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How Useful is Learning in Mitigating Mismatch
between Digital Twins and Physical Systems?

Constantin Cronrath , Student Member, IEEE, and Bengt Lennartson , Fellow, IEEE

Abstract—In the control of complex systems, we observe two
diametrical trends: model-based control derived from digital
twins, and model-free control through AI. There are also attempts
to bridge the gap between the two by incorporating learning-
based AI algorithms into digital twins to mitigate mismatches
between the digital twin model and the physical system. One
of the most straightforward approaches to this is direct input
adaptation. In this paper, we ask whether it is useful to employ
a generic learning algorithm in such a setting, and our conclusion
is “not very”. We denote an algorithm to be more useful than
another algorithm based on three aspects: 1) it requires fewer
data samples to reach a desired minimal performance, 2) it
achieves better performance for a reasonable number of data
samples, and 3) it accumulates less regret. In our evaluation,
we randomly sample problems from an industrially relevant
geometry assurance context and measure the aforementioned per-
formance indicators of 16 different algorithms. Our conclusion
is that blackbox optimization algorithms, designed to leverage
specific properties of the problem, generally perform better than
generic learning algorithms, once again finding that “there is no
free lunch”.

Note to Practitioners—Digital twins have the potential to
improve productivity and quality in complex systems such as
manufacturing systems. Their impact on system performance
hinges on the accuracy of their digital models around the
system’s operating points. Difficult to measure phenomena, such
as wear and tear of equipment, however, may cause a mismatch
between the digital twin model and the physical system. In
this paper, we formalize this problem and compare 16 potential
solution strategies under practical aspects. We argue that readily
available off-the-shelf blackbox optimization algorithms may
prove more useful for this problem, than more recent learning-
based approaches. Specifically, gradient-based algorithms will
perform best in systems with high-dimensional, continuous, and
non-linear performance functions – even in the presence of white
measurement noise.

Index Terms—Smart manufacturing, cyber-physical systems,
digital twins, learning (artificial intelligence), adaptive optimiza-
tion, blackbox optimization.

I. INTRODUCTION

THE digital twin concept refers to simulation models
of such high fidelity that they nearly could be called

exact copies (twins) of the physical space in the digital
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space. Through real-time sensor updates, these digital models
are kept congruent with their physical counterpart at any
point in time [1]–[3]. Digital twins are regarded as a core
enabling technology of smart and autonomous manufacturing
[4] to improve productivity, optimality, and efficiency [5], [6].
Indeed, optimization algorithms with sufficient computational
resources may take advantage of the twin’s accurate digital
model to prescribe optimal control inputs for the physical
system. We consider this emerging technology as the model-
based approach to controlling complex systems.

Despite the large potential of digital twins, the concept
is not without its challenges. Specifically, the “twinning”
or “mirroring” property of the digital twin concept may be
difficult to achieve in changing systems, and is, thus, often
neglected in descriptions of digital twins in the literature
[2], [7]. Model-system mismatches are commonly solved in
the control and automation field through system identification
[8]. This technique may too be applicable in the digital twin
context. However, identifiability of the model parameters may
be hindered by simulation model classes of still too low ca-
pacity to faithfully represent reality. Furthermore, observability
may not be given (c.f. [3], [9], [10]), meaning some aspects
of the physical system may not be measured by sensors,
e.g. because of the unavailability of suitable measurement
equipment. In such cases, the digital space will not mirror the
physical space and the digital twin concept may, hence, not
fully realise its potential. Yet, convergence [4], [9], [11] and
evolution [5], [12], [13] of digital model and physical system
are postulated key properties of digital twins. Without those
properties, model-based optimality of smart and autonomous
manufacturing is debatable.

Artificial intelligence (AI) and more specifically machine
learning are frequently proposed as the solution to the pre-
viously described model-system mismatch problem, see [5],
[9], [11], [14]. We refer to this as the model-free approach
to controlling complex systems. Often, it remains rather am-
biguous in the literature, what is meant by AI and machine
learning, and how these methods may solve said problems. In
this study, we consider an algorithm to be a learning-based
algorithm, if: 1) it estimates a persistent, global model of the
system’s performance function from sampled data, 2) it uses
this model to generate new candidate points to explore, and
3) it actively seeks to act optimally as measured against the
system’s performance function. Our definition is in line with
the notion of a rational, intelligent agent in the field of AI and
the reinforcement learning branch of machine learning [15].

An alternative solution approach is adaptive – or real-time –
optimization, which deals with optimal control under model-
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system mismatches [16]. Chachuat, Srinivasan, and Bonvin
[16] divide adaption strategies for real-time optimization into
three categories: the two-step approach (repeated model pa-
rameter identification and optimization), the modifier approach
(identifying an error model), and direct input adaptation.
Direct input adaptation turns the optimization problem into
a feedback control problem, in which the control inputs are
optimized online. It is the category that lends itself most
readily to applying generic learning-based algorithms and
has been shown to be feasible for instance in [17]–[21].
Efficient use of each data sample is a key requirement in this
online setting, since each sample may represent for instance a
physical product with a tangible cost.

In this paper, we are interested in the mitigation of model-
system mismatch through learning-based algorithms. The mis-
match may arise from omitting a model calibration through
system identification, or because the system identification
procedure falls short of true convergence due to the afore-
mentioned issues. Direct input adaptation is then a suitable
remaining approach. Generic reinforcement learning [22] and
blackbox optimization [23] algorithms may both readily be
used in this context. Blackbox optimization is a mature field,
which concerns the optimization of unknown functions that
can only be probed through sampling. Blackbox optimization
offers off-the-shelf solutions, which may prove beneficial for
practitioners, and is thus a valid benchmark. Therefore, we
ask:

How useful is learning when compensating for
model mismatch in a digital twin?

To answer this question, we compare 16 well-established
learning-based and blackbox optimization algorithms on a
problem of industrial relevance. More concretely, we base our
experiments on a geometry assurance task in the assembly
of automotive sheet metal parts, previously described in [24].
Here, adjustable locators of the assembly fixture position two
or more sheet metal parts for subsequent joining through
welding or clinching. The locators of the physical fixture
may deviate from their digital twin due to wear and tear,
damages, or effects of changing process parameters. We aim to
optimize geometric quality by compensating for this system-
twin mismatch through direct input adaptation. In that, we
make the following contributions:

• we demonstrate the application of learning-based AI
algorithms in the context of digital twins;

• we show how direct input adaptation can compensate for
mismatches between physical and digital space;

• we provide comprehensive experimental results on 16
well-established algorithms (BOBYQA, Bayesian Op-
timization, Conjugate Gradients, COBYLA, DDPG,
DIRECT-L, Differential Evolution, HOO, L-BFGS-B,
MMA, Nelder-Mead, PRAXIS, Powell’s Method, SLSQP,
SPSA, and Subplex);

• we find that gradient-based blackbox optimization is
better suited to compensate for system-twin mismatch of
high-dimensional, continuous, and smooth performance
functions than learning-based algorithms in the direct
input adaptation setting.

Q
Qm

u

Fig. 1. An illustration of the problem under consideration. While Qm

is known and may be used for identifying the location of a minimum,
disturbances, inaccuracies, or errors may cause this location to be shifted in
the physical system. Using the minimizer of Qm as a starting point, we are
interested in searching efficiently for a minimum of the true but unknown Q.

In Sec. II, we specify our problem further by giving
mathematical properties of the optimization problem, as well
as by describing the system architecture, and the particular
test cases for experiments. From that, we derive usefulness
metrics in Sec. III and outline our test method. Sec. IV briefly
introduces the algorithms used in the experiments. Results are
reported in Sec. V, and in Sec. VI a discussion of these results
is presented. Conclusions are documented in Sec. VII.

II. PROBLEM FORMULATION

Following a concise problem formulation, the system archi-
tecture, our particular application cases, and their disturbance
models will now be further explained in detail. Performance
metrics for the evaluation of solution algorithms are discussed
in Sec. III.

In short, we wish to compensate for system-twin mis-
matches through direct input adaptation in the large class of
high-dimensional, nonlinear, and non-convex, but continuous
and smooth static performance functions. While a model, or
digital twin, of the system’s performance function may exist,
we assume it does not fully capture all aspects of reality,
leading to a shift in the location of the minimal point. In this
paper, we only consider shifts (or offsets) that are constant
in nature, which we model as additive input disturbances. We
assume the system-twin mismatch to be small enough such
that the twin may be used to identify the neighborhood of the
system’s global optimum. Compensating the mismatch then
takes the form of an online search for a local minimum. Fig. 1
illustrates the problem. We further consider the two cases,
where measurements of the performance are 1) without error
and 2) corrupted by white output noise.

A. System Architecture

Borrowing notation from the field of reinforcement learning
[22], we denote the performance, or objective, function of
the system with Q. Q may represent any such criterion
as financial costs or measured quality defects of a control
input u, defined over a system with possibly very large state
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argminu Qm(u)

π(u0, y0, . . . , yk)

∆u

Q(u+∆u)

∆y

Physical SystemDigital Twin

u0

u y

Fig. 2. A block diagram of the system under consideration. We are interested
in control policies π capable of determining a high-dimensional control
input u, that minimizes a performance or objective function Q of the physical
system. A model, or digital twin, of this function is accessible, that may be
queried for its minimizer u0. While we assume this model to be sufficiently
accurate in the neighborhood of the minimum, the model is assumed not to
capture input disturbances ∆u, and output disturbances ∆y.

space. For simplicity, we neglect the explicit evolution of the
system state and only observe the system’s final performance
under a control input u. For brevity, we may refer to this
performance function Q as “the system”. A model, or digital
twin, of the true function Q is available and denoted with Qm.
Combined with a suitable optimization algorithm, this digital
model Qm is used to determine an initial control input u0.
However, due to inaccuracies of the model and additive input
disturbances ∆u, this initial control input u0 is assumed to
be not the minimizer u∗ of the true performance function Q
(see Fig. 1). Further, we consider also the case where the
measurements y of Q are corrupted by additive white noise,
that is y = Q(u+∆u)+∆y. In this context, we are interested
in suitable control policies π that can adapt u0 based on scalar
measurements y to compensate for input disturbances ∆u
and slight, local model inaccuracies. Learning-based methods,
such as reinforcement learning, or blackbox optimization may
be such suitable control policies π. A corresponding block
diagram of this setup is given in Fig. 2.

B. Case: Geometry Assurance System

More concretely, we base our experiments on a geometry
assurance task in the assembly of automotive sheet metal parts.
Here, two or more sheet metal parts are fixed in position
for subsequent joining through spot welding or clinching. In
that, the locators of the fixture may be individually adjusted
to optimize the resulting geometric quality. A maladjusted
locator can further contribute to nonlinear elastic deformations
of the sheet metal parts in the joining process. Upon ejection
from the fixture, the newly formed assembly springs back
into its new unconstrained geometry. Its geometric quality
can then be measured through e.g. scanning. We encapsulate
this whole – highly nonlinear – process (positioning, clamping,
joining, releasing, scanning) in Q(u) as a function of locator
adjustments u. Depending on the case, the dimension d of
the control input space u varies between 12 and 20 in this
study. Fig. 3 details our three application cases. The geometric
quality Q(u) of the finished assembly is computed by the

commercial software tool RD&T1 through a sequence of de-
tailed finite element method calculations on geometry meshes
of several thousand points. These points may be considered the
system’s internal state, captured by the performance measure-
ment in Q(u). In particular, Q(u) describes the Root Square
Mean Error (RSME) between the measured part geometry after
assembly and its nominal geometry. Although Q(u) has the
ideal optimal target of 0.0, in practice, locator adjustments
u alone may not be sufficient to drive the RSME to 0.0,
which is why the optimal target may be non-zero. Q(u) is
highly non-linear and non-convex, and its high-dimensional
optimization manifold has very many local optima in the
search spaceRd

[−2.0,2.0]. This geometry assurance task is hence
an interesting optimization problem, representing a larger class
of industrially relevant problems.

In the previously described Fig. 2, we introduce two ad-
ditive disturbances: an input disturbance ∆u, and an output
disturbance ∆y. According to Wärmefjord, Söderberg, Lindau,
Lindkvist, and Lorin [26], several factors affect the geometric
quality of sheet metal assemblies. Of those, we can model
with ∆u: fixture deviations; clamping force and clamping
stiffness deviations; and joining point, force, and tool vari-
ations. Moreover, the additive input disturbance may simulate
mechanical deterioration, friction, or insufficient model cali-
bration in general. With ∆y we can capture: part geometry
variations, material property variations, and generally any
other disturbance propagating through the process Q into y.

For simplicity, we restrict ourselves here to constant input
disturbances ∆u and white noise output disturbances ∆y. This
is a reasonable limitation since it still encompasses a range
of industrially relevant error cases, such as damaged fixtures
or tools, that may not be represented in the digital model.
Slowly changing input disturbances may also be regarded as
a sequence of differing constant disturbances.

While our particular application cases are fairly specific,
they still represent a much larger class of practically relevant
problems. We wish to find the optimum of some unknown,
high-dimensional, non-linear, non-convex, smooth, and con-
tinuous performance function Q defined for some system,
for which we have a sufficiently good model Qm that can
be used for an initial guess but does not capture a variety
of disturbances. To find the true optimum of Q, it is thus
necessary to sample the system repeatedly at various points
of the input space. The following section describes how we
compare the usefulness of various algorithms for doing that.

III. HYPOTHESIS AND METHOD

We wish to answer the research question: How useful is
learning when compensating for model mismatch in a digital
twin? For a meaningful answer, our notion of usefulness is
first specified. Subsequently, we formulate a hypothesis and
then introduce our experimental procedure.

A. Performance Metrics
We denote an algorithm to be more useful, than another

algorithm, based on three aspects:

1Available from www.rdnt.se. RD&T’s underlying theory and its usage as
a digital twin are described for instance in [24]–[26].

www.rdnt.se


TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 4

(a) Tail, du = 12 (b) Door, du = 19 (c) Pillar, du = 20

Fig. 3. The three use cases for our experiments: (a) shows a sub-assembly of a car tail. Its two parts are positioned in space by twelve locators (shown in
red). (b) shows the frame of a car door. Its two sheet metal parts are positioned in space by 19 locators. (c) shows a pillar of a car, consisting of three parts
held in place by 20 locators. A digital twin computes the geometric quality after the assembly process (positioning, clamping, joining, releasing, scanning)
based on several detailed Finite Element Method calculations, including elastic deformations and springback under the assembly forces. The final geometric
quality may be influenced by adjusting each single locator along its axis. In this study, we induce a mismatch between the digital twin and the simulated
system through constant, additive input disturbances and white-noise output disturbances. These disturbances may for instance represent wear and tear or
process variations.

0 N100 200 300 400 500
n

0

f100
max

0.9

1

Ac
cu

ra
cy

Regret
f100
max

N

Fig. 4. An illustration of the applied usefulness metrics. The blue line depicts
the progress of the adaption algorithm towards the optimal accuracy of 100%.
We are interested in the required samples N to reach 90% accuracy, the
maximum accuracy in the first 100 samples f100

max, and the accumulated regret,
if the optimal policy was known from the start (red area).

1) sample efficiency – it requires fewer data samples to
reach a desired minimal performance,

2) best in X – it achieves a more accurate performance in
a reasonable number of data samples, and

3) regret – it accumulates less regret when compared to the
optimal policy.

All three metrics are illustrated in Fig. 4 and are further
detailed in the following.

1) Sample efficiency: Since each sample represents a real
physical product with associated costs in our case, we wish
the sampling of the unknown performance function Q of
the physical system to be as efficient as possible. That is,
in the selection of the control policy π, algorithms, finding
the true optimum in fewer samples, are preferred. To that
end, we define – in accordance with [23] – the accuracy of the

optimization at sample k ∈ {1, . . . ,K} as

fk
acc =

Q(u0)−Q(uk)

Q(u0)−Q(u∗)
, (1)

where u0 is the initial control input derived from the digital
twin, and u∗ is the true local optimum of the physical system.
In practice, any accuracy close to 1.0 might be deemed
sufficiently good, and thus we decide on

fN
acc > 1− τ (2)

as stopping criterion (with τ being the tolerance level, and N
the value of k at which (2) becomes true). In our experiments,
we set τ = 0.1, meaning we consider the physical optimum to
be found with sample N if 90% of the improvement potential
was realized. Algorithm A is then deemed more useful than
algorithm B, iff NA < NB .

2) Best in X: Besides being sample-efficient in finding the
physical optimum, a good accuracy after a fixed number of
samples may be useful. This may be for instance the case
when a fixed calibration budget is granted, after which the
best-found input is used for production. We set the sampling
budget for this aspect arbitrarily to 100 parts and compare the
algorithms based on

f100
max = max{f1

acc, f
2
acc, . . . , f

100
acc } . (3)

3) Regret: In addition, we prefer algorithms that interfere
with the process to a lesser extent. This criterion is encapsu-
lated in the metric of regret, expressed as

R =

K∑
k=1

Q(uk)−Q(u∗)

Q(u0)−Q(u∗)
. (4)

Regret is the sum of the differences between the algorithm’s
performance, seeking for the optimal input, and the perfor-
mance if the optimal input was known already from the
start. An algorithm that is sampling the physical system in
many “bad” areas, potentially causes quality defects and
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accumulates more regret. However, we may want to allow for
a few quality defects if the optimal policy is identified quicker
because of that. The measure of regret is capable of capturing
this trade-off. In addition, we normalize the regret to enable
comparison across test cases.

B. Hypothesis

With a clear understanding of the performance metrics used
to determine usefulness, we now state our main hypothesis:

It is useful to employ a learning-based algorithm
when compensating for model mismatch in a digital
twin.

We expect to see a learning-based algorithm outperform most,
or all other algorithms, in one, or more, of the three previously
discussed metrics of usefulness. If that is not the case, we are
willing to reject our hypothesis.

C. Experimental Method

To test our hypothesis, we use a single-factor, fixed effect
experimental design (c.f. [27]), for which we assume that
model and system only differ by the unobserved input and
output disturbances. This assumption allows for efficient ex-
perimentation on the digital model only. We create a represen-
tative (of the real-world) test set by randomly sampling part
geometries, see Fig. 3, an input disturbance, and a standard
deviation of the white-noise output disturbance for every
second test. The sampling domains of the parameters of our
application are listed in Tab. I. Randomization is introduced
to reduce unwanted effects of the application parameters on
our experimental results (c.f. [27]).

TABLE I
PARAMETERS OF OUR APPLICATION USED TO GENERATE A TEST SET FOR

OUR EXPERIMENTS. THE DIMENSIONALITY d OF THE OPTIMIZATION
PROBLEM IS GIVEN BY THE CASE, SEE FIG. 3, WITH d ∈ {12, 19, 20}.

Nuisance Symbol Domain

Case {door, pillar, tail}
Part geometry index {1, . . . , 25}
Input disturbance ∆u R

d
[0.0,0.5]

White-noise output disturbance σ∆y R[0.0,0.007]

For each case and each part within the corresponding
assembly, geometry scans, consisting of several thousand mea-
surement points, of 25 manufactured parts are available to us.
Hence, we randomly choose one of 252 (253 for case pillar)
possible assembly geometries for experiments. Next, we use
a local optimization algorithm (SLSQP in our experiments) to
identify u∗ and Q∗ of the physical system, which is emulated
here by the digital model. The algorithm receives u0 = 0d as
the starting point and is run to full convergence.

For up to ten times, an additive input disturbance ∆u is
sampled uniformly from Rd

[0,0.5]. We then check for local con-
vexity by sampling Q along the euclidean distance between u∗

and u∗ + ∆u. Based on this, we delimit our experiments to
optimization problems that are locally convex. For sufficiently
smooth functions Q and small input disturbances, this is a
reasonable delimitation and circumvents the convergence to

other local minima, which may corrupt our analysis. For
stochastic optimization problems, a standard deviation σ∆y for
the white-noise output disturbance ∆y is uniformly sampled
at the beginning of the experiments: σ∆y ∈ R[0.0,0.007]. The
upper bound on σ∆y is chosen arbitrarily to a small value,
which represents about 5% of the average Q∗ across all cases.
During experiments, the measurements y are thus computed
by y = Q(u + ∆u) + N (0, σ∆y), where N (0, σ∆y) is a
normal distribution with 0 mean and standard deviation σ∆y .
The input and output disturbances hence vary in size across
experiments to mitigate potential systematic errors related to
these problem parameters.

Once the optimization problem is defined accordingly, we
let a range of learning-based and non-learning-based blackbox
optimization algorithms (see Sec. IV) solve the problem. All
algorithms have access to u0 = u∗ but have no knowledge
of ∆u or ∆y. An optimal policy is thus found if π = u∗−∆u.
To find a policy close to that, we allow for up to K = 500
samples, since this seems to be a reasonable number for many
practical applications. We record the previously described
usefulness metrics and report them in Sec. V.

IV. ALGORITHMS

This section briefly introduces the algorithms used in our
experiments. In total, 16 well-established algorithms are com-
pared. We categorize the algorithms according to: global,
local derivative-free, local gradient-based, and learning-based
algorithms. This categorization is not completely accurate,
since some learning-based algorithms are also global opti-
mization algorithms. Furthermore, no differentiation in the
categorization is made between stochastic and deterministic
algorithms. All global and learning-based algorithms in this
paper, as well as SPSA, are stochastic algorithms, which
use random variables within their solution procedure. The
selection of algorithms is discussed further in Sec. VI.

A. Global

Algorithms that do not sample points in close vicinity of
the best-known point, but sample the whole search space more
widely are denoted as global algorithms in this paper.

a) DIRECT-L: DIRECT-L is a locally biased version of
the DIRECT (DIviding RECTangles) algorithm [28]. DIRECT
successively divides the search space into smaller and smaller
rectangles. Each rectangle is evaluated at its center. The size
of the rectangle and the function value at the center determine
which rectangles are further subdivided. DIRECT-L adapts the
subdivision procedure to favor local exploration around good
function values over exploration in sparsely sampled areas of
the input space.

b) Differential Evolution: Differential Evolution [29] is
an evolutionary algorithm that computes new input candidates
from four other members of the population. If the candidate
has a better or equal fitness value, it replaces one of the
members. It is a stochastic direct search algorithm.
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B. Local Gradient-Based

Algorithms that estimate the gradient of the objective func-
tion, for the purpose of minimizing it in some hill descending
manner, are grouped into local gradient-based algorithms.

a) Conjugate Gradients: The conjugate gradient algo-
rithm [30] minimizes a d−dimensional function sequentially
along d linearly independent (conjugated) directions. To that
end, the gradient of the function is approximated and a line
search is performed in each of the d directions.

b) L-BFGS-B: The Limited memory Broy-
den–Fletcher–Goldfarb–Shanno algorithm with Bound
constraints (L-BFGS-B) [31] is a quasi-Newton method
that approximates the Hessian of the objective function
from first derivatives. First derivatives are estimated through
two-point finite differences in our experiments. The limited
memory variant of the BFGS algorithm represents the Hessian
implicitly from past gradient differences. When extended with
bound constraints, gradient projection is used to determine
the active constraints set.

c) SLSQP: Sequential Least Squares Programming
(SLSQP) [32] is a quasi-Newton method that replaces the
quadratic programming formulation of the Newton direction
with a non-negative least squares problem. As such, it min-
imizes repeatedly quadratic approximations of the objective
function.

d) MMA: The Method of Moving Asymptotes (MMA)
[33] uses conservative convex approximations by rational
functions (defining the moving asymptotes) with quadratic
penalty terms (enforcing a convex trust region). Conservatism
is achieved by adapting the approximation, if the approxima-
tion predicts a better function value at a new candidate point
than is sampled from the system. No line search is needed in
MMA because of its conservatism.

e) SPSA: Simultaneous perturbation stochastic approxi-
mation (SPSA) [34], [35] estimates the gradient of the objec-
tive function from two data samples. Regardless of the prob-
lem’s dimension, all input variables are perturbed randomly
around the current mean estimate. The perturbation is usually
generated from a symmetric Bernoulli distribution. Due to its
stochastic nature, SPSA is suitable for objective functions that
are corrupted by noise.

C. Local Derivative-Free

Algorithms that do not rely on gradient estimates, but search
locally around the currently best-known sampling point are
categorized as local derivative-free algorithms.

a) Powell: Powell’s method [36] is a variation of the
Conjugate Gradients algorithm discussed above, in which
no derivatives are taken. Instead, the difference between the
current and new best point becomes a conjugate direction and
replaces one of the prior directions.

b) PRAXIS: The search directions in Powell’s method
may become linear dependent with a negative effect on con-
vergence. PRAXIS [37] is a variation of Powell’s method that
regularly restores linear independence by setting the conjugate
directions to be the principal axes of a quadratic approximation
of the objective function.

c) Nelder-Mead: Nelder-Mead [38] is a direct search
algorithm that constructs a simplex from d+1 sampled points
(with d being the dimensionality of the problem). The centroid
of the d-best points is used in determining a new sample point.
The new point replaces the worst point in the simplex. If the
new point is better than the best point so far, the simplex may
be expanded. If it is worse than the second worse point so
far, the simplex may be contracted. The algorithm stops when
some termination criterion, such as a small standard deviation
of the function values of the simplex, is met.

d) Subplex: Subplex [39] is a variant of Nelder-Mead,
that uses Nelder-Mead to search a sequence of sub-spaces of
the problem. Sub-spaces need to be orthogonal to each other
and of lower dimensionality than the original search space.
Subplex leverages the efficiency of Nelder-Mead in lower-
dimensional problems to solve problems in higher dimensions.

e) COBYLA: Constrained Optimization BY Linear Ap-
proximation (COBYLA) [40] is an enhancement of Nelder-
Mead that introduces explicit handling of constraints. Ob-
jective function and constraints are interpolated by linear
approximation at the vertices of a simplex of d + 1 points.
COBYLA thus solves sequentially multiple linear programs.
To account for approximation errors, the algorithm enforces a
trust region on the new sample point.

f) BOBYQA: Bound Optimization BY Quadratic Ap-
proximation (BOBYQA) [41] uses a quadratic approximation
of the objective function by fitting typically 2d + 1 points
(with d being the dimensionality of the problem). A new
candidate point is obtained by minimizing the quadratic ap-
proximation within a trust region and the box constraints. The
new point replaces one of the 2d + 1 points. In updating the
quadratic approximation, the Frobenius norm of the induced
change of its second derivative is minimized.

D. Learning-Based

For an algorithm to be considered a learning-based algo-
rithm in this study, it must: 1) estimate a persistent, global
model of the system’s performance function from sampled
data, 2) use this model to generate new candidate points to
explore, and 3) actively seek to act optimally as measured
against the system’s performance function.

a) Discretized Multi-Armed Bandit Algorithms: Our
problem formulation is most similar to the multi-armed bandit
problem in the learning literature. The multi-armed bandit
is essentially a stateless reinforcement learning problem, in
which the learner tries to find the arm (control input) that
yields the same or higher pay-off in expectation than any other
arm in a finite set of arms. To submit our continuous control
problem to any of the available multi-armed bandit algorithms,
one would need to discretize its input space (c.f. [42]). Due to
the curse of dimensionality, however, this strategy is infeasible,
because of the high dimensionality of the problem at hand. If
one would discretize Rd

[u∗−0.5,u∗+0.5] in pieces of width 0.1

in each direction, one would get 10d discrete arms to explore –
with d ∈ {12, 19, 20}. The large class of multi-armed bandit
algorithms is, thus, ruled out as infeasible for our high-
dimensional, continuous problem.
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b) HOO: Hierarchical Optimistic Optimization (HOO)
[43] is a multi-armed bandit algorithm with an adaptive
discretization mechanism. The algorithm uses a tree structure
to incrementally estimate the mean of the objective function.
The tree-structure partitions the input space finer and finer
around potential optima, whereas areas of less interest remain
partitioned coarsely. Similar to Bayesian optimization, HOO
maintains an optimistic bound on the mean-objective function
proportional to the partition size. The tree structure was
deliberately chosen to enable also its application to continuous
input spaces.

c) Bayesian Optimization: Bayesian Optimization [44] is
a class of algorithms that employ Bayesian statistics to model
a distribution over credible functions to be optimized. In the
non-parametric version, Gaussian processes are used as model.
In each iteration, the next sampling point is determined by
optimizing an acquisition function that takes the mean and
uncertainty of the distribution into account.

d) DDPG: Deep deterministic policy gradients (DDPG)
[45] is a basic deep reinforcement learning algorithm of
the actor-critic class. It maintains one neural network for
the estimation of the Q-function and one network for the
approximation of the mean of the continuous control policy.
The input space is explored by means of correlated, additive
white noise around the policy. Applied to the static bandit
context, DDPG reduces to estimating the static Q-function
through a neural network and taking gradient steps along it.
Considering our special application context, we pre-train the
policy network to output u0 initially.

E. Implementation Details

In our experiments, we rely on the Python implementation
of SciPy [46] for the algorithms: Differential Evolution, Con-
jugate Gradients, L-BFGS-B, SLSQP, Powell, Nelder-Mead,
and COBYLA. For DIRECT-L, MMA, PRAXIS, Subplex,
and BOBYQA, we use the implementation of nlopt [47].
Further, we use the scikit-optimize [48] implementation of
Bayesian Optimization. The remaining ones, SPSA, HOO,
and DDPG, were implemented by the authors. We keep
all hyperparameters of the algorithms set to their proposed
defaults, with the exception of the maximum number of
function evaluations (K = 500) and – if possible – the bounds
on u to Rd

[u∗−0.5,u∗+0.5]. Furthermore, other hyperparameters
of SPSA were set according to the rules outlined in [35].
Hyperparameters of HOO and DDPG were tuned by Bayesian
Optimization.

V. RESULTS

The central research question of this study is: How useful is
learning when compensating for model mismatch in a digital
twin? We denote an algorithm to be more useful than another
algorithm, based on three aspects:

1) sample efficiency – it requires less data samples to reach
a desired minimal performance (see (2)),

2) best in 100 – it achieves a more accurate performance in
a reasonable number of data samples (see (3)), and

3) regret – it accumulates less regret when compared to the
optimal policy (see (4)).

To that end, we sampled 198 problem instances from a ge-
ometry assurance context (see Sec. III) and solved those with
the 16 algorithms discussed in Sec. IV. Our results indicate
that it is not useful to employ a learning-based algorithm when
compensating for model mismatch in digital twins under the
direct input adaptation scheme. Instead, it appears to be most
useful to employ a local gradient-based algorithm, such as
SLSQP in deterministic settings or SPSA in stochastic settings.
The details of our analysis are provided in the following.

A. Overview of Results

In total, we conducted 99 experiments for each of the
deterministic and stochastic settings. For both settings, each
application case (door, pillar, tail) makes up a third of the
experiments. We consider nine randomly sampled and unique
assemblies for door, eleven for pillar, and eleven for appli-
cation case tail in our experiments. Tab. II summarizes the
details of our experiments.

TABLE II
OVERVIEW OF CONDUCTED EXPERIMENTS. 198 EXPERIMENTS WERE

CONDUCTED IN TOTAL, WHICH WERE EQUALLY DISTRIBUTED ACROSS
ALL THREE APPLICATION CASES AND OUTPUT NOISE SETTINGS. THE
NUMBER OF UNIQUE ASSEMBLIES AND THE AVERAGE NORM OF THE

INPUT AND OUTPUT DISTURBANCES ARE GIVEN.

Case Setting #Exp. Assemblies ∥∆u∥2 ∥∆y∥2
Tail det. 33 11 1.02 0.0

sto. 33 8 1.02 3.87×10−3

Door det. 33 8 1.27 0.0
sto. 33 9 1.23 3.83×10−3

Pillar det. 33 11 1.27 0.0
sto. 33 8 1.27 3.59×10−3

Tab. III lists the number of problems each algorithm could
solve in the deterministic and the stochastic setting, as well as
the 25%, 50%, and 75% quantiles of the number of data sam-
ples needed to solve the problems. We consider the problem
to be solved when fN

acc > 0.9 within 500 data samples. All
algorithms were able to solve at least some of the deterministic
problems, while most of the gradient-based algorithms (CG,
L-BFGS-B, MMA, PRAXIS, and SLSQP) failed to solve any
of the stochastic problems. COBYLA and Nelder-Mead only
solved one stochastic problem each. In contrast, gradient-based
SLSQP solved 97 out of 99 deterministic problems. In the
stochastic setting, Bayesian Optimization and SPSA performed
best with 87 out of 99 solved problems. Both algorithms
also performed well in the deterministic case. Our usefulness
criteria reflect these overall results.

B. Sample Efficiency

The first criterion to determine usefulness is the number of
data samples needed to reach a desired minimal performance.
We consider a problem instance to be solved by the respective
algorithm at sample N , once the accuracy exceeds a desired
level: fN

acc = Q(u0)−Q(uN )
Q(u0)−Q(u∗) > 1 − τ . In our analysis, we

choose τ = 0.1. This essentially means that we consider
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TABLE III
NUMBER OF PROBLEMS SOLVED BY ALGORITHM IN THE DETERMINISTIC

AND THE STOCHASTIC SETTING, AS WELL AS THE NUMBER OF DATA
SAMPLES N NEEDED TO REACH fN

acc > 0.9. 25%, 50%, AND 75%
QUANTILES OF N ARE GIVEN. DASHES INDICATE MISSING NUMBERS DUE

TO NO SOLUTION. THE BEST NUMBERS ARE PRINTED BOLD-FACED.

deterministic stochastic

# N # N

25% 50% 75% 25% 50% 75%

DIRECT-L 9 – – – 12 – – –
Diff. Evolution 64 212 379 – 59 215 380 –

CG 94 104 156 231 – – – –
L-BFGS-B 91 80 104 210 – – – –
SLSQP 95 55 67 110 – – – –
MMA 46 147 – – – – – –
SPSA 91 87 174 337 87 70 158 294

Powell 78 187 249 410 68 221 332 –
PRAXIS 66 88 180 – – – – –
Nelder-Mead 31 455 – – 1 – – –
Subplex 88 109 144 298 68 103 193 –
COBYLA 68 93 238 – 1 – – –
BOBYQA 11 – – – 12 – – –

HOO 29 387 – – 35 322 – –
Bayesian Opt. 83 93 134 343 87 74 169 346
DDPG 14 – – – 16 – – –

the problem to be solved once 90% of the improvement
potential has been realized. For the purpose of comparing
different algorithms, we rank all algorithms on each problem
instance by the number of function evaluations N needed to
achieve fN

acc > 1−τ . The algorithm with the smallest number
of function evaluations is ranked first, the one with the most
is ranked last.

Fig. 5a summarizes the ranking of each algorithm across all
deterministic problem instances (no output disturbance: σ∆y =
0). The boxplot orders the algorithms by median rank. We
observe that local gradient-based optimization algorithms per-
form best on the deterministic problems. The algorithm with
the best median ranking by far is SLSQP, meaning it solved
the most problems in the least number of function evaluations.
The other gradient-based local optimization algorithms are
also ranked highly (L-BFGS-B – second, CG – fourth, SPSA –
fifth), with the exception of MMA – ranked eleventh. The
global optimization algorithms DIRECT-L and Differential
Evolution as well as the learning-based algorithms HOO and
DDPG rank in the lower half of the table. A notable outlier is
Bayesian Optimization, which is both a global and learning-
based algorithm and yet achieves rank three.

Fig. 5b repeats the analysis, which is described in the
previous two paragraphs, for stochastic problem instances. In
these problem instances, an output disturbance is added to
model part variation and any other variations that propagate
through the assembly process. The output disturbance is white-
noise with zero mean and a randomly sampled standard
deviation. The output disturbance seems to be especially
detrimental to most of the local optimization algorithms.
SLSQP, PRAXIS, MMA, L-BFGS-B, CG do not solve any
of the stochastic problems while COBYLA and Nelder-Mead
only solve 1/99 and thus rank last. Stochastic algorithms
(SPSA, Bayesian Optimization, Diff. Evolution, HOO, DDPG,

DIRECT-L) generally perform better in the stochastic setting
than in the deterministic setting. SPSA performs best across
all algorithms. The stochastic approximation of the gradient
is by design capable of handling noisy function evaluations.
SPSA is closely followed by Bayesian Optimization on rank
two. The other learning-based algorithms HOO and DDPG
achieve an overall rank of six and seven out of 16 algorithms.

Overall, we observe that local, gradient-based algorithms
are most useful in terms of sample efficiency – SLSQP for
deterministic problems, and SPSA for stochastic ones. The
learning-based algorithms HOO and DDPG rank for both
problem types in the lower middle field without a clear edge
over the other algorithms. Bayesian Optimization ranking
highly is in both settings a notable exception.

C. Best Result after 100 Samples

The second criterion to determine usefulness is the best-
achieved result after 100 samples. To that end, we compute
the maximum accuracy in the first 100 data samples. All
algorithms are then ranked by maximum accuracy in the first
100 samples on each problem instance. The algorithm with
the highest accuracy is ranked first, the one with the lowest is
ranked last.

Fig. 5c depicts a boxplot of each algorithm’s ranking over all
deterministic problem instances (no output noise). Similar to
the previous analysis, SLSQP ranks best across all determin-
istic problems. Accordingly, most global and learning-based
optimization algorithms are found in the lower half of the
figure (HOO, Diff. Evolution, DDPG, DIRECT-L).

Fig. 5d depicts a boxplot of each algorithm’s ranking over
all stochastic problem instances (with output noise). Once
again SLSQP fails in the stochastic setting and ranks last.
SPSA and Bayesian Optimization rank best in this setting.
Notably, SPSA enjoys a higher rank for the 75-percentile.

Overall, the results for the best in 100 metric are similar
to the sample efficiency metric. In the deterministic setting,
local algorithms dominate the upper half of the ranking.
Gradient-based local algorithms perform below average in the
stochastic setting. Bayesian Optimization and SPSA can both
be considered outliers of their groups, performing well in both
settings.

D. Regret

The third metric to determine usefulness is regret (see
Sec. III). We compute regret as R =

∑500
k=1

Q(uk)−Q(u∗)
Q(u0)−Q(u∗) .

All algorithms are then ranked by minimum regret on each
problem instance. The algorithm with the least regret is ranked
first, the one with the highest is ranked last.

Fig. 5e depicts a boxplot of each algorithm’s ranking over
all deterministic problem instances (no output noise). Once
again, the local optimization algorithms make up the upper
half of the ranking. A notable difference to the previous two
criteria is the placement of Bayesian Optimization on rank
nine. This is due to its global search strategy, which keeps
exploring areas with high uncertainty, even after inputs close
to the optimum have been found.
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(a) Sample efficiency, σ∆y = 0.0, τ = 0.1
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(b) Sample efficiency, σ∆y ∈ R[0.0,0.007], τ = 0.1
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(d) Best in 100, σ∆y ∈ R[0.0,0.007]
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(e) Regret, σ∆y = 0.0
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Fig. 5. Boxplots of the algorithms’ rankings with respect to all three usefulness metrics. Rankings computed on 99 deterministic problems are displayed on
the left, rankings computed on 99 stochastic problems (with additive white noise output disturbance) are displayed on the right. Colors indicate algorithm
category according to Sec. IV (grey – global, blue – local gradient-based, green – local derivative-free, and red – learning-based). Algorithms are ordered by
median. Notches in the box demarcate confidence intervals of the median calculated through bootstrapping. Purple dots indicate mean rank.

Fig. 5f depicts a boxplot of each algorithm’s ranking over
all stochastic problem instances (with output noise). The first
three ranks are taken again by local algorithms (Subplex,
SPSA, and Powell).

E. Meta Analysis

The 16 algorithms in this comparison were partially chosen
for the differences in their key design principles, and partially
for their similarity. Therefore, a number of observations can be
made. The quasi-Newton methods L-BFGS-B and SLSQP, for
instance, are highly competitive in the deterministic setting,
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but fail, like most other gradient-based algorithms, in the
presence of noise. Powell’s method is a variant of the Conju-
gated Gradient (CG) algorithm, that does not rely on gradient
estimates. Powell’s method seems to benefit from that in the
stochastic setting, whereas CG and PRAXIS – the successor to
Powell’s method – perform better in the deterministic setting.
Subplex seems to be a clear improvement over its prede-
cessor Nelder-Mead in both the deterministic and stochastic
settings. In the deterministic setting, COBYLA also appears
to be an improvement over Nelder-Mead. Several algorithms,
furthermore, approximate the objective function as part of
the optimization. L-BFGS-B, SLSQP, MMA, and BOBYQA
approximate the objective locally by a convex function. This
seems to be especially successful in the deterministic case.
Bayesian Optimization and DDPG approximate the objective
globally by continuous functions. HOO shares the Bayesian
approach with Bayesian approximation but uses a discrete
tree structure as an approximation that is more akin to the
principle in DIRECT-L. We observe Bayesian Optimization
performing best of these three algorithms. This may be due to
its correct continuity assumption and the Bayesian approach
to computing uncertainty in its estimates.

In summary, local algorithms are most useful for direct
input adaption in all respects in the deterministic setting but
perform mostly worse when output noise is present. However,
the stochastic, local algorithm SPSA outranks almost all other
algorithms on all criteria in the stochastic setting. Stochastic
algorithms generally perform comparably better in the stochas-
tic setting. This applies to the learning-based algorithms too.
Yet, these algorithms can not be considered most useful in
neither the stochastic nor the deterministic setting, even though
Bayesian Optimization ranks highly except in terms of the
regret metric.

VI. DISCUSSION

To complete our presentation of the results, we briefly
discuss various aspects of this study.

A. Sensitivity of Metrics

Two of the three usefulness metrics in this study depend on
parameters set by the authors. The sample efficiency metric
depends on the tolerance level τ , and the best in X metric
depends on the sampling budget X . These parameters were
set rather arbitrarily to τ = 0.1 and X = 100. Higher or
lower values may advantage or disadvantage one or the other
algorithm. Regret, the third metric, is independent of user-
selected parameters.

Tab. IV lists the ranking of the algorithms on deterministic
problems with respect to sample efficiency using the same
method as in Sec. V, but for different levels of the tolerance
level τ . On the level of individual algorithms, the tolerance
level affects the position in the ranking. SPSA, for instance,
rises in rank the higher the tolerance level is. On the level
of classes of algorithms, the ranking is less sensitive to the
tolerance level. The upper half of the ranking consists mostly
of local optimization algorithms, with the gradient-based ones
claiming the highest positions. The only exceptions to that are

Bayesian Optimization, which consistently ranks in the top
five, and the entrance of Differential Evolution at a tolerance
of τ = 0.4. Besides that, the ranking is fairly consistent across
algorithmic classes and tolerance levels. This extends to the
stochastic setting and is the reason for the omission of a more
detailed discussion of the sensitivity in that setting.

TABLE IV
SENSITIVITY OF THE SAMPLE EFFICIENCY RANKING WITH REGARDS TO

THE TOLERANCE LEVEL τ FOR THE DETERMINISTIC PROBLEM
INSTANCES. THE UPPER HALF OF THE RANKING CONSISTS MOSTLY OF

LOCAL OPTIMIZATION ALGORITHMS FOR ALL TOLERANCE LEVELS.
BAYESIAN OPTIMIZATION PROVES TO BE THE EXCEPTION TO THE RULE.

Rank τ = 0.05 τ = 0.10 τ = 0.20 τ = 0.40

1 SLSQP SLSQP SLSQP SPSA
2 L-BFGS-B L-BFGS-B SPSA SLSQP
3 CG Bayesian Opt. Bayesian Opt. Bayesian Opt.
4 COBYLA CG L-BFGS-B Subplex
5 Bayesian Opt. SPSA Subplex Diff. Evolution
6 Subplex Subplex CG BOBYQA
7 Powell COBYLA PRAXIS L-BFGS-B
8 PRAXIS PRAXIS COBYLA CG
9 SPSA Powell Powell PRAXIS
10 Diff. Evolution Diff. Evolution Diff. Evolution HOO
11 MMA MMA MMA COBYLA
12 Nelder-Mead HOO HOO Powell
13 HOO Nelder-Mead Nelder-Mead MMA
14 DDPG BOBYQA BOBYQA Nelder-Mead
15 DIRECT-L DDPG DIRECT-L DIRECT-L
16 BOBYQA DIRECT-L DDPG DDPG

Similarly, Tab. V gives the sensitivity of the second metric to
the sampling budget for the deterministic problems. Stochastic
algorithms SPSA, HOO, and Differential Evolution perform
comparatively better under smaller sampling budgets. Besides
that, we observe the same dominance of the local optimization
algorithms across all values of the sampling budget. On the
level of algorithmic classes, the ranking is also robust for
different sampling budgets in the stochastic setting.

TABLE V
SENSITIVITY OF THE BEST RESULT RANKING WITH REGARDS TO THE

SAMPLING BUDGET X FOR THE DETERMINISTIC PROBLEM INSTANCES.
LOCAL OPTIMIZATION ALGORITHMS HEAD THE RANKING WITH ONLY A

FEW EXCEPTIONS FOR ALL SAMPLING BUDGETS.

Rank X = 25 X = 50 X = 100 X = 200

1 SPSA SLSQP SLSQP SLSQP
2 HOO SPSA Bayesian Opt. L-BFGS-B
3 Bayesian Opt. Bayesian Opt. SPSA CG
4 SLSQP BOBYQA L-BFGS-B Bayesian Opt.
5 Subplex Subplex Subplex Subplex
6 Diff. Evolution HOO CG COBYLA
7 BOBYQA CG PRAXIS SPSA
8 MMA L-BFGS-B COBYLA PRAXIS
9 PRAXIS PRAXIS HOO Powell
10 Powell Diff. Evolution Diff. Evolution Diff. Evolution
11 COBYLA MMA BOBYQA HOO
12 DDPG COBYLA MMA MMA
13 Nelder-Mead Powell Powell BOBYQA
14 CG DDPG DDPG DDPG
15 DIRECT-L Nelder-Mead DIRECT-L Nelder-Mead
16 L-BFGS-B DIRECT-L Nelder-Mead DIRECT-L

B. Solving vs. Converging

The performance of the global and learning-based algo-
rithms (DIRECT-L, Diff. Evolution, Bayesian Optimization,
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Fig. 6. Mean convergence plot of Bayesian Optimization and SLSQP over all
deterministic problems. Shaded areas indicate the standard deviation. Bayesian
Optimization has a higher standard deviation. For this reason, it may achieve
high accuracy long before convergence.

HOO, and DDPG) in our experiments should be considered
with caution. Although they are competitive in some settings,
one has to differentiate between fulfilling our usefulness
metrics and converging to the optimum. A global optimization
algorithm may sample the system by chance close to the
optimum after a few iterations, but continue to explore the
input space nevertheless. For our usefulness metrics sample
efficiency and best in X, we may regard this as having solved
the problem in a few iterations or achieving high maximum
accuracy. A local algorithm will improve rather monotonically
on the accuracy measure. To illustrate this point, compare the
mean and standard deviation of the accuracy over all deter-
ministic experiments for Bayesian Optimization and SLSQP
in Fig. 6. Bayesian Optimization has a much larger standard
deviation than SLSQP throughout the whole experiment. Yet,
we might consider the problem to be solved for our purposes
long before Bayesian Optimization has converged. However,
this difference is reflected in the usefulness as low regret met-
ric and explains the comparatively lower ranking of Bayesian
Optimization on this measure.

C. Hyperparameter Search

All algorithms except for HOO and DDPG were run with
the default hyper-parameters values. For HOO and DDPG,
no such default values exist. Instead, a hyperparameter search
was performed on a surrogate model created from previously
sampled data. The choice of hyperparameters significantly
affected the performance of both algorithms. The results
reported herein were obtained with the best hyperparameter
settings found during the search. For a fairer comparison, the
samples needed for hyperparameter tuning should be included
also.

D. Curvature and Gradient-Based Algorithms

Local gradient-based optimization algorithms outperformed
most other gradient-free algorithms in our experiments.

Gradient-free algorithms, however, are advantageous if the op-
timization manifold has little to no curvature. One might argue,
that in such application cases in which the manifold is mostly
flat, gradient-free algorithms would outperform gradient-based
algorithms, and, hence, one would reach a different conclusion.
Two arguments speak against this. First, it is reasonable to
assume that the manifold has curvature in the neighborhood
of the optimum that was identified by using any (including
gradient-free) optimization algorithm on the digital twin. For
continuous and smooth manifolds, this assumption follows
from the definition of an optimum. Second, even in cases of
very wide and flat optima, gradient-based algorithms would
not be significantly worse, since all algorithms would perform
virtually equally well.

E. Choice of Algorithms

The algorithms tested in the study at hand are a small subset
of all existing blackbox and learning-based algorithms. This
subset was selected by the authors and may be considered a
fixed factor experiment. Technically, our conclusions can not
be generalized to the larger set of all existing blackbox and
learning-based algorithms, for that reason. A different choice
of algorithms may have resulted in a different conclusion.
However, this is unlikely since our results indicate general
trends. First, we observe that local algorithms are generally
more useful than global algorithms in the direct input adap-
tation context. Second, we note that stochastic algorithms are
more competitive in the setting with noise compared to the
deterministic setting. A different selection of algorithms is
likely to reproduce these trends.

F. Generalization to Other Applications

The results presented in this paper were obtained on a
geometry assurance task in the assembly of sheet metal parts.
Nevertheless, the results extend to other application domains,
as long as their performance function Q is static, continuous,
smooth, and of similar dimension. We would expect our
usefulness ranking to change for applications with significantly
differing control input dimensions, though. That is because
the number of data samples needed for estimating a model or
gradient often depends on the input dimension. A notable ex-
ception to this is the relatively high-ranking SPSA algorithm,
which always requires only two samples and would likely
strengthen our findings on higher dimensional applications.
If an application is of similar dimension, our results would
extend to convex problems too. This is due to the assumption
made in this study that the optimization manifold is at least
locally convex over the search space. This assumption follows
as implication from the premise that the offline optimization
of the digital twin identified a starting point reasonably close
to a relatively good optimum in the system. Moreover, if
the assumption holds, the starting point for the direct input
adaptation may be supplied as well by means of any other
model or expert. Although, performance improvements may
be realized even without this assumption in other applications
with similar properties.
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Furthermore, we restricted our experiments to system-twin
mismatches that are static and constant in nature. A system-
twin mismatch that is drifting over timescales smaller than the
timescale of the direct input adaptation may lead to different
results in analyses similar to ours. Global and learning-based
methods would most likely perform worse since those methods
rely on the persistent accuracy of all sampled data. It would
be less of an issue for local search methods, that use only a
few samples to determine the next sampling point. However,
our results may extend to static system-twin mismatches that
can be described as linear or nonlinear continuous input our
output disturbances. The effect of such disturbances would be
a “warping” of the optimization manifold over the search space
in u. As long as the local convexity and smoothness property
of the optimization manifold is maintained, such a warping
would most likely be without significant impact.

G. No Free Lunch in Optimization

Wolpert and Macready [49] proved mathematically that
there is “no free lunch” in blackbox optimization. That is
to say that all blackbox optimization algorithms perform
on average equally well across all optimization problems.
Comparing the performance of algorithms on a small subset
of problems, as it is done in this study, seems problematic,
therefore. The dominance of quasi-Newton algorithms on
the deterministic problems and their complete failure in the
presence of output noise is likely the most illustrative example
of this no free lunch theorem in the paper at hand. However,
Wolpert and Macready also emphasize the need for specialized
blackbox algorithms, capable of leveraging properties of the
specific problem class for faster convergence. Accordingly,
we consider the empirical observation of this theorem as yet
another reason to research adaptive optimization algorithms in
the context of system-twin mismatch.

VII. CONCLUSION

Digital twins are regarded as key enablers for smart and
autonomous systems. The core component of a digital twin is a
digital model of such high accuracy that it can be considered to
be the twin of its physical counterpart. Given such an accurate
model and sufficient computational resources, virtually any
off-line optimization algorithm could be used to derive optimal
control inputs from the twin to improve the performance of
the physical system. For very practical reasons, however, this
accuracy may prove elusive, inducing a mismatch between
the digital twin and the physical system. Hence, optimality
of the control input derived from the digital twin may not be
given. Machine learning and AI is often offered as a solution
in the literature. In this paper, we juxtaposed the usefulness of
16 learning-based and blackbox optimization algorithms for
the purpose of restoring optimal control under system-twin
mismatch in high-dimensional, continuous, smooth, and non-
linear static systems. To that end, we formulated the problem
as an online optimization problem in the direct input adap-
tation scheme. Our results indicate that local gradient-based
blackbox optimization algorithms outperform learning-based
algorithms in terms of sample efficiency, accuracy within a

limited sampling budget, and regret, even in the presence of
measurement noise. Naturally, these results are conditional
on the properties of the physical system under consideration.
However, this paper highlights the need to extend the search
for algorithms, which can restore optimal control in digital
twin governed autonomous systems, beyond generic machine-
learning algorithms. A repetition of the presented study for
systems with different properties may be regarded as a con-
tinuation of this work.
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