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ABSTRACT
We explicitly compute the moduli space pointed algebraic curves with a given
numerical semigroup as Weierstrass semigroup for many cases of genus at
most seven and when possible describe the structure as cone over an explicitly
given variety. We determine the dimension of the moduli space for all semi-
groups of genus seven.
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1. Introduction

On a smooth projective curve C the pole orders of rational functions with poles only at a given point P
form a numerical semigroup, the Weierstrass semigroup. The spaceM�

g,1 parametrising pointed smooth
curves with Weierstrass semigroup at the marked point equal to � is a locally closed subspace of the
moduli space Mg,1. In this paper we compute the dimension of M�

g,1 for all semigroups of genus at
most seven.

By the famous result of Pinkham [22] the space M�
g,1 is closely related to the negative weight part of

the versal deformation of the monomial curve singularity C� with semigroup �. This connection has
been used in a series of papers by Nakano–Mori [21] and Nakano [19, 20] to explicitly determine M�

g,1
for many semigroups of genus at most six, using the Singular [6] package deform.lib [18]. In all
these cases M�

g,1 is irreducible and rational. For the remaining cases (with two exceptions) irreduciblity
and stably rationality was shown by Bullock [2], with different methods.

We extend the computations of Nakano [19]. One quickly runs into the limits of what can be
computed in reasonable time. Therefore, we also use other approaches to compute deformations. One
method is to use Hauser’s algorithm [10]; the method of Contiero-Stöhr [3] to compute M�

g,1 is closely
related. In this method one first perturbs the equations in all possible ways, and takes care of flatness only
later. This means introducing may new variables, most of which can be eliminated. In a number of cases
this approach is successful. In one case it is more convenient to use the projection method developed by
De Jong and Van Straten [14], as applied to curves in [24].

We list the semigroups of genus at most 7 in Tables 1 and 2. They are easily computed by hand, but one
can also check that the results are correct with the package NumericalSpgs [7] for the GAP system. For
g ≤ 6 we follow the notation of [19]. The corresponding gap sequences are for g ≤ 7 already (correctly)
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listed by Haure [9], in the first published paper containing the term Weierstrass points. Some of his
conclusions are clearly wrong, but his style of writing, common for the time, makes it difficult to assess
what is correct. Haure determines a plane model and finds in that way the number of moduli on which
curves with given Weierstrass semigroup depend. The end of [9, Chapter IV] gives (mostly without
proof) a list of gap sequences and the corresponding plane model for g ≤ 7. We did not study this plane
model, but only compared the number of moduli with the dimension we found. Our computations show
that Haure’s numbers are correct except in two consecutive cases. The non-emptiness of M�

g,1 for all
semigroups with g ≤ 7 was established in a different way by Komeda [16].

We describe the structure of M�
g,1 in the cases we have been able to determine it. In many cases, e.g. if

the monomial curve C� is a complete intersection, the space M�
g,1 is smooth. The next common case is

that M�
g,1 is a weighted cone over the Segre embedding of P1 × P

3; the curve C� has then codimension
3 and is given by 6 equations. For codimension 4 and 10 equations the moduli space is typically given by
20 equations and the exact structure depends on the curve. Except for the curve already studied in [24]
these equations are too complicated, with too many monomials, to be useful. Other interesting occurring
varieties are the Grassmannian G(2, 5) and a degeneration of it.

As to the dimension of M�
g,1, in general the following bounds are known [4, 23]:

2g − 2 + t − dim T1,+ ≤ dimM�
g,1 ≤ 2g − 2 + t .

where t is the rank of the highest syzygy module of the ideal of C� , and dim T1,+ the number of
deformations of positive weight, both easily computable with Singular [6] or Macaulay2 [5]. The result
of our computations is that for all semigroups with g ≤ 7 the dimension is given by the lower bound.

In the first section we recall the relation between the moduli space M�
g,1 and deformations of the

monomial curve with semigroup �. The next section describes the computation methods used in this
paper. The main part of the paper discusses the computation of the moduli space or of its dimension for
the different types of semigroup.

2. The moduli space M�
g,1

Let P be a smooth point on a possibly singular integral complete curve C of arithmetic genus g > 1,
defined over an algebraically closed field k of characteristic zero. An integer n ∈ N is a gap if there
does not exist rational function on C with pole divisor nP, or equivalently H0(C,OC(n − 1)P)) =
H0(C,OC(nP)). There are exactly g gaps by the Weierstrass gap theorem, an easy consequence of
Riemann-Roch. The nongaps form a numerical semigroup �, the Weierstrass semigroup of C at P; this
is the set of nonnegative integers n ∈ N such that there is a rational function on C with pole divisor nP.
For any numerical semigroup the genus is defined as the number of gaps.

Given a numerical semigroup � of genus g > 1, letM�
g,1 be the space parameterizing pointed smooth

curves with � as Weierstrass semigroup at the marked point. It is a locally closed subspace of the moduli
space Mg,1 of pointed smooth curves of genus g. Note that M�

g,1 can be empty.
The connection between the moduli space M�

g,1 and deformations of negative weight of monomial
curves was first observed by Pinkham [22, Chapter 13]. Given a numerical semigroup � = 〈n1, . . . , nr〉
we form the semigroup ring k[�] := ⊕n∈�k tn and denote by C� := Spec k[�] its associated affine
monomial curve. Consider the versal deformation of C�

Xt0
∼= C� −→ X⏐⏐� ⏐⏐�

{t0} = Spec k −→ B

where B = Spec A is the spectrum of local, complete noetherian k-algebra. Pinkham [22] showed that
the natural Gm-action on C� can be extended to the total and parameter spaces. This induces a grading
on the tangent space T1

C�
to B. The convention here is that a deformation has negative weight −e if it
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decreases the weights of the equations of the curve by e; the corresponding deformation variable has then
(positive) weight e. A numerical semigroup � is called negatively graded if T1

C�
has no positive graded

part.
Let B− be the subspace of B with negative weights. Then the restriction X− → B− is versal for

deformations with good Gm-action. Both X− and B− are defined by polynomials and we use the
same symbols for the corresponding affine varieties. The deformation X− → B− can be fiberwise
compactified to X− → B−; each fiber is an integral curve in a weighted projective space with one
point P at infinity and this is a point with semigroup �. All the fibers over a given Gm orbit in T − are
isomorphic, and two fibers are isomorphic if and only if they lie in the same orbit. This is proved in [22]
for smooth fibers and in general in the Appendix of [17].

Each pointed curve from M�
g,1 occurs as fiber by the following construction. Consider the section

ring R = ⊕∞
n=0H0(C,O(nP)). It gives an embedding of C = ProjR in a weighted projective space,

with coordinates X0, . . . , Xr where deg X0 = 1. The space SpecR is the corresponding quasi-cone in
affine space. Setting X0 = 0 defines the monomial curve C� , all other fibers are isomorphic to C \ P. In
particular, if C is smooth, this construction defines a smoothing of C� .

Theorem 2.1 ([22, Theorem 13.9]). Let X− → B− be the equivariant negative weight miniversal
deformation of the monomial curve C� for a given semigroup � and denote by B−

s the open subset of
B− given by the points with smooth fibers. Then the moduli space M�

g,1 is isomorphic to the quotient
M�

g,1 = B−
s /Gm of B−

s by the Gm-action.

The closure of a component of B−
s is a smoothing component and is itself contained in a smoothing

component in B. For quasihomogeneous curve singularities there is a simple formula for the dimension
of smoothing components: it is μ + t − 1 [8], with μ = 2δ − r + 1 the Milnor number and t =
dimk Ext1

O(k,O) the type. For monomial curves δ = g and r = 1, and the type can be computed from
the semigroup [1, 4.1.2] : t = λ(�), the number of gaps � of � such that � + n ∈ � whenever n is a
nongap. Given the equations of C� (anyway needed for deformation computations) the type is easily
found as the rank of the highest syzygy module.

Let dim T1,+ be the dimension of the space of infinitesimal deformations of C� of positive weight.
Then we have the following bounds for the dimension of components of M [4]; the upper bound is due
to Rim–Vitulli [23].

Theorem 2.2. Let � be a numerical semigroup � of genus bigger than 1. If M�
g,1 is nonempty, then for any

irreducible component E of M�
g,1

2g − 2 + t − dim T1,+ ≤ dim E ≤ 2g − 2 + t .

3. Computing deformation spaces in negative weight

By Pinkham’s theorem (Theorem 2.1), to explicitly describe the moduli space M�
g,1 one can compute

the negative weight part of the versal deformation of the monomial curve C� . For many semigroups of
low genus this was done by Nakano-Mori [21] and Nakano [19, 20], using the computer algebra system
Singular [6]. The main obstacle in the remaining cases is that the computations take too long, and result
in long formulas without apparent structure. In this section we describe several methods to determine
versal deformations, with comments on computational matters.

3.1. The standard approach

We recall the main steps, see also [25, Chapter 3]. Let X be a variety with Gm-action with isolated
singularity at the origin in A

n. Let S = k[X1, . . . , Xn] be the polynomial ring in n variables. Let
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f = (f1, . . . , fr) generate the ideal I(X) of X. The first few terms of the resolution of k[X] = S/I(X)

are

0 ←− k[X] ←− S
f←− Sk r←− Sl

where the columns of the matrix r generate the module of relations. Let XB → B be a deformation of
X over B = Spec A. The flatness of the map XB → B translates into the existence of a lifting of the
resolution to

0 ←− k[XB] ←− S ⊗ A F←− (S ⊗ A)k R←− (S ⊗ A)l .

To find the versal deformation we must find a lift FR = 0 in the most general way. The first step is to
compute infinitesimal deformations. We write F = f + εf ′ and R = r + εr′. As ε2 = 0, the condition
FR = 0 gives

FR = (f + εf ′)(r + εr′) = fr + ε(fr′ + f ′r) = 0 .

Because fr = 0, we obtain the equation fr′ + f ′r = 0 in S. We first solve the equation f ′r = 0 or rather its
transpose rt(f ′)t = 0 in k[X]. This means finding syzygies between the columns of the matrix rt ; then
we find r′ by lifting f ′r with f . After this we lift order for order. Obstructions to do this may come up,
leading to equations in the deformation parameters.

All these computations can be done with a computer algebra system. Indeed, they are implemented
in the packages VersalDeformations [12] for Macaulay2 [5] and Deform.lib [18] for Singular [6].
The specific outcome of a computation, which depends on Groebner basis calculations, is governed by
the chosen monomial ordering and also by the choice of the generators (f1, . . . , fk) of the ideal I(X). The
algorithm tries to find the row vector F, equations of the base space come from obstructions to do that.
Typically a computer computation will not choose the easiest form of the base equations.

When restricting to deformations of negative weight all resulting equations are polynomial and the
computation is finite; it might be undoable in practice, even with a powerful computer.

3.2. Hauser’s algorithm

An alternative method was developed in the complex analytic setting by Hauser [10, 11]. One can see the
method of Contiero-Stöhr [3] to compute a compactification of the moduli space M�

g,1 as a variant. It
has been used in [4] to compute the base space for several families of Gorenstein monomials curves. We
start again from the generators f of the ideal I(X), but now we perturb f in the most general way, modulo
trivial perturbations, that is we take a semi-universal unfolding of the associated map f : An → A

k.
Except when X is zero dimensional, the base space of this unfolding will be infinite dimensional; this
problem is handled carefully by Hauser [11]. In our situation f is weighted homogeneous and we restrict
ourselves to an unfolding with terms of lower degree. Therefore we are back in a finite dimensional
situation, and we can work over any field k. So we have an unfolding F : An × A

s → A
k of f . Now we

determine the locus B containing 0 ∈ A
s over which F is flat. The restriction of F to B is then the versal

deformation of X of negative weight.
In our situation we have a monomial curve X of multiplicity m and embedding dimension e + 1. We

take coordinates x, y1, . . . , ye. An Apry basis of the semigroup leads to an additive realization of k[X] as∑m
i=0 y(i)k[x], where y(0) = 1, y(1) . . . y(m−1) are expressions in the variables y1, . . . , ye. The equations

of X are then (in multi-index notation) of the form yα = ϕ with ϕ ∈ ∑m
i=0 y(i)k[x]. The unfolding is

also done only with terms from
∑m

i=0 y(i)k[x]. We start from generators f of the said form, compute the
relation matrix r and write the unfolding F. We have to lift fr = 0 to FR = 0. To this end we compute
Fr and reduce this column vector to normal form with respect to the list F. It is important that we do
not compute a Groebner basis of the ideal generated by F, as this will take too long. But reducing with
respect to F will result in a vector with entries of bounded degree lying in

∑m
i=0 y(i)R[x] with coefficients

from R = k[t1, . . . , ts], where the tj are coordinates on the base As. The vanishing of these coefficients
define the locus where FR = 0, so where F is flat.
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This procedure leads to a rather large number of relatively simple equations in a large number of
variables, most of which occur linearly and can be eliminated. It is this process of elimination which
can lead to few equations in a limited number of variables, but with many monomials, see the proof of
Proposition 4.5 for an example.

Also here most computations are easily done with a computer algebra system. The first step, to find
the unfolding, can be automatised, but for the not too complicated cases relevant for this paper it seems
preferable to do it by hand, choosing names for the deformation variables reflecting their weights.

3.3. The projection method

Computing deformations using projections onto a hypersurface is a method developed in a series of
papers by Theo de Jong and Duco van Straten, see [13, 14]. The application to curves is in [24], see also
[25, Chapter 11]. Let again X be a monomial curve and X → Y a projection onto a plane curve, which is
a finite generically injective map. Let 	 be the subspace of Y by the conductor ideal I = HomY(OX ,OY)

in OY . This makes it possible to reconstruct X, asOX = HomY(I,OY). Because we use this method only
once, we refer to [25, Chapter 11] for a description how to use deformations the plane curve Y together
with 	 to get deformations of the original curve X.

The space 	 is a fat point, so in particular Cohen-Macaulay of codimension 2. Therefore the ideal I
defining 	 in A

2 is generated by the maximal minors 
1 . . . 
k of an k × (k − 1) matrix M. We write
these generators as row vector 
. The curve Y is defined by a function of the form f = 
α with α a
column vector, or equivalently by the determinant of the matrix (M, α). We write an element n : 
i → ni
of the normal module N := Hom	(I/I2,O	) as row vector n. A deformation 	B → YB comes from a
deformation of the curve X if for every normal vector nB there exists a vector γB on the ambient space,
satisfying

nBαB + 
BγB = 0 . (1)
This is the basic deformation equation, which can be solved step by step.

When restricting to deformations of negative weight the result of the computation is again given by
quasihomogeneous matrices with polynomial entries. Once setup correctly the computation is easily
done with a computer algebra system.

An important concept here is that of I2-equivalence [13, Definition 1.14]: two functions f and g are I2-
equivalent, if and only if f − g ∈ I2. Suppose f = 
α and g = 
β are I2-equivalent. Then α −β = A
t

for some matrix A. Suppose nBαB + 
BγB is a lift of nα + 
γ over a base space B. Choose any lift AB of
A. Then

nB(αB − AB
t
B) + 
B(γB + At

Bnt
B) (2)

is a lift of nβ+
(γ +Atnt). In particular, for curves with projections defined by I2-equivalent functions,
the base spaces of the versal deformation are the same up to a smooth factor.

4. Semigroups of genus g ≤ 7

In Tables 1 and 2 we list the semigroups of genus at most 7. For g ≤ 6 we follow the notation of [19].
The tables also contain also the dimension d of M�

g,1 and the type t of the semigroup. Furthermore they
give under the heading base the structure of M�

g,1 in the cases we have been able to determine it; the
entries indicating the different possibilities are discussed below. Inspection of the tables shows that the
main parameters governing the structure of M�

g,1 are the number of generators of � and the type t. The
first step in our computations is always to find equations for the monomial curve C� , followed by the
free resolution. This gives the type t. The next step is to find the graded parts of the vector space T1 of
infinitisemal deformations.

Proposition 4.1. For all semigroups with g ≤ 7 the dimension of M�
g,1 is given by the lower bound 2g −

2 + t − dim T1,+ of Theorem 2.2.
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Table 1. semigroups of genus ≤ 6.

[19] semigroup d t base [19] semigroup d t base

N(1)1 2,3 1 1 sm N(6)1 2,13 11 1 sm
N(2)1 2,5 3 1 sm N(6)2 3,10,11 12 2 sm
N(2)2 3,4,5 4 2 sm N(6)3 3,8,13 11 2 sm
N(3)1 2,7 5 1 sm N(6)4 3,7 10 1 sm
N(3)2 3,5,7 6 2 sm N(6)5 4,9,10,11 13 3 B2
N(3)3 3,4 5 1 sm N(6)6 4,7,10,13 12 3 B1
N(3)4 4,5,6,7 7 3 B1 N(6)7 4,7,9 11 2 sm
N(4)1 2,9 7 1 sm N(6)8 4,6,11,13 11 3 B∗

1
N(4)2 3,7,8 8 2 sm N(6)9 4,6,9 10 1 sm
N(4)3 3,5 7 1 sm N(6)10 4,5 10 1 sm
N(4)4 4,6,7,9 9 3 B1 N(6)11 5,8,9,11,12 14 4 ?
N(4)5 4,5,7 8 2 sm N(6)12 5,7,9,11,13 13 4 !
N(4)6 4,5,6 7 1 sm N(6)13 5,7,8,11 12 3 B1
N(4)7 5,6,7,8,9 10 4 ! N(6)14 5,7,8,9 11 1 sm
N(5)1 2,11 9 1 sm N(6)15 5,6,9,13 12 3 B1
N(5)2 3,8,10 10 2 sm N(6)16 5,6,8 11 2 sm
N(5)3 3, 7, 11 9 1 sm N(6)17 5,6,7 10 2 sm
N(5)4 4,7,9,10 11 3 B1 N(6)18 6,8,9,10,11,13 15 5 ?
N(5)5 4,6,9,11 10 3 B1 N(6)19 6,7,9,10,11 14 4 ?
N(5)6 4,6,7 9 1 sm N(6)20 6,7,8,10,11 13 3 G′
N(5)7 4,5,11 9 2 sm N(6)21 6,7,8,9,11 12 2 G
N(5)8 5,7,8,9,11 12 4 ? N(6)22 6,7,8,9,10 11 1 G
N(5)9 5,6,8,9 11 3 B1 N(6)23 7, . . . , 13 16 6 ?
N(5)10 5,6,7,9 10 2 sm
N(5)11 5,6,7,8 9 1 sm
N(5)12 6, . . . ,11 13 5 ?

Table 2. Semigroups of genus 7.

name semigroup d t base name semigroup d t base

N(7)1 2,15 13 1 sm N(7)21 5,6,9 12 2 sm
N(7)2 3,11,13 14 2 sm N(7)22 6,9,10,11,13,14 17 5 ?
N(7)3 3,10,14 13 2 sm N(7)23 6,8,10,11,13,15 16 5 ?
N(7)4 3,8 12 1 sm N(7)24 6,8,9,11,13 15 4 ?
N(7)5 4,10,11,13 15 3 B2 N(7)25 6,8,9,10,13 14 2 G′
N(7)6 4,9,11,14 14 3 B1 N(7)26 6,8,9,10,11 13 1 G
N(7)7 4,9,10,15 13 3 B1 N(7)27 6,7,10,11,15 15 4 ?
N(7)8 4,7,13 13 2 sm N(7)28 6,7,9,11 14 3 B1
N(7)9 4,7,10 12 1 sm N(7)29 6,7,9,10 13 3 B1
N(7)10 4,6,13,15 12 3 B∗

1 N(7)30 6,7,8,11 13 3 B1
N(7)11 4,6,11 10 1 sm N(7)31 6,7,8,10 12 2 sm
N(7)12 5,9,11,12,13 16 4 ? N(7)32 6,7,8,9 11 2 sm
N(7)13 5,8,11,12,14 15 4 ? N(7)33 7, 9, . . . , 13, 15 18 6 ?
N(7)14 5,8,9,12 14 3 B1 N(7)34 7,8,10,11,12,13 17 5 ?
N(7)15 5,8,9,11 13 2 sm N(7)35 7,8,9,11,12,13 16 4 ?
N(7)16 5,7,11,13 14 3 B1 N(7)36 7,8,9,10,12,13 15 3 ?
N(7)17 5,7,9,13 13 2 sm N(7)37 7,8,9,10,11,13 14 2 ?
N(7)18 5,7,9,11 12 1 sm N(7)38 7,8,9,10,11,12 13 1 ?
N(7)19 5,7,8 12 2 sm N(7)39 8, . . . , 15 19 7 ?
N(7)20 5,6,13,14 13 3 B1

This result follows from the computations discussed in the rest of this section.

4.1. Smooth base space

The base space of the versal deformation of C� is smooth (indicated with ‘sm’ in the tables) if the
obstruction space T2 vanishes. This happens if the curve is a complete intersection, or Gorenstein of
codimension three, or Cohen-Macaulay of codimension two. In the latter case the equations are the
vanishing the minors of a 2 × 3 matrix, and t = 2. Also T2 = 0 for codimension 3 curves with t = 2.
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In all these cases the dimension of M�
g,1 is dim T1,− − 1 and therefore the lower bound of Theorem 2.2

holds. For N(7)11 the dimension is 12, whereas Haure gives 10 [9].

4.2. Cone over a Segre embedding

For codimension 3 curves C� with t = 3 and g ≤ 7 it is possible to explicitly determine the structure of
the base space. Most cases with g ≤ 6 were computed by Nakano [19].

The result for N(6)6 = 〈4, 7, 10, 13〉 was not given in [19]. We computed the deformation using Bernd
Martin’s package deform.lib [18] for Singular [6]. The equations for the curve are determinantal:[

x y7 y10 y13
y7 y10 y13 x4

]

The speed of the computation in Singular depends very much on the chosen ordering. A good choose
is using the variables (y13, y10, y7, x) in this order with graded reverse lexicographic order, but with
weights of the variables all equal to 1, not using the weights 13, 10, 7, 4. Singular returns an ideal Js
in 16 variables A, . . . , P of weight 2, 6, 10, 1, 5, 9, 13, 8, 12, 16, 7, 10, 4, 1, 4, 7. It is generated by the
minors of ⎡

⎢⎢⎣
N −K + P
O C − L − BM + AM2

P 2G − 2FM + 2EM2 − 2DM3 − M3N
C − BM + AM2 −J + IM − HM2 − M4 + M3O

⎤
⎥⎥⎦ (3)

We are allowed to simplify the equations of the base space by a coordinate transformation. An obvious
transformation gives the matrix of the cone over the Segre embedding of P1 × P

3.
Observe that the coordinate ring of the Segre cone has a resolution of the form

0 ←− S/I ←− S
f←− S6 r←− S8 s←− S3 ←− 0

where f is the row vector of minors of the matrix[
X1 X2 X3 X4
Y1 Y2 Y3 Y4

]

and the 8 × 3 matrix s is the transpose of a matrix of the form⎡
⎣X1 X2 X3 X4 0 0 0 0

Y1 Y2 Y3 Y4 X1 X2 X3 X4
0 0 0 0 Y1 Y2 Y3 Y4

⎤
⎦

Computing the resolution of the ideal Js with Singular gives indeed a 8×3 matrix with some zeroes, but
of course not exactly in the form given above. The matrix (3) was found by column and row operations
on the matrix computed with Singular.

The Segre cone occurs for many curves as base space. A necessary condition is that dim T2 = 6. For
some curves dim T2 = 12. This happens for the semigroups 〈n1, n2, n3, n4〉 in the tables for which the
first blow-up also has four generators. Then the base space has a more complicated structure.

Proposition 4.2. For monomial curve singularity of genus at most 7 of codimension 3, with type t = 3,
such that the first blow up has lower embedding dimension, the base space of negative weight is up to a
smooth factor the cone over the Segre embedding of P1 × P

3, except in the cases N(6)8 and N(7)10, where
it has two components, being the intersection of the Segre cone with coordinate hyperplanes (B∗

1 in Tables 1
and 2).

Proof. By the assumption in the statement dim T2 = 6. Most cases with g ≤ 6 were computed by Nakano
[19]. It can be checked that systems of generators given in [19] are minors of 2 × 4 matrices.
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To identify the base space as Segre cone it in fact suffices to show that the quadratic part of the
equations defines a Segre cone. If it does, the Segre cone has to be the tangent cone of the base space, for
otherwise the dimension of the tangent cone should be less than the dimension of the Segre cone, but
this dimension is in all cases equal to the lower bound of Theorem 2.2. Because the Segre cone is rigid
and the base space itself is a deformation of its tangent cone, they are isomorphic.

For the semigroups with 4 generators and t = 3 of genus g = 7 (see Table 2) the versal deformation
up to degree 2 is easily computed with Singular, and the cases where the base space is B1 identified.

For N(6)8 = 〈4, 6, 11, 13〉 the versal deformation in all degrees can be computed. The generators of
the ideal of the curve are the 2 × 2 minors of the symmetric matrix⎡

⎣ x y6 y11
y6 x2 y13
y11 y13 x3y6

⎤
⎦

With these generators and the graded reverse lexicographic order with variables (y13, y11, y6, x) of
weights (13, 11, 6, 4) Singular succeeds in computing rather quickly the versal deformation in all
degrees. Replacing the generator y11y13 − x3y2

6 by y11y13 − x6 results in a computation which does not
finish in reasonable time. After a coordinate transformation the base space is given by the minors of[

T−1 T1 T6 T8
T9 T11 T16 T18

]

where the indices indicate the weight of the deformation variables. The base space is again a Segre cone,
but the base space in negative weight lies in the hyperplane T−1 = 0 and consists of two components,
one smooth given by T1 = T6 = T8 = 0 and the other by T9 = 0 and the vanishing of the three minors
of the matrix not involving T9. Note that the last generator of the ideal of the second component given
in [19, p. 159] can be expressed in the previous ones.

For N(7)10 = 〈4, 6, 13, 15〉 the quadratic part of the equations for the bases space are the minors of[
T−3 T−1 T6 T8
T11 T13 T20 T22

]

and in negative weight there are two components of different dimension, given by T11 = T13 = T6T22 −
T8T20 = 0 and T6 = T8 = 0. Over the largest component the equations of the total space can be written
in rolling factors format (see, e.g., [25, p. 95]): three equations are the minors of the matrix[

x y6 + T2x y13
y6 x2 + T4x y15

]

while the fifth and sixth equations are obtained by replacing in each monomial a factor occurring in
the top row of the matrix by one of the bottom row. From the equations in the matrix one finds that
x(xy13 + T4y13) = y6(y15 + T2y13), so y15 + T2y13 rolls to xy13 + T4y13. This gives:

x2y3
6 − y2

13 + P22x + P20y6 + T13y13 + T11y15

xy4
6 − y13y15 + P22y6 + . . .

y5
6 − y2

15 + P22(x2 + T4x − T2y6) + . . .

Here P22 and P20 are polynomials containing deformation variables of degree 4, 6, . . . , 22. It follows in
particular that the origin is a singular point of all fibers, in general an ordinary double point. Only the
smallest component is a smoothing component.

Remark 4.3. For N(7)10 the gap sequence is 1, 2, 3, 5, 7, 9, 11 and Haure [9] gives a plane model of degree
13 with 11 moduli, whereas dimM�

g,1 = 12. This is the other case where Haure’s result differs from our
result.
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4.3. Curves with first blow-up of multiplicity four

For the cases N(6)5 = 〈4, 9, 10, 11〉 and N(6)5 = 〈4, 10, 11, 13〉 the first blow-up is N(3)4 = 〈4, 5, 6, 7〉
and N(4)4 = 〈4, 6, 7, 9〉 respectively. For the first curve we compute the base space with Hauser’s
algorithm; we do it in fact for all semigroups 〈4, 1+4τ , 2+4τ , 3+4τ 〉. A similar, but more complicated
computation is in [4].

The equations of the curve are given by the minors of the matrix
[

xτ y1 y2 y3
y1 y2 y3 xτ+1

]

We write the unfolding with variables which are polynomials in x, where f (j)
i with i �= j has degree 4τ + j.

We use coordinate transformations to remove as many terms as possible. The result is

y2
1 − y2xτ + f (1)

2 y1 + f (2)

2 + f (−1)

2 y3 + f (0)

2 y2

y1y2 − y3xτ + f (1)

3 y2 + f (2)

3 y1 + f (3)

3 + f (0)

3 y3

y1y3 − x2τ+1 + f (2)

4 y2 + f (3)

4 y1 + f (4)

4

y2
2 − x2τ+1 + g(1)

4 y3 + g(2)

4 y2 + g(3)

4 y1 + g(4)

4

y2y3 − y1xτ+1 + f (5)

5 + f (4)

5 y1

y2
3 − y2xτ+1 + f (5)

6 y1 + f (6)

6 + f (3)

6 y3 + f (4)

6 y2

We have four transformations left, which we cannot show in the above notation. They act on the
unfolding as f (1)

3 − xτ a3,1, f (1)

2 − xτ a2,1, f (2)

4 + xτ a3,2 and f (0)

2 + τa0xτ−1; we use them to remove the
lowest weight variables from f (0)

2 , f (1)

2 , f (1)

3 and f (2)

4 .
We proceed as explained in Section 3.2: we compute the relation matrix for the unperturbed

generators of the ideal, multiply with the perturbed generators and reduce the result with them. The
result does not contain quadratic monomials in the yi and for flatness it has to vanish identically, giving
conditions on the coefficients. We write these as equations for the polynomials f (j)

i , g(j)
i . The polynomials

f (i)
i and g(4)

4 can be eliminated. We obtain fifteen equations.
The first one is (xτ − f (0)

3 )(f (1)

2 − f (1)

3 ) + (xτ − f (0)

2 )g(1)

4 + f (−1)

2 f (2)

3 = 0. We will use this equation to
eliminate g(1)

4 . To this end we rewrite it, and do the same with five other equations containing xτ − f (0)

2 .
We obtain

(xτ − f (0)

2 )(g(1)

4 + f (1)

2 − f (1)

3 ) = −(f (0)

2 − f (0)

3 )(f (1)

2 − f (1)

3 ) − f (−1)

2 f (2)

3

(xτ − f (0)

2 )(f (2)

3 − g(2)

4 ) = −(f (1)

2 − f (1)

3 )f (1)

3 − f (−1)

2 (f (3)

4 − f (3)

6 )

(xτ − f (0)

2 )(g(3)

4 − f (3)

4 + f (3)

6 ) = (f (0)

2 − f (0)

3 )(f (3)

4 − f (3)

6 ) − f (1)

3 f (2)

3

(xτ − f (0)

2 )(f (3)

4 − xf (−1)

2 ) = (xf (0)

2 − f (4)

6 )f (−1)

2 − (f (1)

2 − f (1)

3 )f (2)

4

(xτ − f (0)

2 )(f (4)

6 − f (4)

5 − xf (0)

2 + xf (0)

3 ) = f (2)

3 f (2)

4 + (f (0)

2 − f (0)

3 )(xf (0)

2 − f (4)

6 )

(xτ − f (0)

2 )(f (5)

6 + xf (1)

3 ) = −(xf (0)

2 − f (4)

6 )f (1)

3 − f (2)

4 (f (3)

4 − f (3)

6 )

It can be checked that the remaining equations are consequences of these ones. All the above equations
are of the form

L · (xτ − f (0)

2 ) = R

with L and R polynomials in x satisfying degx(R) ≤ degx(L) + t. Division with remainder gives R =
Q(xτ − f (0)

2 ) + R, and therefore we can solve L = Q and find the coefficients of R as equations for the
base space. In other words, the condition leading to the equations of the base space is that the right hand
side of the above equations is divisible by xτ − f (0)

2 . A similar structure first appeared for the base spaces
of rational surface singularities of multiplicity four [15].
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The right hand side of the equations are the minors of the matrix[ −f (−1)

2 (f (0)

2 − f (0)

3 ) f (1)

3 f (2)

4
(f (1)

2 − f (1)

3 ) f (2)

3 (f (3)

4 − f (3)

6 ) −(xf (0)

2 − f (4)

6 )

]

It seems that the eliminated variable f (3)

4 occurs in the matrix, but we can take f (3)

4 − f (3)

6 as independent
variable.

We make the divisibility conditions explicit for τ = 1 (N(3)4) and τ = 2 (N(6)5). The f (j)
i are

polynomials in x, of the form f (j)
i = fi,j+4τ + fi,j+4τ−4x + · · · + fi,rxk if j + 4τ = 4k + r with 1 ≤ r ≤ 4.

Recall that we removed the variables of lowest weight in f (0)

2 , f (1)

2 , f (1)

3 and f (2)

4 .
For τ = 1 the matrix becomes[ −f2,3 −f3,4 f3,5 f4,6

f2,5 − f3,5 f3,6 + f3,2x f4,7 − f6,7 + (f4,3 − f6,3)x f6,8 + f6,4x

]

and the condition that the minors are divisible by x is obviously that they vanish when x = 0 is
substituted. Therefore the base space is given by the vanishing of the minors of[ −f2,3 −f3,4 f3,5 f4,6

f2,5 − f3,5 f3,6 −f6,4f2,3 − f6,7 f6,8

]

where we substituted the value for f4,7. Note that the variables f6,4, f6,3 and f3,2 do not occur in the
equations. We recover the result that the base space for N(3)4 is the Segre cone.

For τ = 2 the last entry of matrix becomes f6,12 + f6,8x + f6,4x2 − f2,8x. We apply division with
remainder by x2 − f2,8, leading to f6,12 + f6,4f2,8 + (f6,8 − f2,8)x. Doing the same for other entries we
obtain the transpose of the matrix⎡

⎢⎢⎣
−f2,7 − f2,3x f2,9 − f3,9 + (f2,5 − f3,5)x

f2,8 − f3,8 − f3,4x f3,10 + f3,2f2,8 + f3,6x
f3,9 + f3,5x f4,11 − f6,11 + (f4,3 − f6,3)f2,8 + (f4,7 − f6,7)x
f4,10 + f4,6x f6,12 + f6,4f2,8 + (f6,8 − f2,8)x

⎤
⎥⎥⎦

Making a coordinate transformation and renaming the variables gives a matrix of the form[
a7 + a3x a8 + a4x a9 + a5x a10 + a6x
b9 + b5x b10 + b6x b11 + b7x b12 + b8x

]

Division with remainder and taking the x-coefficient leads to two equations from each minor:
ai+4bj+2 + aibj+6 − aj+4bi+2 + ajbi+6

ai+4bj+6 + aibj+2f2,8 − aj+4bi+6 − ajbi+2f2,8

For N(7)5 a computation of the versal deformation up to order 3 allows to recognize the base to be
B2 also in this case.

4.4. The cone over a Grassmannian

The semigroup N(6)22 = 〈6, 7, 8, 9, 10〉 is the first of the second family of curves studied in [4]. The
computation can also easily be done with Singular. The result is that the base space is the cone
over the Grassmannian G(2, 5). In Tables 1 and 2 this base space is denote by G. This shows that
MN(6)22

6,1 is rational. Equations for the base space can be recognized because they are the Pfaffians of a
skew-symmetric 5 × 5 matrix, which is the relation matrix between the equations. Again, a computer
computation will in general not lead to a skew matrix, but one can obtain that form by row and column
operations.

The curve N(7)26 = 〈6, 8, 9, 10, 11〉 is also Gorenstein and has as base space a cone over G(2, 5).
While N(6)21 = 〈6, 7, 8, 9, 11〉, which deforms into N(6)22, is not Gorenstein, but has type t = 2, the
dimension of T2 is also five, and a computation with Singular shows that the base space has the same
structure: it is a cone over the Grassmannian.



COMMUNICATIONS IN ALGEBRA® 11

4.5. A codimension four base space

For N(6)20 = 〈6, 7, 8, 10, 11〉 (t = 3) and N(7)25 = 〈6, 8, 9, 10, 13〉 (t = 2) one has dim T2 = 9. We
compute the base spaces with Hauser’s algorithm. It turns out that they have the same structure, called
G′ in the tables. We give here the details for the first curve. An additive basis over k[x] of the coordinate
ring is (1, y7, y8, y10, y11, y7y8). We take the following unfolding of the generators of the ideal:

y2
7 − y8x + (f14,1x + f14,7)y7 + f14,14 + f14,3y11 + f14,4y10 + f14,6y8

y2
8 − y10x + (f16,2x + f16,8)y8 + (f16,3x + f16,9)y7 + f16,16 + f16,5y11 + f16,6y10

y7y10 − y11x + (f17,1x + f17,7)y10 + (f17,3x + f17,9)y8 + (f17,4x + f17,10)y7 + f17,17 + f17,6y11

y11y7 − x3 + (f18,2x + f18,8)y10 + (f18,4x + f18,10)y8 + f18,18

y8y10 − x3 + (g18,1x + g18,7)y11 + (g18,5x + g18,11)y7 + g18,18

y11y8 − y7x2 + f19,19 + (f19,2x + f19,8)y11 + (f19,3x + f19,9)y10

+(f19,5x + f19,11)y8 + (f19,6x + f19,12)y7

y2
10 − y8x2 + (f20,1x2 + f20,7x + f20,13)y7 + f20,20 + (f20,3x + f20,9)y11

+(f20,4x + f20,10)y10 + f20,5y7y8 + (f20,6x + f20,12)y8

y11y10 − y8y7x + (f21,1x2 + f21,7x + f21,13)y8 + (f21,5x + f21,11)y10

+(f21,2x2 + f21,8x + f21,14)y7 + (f21,4x + f21,10)y11 + f21,21

y2
11 − y10x2 + f22,7y7y8 + (f22,6x + f22,12)y10 + (f22,5x + f22,11)y11

+(f22,3x2 + f22,9x + f22,15)y7 + (f22,2x2 + f22,8x + f22,14)y8 + f22,22

This shows the variables involved, except that the fi,i and g18,18 are polynomials in x. In practice it is easier
to first work with the coefficients of the yi as polynomials. On this level the variables fi,i and g18,18 can be
eliminated. After that step the coefficients of x can be taken. Most variables can be eliminated. What is
left are nine rather long polynomials with in total 134 monomials, but on closer inspection a coordinate
transformation can be found, leading to the following generators of the ideal of the base space:

f18,8f20,5 − f17,6f22,7

f14,4f20,9 − f19,3f21,10 + g18,7f22,6

−f16,6f19,3f20,5 + f14,4f20,5f21,5 − g18,7f22,7

f18,8g18,7 + f16,6f17,6f19,3 − f14,4f17,6f21,5

−f16,8g18,7 − f16,6f20,9 + f21,10f21,5

−f16,8f19,3f20,5 + f20,9f22,7 + f20,5f21,5f22,6

f14,4f16,8f20,5 − f21,10f22,7 − f16,6f20,5f22,6

−f16,8f17,6f19,3 + f18,8f20,9 + f17,6f21,5f22,6

f14,4f16,8f17,6 − f18,8f21,10 − f16,6f17,6f22,6

The singular locus consists of two components, the (f20,5, f17,6)-plane and the Segre cone

[
f21,5 f16,6 f16,8
f19,3 f14,4 f22,6

]
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the other variables being zero. If f20,5 = 1 then f18,8 = f17,6f22,7 and the generators reduce to the Pfaffians
of the matrix ⎡

⎢⎢⎢⎢⎣

0 f19,3 f14,4 f22,6 f22,7
−f19,3 0 −g18,7 f20,9 −f21,5
−f14,4 g18,7 0 f21,10 −f16,6
−f22,6 −f20,9 −f21,10 0 −f16,8
−f22,7 f21,5 f16,6 f16,8 0

⎤
⎥⎥⎥⎥⎦

in accordance with the fact that the curve deforms into N(6)21 and N(6)22.
On the other component of the singular locus we take f19,3 = 1 and find f16,6 = f14,4f21,5, f16,8 =

f21,5f22,6 while the generators reduce to the minors of[
f22,7 f18,8 f16,6 − f14,4f21,5 f16,8 − f21,5f22,6
f20,5 f17,6 g18,7 f20,9

]

4.6. Codimension 4 and type 4

For most of the semigroups with 5 generators and type 4 in the list the associated monomial curve has
dim T2 = 20. Only for N(6)19 = 〈6, 7, 9, 10, 11〉 and N(7)24 = 〈6, 8, 9, 11, 13〉 one has dim T2 = 21,
while dim T2 = 26 for N(7)12 = 〈5, 9, 11, 12, 13〉. The first two curves deform into N(6)20 respectively
N(7)25, which are curves with base space G′. We have not been able to determine the exact structure
of the base space; in the tables this is marked by a question mark (?). Only for two cases (N(4)7 and
N(6)12, marked !) we give here explicit equations. For N(4)7 Nakano computed the base computing
in characteristic 7 [20]. The versal deformation of the monomial curve with semigroup N(4)7 =
〈5, 6, 7, 8, 9〉 was computed with the projection method in [24]. This computation also takes care of
N(6)12 by the following result.

Lemma 4.4. The curves N(4)7 and N(6)12 have I2-equivalent plane projections.

Proof. The projection onto the plane of the first two coordinates has equation y5
6 − x6 = 0 for N(4)7

and y5
7 − x7 = 0 for N(6)12. The conductor ideal I has in both cases length 6, being the difference of

the δ-invariant of the plane curve and δ = g of the monomial curve. An easy computation gives that
I = m3, and therefore x7 − x6 ∈ I2.

We slightly modify the computation given in [24] by disregarding all terms in I2. We start by
describing the deformation of the matrix defining 	:⎡

⎢⎢⎣
y e01 e02

−(x + e10) y + e11 e12
−e20 −(x + e21) y + e22
−e30 −e31 −x

⎤
⎥⎥⎦

We consider only consider deformations of negative weight, so we deform the equation of the plane
curve in the following way:

y5 + c0x5 + c1x4y + c2x3y2 + c3x2y3 + d0x4 + d1x3y + d2x2y2 + d3xy3 + d4y4

With the help of Singular [6] the deformation equation (1) was solved for all generators of N. The
equation holds modulo the ideal J of the base space, described below. We give here the vector α as direct
result of the computation.

α1 = x2c0 + 1
2 xc2e01 + xc3e02 + xd0 − yc3e01 − yc1e10 + yc2e11 + yc3e12 − c3e02e10 + c2e02e20 + c3e02e21

− c0e01e30 − c1e02e30 + c0e12e30 − e10e12e30 − c1e01e31 − c2e02e31 + c0e22e31 + 1
2 d2e01 + d3e02
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α2 = x2c1 + 1
2 xyc2 + xc3e01 + xc1e10 − 1

2 xc2e11 + xd1 + 1
2 yd2 + d3e01 − e2

01 + d4e02 + d1e10 − 1
2 d2e11

α3 = 1
2 x2c2 + xyc3 + xc1e20 + 1

2 xc2e21 + 1
2 xd2 − yc3e10 + yc2e20 + yc3e21 + yd3 − c3e02e30 + d4e01

+ e02e10 − e01e11 + d1e20 + 1
2 d2e21 + e01e22

α4 = y2 + xc1e30 + 1
2 xc2e31 + yc2e30 + yc3e31 + yd4 + e01e10 + e02e20 + d1e30 + 1

2 d2e31 − e02e31

To describe the base space it is useful to apply a coordinate transformation, given by:

d0 → d0 + c0e21

d1 → d1 + c1e21 + c0e31

d2 → d2 + c1e31

d3 → d3 + e01 + c3e10

d4 → d4 + e11

In the new coordinates ideal of the base is given by the following 20 generators, which we write as sum
of corresponding minors:

[
d0 + c3e02 − c0e10 d1 − c1e10 + c3e12 − c0e20 d2 − c2e10 − c0e30 d3 d4

e01 e11 e10 − e21 e20 − e31 e30

]

+
[ −c0e31 e02 − c1e31 −e01 + e12 − c2e31 −e11 + e22 − c3e31 e21

e02 − c0e30 e12 − c1e30 e22 − c2e30 e10 − c3e30 e20

]

[
d0 d1 d2 − e02 + c1e20 − c3e22 d3 − e12 + c2e20 + c1e30 d4 − e22 + c2e30
e02 −e01 + e12 −e11 + e22 e21 e31

]

+ 1
c0

[
c0e12 − c1e02 c0e22 − c2e02 c0e10 − c3e02 c0e20 c0e30 − e02
c1e01 − c0e11 c2e01 − c0e10 + c0e21 c3e01 − c0e20 + c0e31 −c0e30 e01

]

The 1
c0

in front of the last matrix means that each minor has to be divided by c0. The structure of this
base space is discussed in [24].

According to the formula (2) we obtain the deformation for N(4)7 by adding 
1 to α1. For N(6)12 the
terms in I2 are x7 + b0x6 + b1x5y + b2x4y2, so we add the vector 
1(x + b0, b1, b2, 0)t to α. In particular
we find that the codimension of the base space is the same for N(4)7 and N(6)12.

The curve N(6)11 = 〈5, 8, 9, 11, 12〉 deforms with the deformation (t5, t8 + st7, t9, t11, t12) of the
parametrisation to a curve with semigroup 〈5, 7, 9, 11, 13〉 but not to the monomial curve N(6)12 with
this semigroup: the deformation (t5, t7 + s′t8, t9, t11, t13) of N(6)12 is non-trivial of positive weight. We
did not compute the base space for N(6)11, but we determined the quadratic part of the equations. It
contains quadrics of rank two, so the base space is definitely more complicated. It is feasible to compute
the deformation with Hauser’s algorithm, but the problem is to simplify the resulting equations and write
them in a systematic way. Even for N(4)7 it is very hard to see that the equations from Hauser’s algorithm
give the same base space as the one above from the projection method.

Proposition 4.5. For all semigroups of genus g ≤ 7 with 5 generators and type 4 one has dim M =
2g + 2 − dim T1,+.

Proof. If the monomial curve is negatively graded the result follows directly from the Rim–Vitulli
formula in Theorem 2.2. For N(7)13 and N(7)27 a computation of the deformation up to order two
yields 20 quadratic equations which are among the equations for the tangent cone to the base space (and
probably give the tangent cone exactly). These 20 equations define a projective scheme of dimension 15,
which is therefore an upper bound for the dimension of M�

g,1. At the same time Theorem 2.2 gives 15
as lower bound.
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For N(7)24 the situation is more complicated. One of the 21 equations starts with cubic terms. We
did compute the base space with Hauser’s method. It leads to 256 equations in 63 variables, with 6923
monomials in total. These equations are not independent, in fact they can be reduced to 59 equations.
Thirty eight variables occur linearly and can be eliminated. The result consists of 21 equations in 25
variables, with 24829 monomials in total; the equation starting with cubic terms has 3196 monomials.
Taking the lowest degree part of each equation gives a manageable system with 163 monomials defining
a scheme of dimension 15.

4.7. Higher codimension

For the remaining curves we did not determine the base space. For the curves N(5)12, N(6)18, N(7)22
and N(7)23 with type 5 the dimension of T2 is 45, for N(7)34 it is 46. The curves N(6)22 and N(7)33
have type 6 and dim T2 = 84, while for N(7)39, the only type 8 curve, dim T2 = 140. With decreasing
type the dimension of T2 also decreases: for N(7)35, N(7)36, N(7)37 and N(7)38 the dimensions are 28,
19, 14, 14 respectively. All the curves discussed here are negatively graded, except N(7)23. For this case
the base space was computed up to order two, and a standard basis of the resulting ideal was computed
in finite characteristic, to speed up the computation. The resulting upper bound for the dimension of
MN(7)23

7,1 again coincides with the lower bound of Theorem 2.2. Herewith Proposition 4.1 is completely
established.
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