.org/papers/DX-2020_paper_6.pdf
http://dx.doi.org/10.1109/ICRA48506.2021.9561710
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb8
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb8
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb8
http://dx.doi.org/10.1109/IROS45743.2020.9341470
http://dx.doi.org/10.1109/ICRA40945.2020.9197477
http://dx.doi.org/10.1109/LRA.2022.3188889
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb12
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb12
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb12
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb12
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb12
http://dx.doi.org/10.1109/IROS45743.2020.9341262
http://dx.doi.org/10.1109/IROS45743.2020.9341262
http://dx.doi.org/10.1109/IROS45743.2020.9341262
http://dx.doi.org/10.1109/ICRA48506.2021.9561439
http://dx.doi.org/10.1109/ICRA48506.2021.9561439
http://dx.doi.org/10.1109/ICRA48506.2021.9561439
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb15
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb15
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb15
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb15
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb15
http://dx.doi.org/10.1109/IROS45743.2020.9341505
http://dx.doi.org/10.1109/IROS45743.2020.9341505
http://dx.doi.org/10.1109/IROS45743.2020.9341505
http://dx.doi.org/10.1109/IROS.2010.5649406
http://dx.doi.org/10.1109/IROS.2010.5649406
http://dx.doi.org/10.1109/IROS.2010.5649406
http://dx.doi.org/10.1109/IROS51168.2021.9636781
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb19
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb19
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb19
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb19
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb19
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb19
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb19
http://dx.doi.org/10.1609/icaps.v22i1.13503
http://dx.doi.org/10.1609/icaps.v22i1.13503
http://dx.doi.org/10.1609/icaps.v22i1.13503
http://dx.doi.org/10.1145/3434073.3444657
http://dx.doi.org/10.1145/3434073.3444657
http://dx.doi.org/10.1145/3434073.3444657
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb22
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb22
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb22
http://dx.doi.org/10.18637/jss.v035.i03
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb24
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb24
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb24
http://dx.doi.org/10.1007/978-1-4614-6446-4
http://dx.doi.org/10.1007/978-1-4614-6446-4
http://dx.doi.org/10.1007/978-1-4614-6446-4
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb26
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb26
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb26
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb26
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb26
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb27
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb27
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb27
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb28
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb28
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb28
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb28
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb28
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb29
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb29
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb29
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb30
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb30
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb30
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb30
http://refhub.elsevier.com/S0921-8890(23)00015-5/sb30

	A causal-based approach to explain, predict and prevent failures in robotic tasks
	Introduction
	Related work
	Causality in robotics
	Learning explainable models of cause–effect relations
	Failure prevention
	Contrastive explanations

	Our approach to explaining, predicting and preventing failures
	Variable definitions and assumptions
	Our proposed pipeline to learn causal models
	Structure learning
	Parameter learning

	Our proposed method to explain failures
	Our proposed method to predict and prevent failures

	Experiments
	Experiment 1 setup: Stack-1-Cube scenario
	Experiment 2 setup: Stack-3-Cubes scenario

	 Results and discussion
	Assessing the obtained causal models
	Obtained causal model for Experiment 1
	Learned causal model for Experiment 2

	 Evaluation of prediction and failure prevention capabilities
	Failure prediction and prevention in Experiment 1
	Failure prediction and prevention in Experiment 2
	Explanation & prevention of timely shifted action errors: Evaluation on the physical robot


	Discussion of the obtained results
	Impact of the success threshold µ on failure prevention
	Data Efficiency and transferability of the causal models

	Conclusion
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


